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Abstract 

Primary production dynamics are strongly associated with vertical density profiles in shelf waters. Climate change and 

artificial structures (e.g. windfarms) are likely to modify the vertical structure of stratification and nutrient fluxes in shelf 10 

seas, and hence the vertical distribution and production levels of phytoplankton. To understand the effect of physical 

changes on primary production, identifying the linkage between water column density and chlorophyll-a (Chl-a) profiles 

is essential. Here, the biological relevance of eight density levels (DLs) characterizing three different portions of the 

pycnocline (the top, central aspects, and the bottom) was evaluated to find the best indicator of the vertical distribution 

of Chl-a in stratified conditions. The association of any DLs with the depth of Chl-a maximum (DCM) was tested using 15 

Spearman correlation, linear regression, and a Major Axis analysis with data covering summertime over 15 years in a 

shelf-sea region (the northern North Sea) that exhibits stratified water columns. Out of 1237 observations of the water 

column densities exhibiting a pycnocline, 78% reported DCM above the mixed layer depth below the pycnocline (BMLD) 

with an average distance equal to 2.74 ± 5.21 m. BMLD acts as a vertical boundary at which subsurface Chl-a maxima 

(SCM)  is most frequently found in shelf sea seas (depth ≤ 115 m). Overall, BMLD and indicators of the halfway 20 

pycnocline highly predicted the location of DCMs than MLD indicators and maximum squared buoyancy frequency (Max 

N2). These results confirm a significant contribution of deep mixing processes in subsurface production in stratified waters 

and indicate BMLD as a valuable tool for understanding the spatiotemporal variability of Chl-a in shelf seas. An analytical 

approach as a valuable tool to extrapolate BMLD and MLD from in situ vertical samples is also proposed. 
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1. Introduction 

As we begin to manage our oceans and shelf seas for more complex simultaneous uses, such as renewable energy 

developments, fishing and marine protected areas, it is becoming increasingly important to understand the details of 30 

primary productivity at fine spatial scales. Besides very shallow waters, the vast majority of phytoplankton production in 

continental shelf waters generally occurs under stratified conditions, where the pycnocline provides a stable habitat for 

phytoplankton growth in the lower euphotic zone. The balance between stratification and mixing in the water column is 

the main determinant for phytoplankton production and in the North Sea, the balance between mixing and stratification 

has been shown to fluctuate in time and space by the modulation of daily, biweekly and seasonally strong tidal cycles 35 

(Klymak et al., 2008; Sharples et al., 2006; Zhao et al., 2019b; Müller et al., 2014), which represent the main source of 

new nutrients’ supply to the pycnocline in prolonged stratified conditions. Turbulent mixing of the water column requires 

energy sources from either the surface (e.g. wind stress, Ekman pump due to wind curl) or deep waters (e.g. upwelling, 

eddy diffusion, tidal currents), which can be altered by climate change (Holt et al., 2016, 2018) and the introduction of 

numerous man-made infrastructures (Dorrell et al., 2022). Therefore, effects are expected in the overall mixing budget of 40 

our seas due to both these changes. Anomalies as circulation slow-down, sea-level rise, bottom and surface temperature, 

wind speed and wave height have largely been described as a consequence of climate change in the last two decades (e.g. 

Orihuela-Pinto et al., 2022; Taboada and Anadón, 2012; Bonaduce et al., 2019), while the consequences of these changes 

on the biological processes are still partially understood (Lozier et al., 2011; Somavilla et al., 2017). 

1.1 Subsurface chlorophyll-a maxima (SCM) 45 

Many of the uncertainties regarding the impacts on primary production come from the difficulties in correctly sampling 

its abundance in the whole water column. Contrary to the detection of surface blooms by satellite sensors, subsurface 

chlorophyll-a maxima (SCM) are often more difficult to measure. SCM represents significant features in plankton systems 

(Cullen, 2015), they define where most of the bottom-up processes take place and can exist in separate vertical layers and 

encompass more than 50% of the entire water column production (Weston et al., 2005; Takahashi and Hori, 1984). In the 50 

North Sea, the summertime (May-August) subsurface production contributes to the annual production of up to 20-50% 

and sustains the food chain in continental shelf waters during prolonged stratified conditions (Hickman et al., 2012; 

Richardson and Pedersen, 1998; Weston et al., 2005). Several studies linked the vertical distribution of maximum 

chlorophyll-a (Chl-a) to deep mixing processes (e.g. Brown et al., 2015; Richardson and Pedersen, 1998; Sharples et al., 

2006) and identified the occurrence of deep Chl-a assemblages in the proximity of the pycnocline in shelf seas (e.g. Costa 55 

et al., 2020; Durán-Campos et al., 2019; Ross and Sharples, 2007; Sharples et al., 2001). Maxima Chl-a have been 

identified at the base of the pycnocline in regions of strong tidal mixing at Georges Bank in August (Holligan et al., 1984) 

and within the western English Channel (Sharples et al., 2001). However, despite the clear linkage between SCM and 

deep physical processes in shelf seas, surface mixing processes have been used to investigate the global variations of 

primary production (Somavilla et al., 2017; Steinacher et al., 2010) making the surface mixed layer depth (MLD) an 60 

indicator of variations of Chl-a. The use of MLD is motivated in oceanic sites where the deepest limit of the pycnocline 

is difficult to draw, while the limits of the pycnocline in shelf waters are more evident due to surface and deep mixings 

confining the pycnocline in a restricted zone.    

1.2 Mixed layer depth (MLD) and pycnocline characteristics 

MLD has been largely considered as a central variable for understanding phytoplankton dynamics (Sverdrup, 1953), 65 

especially in oceanic sites, where several studies have investigated the ecological relevance of MLD on Chl-a vertical 
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distribution (Behrenfeld, 2010; Carranza et al., 2018; Diehl, 2002; Diehl et al., 2002; Gradone et al., 2020), phytoplankton 

bloom events (Behrenfeld, 2010; Chiswell, 2011; D’Ortenzio et al., 2014; Prend et al., 2019; Ryan-Keogh and Thomalla, 

2020, Sverdrup, 1953), and the effects of climate change (Somavilla et al., 2017). The nutricline’s depth exhibits positive 

correlations with the upper mixed layer depth (Ducklow et al., 2007; Gradone et al., 2020; Holligan et al., 1984; Prézelin 70 

et al., 2000, 2004; Ryan-Keogh and Thomalla, 2020; Yentsch, 1974, 1980), and it has been generally associated with 

surface spring blooms or windstorm events (Carranza et al., 2018; Carvalho et al., 2017). However, the effects of MLD 

and climate’s variations on primary production are still an unsolved question (Lozier et al., 2011; Somavilla et al., 2017). 

The need for a much more detailed understanding of the linkage between primary production, pycnocline characteristics 

and deep turbulent processes (below the pycnocline) is therefore a key area of research, especially in highly productive 75 

but spatially heterogeneous areas such as shelf waters and shallow seas. 

