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Abstract

Primary production dynamics are strongly associated with vertical density profiles in shelf waters. Climate change and
artificial structures (e.g. windfarms) are likely to modify the strength of stratification and the vertical distribution of
nutrient fluxes, especially in shelf seas where the balance between mixing and stratification defines the vertical
distribution of phytoplankton. To understand the effect of physical changes on primary production, identifying the linkage
between density and chlorophyll-a (Chl-a) profiles is essential. Here, the biological relevance of eight density levels (DLs)
characterizing three different portions of the pycnocline (start, centre, end) was evaluated to find a valuable proxy for
subsurface Chl-a concentrations in stratified conditions. The vertical distribution of Chl-a maximum (CMd) was
compared to the depth of DLs by hypothesizing their occurrence at the same depth using Spearman correlation, linear
regression, and a Major Axis analysis. Out of 1237 observations of the water column exhibiting a pycnocline, 78%
reported CMd above the base of the pycnocline (BMLD) with an average distance equal to 2.74 £5.21 m. BMLD appeared
as a vertical boundary up to which subsurface Chl-a maxima distribute in shallow waters (depth < 115 m), suggesting a
significant contribution of deep mixing processes in supporting subsurface production under specific conditions
(stratification and bathymetry). Here, we describe and advise BMLD as a valuable tool for understanding the
spatiotemporal variability of Chl-a in shelf seas, and provide a method, and a function, to extrapolate it from density
profiles.
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1. Introduction

As we begin to manage our oceans and shelf seas for more complex simultaneous uses, such as renewable energy
developments, fishing and marine protected areas, it is becoming increasingly important understanding details of primary
productivity at fine spatial scales. Besides very shallow waters, the vast majority of phytoplankton in continental shelf
waters generally grows under stratified conditions, where the pycnocline acts as a barrier against the mixing of the whole
water column and allows cells to buoyance and photosynthesize within the euphotic zone. The balance between
stratification and mixing in the water column is determinant for phytoplankton, and, in the North Sea, it fluctuates in time
and space by the modulation of daily and biweekly strong tidal cycles (Klymak et al., 2008). Turbulent mixing of the
water column requires energy sources from either the surface (e.g. wind stress, Ekman pump due to wind curl) or deep
waters (e.g. upwelling, eddy diffusion, tidal currents), which can be altered by climate change and man-made
infrastructures (Dorrell et al., 2022). Therefore, changes are expected in the overall mixing budget of our seas. Anomalies
as circulation slow-down, sea-level rise, bottom and surface temperature, wind speed and wave height have largely been
described as a consequence of climate change in the last two decades (e.g. Orihuela-Pinto et al., 2022; Taboada and
Anadén, 2012; Bonaduce et al., 2019), while the consequences of these changes on the biological processes are still
partially understood (Lozier et al., 2011; Somavilla et al., 2017).

1.1 Subsurface chlorophyll-a maxima layers (SCMLSs)

Many of the uncertainties regarding the impacts on primary production come from the difficulties in sampling the
community composition and the total abundance throughout the whole water column. Contrary to the detection of surface
blooms by satellite sensors, subsurface chlorophyll-a maxima layers (SCMLs) are often more difficult to describe and
measure. SCMLs represent significant features in plankton systems (Cullen, 2015), they define where most of the bottom-
up processes take place and can encompass more than 50% of the entire water column production (Weston et al., 2005;
Takahashi and Hori, 1984). In the North Sea, the summertime (May-August) subsurface production contributes to the
annual production of up to 20-50% and sustain the food chain in continental shelf waters during prolonged stratified
conditions (Hickman et al., 2012; Richardson and Pedersen, 1998; Weston et al., 2005). Several studies linked the vertical
distribution of maximum chlorophyll-a (Chl-a) to deep mixing processes (e.g. Brown et al., 2015; Richardson and
Pedersen, 1998; Sharples et al., 2006; Zhao et al., 2019b) and identified the occurrence of deep Chl-a assemblages in the
proximity of the pycnocline in shelf seas (e.g. Costa et al., 2020; Duran-Campos et al., 2019; Ross and Sharples, 2007,
Sharples et al., 2001). The stratification is generally controlled by mixing processes (tidal mixing and surface wind stress)
and sources of buoyancy (surface heating and estuarine inputs of low salinity), whose balance allow primary producers
to grow in favourable light and nutrient conditions within the pycnocline. In the North Sea, mixing processes are mostly
regulated by strong tidal currents (Glorioso and Simpson, 1994; Loder et al., 1992; Sharples et al., 2006, 2001; Simpson
et al., 1980; Zhao et al., 2019b), especially in prolonged stratified conditions, when upward fluxes represent the only
source of nutrients intake within the pycnocline. Maxima Chl-a have been identified at the base of the pycnocline in
regions of strong tidal mixing at Georges Bank in August (Holligan et al., 1984) and within the western English Channel
(Sharples et al., 2001). However, despite the clear linkage between SCMLs and tidal mixing in shelf seas, variations on
productivity have been mainly conducted at oceanic sites by investigating the mixing processes above the pycnocline
(within the upper mixed layer) (Somavilla et al., 2017; Steinacher et al., 2010), omitting the effects of processes close to
the seabed, e.g. variations of mixing processes below the pycnocline. On the other hand, studies on shelf waters suggest
variations of the water column due to both surface and deep mixing processes, since the interplay of marine components

from surface to seabed are more adjacent than in deep oceanic locations (Durski et al., 2004).
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1.2 Mixed layer depth (MLD) and pycnocline characteristics

MLD has been largely considered as a central variable for understanding phytoplankton dynamics (Sverdrup, 1953),
especially in oceanic sites, where several studies have investigated the ecological relevance of MLD on Chl-a vertical
distribution (Behrenfeld, 2010; Carranza et al., 2018; Diehl, 2002; Diehl et al., 2002; Gradone et al., 2020), phytoplankton
bloom events (Behrenfeld, 2010; Chiswell, 2011; D’Ortenzio et al., 2014; Prend et al., 2019; Ryan-Keogh and Thomalla,
2020, Sverdrup, 1953), and the effects of climate change (Somavilla et al., 2017). The nutricline’s depth exhibits positive
correlations with the upper mixed layer depth (Ducklow et al., 2007; Gradone et al., 2020; Holligan et al., 1984; Prézelin
et al., 2000, 2004; Ryan-Keogh and Thomalla, 2020; Yentsch, 1974, 1980), and it has been generally associated with
surface spring blooms or windstorm events (e.g. Banse, 1987; Carranza et al., 2018; Carvalho et al., 2017; Lande and
Wood, 1987; Therriault et al., 1978). However, the effect of climate change on MLD and primary production is still an
unsolved question (Lozier et al., 2011; Somavilla et al., 2017). The need for a much more detailed understanding of the
linkage between primary production, pycnocline characteristics and deep turbulent processes (below the pycnocline) is
therefore a key area of research, especially in highly productive but spatially heterogeneous areas such as shelf waters

and shallow seas.

