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 15 
Abstract 16 
 17 
A data assimilation system for a high-resolution model has been developed to address the 18 

opportunities and challenges posed by the upcoming Surface Water and Ocean Topography 19 

(SWOT) satellite mission. This developed system is based on a three-dimensional variational 20 

data assimilation scheme (3DVAR), which is computationally highly efficient and thus can be 21 

applied to a very high-resolution model. A crucial consideration of the system is to use a 22 

multiscale data assimilation approach (MSDA) to first assimilate routinely available 23 

observations, including conventional satellite altimetry, sea surface temperature (SST) and 24 

salinity (SSS), and temperature/salinity vertical profiles, to constrain large scales and large 25 

mesoscales. High-resolution (dense) observations and future SWOT measurements can then be 26 

effectively and seamlessly assimilated to constrain the smaller scales. The 3DVAR is extended to 27 

assimilate observations over a time interval, which specifically enhances the efficacy of the 28 

assimilation of satellite along-track altimetry observations, which are limited by large repeat time 29 

intervals. Using this system, a reanalysis dataset was produced for the SWOT pre-launch field 30 

campaign that took place in the California Current System from September through December, 31 

2019. An evaluation of this system with assimilated and withheld data demonstrates its ability to 32 

effectively utilize both routine and campaign observations to produce sea surface heights with 33 

the accuracy close to that required by SWOT. These results suggest a promising avenue for data 34 

assimilation development in the SWOT altimetry era, which will need the capability of jointly 35 

assimilating existing routine observations with SWOT measurements to resolve small-scale 36 

ocean processes.   37 
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 3 

Introduction 43 
 44 
The Surface Water and Ocean Topography (SWOT) satellite mission will launch in late 2022. 45 

SWOT will carry a new-generation altimeter – a Ka-band Radar Interferometer (KaRIn) – 46 

measuring sea surface height (SSH) in two-dimensions (2D) at unprecedented spatial resolution 47 

(Durand et al., 2010; Fu & Ubelmann, 2014). KaRIn has lower instrument noise (~2 48 

cm2/cycle/km) than conventional nadir-looking altimeters (~100 cm2/cycle/km). The low 49 

noise allows for an effective spatial resolution down to a scale of 15 km. The effective spatial 50 

resolution is the minimum spatial wavelengths that can be resolved. The SWOT resolution is a 51 

significant improvement over the ~150-200 km 2D resolution of altimetry measurements from a 52 

constellation of conventional nadir-looking altimeters (Fu & Ubelmann, 2015; Dufau et al., 53 

2016; Wang et al., 2019). The KaRIn instrument measures SSH over a nominal 120-km wide 54 

swath with a 20-km gap around the satellite’s nadir track. 55 

The SWOT satellite has a repeat orbit of about 21 days with global coverage. While the 56 

SWOT mission will provide unprecedentedly high spatial resolution measurements, it is not 57 

matched by high temporal resolution. The SWOT satellite will fly at 7 km/s, the same as 58 

conventional altimetric satellites. In 1-min, the measurements can cover a region of 420-km 59 

along-track, and thus can effectively provide a synoptic map of 2D SSH structures. The temporal 60 

resolution is limited by a 21-day repeat time.  Fast evolving dynamical processes may develop, 61 

decay, or move unobserved between two passes. The current mapping methods (e.g., Le Traon, 62 

et al., 1998; Archer et al., 2020) for traditional altimetry observations will not be appropriate for 63 

SWOT measurements (Morrow et al., 2019).  64 

When the SWOT satellite launches, a 90-day fast-sampling phase has been designated for 65 

Calibration and Validation (CalVal) to support understanding of the novel measurements. During 66 

this phase, the SWOT satellite will fly on a one-day repeat orbit to gather high-temporal 67 

resolution data at specific locations; two overpasses will be made every day at the crossover 68 

points. An ‘Adopt-a-Crossover’ consortium has been organized (Morrow et al., 2019), in which 69 

researchers around the globe will deploy in-situ instruments to augment the SWOT daily 70 

observations, to study small-scale ocean features and understand the nuances of SWOT’s novel 71 

measurements. These observing systems can be coupled to data assimilation systems that 72 
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combine the measurements with high-resolution models to produce best-estimates of the ocean-73 

state. However, there are challenges in applying existing DA systems to the novel SWOT data. 74 