The methods for identifying MLDs vary among marine environments, hydrodynamic regimes, or the spatial resolution of 

vertical profiles (Courtois et al., 2017; Lorbacher et al., 2006), because making use of a single method is difficult for 

spatiotemporally heterogeneous regions. MLDs are typically defined as the depth at which the density exceeds a specific 

value (threshold) (e.g. Kara et al., 2000), however this method presents issues in specific hydrodynamic conditions, such 80 

as over estimating MLD in regions with deep convection (e.g. subpolar oceans) (Courtois et al., 2017), or misidentifying 

water columns with a newly established shallow MLD over previous periods of stratification (Somavilla et al., 2017). 

Several sensitivity tests and comparisons have been conducted in oceanic waters (González-Pola et al., 2007; Holte and 

Talley, 2009; Courtois et al., 2017), however, there are no standard methods for MLD identification neither in shelf nor 

oceanic waters.  85 

1.3 A new way forward: the mixed layer depth below the pycnocline (BMLD) as a proxy for Chl-a maximum 

in shelf waters 

In this study, we proposed the adaptation of existing methods into a new algorithm able to cope with different high-

resolution (1 m) vertical distributions of density (characterized by split pycnoclines and unusual shapes) to identify i) the 

surface mixed layer (commonly known as MLD) and ii) the mixed layer depth below the pycnocline (BMLD) intended 90 

as the depth at which the pycnocline ends and deep mixing develops down to the seabed. The method is validated using 

vertical samples of density and Chl-a to characterize the relationship between stratification features and subsurface Chl-

a in waters depths from 20 to 120 m, with 15 years of repeated surveys that covers a mosaic of habitats types: seasonal 

stratified waters, permanently mixed waters, regions of freshwater inputs and strong tidal mixing (Leeuwen et al., 2015). 

The relationships between the vertical distribution of eight different density levels (DL) and Chl-a profiles are analysed 95 

using three different analytical techniques for comparisons:  Spearman’s rank correlation coefficient (𝜌𝑆),  a Major Axis 

(MA) line fitting and a linear regression model (LM). This approach is being developed in order to help the identification 

of key linkages between the physical environment and primary production at finer spatial scales (≤ 1 km), which can be 

ecologically relevant for pressing issues in marine spatial management (e.g. seabed leasing for wind farms, locations of 

MPAs) and spatially explicit climate change assessments.  100 

2. Methods 

2.1 Physical and biological oceanographic samples 

In situ summertime measurements of temperature, salinity, and Chl-a were collected from a towed, undulating, CTD and 

a vertical CTD in the North Sea off the East coast of Scotland, UK, within the Firth of Forth (FoF) and Tay region for 

over 15 years (from 2000 to 2014) (Fig. 1). A total of 1273 profiles from both types of sampling were extracted from 105 
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April to August (April=3, May=51, June=1115, July=66, August=38). 426 profiles were gathered using the vertical CTD 

from 12 oceanographic campaigns carried out by Marine Scotland Science on board of the fisheries research vessels 

Scotia and Alba na Mara (www.gov.scot/marine-and-fisheries). The data set comprises temperature, conductivity, and 

Chl-a measurements from the sea surface to the seabed (vertical resolution equals to 1 decibar) at fixed stations sites. 

Water samples were collected during each cast for calibration of the in situ sensor data. The undulating CTD sampled the 110 

water column in June 2003 and July 2014 with a continuous vertical and horizontal oscillation of the instrument 

throughout the water column from 2-5 m below the sea surface to 5 m from the seabed. The continuous profiles obtained 

from undulating CTD were converted into 847 single profiles of the water columns. Data were sampled at 1 second 

intervals, resulting in a vertical resolution comprising between 0.5 and 1 m, in water depths from 25 m to 115 m. Further 

information about the oceanographic cruise in June 2003 is described by Scott et al. (2010), whose method was applied 115 

in the cruise in July 2014.  

 

Figure 1: Study area with the in situ surveys measured by a vertical CTD (blue dots) and an undulating CTD (orange 

dots). Land (green) and bathymetry (grey colour ramp) are pictured (ESRI 2020; EMODnet 2018) 

 120 

2.1.1 Standardized density profiles 

Since the proposed algorithm (described in Sect. 2.2) works with profiles at high vertical resolution (samples’ vertical 

resolution is 1 m), the in situ casts must be standardized throughout the water column. Density (𝜌) observations taken 

every 0.5 to 1 m from undulating CTD were converted into measurements over regular depth intervals by smoothing and 

interpolating. This was achieved by fitting a generalized additive model (GAM) (Hastie and Tibshirani, 1990) using an 125 

adaptive spline with 𝜌 as a function of depth. The obtained smooth function for each profile was used to interpolate 𝜌 at 

regular 1 m depth intervals. In order to maintain the same shape and values in each profile, the fitted curves at 1 m intervals 

were visually checked by plotting the estimated and real profiles to identify possible errors visually. 4.16% of the shapes 

(n=53) were manually corrected by changing the number of knots in the GAM, which ranged from 75% to 90% of the 

number of observations occurring within each profile. An example is given in Figure A2 in Appendix A. The analyses 130 

were run in R v3.6.3 (R Core Team, 2018) using the mgcv v1.8-33 package. 

 

2.2 MLD and BMLD detection 



5 
 

Definition of MLD and BMLD  

In stratified waters, the layers above and below the pycnocline are mixed vertical region where the density gradient is 135 

significantly different from the pycnocline. The upper mixed layer depth (MLD) and the mixed layer depth below the 

pycnocline (BMLD) are both the transition regions between mixed waters and the pycnocline (Fig. 2). The most common 

threshold methods (see Sect 2.3) identify MLD based on the principle that the mixed layer at the surface has a density’s 

variance close to zero, which separates from the pycnocline, exhibiting a larger density gradient. The above assumptions 

may not always hold, especially when the upper mixed layer is heterogeneous with nested sub-structures such as small 140 

re-stratification at the surface, or when the pycnocline can include a small mixed layer (Fig. A1a, e, f in Appendix A) or 

presents different density gradients (stratified layers) within it (Fig. A1b and c in Appendix A). Such density conditions 

are difficult to isolate with the available methods.  

In the proposed algorithm, the detection of MLD does not assume that the upper mixed layer has a density gradient close 

to zero up to the top of the pycnocline, and it identifies MLD (and BMLD) regardless any a priori threshold (Chu and 145 

Fan, 2019, 2011; Holte and Talley, 2009). Two approaches, the angle’s method from Chu and Fan (2011) and K-mean 

statistics, are used to analyse the vertical distribution of density (𝜌) by comparing the observations to each other in the 

same profile instead of applying an absolute threshold to all profiles. The algorithm distinguishes in the water column 

three layers having similar density values (the upper mixed layer, pycnocline and lower mixed layer) (Fig. 2) using K-

mean statistics. The MLD represents the shallowest depth up to which the difference of density between adjacent points 150 

∆𝜌 is small and similar from the surface. The BMLD is the first depth below the pycnocline from which ∆𝜌 is small and 

similar down to the seabed. This type of detection based on the density shape allows the identification for unconventional 

density vertical distribution (Fig. A1 in Appendix A). 