The methods for identifying MLDs vary among marine environments, hydrodynamic regimes, or the spatial resolution of
vertical profiles (Courtois et al., 2017; Lorbacher et al., 2006), because making use of a single method is difficult for
spatiotemporally heterogeneous regions. MLDs are typically defined as the depth at which the density exceeds a specific
value (threshold) (e.g. Kara et al., 2000), however this method presents issues in specific hydrodynamic conditions, such
as over estimating MLD in regions with deep convection (e.g. subpolar oceans) (Courtois et al., 2017), or misidentifying
water columns with a newly established shallow MLD over previous periods of stratification (Somavilla et al., 2017).
Several sensitivity tests and comparisons have been conducted in oceanic waters (e.g. Carvalho et al., 2017; Courtois et
al., 2017; Gonzéalez-Pola et al., 2007; Holte and Talley, 2009), however, there are no standard methods for MLD

identification neither in shelf nor oceanic waters.
1.3 A new way forward: the base of the pycnocline (BMLD) as a proxy for Chl-a maximum in shelf waters

In this study, we proposed the adaptation of existing methods into a new algorithm able to cope with different high-
resolution (1 m) vertical distributions of density (therefore being able to deal with split pycnoclines and unusual shapes)
to characterize the depth between the pycnocline and i) the surface mixed layer (commonly known as “MLD”, here
renamed as above mixed layer depth, AMLD) and ii) the below mixed layer depth (BMLD). The method is validated in
waters depths from 20 to 120 m, with 14 years of repeated surveys that covers a mosaic of habitats types: seasonal
stratified waters, permanently mixed waters, regions of freshwater inputs and strong tidal mixing (Leeuwen et al., 2015).
The vertical distribution of density and Chl-a profiles are compared and the biological relevance of BMLD in investigating
subsurface Chl-a is detailed. This approach is being developed in order to help the identification of key linkages between
the physical environment and primary production at finer spatial scales (punctual location up to < 1 km), which can be
ecologically relevant for pressing issues in marine spatial management (e.g. seabed leasing for wind farms, locations of

MPAS) and spatially explicit climate change assessments.
2. Methods

Vertical samples of density and Chl-a (see Sect. 2.1) were used to characterize the relationship between stratification
features (see Sect. 2.2 and 2.3) and subsurface Chl-a (described as abundance and vertical distribution, see Sect. 2.4). The

most frequent methods used to identify vertical characteristics of density profiles (density levels — DLs) (see Sect. 2.3)
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were compared to the proposed algorithm estimating the above and below limits of the pycnocline (AMLD and BMLD,
Sect. 2.2). Here, a new method to identify BMLD is proposed, and its potential is evaluated by comparing it with the

vertical distribution of subsurface Chl-a during spring and summer (April-August) (see Sect. 2.5).
2.1 Physical and biological oceanographic samples

In situ summertime measurements of temperature, salinity, and Chlorophyll-a (Chl-a) were collected from a towed,
undulating, CTD and a vertical CTD in the North Sea off the East coast of Scotland, UK, within the Firth of Forth (FoF)
and Tay region for over 14 years (from 2000 to 2014) (Fig. 1). A total of 1273 profiles from both types of sampling were
extracted from April to August (April=3, May=51, June=1115, July=66, August=38). 426 profiles were gathered using
the vertical CTD from 12 oceanographic campaigns carried out by Marine Scotland Science on board of the fisheries
research vessels Scotia and Alba na Mara (www.gov.scot/marine-and-fisheries). The data set comprises temperature,
conductivity, and Chl-a measurements from the sea surface to the seabed (vertical resolution equals to 1 decibar) at fixed
stations sites. Water samples were collected during each cast for calibration of the in situ sensor data. The undulating
CTD sampled the water column in June 2003 and July 2014 with a continuous vertical and horizontal oscillation of the
instrument throughout the water column from 2-5 m below the sea surface to 5 m from the seabed. The continuous profiles
obtained from undulating CTD were converted into 847 single profiles of the water columns. Data were sampled at 1
second intervals, resulting in a vertical resolution comprising between 0.5 and 1 m, in water depths from 25 m to 115 m.
More information about the oceanographic cruise in June 2003 are described in Scott et al. (2010), whose method was
used also in July 2014.

3.2°W 2.4°W -1.6°W -0.8°W 0.0

56.8° N

{ 56.0°N

. ~ | Instrument
0 50 100 km N ® Vertical CTD
; ' ¢ Undulating CTD

Figure 1: Study area with the in situ surveys measured by an undulating CTD (orange dots) and a vertical CTD (blue
dots). Land (green) and bathymetry (grey colour ramp) are pictured (ESRI 2020; EMODnet 2018)

2.1.1  Standardized density profiles
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Since the proposed algorithm (described in Sect. 2.2) works with profiles at high vertical resolution (samples’ vertical
resolution is 1 m), the in situ casts must be standardized throughout the water column. Density (p) observations taken
every 0.5 to 1 m from undulating CTD were converted into measurements over regular depth intervals by smoothing and
interpolating. This was achieved by fitting a generalized additive model (GAM) (Hastie and Tibshirani, 1990) using an
adaptive spline with p as a function of depth. The smoothing basis (knots) were selected in a range from 75% to 90% of
the number of observations occurring within each profile. The obtained smooth function for each profile was used to
interpolate p at regular 1 m depth intervals. In order to maintain the same shape and values in each profile, the fitted
curves at 1 minterval were visually checked by plotting the estimated and real profiles to visually identify possible errors.
4.16% of the shapes (n=53) were manually corrected by changing the number of knots in the GAM. An example is given

at Figure A2 in Appendix A. The analyses were run in R v3.6.3 (R Core Team, 2018) using the mgcv v1.8-33 package.