We have developed a multi-scale data assimilation (MSDA-SWOT) system with a high 75 

resolution-model to specifically address some of the challenges posed by the SWOT satellite 76 

mission, which include:  77 

i. A 21-day repeat cycle that limits our ability to directly observe the time-evolution of 78 

the fast-moving small-scale ocean variability, requiring a dynamical model to fill-in 79 

the time gaps 80 

ii. SWOT measurements should be effectively combined with measurements from 81 

conventional nadir-looking altimeters measurements, which have a fundamentally 82 

lower spatial resolution but relatively higher temporal resolution. 83 

iii. Measurements of small-scale ocean features embedded in larger-scale structures, 84 

which requires an ability to effectively constrain different scales of variability  85 

For MSDA-SWOT to successfully address the specific challenges of SWOT, it is 86 

fundamentally important that the system has the capability of assimilating all routinely available 87 

observations from operational observing networks. During the last two decades, global routine 88 

observing networks have been established, enhanced and sustained for operational purposes. 89 

There are more than five satellite altimeters presently in operation, from which SSH 90 

measurements are routinely available in near real time and may be merged to resolve eddies in 91 

two-dimensions down to almost 100 km in size at the mid-latitudes (Archer et al., 2020). Global 92 

temperature/salinity vertical profiles are provided by the operational Argo float network and 93 

augmented by mooring arrays, glider lines and a variety of other observing platform networks. 94 

Although temperature/salinity vertical profiles are spatially sparse and temporally infrequent, 95 

they have allowed the production of monthly-average data sets, which have an effective 96 

resolution of a few hundred kilometers (e.g, Good et al., 2013). Furthermore, a fleet of satellites 97 

carry infrared and microwave sea surface temperature (SST) sensors that provide maps on a daily 98 

basis. The MSDA-SWOT algorithm has been formulated to effectively constrain mesoscale 99 

variability using observations from these routine observing networks. We argue that the 100 

effectively constrained mesoscale variability down to about 100 km is a prerequisite for the 101 

dense observations from the field campaigns and future high resolution SWOT measurements to 102 
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be effectively and seamlessly assimilated, and the MSDA methodology is formulated to achieve 103 

such a goal (Li et al., 2015a; Li et al., 2019). 104 

      MSDA-SWOT is a three-dimensional variational data assimilation system (MS-3DVAR) that 105 

has been documented in Li et al. (2015b, 2019). The model used is the Regional Ocean Modeling 106 

System (ROMS, Shchepetkin & McWilliams 2005, 2011). The MS-3DVAR has been extended 107 

to address the particular challenges of the SWOT mission. In MSDA-SWOT, a 3DVAR 108 

formulation is extended to assimilate observations over a time interval and thus has the objective 109 

similar to the First Guess at Appropriate Time (FGAT) (e.g. Martin et al., 2015). In extended 110 

3DVAR, a formulation has been given to account for the error due to the difference between data 111 

assimilation and observing time, which is termed as sampling time error (see section 3.1). By 112 

taking into account the sampling time error, it allows the selection of a relatively large time 113 

interval so that many temperature/salinity vertical profiles and along-track altimetry 114 

measurements can be assimilated jointly to constrain large-scale and mesoscale circulation.  115 

      The MSDA-SWOT system is based on the MSDA system described in Li et al. (2019b) with 116 

the implementation of the extended 3DVAR. There are other major differences in the treatment 117 

of observations, and accordingly, in background error covariances, discussed later. It has been 118 

implemented at the primary SWOT CalVal site in a region encompassing the California Current 119 

System (Fig. 1). This eastern boundary current site has been selected for the moderate tides, and 120 

moderate mesoscale and sub-mesoscale dynamics (e.g., Hickey, 1998; Capet et al., 2008).  121 

        In Li et al. (2019), we presented a set of twin experiments, also known as OSSE (observing 122 

system simulation experiment). The results showed that the MSDA system could produce 123 

appropriately accurate SSH for CalVal with a dedicated glider array on top of the routine 124 

observations available from operational observing networks. A pre-launch field campaign that 125 

was dedicated to SWOT CalVal took place from September through December, 2019 (for more 126 

details, see Wang et al., 2021). MSDA-SWOT has been used to produce analyses and forecasts 127 

by assimilating measurements from the field campaign and routine observing networks. We here 128 

evaluate and illustrate the performance of MSDA-SWOT to produce appropriately accurate SSH 129 

as the Li et al. (2019) twin-experiment OSSE demonstrated. We focus on the fine-scale 130 

performance of MSDA-SWOT in comparison to withheld glider and mooring data in a 131 

companion paper (Archer et al. 2021).  132 
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 6 