 

 155 
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Figure 2: The eight density levels (DLs) are reported for a generic density profile whose upper mixed layer, pycnocline 

and lower mixed layer are displayed with different coloured rectangles. The curly brackets define the halfway depths 

(HPDs) between MLD’s indicators (MLD0.1, MLD0.2, MLD) and BMLD.  

Method to extract MLD and BMLD 

MLD and BMLD were identified by developing an algorithm in R v3.6.3 (R Core Team, 2018) named abmld.R, and 160 

available at https://github.com/azampollo/BMLD, that analyses the shape of the density profile and distinguishes a mixed 

from a stratified layer using i) an adaptation of the maximum angle method (Chu and Fan, 2011) and ii) a cluster analysis 

on the density difference between two consecutive points (∆𝜌𝑧 =  |𝜌𝑧 − 𝜌𝑧+1|). The method is designed to work with 

equal, high-resolution (1 meter), intervals of density values (z) collected in stratified shelf waters, with a pycnocline 

detailed by > 5 values, and BMLD distributed within the first 90% of the observations from the surface to the deepest 165 

point (close to the seabed). The reason why the method is sensitive to the number of points within the pycnocline, before 

MLD and after BMLD, is due to the analyses included in the algorithm depending on at least two observations at the 

beginning of each mixed layer.  

The first steps of the algorithm follow the method by Chu and Fan (2011) where the depth exhibiting the maximum angle 

between two vectors, referring to density conditions above and below it, is selected as the mixed layer depth. At each 170 

observation (z) of the density profile, the method calculates the angle (φ) from the intersection of two vectors, V1 and 

V2, each one fitted using a linear regression model that accounts for the vertical distribution of the density values above 

(for V1) or below (for V2) z. At each z of the density profile, a unique V1 (blue line in Fig. 3) is fitted using z and 2 points 

(2δ) above it, and a unique V2 (red line in Fig. 3) is fitted using z and 2 points below it. The angle (φ) resulting from the 

intersection of the two lines is measured in degrees using Eg. 1 reported in Supplementary material. A value of φ is hence 175 

associated with each point of the density profile. Although Chu and Fan (2011) suggested to identify MLD by measuring 

the tangent of the angle between V1 and V2, we encountered some issues identifying BMLD in those profiles where φ 

was bigger than 90 degrees, and where density slightly decreased below the pycnocline (Fig. A1d, Appendix A). At this 

point, an angle φ is associated with each observation in the density profile. Since the identifications of MLD and BMLD 

are both based on the ranking of φ, the selection of either one or the other requires splitting the density profile into 180 

“surface” (Split1) and “deep” (Split2) observations to avoid any misidentification and interchange between mixed layer 

depths. Split1 includes the density values from the surface (z1) to two measurement intervals (2δ) above BMLD (Fig. 3a), 

while Split2 extends from 2δ above the halfway depth in 𝜌 range (0.5Δ𝜌 = ((𝜌max – 𝜌min)/2) – 2) to the ninetieth portion 

of the profile from the surface to the seabed (z0.9Δρ = 90% of 𝑧1
𝑛 ) (Fig. 3b). The bottom limit of Split2 was defined at z0.9Δρ 

following Chu and Fan (2011) to reduce the number of observations close to the seabed. However, the analyses can be 185 

extended up to the end of the profile by following the instructions reported at https://github.com/azampollo/BMLD. 

After the selection of the largest angles as potential MLD and BMLD, a further K-Mean cluster analysis (Lloyd, 1982) 

was used to identify the mixed and stratified layers based on the density difference between two consecutive points (∆𝜌𝑧). 

The cluster analysis satisfied the assumption that similar observations belong to either the mixed or stratified layers. MLD 

and BMLD were hence selected above the candidates whether the observations above and below them belonged to the 190 

same cluster. More details regarding the decisional tree of the algorithm are reported in the Supplementary materials. 

Adding the conditions controlling for a similar classification of observations at depths above MLD and below BMLD 

decisively improved the selection of pycnocline’s limits in pycnocline fractured in chunks. Moreover, several trials 

https://github.com/azampollo/BMLD
https://github.com/azampollo/BMLD
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reported that the exclusive use of the maximum angle method would have biased the selection due to local variation and 

instability conditions of the water column (Fig. A1b, c, e, f in Appendix A). 195 

 

 

Figure 3:  plots of a density profile reporting the attributes calculated by the algorithm: grey region includes the 

observations (z) (black dots) used to identify MLD and BMLD, which extends in (a) from the surface to 2δ above BMLD 

(purple rhombus), and in (b) from 2δ above half of the density range reported by the profile (0.5Δ𝜌, purple rhombus) to 200 

0.9Δ𝜌. The solid blue and red lines refer to the vectors V1 and V2, whose intersection defines the angle 𝜑𝑧 selected as 

MLD and BMLD (green stars). 

Performance of the algorithm  

The algorithm was validated by manually checking the estimated MLD and BMLD in each profile, which were considered 

wrongly identified when falling into the pycnocline. Since most of the errors located the mixed layer depths clearly at the 205 

centre of the pycnocline having thin layers of re-stratification (> 4 observations) (Fig. A1 b, c, e, f, Appendix A), the 

identifications were considered correct when they appeared i) on top of a lower mixed layer (in BMLD) and ii) on top of 

a large density gradient (pycnocline) separating surface to deep waters (in MLD). Major errors in identifying MLD (6.76% 

of the profiles) and BMLD (4.32%) occurred in density profiles with a smooth transition from the mixed layer to the 

pycnocline, hence reporting a high number of observations at the mixed layer depths (e.g. Fig. A1 a-c, Appendix A). It is 210 

important to highlight the sensitivity of this method to the difference in density (∆𝜌) at MLD and BMLD (a large ∆𝜌 is 

preferred), and to the sampling frequency at the transition regions between mixed waters and the pycnocline. The 

algorithm did not correctly identify MLD in profiles without an upper mixed layer and a shallow pycnocline that 

comprised two different gradients (Fig. A1c, Appendix A). In this case, the cluster analysis split ∆𝜌 into two groups, 
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although they belong to the same pycnocline. Other errors were related to profiles having a pycnocline split into two parts 215 

by a thin mixed layer having > 4 observations (Fig. A1e, Appendix A). Overall, the identification of BMLD performed 

better than MLD’s, although it could not deal with profiles having less than 4 observations throughout the pycnocline 

(thickness of the pycnocline < 3 m). This condition occurred due to the location of the Split2 (which is necessary to 

distinguish BMLD’s from MLD’s selection) i) at depths above MLD (misidentifying MLD as BMLD) or ii) too close to 

BMLD (missing enough observations to fit V1 properly). The algorithm always correctly selected BMLD in profiles with 220 

a temporary overturn in the density profile (Fig. A1d, Appendix A). 