2.2 AMLD and BMLD detection
Definition of AMLD and BMLD

In stratified waters, the layers above and below the pycnocline are mixed vertical region where the density gradient is
significantly different from the pycnocline. The surface mixed layer depth (AMLD) and the mixed layer depth below the
pycnocline (BMLD) are both transitional layers from a mixed to a stratified vertical region occurring at the beginning and
end of the pycnocline. The most common threshold methods (see Sect 2.3) identify AMLD based on the principle that
the mixed layer at the surface has a density’s variance close to zero, which separates from the pycnocline, exhibiting a
larger density gradient. The above assumptions may not always hold, especially when the upper mixed layer is
heterogeneous with nested sub-structures such as small re-stratification at the surface, or when the pycnocline can include
a small mixed layer (Fig. Ala, e, f in Appendix A) or presents different density gradients (stratified layers) within it (Fig.

Alb and ¢ in Appendix A). Such density conditions are difficult to isolate with the available methods.

In the proposed algorithm, the detection of AMLD does not assume that the mixed layer has a density gradient close to
zero, and it identifies MLDs regardless any a priori threshold. It also picks up the shallowest and deepest limits of the
pycnocline by excluding middle breaks of the pycnocline, allowing the identification for unconventional density vertical
distribution. The definition of AMLD and BMLD are based on common conventions: small and similar Ap (measured as
the difference between two consecutive points, Ap, = |p, — p,+1]) within the mixed layers and within the pycnocline;
the pycnocline is enclosed by layers of mixed water above and/or below it exhibiting a different Ap; the mixed layer depth
is pinpointed independently from a fixed gradient (Chu and Fan, 2019, 2011; Holte and Talley, 2009). The AMLD
represents the last depths up to which Ap is consistently small from the surface to the pycnocline, while the BMLD is the

first depth after the pycnocline from which Ap is consistently small up to the seabed (Fig. 2).
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Figure 2: The eight density levels (DLs) are reported for a generic density profile. The curly brackets define the halfway
depths (HPDs) between AMLD’s indicators (AMLDo.1, AMLDo.2, AMLD) and BMLD.

Method to extract AMLD and BMLD

AMLD and BMLD have been identified developing an algorithm based on Chu and Fan (2011) framework to produce a
method able to cope with various density profiles exhibiting a pycnocline (examples in Fig. Al in Appendix A). The
algorithm’s sequence identifies the depth with the largest density difference between a mixed and a stratified layer using
i) an adaptation of the maximum angle method (Chu and Fan, 2011) and ii) a cluster analysis on the density difference at
each observed depth (Ap, = |p, — p+1])- The method is designed to work with equal, high-resolution, intervals of
density values (z) in the profiles. In order to distinguish AMLD from BMLD, their selection is achieved by splitting the
number of observations throughout the profile into two distinct groups, Splitl and Split2 (Fig. 3), each one respectively
used to identify AMLD and BMLD. Splitl includes the density values from the surface (z1) to two measurement intervals
(8, here 1 m) above BMLD (zemLp — 26); Split2 extends from 23 above the halfway depth in p range (0.5Ap = ((pPmax —
pmin)/2) — 2) to the ninetieth portion of the profile from the surface to the seabed (zp9a, = 90% of %z) (Fig. 3). For all
depths between z; and zo.9,, the angle ¢ has been measured at z(x, y) (where x and y are density and depth) between two
vectors (V1, V2) fitting a linear regression (y ~ x). Although Chu and Fan (2011) suggested to measure the tangent of
the angle between V1 and V2 (¢), we encountered some issues identifying BMLD in those profiles where density
decreases below the pycnocline (Fig. Ald, Appendix A) and ¢ is bigger than 90 degrees. However, the exclusive use of
the maximum angle method would have biased the selection due to local variation and instability conditions of the water
column (Fig. Alb, c, e, fin Appendix A). Therefore, a K-Mean cluster analysis (LlIoyd, 1982) was adopted in the algorithm
to improve the selection of the pycnocline limits by classifying the density difference at depth (Ap, = |p, — p,+1]) into
groups. The use of K-mean meets the assumption that Ap, values within a mixed layer would belong to a unique cluster.
Adding the conditions controlling for a similar classification of Ap, at depths above AMLD and below BMLD resulted
in decisive outcomes, correctly identifying the mixed layers within those density profiles having a pycnocline fractured

in chunks with different or similar gradients. The algorithm was developed in R v3.6.3 (R Core Team, 2018) and it is
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available as a function (abmld.R) to download from GitHub (https://github.com/azampollo/BMLD). A more detailed

description of the method is also reported in Supplementary Materials at the GitHub page.
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Figure 3: plots of a density profile reporting the attribputes calculated by the algorithm: grey region includes the
observations (black dots) used to identify AMLD and BMLD, which extends in (a) from the surface to 26 before BMLD
(purple rhombus), and in (b) from 25 before the reference point (0.54p, purple rhombus) to 0.94p. The solid blue and

red lines refer to the vectors V1 and V2 reporting the angle ¢, used to identify AMLD and BMLD (green stars).

Performance of the algorithm

Following the assumptions described above, the algorithm failed to correctly identify AMLD and BMLD and classified
the two limits of the pycnocline within it (examples in Fig. A1, Appendix A). The selection was considered to have failed
when the AMLD and BMLD were selected > 2 m (2 observations) above or below the mixed layer depth. Major errors in
identifying AMLD (6.76% of the profiles) and BMLD (4.32%) occurred in density profiles with a high number of
observations in the portion of the water column where mixed layer was transiting into the pycnocline, where ¢, was
similar amongst several observations and the cluster analysis was identifying observations at the end of the pycnocline as
part of the mixed layer (e.g. Fig. Al a-c, Appendix A). It is important to highlight the sensitivity of this method to Ap at
AMLD and BMLD (a large Ap is preferred), and the sampling frequency at the transition between the pycnocline and the
above and below mixed layers. The algorithm did not correctly identify AMLD in profiles without a surface mixed layer,
and a shallow pycnocline that comprised two different gradients (Fig. Alc, Appendix A). In this case, the cluster analysis
split Ap into two groups, although they belong to the same pycnocline. Other errors were related to profiles having a
pycnocline split into two parts by a thin mixed layer with height >4 m (4 observations) (Fig. Ale, Appendix A). Overall,
the identification of BMLD performed better than AMLD’s, although it could not deal with profiles having less than 4
observations throughout the pycnocline (in this study thickness of the pycnocline < 3 m). This condition occurred due to
the location of the Split2 (which is necessary to distinguish BMLD’s from AMLD’s selection) i) at depths above AMLD

(misidentifying AMLD as BMLD) or ii) too close to BMLD (missing enough observations to fit properly V1). The
7
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algorithm always correctly selected BMLD in profiles that have a lower density observation below the BMLD (Fig. Ald,
Appendix A).