2.3 Common methods identifying Density Levels (DLs) 

The depths detailing the density structure in the water column are defined here as density levels (DLs). Among the 

multiple indicators of mixed layers that associate with Chl-a vertical distribution, the ecological relevance of the MLD, 

the halfway pycnocline depth and the maximum buoyance depth were compared to the proposed algorithm’s 225 

identifications.  

The MLD is typically defined in the literature as the depth at which the density exceeds a specific value (threshold method) 

(e.g. Kara et al., 2000). The threshold is typically selected among a range of values previously tested in the literature 

(from 0.0025 to 0.125 kg m-3) (summarized in Thomson and Fine, 2003; Montégut et al., 2004; Lorbacher et al., 2006; 

Holte and Talley, 2009) and measured as the difference (∆𝜌𝑧 =  |𝜌𝑧 − 𝜌𝑟𝑒𝑓|) between a certain sampling depth (z) and a 230 

reference density value (𝜌𝑟𝑒𝑓), which can be the density at the surface, at 10 m depth, or a consecutive point (e.g. z-1). In 

this study, two density thresholds (0.01 and 0.02 kg m-3) have been measured as the difference between two consecutive 

points in the profile (∆𝜌𝑧 =  | 𝜌𝑧 −  𝜌𝑧+1|) and named as MLD0.01 and  MLD0.02. 

Since previous studies identified subsurface Chl-a in the proximity of the centre of the pycnocline (hereafter called 

halfway pycnocline depth, HPD, Table 1), we investigated the relationship between DCM (depth of maximum Chl-a) and 235 

three different HPDs measured as the halfway depth between the base of the pycnocline (BMLD) and MLD0.01, MLD0.02 

and MLD from the proposed algorithm. These DLs are named HPD0.01-BMLD, HPD0.02-BMLD, and HPDMLD-BMLD (Fig. 2). 

Moreover, several studies reported positive correlation between the maximum squared buoyancy frequency (Max N2) and 

DCM at oceanic sites (e.g. Martin et al., 2010; Schofield et al., 2015; Carvalho et al., 2017; Courtois et al., 2017; Baetge 

et al., 2020) and shelf waters (Lips et al., 2010; Zhang et al., 2016). Therefore, the depth of Max N2 has been selected 240 

from N2 profiles computed by gsw_Nsquared function (gsw v1.0-5 package) in R v3.6.3 (R Core Team, 2018), following 

the most recent version of the Gibbs equation of state for seawater in TEOS-10 systems (Intergovernmental 

Oceanographic Commission, 2010). The magnitude of N2 quantifies the stability of the water column and pinpoints the 

stratified layers where the energy required to exchange water parcels in the vertical direction is maximum (Boehrer and 

Schultze, 2009).   245 

Table 1: Table of abbreviations used in the paper. 

Abbreviation Description 

SCM Subsurface Chlorophyll-a maximum  

Chl-a Chlorophyll-a (mg m-3)  

DCM Depth of maximum Chlorophyll-a (m) 

DL General abbreviation for a density layer (e.g. MLD, BMLD, HPD, or Max N2) (m) 

MLD Mixed layer depth, or top of the pycnocline (m) 

BMLD Mixed layer depth below the pycnocline, or base of the pycnocline (m) 
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HPD Halfway pycnocline depth, or centre of the pycnocline (m) 

Max N2 maximum squared buoyancy frequency (N2) (m) 

 

2.4 Subsurface Chlorophyll-a parameters  

The depth of maximum Chl-a (DCM) was defined as the deepest maximum inflection point in the Chl-a profile with 1 m 

sampling frequency (Carvalho et al., 2017; Zhao et al., 2019b). Here, the inflection point is defined as the depth exhibiting 250 

a high concentration of Chl-a and a large change in  Chl-a values throughout the profile. The variation of Chl-a throughout 

the water column was investigated using the adapted Chu and Fan (2011) method identifying for φ that is described in 

Sect 2.2. The angle (φ) were measured at each depth of the Chl-a profile, and the maximum φ with the largest Chl-a 

concentration was selected as DCM. The automated identification of DCM was checked manually with a visual inspection 

of each profile. The portion of the method used to measure the angle φ was integrated into a new function maxChla.R 255 

coded in R v3.6.3 (R Core Team, 2018) and available at https://github.com/azampollo/BMLD. 

The total amount of Chl-a were measured using trapezoidal integration (Walsby, 1997) throughout the water column 

(depth-integrated Chl-a). 

2.5 Evaluating the association of density levels with subsurface Chl-a 

The ecological relevance of each density level (DL) was evaluated by comparing their coincidence with the depth of 260 

maximum Chl-a (DCM) (e.g. DCM = BMLD) and their strength in predicting DCM. The coincidence and the prediction 

of DCMs from density profiles return important understanding of the processes driving subsurface concentrations and 

identify a valuable proxy for modelling analyses and for controlling uncertainty in net primary production estimates.  

In this study, we evaluated the coincidence of the DCM with eight investigated density levels (MLD0.01, MLD0.02, MLD, 

BMLD, HPD0.01-BMLD, HPD0.02-BMLD, HPDMLD-BMLD, and Max N2, Fig. 2) using Spearman’s rank correlation coefficient 265 

(𝜌𝑆) and a Major Axis (MA) line fitting, and the prediction of DCM from DL by performing a linear regression model 

(LM). All three methods differently assess the level of correlation or prediction. The Spearman’s coefficient (Eq. (1) in 

Table 2) assesses a monotonic linear relationship with values ranging between -1 and +1, which refer to a perfect negative 

or positive correlation between two variables. Besides the strength of the linear relationship defined by 𝜌𝑆, we focused on 

evaluating the linear relationship between DCM and each DL using 3 different linear models 𝑦 = 𝛼 +  𝛽𝑥: 1) alpha and 270 

beta estimated by linear regression; 2) alpha and beta estimated by major axis line fitting; and 3) the one-to-one linear 

regression with alpha and beta fixed at 0 and 1 respectively. The one-to-one line hypothesizes that DCM and DL occur at 

the same depth. The MA is largely used to investigate how one variable scales against another by accounting for errors 

from both directions (𝑥 and 𝑦) and measuring the residuals perpendicular to the line (details in the review Warton et al., 

2006). Therefore, the aim of MA is not to predict the 𝑦-variable, however evaluating the proximity of the coefficients of 275 

the estimated MA line (𝛼 and 𝛽) to the scenario in which DL equals DCM. The coincidence of each DL and DCM was 

summarized by reporting the 𝛼 and 𝛽 MA coefficients, which are hypothesized to be intercept ~ 0 and slope ~ 1 when 

DCM occurs at the same depth of the DL in question. 

Since the identification of a proxy for subsurface Chl-a represents a useful tool for correctly assessing the abundance and 

the variations of primary production, we investigated the power of prediction of DCM from each DL by measuring the r-280 

squared (R2) from i) an ordinary least square to estimate parameters from the observations in a linear regression (Eq. (2) 

in Table 2), and ii) the one-to-one linear regression (which has been forced with the intercept through the origin and a 

https://github.com/azampollo/BMLD
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slope equal to 1, Eq. (3) in Table 2). The formulae used to calculate the coefficient of determination R2 for the one-to-one 

(𝑅0
2) and empirical (𝑅𝑒𝑚

2 ) LMs are summarized in Eq. (2) and Eq. (3) in Table 2.  

 285 

Table 2: Formulae for estimating the bivariate line-fitting. Spearman’s rank correlation coefficient (𝜌𝑆), coefficient of 

determination R2 for testing the one-to-one linear regression (𝑅0
2) (e.g. DCM ~ BMLD) and the empirical linear 

regression (𝑅𝑒𝑚
2 ). 

 Formula 
 

Purpose 

𝜌𝑆 
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦

 
(1) 

Estimate the strength of the relationship between 𝑥 

and 𝑦 

𝑅𝑒𝑚
2  1 −  

𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇

= 1 − 
 ∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

 ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
(2) 

Measure the variation in 𝑦 that is explained by 𝑥 in 

a LM 

𝑅0
2 1 − 

𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇

= 1 − 
 ∑ (𝑦𝑖 −  𝑥𝑖)2𝑛

𝑖=1

 ∑ (𝑦𝑖)2𝑛
𝑖=1

 
(3) 

Measure the variation in 𝑦 that is explained by 𝑥 in 

a one-to-one LM 

Notation: 𝜎𝑥𝑦 is the covariance of x and y, 𝜎𝑥 and 𝜎𝑦 are standard deviations, n is the number of observations of 𝑥 and 

𝑦, 𝑦𝑖  is 𝐷𝑀𝐶𝑖, 𝑦̅ is the average of DCMs, and 𝑥𝑖  is the density layers related to DCM in each regression (e.g. DCM 290 

~ BMLD). SSRES is the residual sum of squares, SSTOT is the total sum of squares. 

In the empirical LM, 𝑅𝑒𝑚
2  was calculated using the typical formula with the residual sum of squares (𝑆𝑆𝑅𝐸𝑆) as the square 

of the difference of 𝑦 and 𝑦̂ (estimated 𝑦 from the model) (Eq. 2)). In the one-to-one LM, the 𝑆𝑆𝑅𝐸𝑆 in 𝑅0
2 was adapted 

by replacing 𝑦̂ with 𝑥 (Eq. (3)), since the values of 𝑥 and 𝑦 are assumed to be equal in the one-to-one line regression and 

the difference between them should be zero. The two R2 differ also for the denominator 𝑆𝑆𝑇𝑂𝑇 , which is the sum of squares 295 

about the average of the explanatory variable in 𝑅𝑒𝑚
2  and the sum of squares of the DCM values since in 𝑅0

2 the value of 

DCM and DL equals.   

Since the 𝑆𝑆𝑇𝑂𝑇  adopted in the two formulae is different, the proportion of explained DCMs’ variance by each DL can be 

compared only within each linear regression rather than across the one-to-one and empirical regressions. Therefore, the 

power of prediction among DLs was discussed within each type of LM. 300 

3. Results  

The presented algorithm identifying for MLD and BMLD was applied to 1273 profiles exhibiting a pycnocline. The 

associations of the density levels (MLD0.01, MLD0.02, MLD, HPD0.01-BMLD, HPD0.02-BMLD, HPDMLD-BMLD, BMLD and Max 

N2) with DCMs and the vertical distribution of Chl-a are described in Sect 3.1 and 3.2.  

3.1 Vertical distribution of DCM and density levels 305 

The depth of Chl-a maximum (DCM) was compared to eight different levels of the density profile that are summarized 

in surface mixed layer depth (MLD0.01, MLD0.02, MLD), below mixed layer depth  (BMLD), the centre of the pycnocline 

(HPD0.01-BMLD, HPD0.02-BMLD, HPDMLD-BMLD) and the depth of maximum buoyancy frequency squared (Max N2) to evaluate 

i) the strength of a positive linear relationship between each DL and DCM, and ii) the prediction of DCM from each DL.  

The observations carried out in the FoF and Tay region confirmed the subsurface presence of maxima Chl-a between 310 

April and August, with DCMs distributing on average (± standard deviation) at 19.29 ± 6.56 m. All the indicator 

classifying the surface mixed layer (MLD0.01, MLD0.02 and MLD) distributed generally shallower than DCMs (Fig. 4 a-c, 
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Table 3) with a rare coincidence of their vertical distribution (from 0.39% to 1.73% of the profiles, Table 3). In particular, 

the thresholds’ methods used to identify MLD exhibited the lowest Spearman correlation amongst all DLs, having almost 

a zero correlation to DCMs (𝜌𝑆 = -0.01 and 0.08 for MLD0.01 and MLD0.02, Table 3) and a limited contribution to define 315 

DCM’s variability in empirical linear regressions (𝑅𝑒𝑚
2  = 0.00 and 0.01, Table 3). The Major Axis analysis measured 

intercepts and slopes in MLD0.01 and MLD0.02 almost perpendicular to the 𝑦-axis due to the strong presence of DCMs in 

deep waters. Although a clear subsurface aggregation of Chl-a maxima occurs below the surface mixed layer (Fig. 4c), 

the MLD identified by the algorithm correlated better to DCM than MLD0.01 and MLD0.02, with a positive linear 

relationship between the two variables and a greater explained variance of DCM by the one-to-one and empirical linear 320 

regressions (Table 3). The coefficients measured by MA for MLD (Table 3) reported a positive correlation of DCMs, 

representing a gradual deepening of DCM with the top of the pycnocline.  

Max N2 is the density level performing least well after MLDs in predicting DCMs, although it showed the highest 

percentage of coincidence with DCMs (13.51% of the profiles, Table 3). Similar to MLDs, DCMs have been recorded in 

64.96% of the profiles at layers deeper than Max N2, indicating that Chl-a maxima area located in waters below surface 325 

mixing, at stratified regions within the pycnocline.  

Overall, the centre of the pycnocline (HPDs) performed better than MLD and Max N2, distributing closer to DCMs.  

HPDMLD-BMLD reported the highest correlation to DCMs (𝜌𝑆 = 0.56), and the highest explained DCM’s variance from the 

one-to-one (𝑅0
2 = 0.90) and empirical (𝑅𝑒𝑚

2  = 0.31) linear regressions (Table 3). The location of DCMs is highly related 

to HPDMLD-BMLD, although only 4.63% of the profiles presented DCMs and HPDMLD-BMLD at the same depth (Table 3). 330 

Many profiles exhibited DCM deeper than HPDMLD-BMLD (78.69%), of which 81.53% distributed DCMs above BMLD 

(hence, between HPDMLD-BMLD and BMLD). HPD0.01-BMLD, HPD0.02-BMLD less related to DCMs in Spearman’s correlation, 

MA, one-to-one and empirical linear regressions than the HPDMLD-BMLD (Table 3). 