2.3 Common methods identifying Density Levels (DLs)

Among the methods used to detect density levels in coastal and oceanic waters, three approaches were selected to define
mixing and buoyancy features in the sampled profiles.

The AMLDs are typically defined as MLD in the literature and represent the depth at which the density exceeds a specific
value (threshold method) (e.g. Kara et al., 2000). The threshold is typically selected among a range of values previously
tested in the literature (from 0.0025 to 0.125 kg m™) (summarized in Thomson and Fine, 2003; Montégut et al., 2004;
Lorbacher et al., 2006; Holte and Talley, 2009) and measured as the difference (Ap, = |p, — pref|) between a certain
sampling depth (z) and a reference density value (p,.r), which can be the density at the surface, at 10 m depth, or a
consecutive point (e.g. z-1). In this study, two density thresholds (0.01 and 0.02 kg m-3) have been measured as the
difference between two consecutive points in the profile (Ap, = | p, — p5+1]) and named as AMLDg o1 and AMLDo .
Since previous studies identified subsurface Chl-a in the proximity of the centre of the pycnocline (here called halfway
pycnocline depth, HPD, Table 1), we investigated the relationship between CMd (depth of maximum Chl-a) and three
different HPDs measured as the halfway depth between the base of the pycnocline (BMLD) and AMLD 01, AMLDg 2
and adjusted AMLD, and named HPDg ¢1-smLp, HPDg .02-8mLD, and HPD amip-smip (Fig. 2).

Moreover, several studies reported positive correlation between the maximum squared buoyancy frequency (Max N2) and
CMd at oceanic sites (e.g. Martin et al., 2010; Schofield et al., 2015; Carvalho et al., 2017; Courtois et al., 2017; Baetge
et al., 2020) and shelf waters (Lips et al., 2010; Zhang et al., 2016). Therefore, the depth of Max N2 has been selected
from N2 profiles computed by gsw_Nsquared function (gsw v1.0-5 package) in R v3.6.3 (R Core Team, 2018), following
the most recent version of the Gibbs equation of state for seawater in TEOS-10 systems (Intergovernmental
Oceanographic Commission, 2010). The magnitude of N2 quantifies the stability of the water column and pinpoints the
stratified layers where the energy required to exchange water parcels in the vertical direction is maximum (Boehrer and
Schultze, 2009).

Table 1: Table of abbreviations used in the paper.

Abbreviation Description

SCML Subsurface Chlorophyll-a maximum Layer

Chl-a Chlorophyll-a (mg m)

cMd Depth of maximum Chlorophyll-a (m)

DL General abbreviation for a density layer (e.g. AMLD, BMLD, HPD, or Max N?) (m)
MLD General expression for Mixed layer depth (m)

AMLD Above mixed layer depth, or starting point of the pycnocline (m)

BMLD Below mixed layer depth, or ending point of the pycnocline (m)

HPD Halfway pycnocline depth, or centre of the pycnocline (m)

Max N2 maximum squared buoyancy frequency (N2) (m)

2.4 Subsurface Chlorophyll-a parameters
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The depth of maximum Chl-a (CMd) was defined as the deepest maximum inflection point in the Chl-a profile
standardized at 1 m sampling frequency (Carvalho et al., 2017; Zhao et al., 2019b), by using the adapted Chu and Fan
(2011) method described in Sect 2.2. The CMd was selected throughout each vertical profile of Chl-a as the depth having
the maximum angle (¢) between two vectors (V1 and V2). Details on the number of observations used to fit each vector
are reported in Supplementary materials. The automated identification of CMd was checked manually with a visual
inspection of each profile. The total amount of Chl-a were measured using trapezoidal integration (Walsby, 1997)
throughout the water column (depth-integrated Chl-a) in R v3.6.3 (R Core Team, 2018).

2.5 Evaluating the association of density levels with subsurface Chl-a

The ecological relevance of each density level (DL) was evaluated by comparing their coincidence with the depth of
maximum Chl-a (CMd) (e.g. CMd = BMLD) and their strength in predicting CMd. The coincidence and the prediction
of CMds from density profiles return important understanding of the processes driving subsurface concentrations and
identify a valuable proxy for modelling analyses and for controlling uncertainty in net primary production estimates.

In this study, we evaluated the coincidence of the CMd with eight investigated density levels (AMLDg.01, AMLDg g,
AMLD, BMLD, HPDg 01-8mLp, HPDo.02-8MLD, HPDamLD-BMLD, and Max N?, Fig. 2) using Spearman’s rank correlation
coefficient (pg) and a Major Axis (MA) line fitting, and the prediction of CMd from DL by performing a linear regression
model (LM). The Spearman’s coefficient (Eq. (1) in Table 2) assesses a monotonic linear relationship with values ranging
between -1 and +1, which refer to a perfect negative or positive correlation between two variables. Besides the strength
of the linear relationship defined by pg, we focused on evaluating the linear relationship between CMd and each DL using
3 different linear models y = @ + Bx: 1) alpha and beta estimated by linear regression ; 2) alpha and beta estimated by
major axis line fitting; and 3) the one-to-one linear regression with alpha and beta fixed at 0 and 1 respectively. The one-
to-one line hypothesizes that CMd and DL occur at the same depth. The MA is largely used to investigate how one
variable scales against another by accounting for errors from both directions (x and y) and measuring the residuals
perpendicular to the line (details in the review Warton et al., 2006). Therefore, the aim of MA is not to predict the y-
variable, however evaluating the proximity of the coefficients of the estimated MA line (a and B) to the scenario in which
DL equals CMd. The coincidence of each DL and CMd was summarized by reporting the a and 8 MA coefficients, which
are hypothesized to be intercept ~ 0 and slope ~ 1 when CMd occurs at the same depth of the DL in question.