The below mixed layer depth, BMLD, exhibited a reverse condition compared to the other density levels by encompassing 

78.32% of DCMs in waters above it (Table 3). BMLDs is the second variable after HPDMLD-BMLD with the highest 335 

correlation to DCMs (𝜌𝑆 = 0.55). It is distributed at the same depth of DCMs in 7.86% of the profiles and linearly predicted 

the location of maxima Chl-a in both one-to-one and empirical linear regressions (Table 3). BMLD exhibited MA 

coefficients (𝛼 = 0.60 and 𝛽 = 0.82) close to the hypothesized one-to-one fitting-line (𝛼 = 0 and 𝛽 = 1), indicating a good 

approximation of DCMs at the base of the pycnocline. Moreover, DCMs distributed on average at 2.74 ± 5.21 m above 

BMLD, with a maximum distance above it equal to 22 m, and 27 m below it.  340 

The overall distribution of DCMs is discernible mainly (> 95.84% of profiles) below the surface mixed layers (MLDs’ 

indicators), within the deepest half of the pycnocline (between HPDMLD-BMLD and BMLD) and it is bounded for 78.32% 

of the observations above the BMLD. Although DCMs generally reflect the region with the highest concentration of Chl-

a throughout the water column, the vertical distribution of Chl-a can vary in the proximity of DCMs and accumulate 

mainly above or below it. Hence, the ecological relevance of the density levels (DLs) has been investigated in comparison 345 

with the vertical distribution of Chl-a (Sect. 3.3). 

 



12 
 

 

Figure 4: Scatterplots of DCM and the eight DLs (a-h). The lines refer to the one-to-one linear regression (LM) (solid 

black), the Major Axis analysis (MA) (solid red), the empirical LM measured from the observations (DCM ~ 𝐷𝐿) (dot-350 

dashed blue). A good relationship between DL and DMC exhibits similar slope and intercept to the solid black line. 

 

 

 

 355 
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Table 3: Statistical parameters and percentage of profiles having DCMs above (>), at the same depth (=), or below (<) 

each DL. A good relationship is described by an α ~ 0 and β ~ 1, high values of 𝜌𝑆, 𝑅0
2, and  𝑅𝑒𝑚

2 . 

DL 𝝆𝑺 α β 𝑹𝟎
𝟐 𝑹𝒆𝒎

𝟐  DCM > DL  DCM = DL  DCM < DL  

MLD0.01 - 0.01 543.35 -124.26 0.40 0.00 99.53 0.39 0.08 

MLD0.02 0.08 -43.72 11.35 0.47 0.01 99.45 0.31 0.24 

MLD 0.41 4.01 1.42 0.69 0.17 95.84 1.73 2.44 

HPD0.01-BMLD 0.52 -12.81 2.52 0.86 0.27 90.18 1.81 8.01 

HPD0.02-BMLD 0.52 -10.20 2.19 0.87 0.27 86.41 3.77 9.82 

 HPDMLD-BMLD 0.56 1.31 1.28 0.90 0.31 74.86 4.63 20.50 

BMLD 0.55 0.60 0.82 0.87 0.31 13.83 7.86 78.32 

Max N2 0.45 7.06 0.63 0.84 0.20 64.96 13.51 21.52 

 

3.2 Chl-a vertical distribution in relation to density levels 360 

Although DCMs generally reflect the region with the highest concentration of Chl-a throughout the water column, large 

concentration can still accumulate above or below it. Hydrodynamic and biological conditions generating resuspension, 

passive drift, and mortality (i.e. zooplankton grazing in stratified waters) can shape Chl-a differently throughout the water 

column, hence the ecological relevance of the density levels has been investigated in comparison with the vertical 

distribution of Chl-a.  365 

The sum of depth-integrated Chl-a of all profiles was standardized by the number of observations (mg m-3) above and 

below four DLs (MLD, HPDMLD-BMLD, BMLD and Max N2), in order to compare the overall Chl-a within each layer of 

the water column. MLD and HPDMLD-BMLD were selected amongst the density levels to represent the surface mixed layer 

and the centre of pycnoclines because of their better correlation to DCM (see Sect. 3.1). The total amount of Chl-a above 

and below the four density levels is reported as standardized depth-integrated values in Table 4 and shown at each meter 370 

depth in Figure 5. 

Table 4: Sum of all depth-integrated Chl-a (mg m-2) standardized by the number of observations above and below the 

four density layers. 

DL Standardized depth-integrated 

(total) Chl-a above DL (mg m-3) 

Standardized depth-integrated 

(total) Chl-a below DL (mg m-3) 

MLD 172.97 971.12 

HPDMLD-BMLD 366.07 859.27 

BMLD 615.92 658.72 

Max N2 372.90 848.14 

 

 375 
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Figure 5: Violin plot of Chl-a (mg) at each meter above and below the four density levels (MLD, HPDMLD-BMLD, BMLD 

and Max N2) for the whole dataset. The dot-dashed blue lines represent the standardized depth-integrated Chl-a 

measured as the total amount of Chl-a of all profiles (mg m-2) divided by the number of depths (m) within each portion 

of the water column (above and below DLs). 380 

Following the results in Sect. 3.1, a large portion of Chl-a was measured at depths below MLD, HPDMLD-BMLD and Max 

N2 (Table 4), where the depth of Chl-a maximum also occurred. From the seabed to HPDMLD-BMLD and Max N2, the amount 

of Chl-a was three times the Chl-a from these DLs to the surface. A reverse condition occurred for Chl-a distributing 

above and below BMLDs: the standardized depth-integrated Chl-a is higher above BMLDs, although the amount of Chl-
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a in the deepest layers (below the pycnocline) is still comparable (the difference between Chl-a from the surface to BMLD 385 

and from BMLD to seabed is 42.80 mg m-1) (Table 4).  

It is therefore sensible to infer the distribution of DCMs, and the largest portion of Chl-a, at depths enclosed within the 

stratified region (MLD – BMLD), especially in the second half of the pycnocline (HPDMLD-BMLD – BMLD). At the same 

time, a noticeable amount of Chl-a still distributes below the pycnocline (BMLD). 

4. Discussion 390 

In stratified waters, the vertical distribution of Chl-a is regulated by the balance of stratification and mixing rates across 

different hydrodynamic regimes over time (Leeuwen et al., 2015). The combination of static, dynamic and biological 

factors (e.g. grazing, Benoit-Bird et al., 2013) induces phytoplankton communities to adapt their vertical distribution at 

small scales (< 1 km, Scott et al., 2010; Sharples et al., 2013). Identifying a proxy for subsurface concentrations of Chl-a 

is essential to investigate the impacts of physical changes due to large scale factors (e.g., stratification strength, sea level 395 

rise, or turbulence increase downstream wind turbine foundations). To date several studies have identified the mixed layer 

between the sea surface and the pycnocline as a valuable tool to assess changes in phytoplankton abundance and 

phenology over time; here we propose a tool to identify the vertical limits of the pycnocline and indicate the mixed layer 

depth below the pycnocline (BMLD) as a variable influencing the vertical distribution, abundance and phenology of Chl-

a.  400 

4.1 Ecological relevance of MLD and Max N2 in defining DCMs  

Oceanic sites often exhibited phytoplankton blooms within the upper mixed layer (e.g. Behrenfeld, 2010; Costa et al., 

2020; Somavilla et al., 2017) to coincide with MLDs’ vertical fluctuations due to e.g. windstorm events deepening the 

pycnocline into nutrient-enriched waters (Detoni et al., 2015; Carranza et al., 2018; Höfer et al., 2019; Montes-Hugo et 

al., 2009). Although MLD are linked to the physical processes setting the vertical distribution of DMCs in deep oceanic 405 

environments, all the investigated surface mixed layers’ indicators (MLD0.01, MLD0.02 and MLD) weakly predicted DCM 

in the shelf waters investigated in this study. MLD has been largely considered as a central variable for understanding 

phytoplankton dynamics (Sverdrup, 1953), and its relation with climate change has been investigated to infer possible 

significant changes in the amount, spatial distribution and phenology of future primary production (Boyd et al., 2015; 

Montes-Hugo et al., 2009; Somavilla et al., 2017; Prend et al., 2019; Richardson and Bendtsen, 2019; Schmidt et al., 410 

2020). The effects of climate change on MLD and primary production is still unclear (Lozier et al., 2011; Somavilla et 

al., 2017) and might be related to i) the large amount of Chl-a data required to investigate variations in primary production 

that have to rely on e.g. satellites’ observations at the sea surface that leave out subsurface Chl-a (Baldry et al., 2020; 

Erickson et al., 2016; Lee et al., 2015), and ii) the exclusive investigation of the surface physics on primary production 

(e.g. temperature, wind-induced mixing) by neglecting deep processes that are responsible for the pycnocline’s stability 415 

(Dave and Lozier, 2015, 2013; Lozier et al., 2011; Somavilla et al., 2017). The MLD is informative for surface 

concentrations, but it may not be biologically relevant for subsurface Chl-a that are maintained at the pycnocline by deep 

turbulent mixing. The need for a much more detailed understanding of the linkage between subsurface Chl-a, pycnocline 

characteristics and deep turbulent processes is therefore a key subject, especially in highly productive but spatially 

heterogeneous areas such as shelf waters and shallow seas. 420 

In the FoF and Tay region, Max N2 exhibited higher percentages of coincidence with DCMs (13.51% of 1273 profiles) 

than other DLs (Table 3). The depth of Max N2 is a less turbulent region where the energy to exchange parcels in the 

vertical is maximum (Boehrer and Schultze, 2009), and it is frequently used to identify the upper mixed layer depth (e.g. 
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Carvalho et al., 2017). The location of DCMs at Max N2 might reflect the distribution of phytoplankton within a less 

turbulent region where nutrient particles, which have been resuspended by mixing, can persist for longer time periods. 425 

The Max N2 would therefore represent a mild turbulent layer where resuspended phytoplankton cells accumulate, while 

mixing processes above and/or below Max N2 redistribute phytoplanktonic organisms throughout the water column. 

However, the amount of standardized depth-integrated Chl-a below Max N2 is almost three times higher than above it 

(Table 4 and Fig. 5) suggesting that Max N2 is a layer of suitable conditions for phytoplankton to grow, but it lacks 

informing where most of the Chl-a vertically distribute. Although the depth of Max N2 appeared to better inform the exact 430 

location of DCMs, the percentage of its coincidence with DCMs is still low and might relate to specific conditions. 

Overall, the linear correlation (𝜌𝑆), the MA coefficients and the one-to-one linear regression 𝑅0
2 described a poor 

association of DCMs with Max N2 compared to HPD indicators and BMLD, and hence the use of Max N2 to locate 

subsurface Chl-a patches in summertime shelf waters may lead to underestimate the amount of Chl-a in the whole water 

column.  435 

4.2 Vertical distribution of Chl-a and BMLD 

The observations carried out in the FoF and Tay region confirmed the subsurface presence of maxima Chl-a between 

April and August. A recent study in the German Bight described DCMs located mainly at the centre of the pycnocline 

and the overall amount of Chl-a at depths distinctly lower than the surface mixed layers (Zhao et al., 2019a). The location 

of DCM at the pycnocline is regulated over time by upward nutrient-enriched fluxes entering the pycnocline from deep 440 

waters (Pingree et al., 1982; Rosenberg et al., 1990). In the Skagerrak strait between Denmark and Norway, deep SCM 

were recorded at a nutricline (rate of change in nitrate and phosphate) located below the base of a shallow pycnocline (< 

15 m) (Bjørnsen et al., 1993). The low concentration of DCMs below BMLD might reflect a limited erosion of Chl-a by 

mixing (Zhao et al., 2019a) and, possibly, grazing (Benoit-Bird et al., 2013). The physical factors developing subsurface 

Chl-a are defined by mixing processes below the pycnocline that provides an indispensable upward flux of nutrients in 445 

the euphotic zone, where e.g. dinoflagellates are able to compete successfully in slightly turbulent conditions (< 0.1 mm 

s-1) (Ross and Sharples, 2007). Therefore, the erosion as well as the resuspension of sinking phytoplankton cells and 

nutrients can maintain the proximity of DCMs at BMLDs setting the location of the nutricline at the base of the 

pycnocline. It is also noticeable that a large amount of diluted Chl-a in deep waters (51.67% of depth-integrated Chl-a 

below BMLD) might be crucial in maintaining primary production in the subsurface over the summer, since deep mixing 450 

processes eroding and sustaining Chl-a at BMLD would also contribute to reducing the overlap between SCM and 

predators (Behrenfeld, 2010). However, it should be noted that the high concentrations of Chl-a at DCM may reflect the 

photoacclimation of phytoplankton rather than an actual increase in carbon biomass (Marañón et al., 2021). Hence, the 

location of DCM close to the base of the pycnocline informs on a large concentration in pigments rather than in carbon 

production, which should be considered when DCM is used as a proxy of food patches. Overall, DCMs, and most of the 455 

depth-integrated Chl-a, distribute in the proximity of the centre and the base of the pycnocline suggesting the maintenance 

of subsurface Chl-a by deep turbulent fluxes which supply nutrients into the deepest portion of the pycnocline. 