Since the identification of a proxy for subsurface Chl-a represents a useful tool for correctly assessing the abundance and
the variations of primary production, we investigated the power of prediction of CMd from each DL by measuring the r-
squared (R?) from i) an ordinary least square to estimate parameters from the observations in a linear regression (Eg. (2)
in Table 2), and ii) the one-to-one linear regression (which has been forced with the intercept through the origin and a
slope equal to 1, Eq. (3) in Table 2). The formulae used to calculate the coefficient of determination R? for the one-to-one

(R?) and empirical (RZ,,) LMs are summarized in Eq. (2) and Eq. (3) in Table 2.

Table 2: Formulae for estimating the bivariate line-fitting. Spearman’s rank correlation coefficient (ps), coefficient of
determination R?for testing the one-to-one linear regression (R2) (e.g. CMd ~ BMLD) and the empirical linear

regression (R2,,).

Formula Purpose
Oxy Estimate the strength of the relationship between x
0 XY
s OxOy (1) and y
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R2 1 SSrEs 4 YO — 9)? Measure the variation in y that is explained by x in
o SSror 2 i — ¥)? ) aLM

2 1 SSrEs L YL — x)? Measure the variation in y that is explained by x in
° SSror =1 ()2 (3) a one-to-one LM

Notation: g, is the covariance of x and y, o, and o,, are standard deviations, n is the number of observations of x and
v, y; is DMC;, y is the average of CMds, and x; is the density layers related to CMd in each regression (e.g. CMd

~ BMLD). SSges is the residual sum of squares, SStor is the total sum of squares.

In the empirical LM, R2,, was calculated using the typical formula with the residual sum of squares (SSzzs) as the square
of the difference of y and 9 (estimated y from the model) (Eg. 2)). In the one-to-one LM, the SSggs in R3 was adapted
by replacing ¥ with x (Eg. (3)), since the values of x and y are assumed to be equal in the one-to-one line regression and
the difference between them should be zero. The two R? differ also for the denominator SSyor, which is the sum of squares
about the average of the explanatory variable in RZ,, and the sum of squares of the CMd values since in RZ the value of
CMd and DL equals.

Since the SS;or adopted in the two formulae is different, the proportion of explained CMds’ variance by each DL can be
compared only within each linear regression rather than across the one-to-one and empirical regressions. Therefore, the

power of prediction among DLs was discussed in within each type of LM.
3. Results

The presented algorithm identifying for AMLD and BMLD was applied to 1273 profiles exhibiting a pycnocline. The
associations of the density levels (AM LDo.o1, AMLDg.02, AMLD, HPDg.01-8mLDp, HPDo.02-8MLD, HPDAMLD-BMLD, BMLD and
Max N?) with CMds and the vertical distribution of Chl-a are described in Sect 3.1 and 3.2.

3.1 Vertical distribution of CMd and density levels

The depth of Chl-a maximum (CMd) was compared to eight different levels of the density profile that are summarized in
surface mixed layer depth (AMLDgo1, AMLDgo2, AMLD), below mixed layer depth (BMLD), the centre of the
pycnocline (HPDg.o1-emLp, HPDo.02-8mLD, HPDamLp-smLp) and the depth of maximum buoyancy frequency squared (Max
N?) to evaluate i) the strength of a positive linear relationship between each DL and CMd, and ii) the prediction of CMd

from each DL.

The observations carried out in the FoF and Tay region confirmed the subsurface presence of maxima Chl-a between
April and August, with CMds distributing on average (+ standard deviation) at 19.29 £ 6.56 m. All the indicator
classifying the surface mixed layer (AMLDo.01, AMLDy.02 and AMLD) distributed generally shallower than CMds (Fig. 4
a-c, Table 3) with a rare coincidence of their vertical distribution (from 0.39% to 1.73% of the profiles, Table 3). In
particular, the thresholds’ methods used to identify AMLD (0.01 and 0.02 mg m=) exhibited the lowest Spearman
correlation amongst all DLs, having almost a zero correlation to CMds (ps =-0.01 and 0.08 for AMLDg 1 and AMLDy 02,
Table 3) and a limited contribution to define CMd’s variability in empirical linear regressions (RZ,, = 0.00 and 0.01, Table
3). The Major Axis analysis measured intercepts and slopes in AMLDg 1 and AMLDo.02 almost perpendicular to the y-
axis due to the strong presence of CMds in deep waters. Although a clear subsurface aggregation of Chl-a maxima occurs
below the surface mixed layer (Fig. 4c), the AMLD identified by the algorithm correlated better to CMd than AMLDg 0

and AMLDq ¢, with a positive linear relationship between the two variables and a greater explained variance of CMd by
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the one-to-one and empirical linear regressions (Table 3). The coefficients measured by MA for AMLD (Table 3) reported

a positive correlation of CMds, representing a gradual deepening of CMd with the pycnocline.

Max NZ? is the density level performing least well after AMLDs in predicting CMds, although it showed the highest
percentage of coincidence with CMds (13.51% of the profiles, Table 3). Similar to AMLDs, CMds have been recorded
in 64.96% of the profiles at layers deeper than Max N2, indicating that Chl-a maxima area located in waters below surface

mixing, at stratified regions within the pycnocline.

Overall, the centre of the pycnocline (HPDs) performed better than AMLD and Max N2, distributing closer to CMds.
HPDawmLp-emLD reported the highest correlation to CMds (pg = 0.56), and the highest explained CMd’s variance from the
one-to-one (RZ = 0.90) and empirical (R2,, = 0.31) linear regressions (Table 3). The location of CMds is highly related
to HPDamip-emLD, although only 4.63% of the profiles presented CMds and HPDamip-smip at the same depth (Table 3).
Many profiles exhibited CMd deeper than HPD amip-emip (78.69%), of which 81.53% distributed CMds above BMLD
(hence, between HPD amLp-emLp and BMLD). HPDg 01-emLp, HPDo.02-8mLp l€SS related to CMds in Spearman’s correlation,

MA, one-to-one and empirical linear regressions than the HPDamip-smLp (Table 3).