4.3 Using BMLD to investigate impacts on primary production 

In this section are introduced some of the potential contexts in which BMLD’s use would be advantageous. The linkage 

between the mixed layer depth below the pycnocline and subsurface Chl-a advocates BMLD as a key variable to address 460 

the effects of climate changes and man-made structures (e.g. offshore wind farm foundations) on the food resources, and 

defines BMLD as a potential proxy of subsurface food patches to investigate the vertical and spatial distribution of grazing 

and predator species.  
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Climate change  

Since primary production is sustained by deep turbulent processes in prolonged stratified conditions, investigating the 465 

effect of future climate change, where stratification has been reported to increase over time (Capuzzo et al., 2018), using 

BMLD as a proxy of the vertical distribution of deep physical processes might be more informative than MLD in shelf 

waters. The Northeast Atlantic shelves experienced a summertime increase of stratification and a consequential reduction 

of Chl-a in the last 60 years in waters where nutrient fluxes had been confined in deep layers (Capuzzo et al., 2018; 

Schmidt et al., 2020). Prolonged stratified conditions are known to promote subsurface patches of Chl-a (Ross and 470 

Sharples 2007; Somavilla et al., 2017) due to the depletion of nutrients at shallow layers after surface blooms. The 

starvation of nutrients at the surface forces phytoplankton to re-distribute (e.g. Bindoff et al., 2019; Boyd et al., 2015; 

Schmidt et al., 2020) in deeper nutrient-enriched waters, within the euphotic zone. Hence, the location of DCMs in the 

proximity of the deepest portion of the pycnocline, between HPDMLD-BMLD and BMLD, (78.32% of the profiles) is not 

surprising during summer in the Firth of Forth and Tay regions, where the production of Chl-a is sustained by weak 475 

upward fluxes of nutrients from deep layers. The effects of an intensified stratification on primary production in the 

continental shelf waters are still entangled and suggest an overall deepening of subsurface Chl-a, which is likely to 

delineate a knock-on effect on redistributing most of the higher trophic levels (e.g., zooplankton, fish) and affect the 

foraging success of highly adapted species such as surface feeding seabirds (OSPAR, 2017). Hence, the role of climate 

change in increasing stratification is likely to affect the distribution of BMLD and the upward fluxes, which may either 480 

redistribute food patches and causing a variation in abundance and community composition of primary production (Holt 

et al., 2016, 2018; Capuzzo et al., 2018). The potential deepening of BMLD within or even below the euphotic zone may 

lead Chl-a to decrease across shelf seas since phytoplanktonic cells would increase buoyance at deeper and darker depths.  

However, the deepening of productive patches is difficult to examine over large spatial scales, and remote sensing 

methods often lack reliability for subsurface data. The global estimates of carbon sequestration have often failed to include 485 

10% to 40% of subsurface Chl-a (Sharples et al., 2001). Since the correct measurement of primary production throughout 

the whole water column is essential, key drivers of subsurface production are demanded to correctly predict, measure, 

and estimate DMCs from widely-used remote sensing data. Although data on the nutricline position were unavailable in 

this study, the vertical distribution of BMLD informed adequately on the position of subsurface productive patches in 

stratified waters, making this variable an important indicator of the vertical distribution of phytoplankton in shelf regions.  490 

Offshore renewable infrastructures  

It is reasonable to stress that potential effects on primary production involve both surface and deep (below the pycnocline) 

processes, especially where multiple local changes (i.e. wind turbine foundations changing levels of mixing) repeated 

over large spatial areas (i.e. the North Sea) can have an effect at different scales (van der Molen et al., 2014; De Dominicis 

et al., 2018; Carpenter et al., 2016). The upcoming interest of the offshore renewable sector in building offshore wind 495 

farms in stratified regions rises the need of drafting reliable environmental impact assessments able to identify key 

variables for estimating the effects in a holistic way (Dorrell et al., 2022). The consequences of offshore wind farms are 

likely to be related to bathymetry and mixing budgets, by affecting the stratification rate differently across depths. In this 

study area with spring tidal speeds < 1 ms-1 , the vertical distribution of DCMs at BMLDs appeared to be correlated to the 

bathymetry by exhibiting DCMs closer to BMLDs at water depths comprised from, approximately, 40 to 70 m, DCMs 500 

deeper than BMLD mainly in shallow waters < 60 m, and DCMs above BMLD towards deeper waters up to 100 m (Fig. 

A3 in Appendix A). Previous studies identified a similar pattern in shallow waters (25-85 m) where DCMs were mainly 

recorded at or below the base of the pycnocline (Barth et al., 1998; Durán-Campos et al., 2019; Holligan et al., 1984; 
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Zhao et al., 2019a). Although stratification is reported to intensify in shelf waters with climate change, the increase in 

turbulence downstream  of wind farms may counteract the local stratification (Carpenter et al., 2016; Schulien et al., 2017; 505 

Schultze et al., 2020) and affect the temporal and spatial distribution of Chl-a. Since the variation in stratification is a 

useful tool to address possible impacts on primary production, understanding the potential impacts on the vertical 

distribution of BMLD is likely to efficiently predict changes in the vertical distribution of Chl-a and its possible predators.  

5. Conclusion 

Chl-a vertical distribution provides important information about the state of development of the phytoplankton community 510 

which is associated with mixed and stratified layers. The mixing processes above and below the pycnocline can have very 

different influences on Chl-a vertical distribution, dictating the concentration at subsurface patches that can distribute 

close to, above, or below the pycnocline.  

Although the association of phytoplankton with MLD has been largely described at large spatial scales within oceanic 

habitats, the presented study shows a weak linkage between MLD and DCM in shelf waters, at a very high vertical 515 

resolution (1 m). The results indicate that HPD indicators and BMLD, have a stronger association with summertime 

subsurface Chl-a maxima within the bottom-half of the pycnocline. Therefore deep mixing processes, such as tidal 

currents, play a role in regulating summertime subsurface primary production and regulate their distribution at BMLDs 

in the stratified conditions found in the North Sea. Considering the described associations of subsurface Chl-a with 

BMLD, it is evident how this variable can play a role in the assessment of productivity, since the deep mixing processes 520 

are equally (or more) relevant than the surface process in determining a shift of primary production at local and large 

scales. This association therefore advocates the investigation of the effect of anomaly-inducing processes occurring at 

and below the pycnocline (e.g. bottom temperature and salinity, turbulence and physical processes at the BMLD), which 

are likely to influence primary production and on to the whole ecosystem dynamics within shelf seas (Trifonova et al., 

2021). Understanding mechanisms affecting primary production at fine scales is very important to investigate as we are 525 

moving rapidly towards the deployment of thousands of structures and hundreds of GW in wind energy extraction  from 

worldwide shallow seas (Gielen et al., 2019). This work proposes BMLD as an ecological relevant variable for further 

oceanographic investigations in shelf waters, along with the proposed analytical approach as a valuable tool to extrapolate 

this variable from in situ vertical samples.  

Appendix A 530 
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Figure A1: examples of density profiles (grey line) (a-f). The black squares are observations at 1 m resolution. Red dots 

refer to BMLD, green dots to MLD. Crosses refer to misidentified MLD (in green) and BMLD (in red) that were 

manually corrected.  

 535 
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Figure A2: two density profiles whose observations were standardized at equals 1 m intervals using generalized 

additive model (GAM). (a) density profile (black dotted line) where the GAM correctly fitted (red solid line) the vertical 

distribution. (b) density profile where the GAM wrongly fitted the upper portion of the profile (grey polygon area) and, 540 

hence, required a manual correction of the values.  

 

Figure A3: scatterplot of the difference between DCM and BMLD against the bathymetry at which each profile was 

sampled. The solid black line reports a Standardized Major Axis analysis, whose equation and R squared values are 

reported. 545 
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