The below mixed layer depth, BMLD, exhibited a reverse condition compared to the other density levels by encompassing
78.32% of CMds in waters above it (Table 3). BMLDs is the second variable after HPDamLp-smLp With the highest
correlation to CMds (ps = 0.55). It is distributed at the same depth of CMds in 7.86% of the profiles and linearly predicted
the location of maxima Chl-a in both one-to-one and empirical linear regressions (Table 3). BMLD exhibited MA
coefficients (¢ = 0.60 and § = 0.82) close to the hypothesized one-to-one fitting-line (« = 0 and g = 1), indicating a good
approximation of CMds at the base of the pycnocline. Moreover, CMds distributed on average at 2.74 + 5.21 m above

BMLD, with a maximum distance above it equals to 22 m, and 27 m below it.

The overall distribution of CMds is discernible mainly (> 95.84% of profiles) below the surface mixed layers (AMLDs’
indicators), within the deepest half of the pycnocline (between HPD amLo-smLp and BMLD) and it is bounded for 78.32%
of the observations above the BMLD. Although CMds generally reflect the region with the highest concentration of Chl-
a throughout the water column, the vertical distribution of Chl-a can vary in the proximity of CMds and accumulate
mainly above or below it. Hence, the ecological relevance of the density levels has been investigated in comparison with
the vertical distribution of Chl-a (Sect. 3.3).
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Figure 4: Scatterplots of CMd and the eight DLs (a-h). The lines refer to the one-to-one linear regression (LM) (solid
black), the Major Axis analysis (MA) (solid red), the empirical LM measured from the observations (CMd ~ DL) (dot-
dashed blue).

Table 3: Statistical parameters and percentage of profiles having CMds above (>), at the same depth (=), or below (<)

each DL.

DL Ps a p R? R%, CMd>DL CMd =DL CMd <DL
AMLDg 0 -0.01 54335 -12426 040 0.00 99.53 0.39 0.08
AMLDq 0.08 -43.72 11.35 047 0.01 99.45 0.31 0.24

AMLD 0.41 4.01 1.42 0.69 0.17 95.84 1.73 2.44
HPDo.01-8MLD 052 -12.81 2.52 086  0.27 90.18 1.81 8.01
HPDo.02-BMLD 0.52 -10.20 2.19 087 027 86.41 3.77 9.82

HPDamipemo  0.56 131 1.28 090 031 74.86 4.63 20.50
BMLD 0.55 0.60 0.82 087 031 13.83 7.86 78.32
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Max N? 0.45 7.06 0.63 084 020 64.96 13.51 21.52

3.2 Chl-a vertical distribution in relation to density levels

340  Since hydrodynamic and biological conditions generating resuspension, passive drift, and mortality (i.e. zooplankton
grazing in stratified waters) shape Chl-a differently throughout the water column, the amount of Chl-a was measured

above and below each density levels regardless the vertical distribution of CMd.

The depth-integrated Chl-a was standardized by the number of observations above and below four DLs (AMLD,
HPDamLp-smLp, BMLD and Max N?). AMLD and HPDamLp-smLp Were selected amongst the density levels to represent

345 the surface mixed layer and the centre of pycnoclines because of their better correlation to CMd (see Sect. 3.1). The
amount of Chl-a at each meter depth (mg m) above and below the four density levels is reported in Table 4 and Figure
5.

Table 4: Values of depth-integrated Chl-a (mg) standardized by its range of vertical distribution (m) (Total Chl-a

biomass (mg)/depths (m)) above and below the four density layers. These values are also reported in Figure 5.

DL Standardized depth-integrated Standardized depth-integrated
Chl-a above DL (mg m™) Chl-a below DL (mg m™?)
AMLD 172.97 971.12
HPDamLp-BMLD 366.07 859.27
BMLD 615.92 658.72
Max N2 372.90 848.14

350
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Figure 5: Violin plot of Chl-a (mg) at each meter above and below the four density levels (AMLD, HPDamLp-emLD,

BMLD and Max N?) for the whole dataset. The dot-dashed blue lines represent the depth-integrated Chl-a measured as

the total amount of Chl-a (mg) divided by the number of depths (z) within each portion of the water column (above and

below DLs) (values are reported in Table 4).

Following the results in Sect. 3.1, a large portion of Chl-a was measured at depths below AMLD, HPD amip-emLp and

Max N2 (Table 4), where the depth of Chl-a maximum also occurred. From the seabed to HPDamip-smLp and Max N2, the

amount of Chl-a was three times the Chl-a from these DLs to the surface. A reverse condition occurred for Chl-a

distributing above and below BMLDs: the standardized depth-integrated Chl-a is higher above BMLDs, although the

amount of Chl-a in the deepest layers (below the pycnocline) is still comparable (the difference between Chl-a from the
surface to BMLD and from BMLD to seabed is 42.80 mg m™*) (Table 4).
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It is therefore sensible to infer the distribution of CMds, and the largest portion of Chl-a at depths enclosed within the
stratified region (AMLD — BMLD), especially in the second half of the pycnocline (HPD amLp-emio — BMLD). At the

same time, a noticeable amount of Chl-a still distributes below the pycnocline (BMLD).
4. Discussion

In stratified waters, the vertical distribution of Chl-a is regulated by the balance of stratification and mixing rates across
different hydrodynamic regimes over time (Leeuwen et al., 2015). The combination of static, dynamic and biological
factors (e.g. grazing, Benoit-Bird et al., 2013) induces phytoplankton communities to adapt their vertical distribution at
small scales (< 1 km, Scott et al., 2010; Sharples et al., 2013). Identifying a proxy for subsurface concentrations of Chl-a
is essential to investigate the impacts of physical changes due to large scale factors (e.g., stratification strength, sea water
increase, or turbulence increase downstream wind turbine foundations). To date several studies have identified the mixed
layer between the sea surface and the pycnocline as a valuable tool to assess changes in phytoplankton abundance and
phenology over time; here we propose a tool to identify the vertical limits of the pycnocline and indicate the base of the
pycnocline (BMLD) as a variable tightly influencing the vertical distribution of Chl-a and likely to affect abundance and

phenology.
4.1 Ecological relevance of AMLD and Max N2 in defining CMds

Oceanic sites exhibit phytoplankton blooms within the upper mixed layer (e.g. Behrenfeld, 2010; Costa et al., 2020;
Somavilla et al., 2017) to coincide with AMLDs’ vertical fluctuations due to e.g. windstorm events deepening the
pycnocline into nutrient-enriched waters (Detoni et al., 2015; Carranza et al., 2018; Hofer et al., 2019; Montes-Hugo et
al., 2009). In this study, all the investigated surface mixed layers’ indicators (AMLDg 01, AMLDg g, and AMLD) weakly
predicted CMd. The algorithm used in this study has identified AMLD to have an overall higher performance in predicting
the location of CMds than the thresholds’ methods and maximum squared buoyancy frequency (Max N2). Since AMLD
has been largely considered as a central variable for understanding phytoplankton dynamics (Sverdrup, 1953), it has been
investigated in relation to climate change to infer possible significant changes in the amount, spatial distribution and
phenology of oceanic primary production (Boyd et al., 2015; Montes-Hugo et al., 2009; Somavilla et al., 2017; Prend et
al., 2019; Richardson and Bendtsen, 2019; Schmidt et al., 2020). However, the effect of climate change on AMLD and
primary production is still an unsolved question (Lozier et al., 2011; Somavilla et al., 2017). The unclear effects of climate
change on AMLD and primary production might be related to i) the type of data used to measure variations in Chl-a, e.g.
satellites” observations at the sea surface and their uncertainty related to subsurface Chl-a (Baldry et al., 2020; Erickson
et al., 2016; Lee et al., 2015), and ii) the exclusive investigation of the effects of surface mixing processes on primary
production (e.g. temperature, wind-induced mixing) by neglecting deep processes that are responsible for the pycnocline’s
stability (Dave and Lozier, 2015, 2013; Lozier et al., 2011; Somavilla et al., 2017). The AMLD is informative for surface
concentrations, but it may not be biologically relevant for subsurface Chl-a that are maintained at the pycnocline by deep
turbulent mixing. The need for a much more detailed understanding of the linkage between subsurface Chl-a, pycnocline
characteristics and deep turbulent processes is therefore a key subject, especially in highly productive but spatially

heterogeneous areas such as shelf waters and shallow seas.

In the FoF and Tay region, Max N2 exhibited higher percentages of coincidence with CMds (13.51% of 1273 profiles)
than other DLs (Table 3). The depth of Max N?is a less turbulent region where the energy to exchange parcels in the
vertical is maximum (Boehrer and Schultze, 2009), and it is frequently used to identify the upper mixed layer depth (e.g.
Carvalho et al., 2017). The location of CMds at Max N2 might reflect the distribution of phytoplankton within a less

15



405

410

415

420

425

430

435

440

turbulent region where nutrient particles, which have been resuspended by mixing, can persist for longer time periods.
The mild turbulent layer at Max N2 would therefore represent a hot spot of nutrients reached by resuspended
phytoplankton cells, while strong mixing processes still undergoing above and/or below it, or diluted gradients of
phytoplankton and nutrients throughout the water column, would avoid the creation of highly productive subsurface
patches. However, the amount of standardized depth-integrated Chl-a below Max N? is almost three times higher than
above it (Table 4 and Fig. 5) suggesting that Max N2 is a layer of suitable conditions for phytoplankton to grow, but it
lacks informing where most of the Chl-a vertically distribute. Although the depth of Max N? appeared to inform better
the exact location of CMds, BMLD exhibited a clear pattern by distributing below CMd in 78.32% of the profiles and
representing the deepest limit up to which CMds distributed. Overall, the linear correlation (ps), the MA coefficients and
the one-to-one linear regression RZ described a low association of CMds with Max N? compared to HPDs’ indicators and
BMLD, and hence the use of Max N? to locate subsurface Chl-a patches in summertime shelf waters may lead to

underestimate the amount of Chl-a in the whole water column.
4.2 Vertical distribution of Chl-a and BMLD

The observations carried out in the FOF and Tay region confirmed the subsurface presence of maxima Chl-a between
April and August. A recent study in the German Bight described CMds located mainly at the centre of the pycnocline and
the overall amount of Chl-a at depths distinctly lower than the surface mixed layers (Zhao et al., 2019a). The location of
CMd at the pycnocline is regulated over time by upward nutrient-enriched fluxes entering the pycnocline from deep
waters (Pingree et al., 1982; Rosenberg et al., 1990). In the Skagerrak strait between Denmark and Norway, deep SCMLs
were recorded at a nutricline (rate of change in nitrate and phosphate) located below the base of a shallow pycnocline (<
15 m) (Bjernsen et al., 1993). The low concentration of CMds below BMLD might reflect a limited erosion of Chl-a by
mixing (Zhao et al., 2019a) and grazing (Benoit-Bird et al., 2013). The physical factors developing subsurface Chl-a are
defined by mixing processes below the pycnocline that provides an indispensable upward flux of nutrients in the euphotic
zone, where e.g. dinoflagellates are able to compete successfully in slightly turbulent conditions (< 0.1 mm s) (Ross and
Sharples, 2007). Therefore, the erosion as well as the resuspension of sinking phytoplankton cells and nutrients can
maintain the proximity of CMds at BMLDs setting the location of the nutricline at the base of the pycnocline. It is also
noticeable that a large amount of diluted Chl-a in deep waters (51.67% of depth-integrated Chl-a below BMLD) might
be crucial in maintaining primary production at the subsurface over the summer, since deep mixing processes eroding and
sustaining Chl-a at BMLD would contribute also to reducing the overlap between SCMLs and predators (Behrenfeld,
2010).

Overall, the deep distribution of CMds, and most of the depth-integrated Chl-a, in the proximity of the centre and the base
of the pycnocline suggests the maintenance of subsurface Chl-a within shelf waters through the regulation of nutrient

supply by waters below the pycnocline and makes this linkage responsive to variations in deep physical processes.
4.3 Using BMLD to investigate impacts on primary production

The marine photosynthetic activity represents an essential biological pump of carbon sequestration (Boyd et al., 2015),
whose extent is often invalidated by the exclusion of subsurface Chl-a of up to 10%-40% (Sharples et al., 2001). The
correct measurement of primary production throughout the whole water column is essential to address which factors affect
absorbing atmospheric carbon dioxide in the marine environment. Recent studies reported a decrease of Chl-a biomass
(Capuzzo et al., 2018; Schmidt et al., 2020) and a temporal shift of phytoplankton bloom (Silva et al., 2021) due to

significant changes in the surface MLD. The Northeast Atlantic shelves experienced a summertime reduction of Chl-a in
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the last 60 years leading to significant impacts on the food web, caused by an intensified stratification of the water column
that maintains nutrient fluxes in deep waters (Capuzzo et al., 2018; Schmidt et al., 2020). Prolonged stratified conditions
were reported to define deeper concentrated patches of Chl-a (Somavilla et al., 2017; Scott et al., 2010), where
phytoplankton stabilize at deep low-turbulence layers (Bopp et al., 2013) having still sufficient light to photosynthesize
and set the nitracline position. The starvation of nutrients at surface force phytoplankton to re-distribute in the water
column (e.g. Bindoff et al., 2019; Boyd et al., 2015; Schmidt et al., 2020) in deeper nutrient-enriched waters within the
euphotic zone. Hence, the location of CMds in the proximity of the deepest portion of the pycnocline, between HPD amLp-
svLp and BMLD, (78.32% of the profiles) is not surprising during summer in the Firth of Forth and Tay regions. Although
a consistent portion of depth-integrated Chl-a is reported below pycnocline, the vertical distribution of BMLD resulted in
setting the position of subsurface productive patches in stratified waters, representing an important indicator of the vertical

distribution of phytoplankton in shelf waters.

The effects of an intensified stratification on primary production in the continental shelf waters are still entangled and
suggest an overall deepening of subsurface Chl-a, which is likely to delineate a knock-on effect on redistributing most of
the higher trophic levels (e.g., zooplankton, fish) and affect the foraging success of highly adapted species. However, the
deepening of productive patches is difficult to examine over large spatial scales, and remote sensing methods often lack
reliability for subsurface data. The role of climate change in increasing stratification are likely to affect the distribution
of BMLD and the upward fluxes, which may either redistribute food patches at major depths together with the deepening

of BMLD and causing an overall reduction of primary production or shifts of community compositions.

It is hence reasonable to notice that the potential effects on primary production involves both surface and deep (below the
pycnocline) processes, especially where multiple local changes (i.e. wind turbine foundations changing levels of mixing)
repeated over large spatial areas (i.e. the North Sea) have an effect at different scales (van der Molen et al., 2014; De
Dominicisetal., 2018; Carpenter et al., 2016). The upcoming interest of the offshore renewable sector in building offshore

wind farms (OWFs) in the FoF and Tay region (www.marine.gov.scot) rises the need of drafting reliable environmental

impact assessments able to identify key variables for estimating the effects in a holistic way. The consequences of offshore
wind farms are likely to be related to bathymetry and mixing budgets, by affecting the stratification rate differently across
several bathymetries. The vertical distribution of CMds at BMLDs appeared to be correlated to the bathymetry by
exhibiting CMds closer to BMLDs at water depths comprised from, approximately, 40 to 70 m, CMds deeper than BMLD
mainly in shallow waters < 60 m, and CMds above BMLD towards deeper waters up to 100 m (Fig. A3 in Appendix A).
Previous studies identified a similar pattern in shallow waters where CMds were mainly recorded at or below the base of
the pycnocline (Barth et al., 1998; Durdn-Campos et al., 2019; Holligan et al., 1984; Zhao et al., 2019a). Although
stratification is reported to intensify in shelf waters with climate change, the increase in turbulence downstream wind
farms may counteract the local stratification (Carpenter et al., 2016; Schulien et al., 2017; Schultze et al., 2020) and affect
the temporal and spatial distribution of Chl-a. Since the variation in stratification is a useful tool to address possible
impacts on primary production, using BMLD is likely to be more efficient in predicting changes in the vertical distribution
of Chl-a and its possible consequences. The deepening of BMLD within or even below the euphotic zone may lead Chl-
a to decrease across shelf seas since phytoplanktonic cells would buoyance at deeper and darker depths. Hence, the use
of AMLD to investigate physical alteration of climate change and man-made structures should be integrated with the use
of BMLD and the understanding of physical processes at depth, together with changes in seabed temperature, and the

slow down or increase of upward fluxes.

5. Conclusion
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Chl-a vertical distribution gives important information about the state of development of the phytoplankton community,
which is associated with mixed and stratified layers. The mixing processes above and below the pycnocline can have very
different influences on Chl-a vertical distribution, dictating the concentration at subsurface patches that can distribute

close to, above, or below the pycnocline.

Although the association of phytoplankton with AMLD has been largely described at large spatial scales within oceanic
habitats, the presented study shows a weak linkage between AMLD and CMd in shelf waters, at a very high vertical
resolution (1 m), compared to HPDs’ indicators or BMLD, which has led to hypothesize a stricter association of
summertime subsurface Chl-a with the bottom-half of the pycnocline. Therefore deep mixing processes, such as tidal
currents in the North Sea, play a role in regulating summertime subsurface primary production and may regulate their
distribution at BMLDs in stratified conditions. Considering the described associations of subsurface Chl-a with BMLD,
it is evident how this variable can play a role in the assessment of productivity, since the deep mixing processes are
equally (or more) relevant than the surface process in determining a shift of primary production at local or large scales.
This association therefore advocates the investigation of the effect of anomaly-inducing processes occurring at and below
the pycnocline (e.g. deep sea temperature, deep salinity, turbulence and physical processes at the BMLD), which are
likely to influence primary production and the whole ecosystem dynamics within shelf seas (Trifonova et al., 2021).
Understanding mechanisms affecting primary production at fine scales is very important to investigate as we are moving
rapidly towards the deployment of hundreds GW in the wind energy sector from worldwide shallow seas (Gielen et al.,
2019). BMLD is proposed as an ecological relevant variable for further oceanographic investigations in shelf waters, and

the proposed approach is a valuable tool to extrapolate this variable from in situ vertical samples.

Appendix A
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