      The paper is organized as follows. Section 2 summarizes observations that are assimilated 133 

and used for evaluating the system. The MSDA-SWOT algorithm is presented in section 3.  134 

Implementation strategies and practical considerations are described in section 4. Section 5 135 

presents an evaluation of the performance of MSDA-SWOT with an emphasis on the illustration 136 

of the algorithm and implementation strategies. Finally, a brief summary of the key results is 137 

given in Section 6. 138 
 139 
2 Data  140 
 141 
In the context of this paper, distinct spatial scales are considered. For clarity, they are defined as 142 

follows: the large-scale is greater than 400 km, the large mesoscale is from 400 km down to 150 143 

km, the small mesoscale is from 150 km down to 50 km, and the submesoscale is smaller than 50 144 

km. These scale definitions are not used for dynamical analysis, but they are associated with the 145 

ability of currently existing observing networks to resolve spatial scales. SWOT measurements 146 

aim to accurately resolve scales from 150 km down to 15 km in two-dimensions. 147 

      In the following, we briefly describe the observations that are collected during the pre-launch 148 

field campaign as well as those from routine observing networks. We also provide information 149 

on a global reanalysis dataset we use to benchmark our system. 150 

 151 

 
Figure 1. Model domain and bathymetry (left). The model domain encompasses the Mendocino escarpment, which 
is the primary source of semi-diurnal internal tides at the CalVal site. In the zoom-in area (right), the observing 
assets are indicated during the SWOT pre-launch campaign. The ground tracks of Jason-3 (red), Sentinel-3B (S3B, 
blue) and Sentinel-3A (S3A, orange) are shown. Three moorings – south (SIO), middle (PMEL) and north 
(PMEL/WHOI) – were deployed within a SWOT swath cross over (light brown diamond) along a S3A track (three 
dots). A glider flew along a track perpendicular to the mooring line, crossing between the south and middle 
moorings.  
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 152 

2.1 Pre-launch Field Campaign 153 

The pre-launch field campaign observations provide information for the design of the post-154 

launch in-situ observing system. Three different moorings were deployed. The first (south) is a 155 

hybrid mooring with a profiling Conductivity, Temperature, and Depth (CTD) instrument called 156 

a WireWalker installed on top of fixed CTD sensors. The WireWalker measures vertical profiles 157 

of temperature/salinity down to a depth of about 500 m with high temporal resolution. The 158 

second (north) mooring comprises a GPS altimeter installed on top of a line of CTDs. And the 159 

third (middle) is a GPS/Prawler mooring, on which was installed a GPS altimeter above a 160 

Prawler. Like the WireWalker, a Prawler is a profiling CTD that measures T/S vertical profiles at 161 

very high resolution and frequency down to a depth of about 500 m. Another observing platform 162 

deployed was a Slocum glider that measures T/S vertical profiles. Three moorings were deployed 163 

along a Sentinel-3A altimetry track, and the glider flew along a track perpendicular to the 164 

mooring line. (Fig. 1).  165 

 166 

2.2 Temperature/salinity vertical profiles 167 

Temperature/salinity vertical profiles are measured by the global Argo float network, local glider 168 

networks, moorings, and during various surveys. The profiles are spatially and temporally sparse 169 

and heterogeneous, but they have allowed the production of monthly gridded products at a low 170 

spatial resolution (e.g. Good et al., 2013). We assimilate individual T/S profiles processed and 171 

quality controlled by the EN4 program at the Met Office Hadley Centre (Good et al., 2013).  172 

Figure 2 shows the locations of all the vertical profiles from September 1 through Nov 30, 2019. 173 

An appropriate assimilation of those profiles should help constrain the large-scale circulation in 174 

the model.  175 

 176 

2.3 Along-track and gridded altimetry data 177 

In this study, both along-track and gridded altimetry data are assimilated. The altimetry data of 178 

absolute dynamic topography is assimilated although it is called SSH for convenience. We use 179 

the level 3 (L3) along-track data and level 4 gridded data that are publicly available through the 180 

Copernicus website (http://marine.copernicus.eu/services-portfolio/access-to-products/). We use 181 

5 altimeters that were in orbit: Jason-3 (J3), Sentinal-3A (S3A) and Sentinal-3B (S3B), SARAL-182 
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DP/AltiKa (ALD), and Cryosat-2 (C2). Table 1 presents the main characteristics of each satellite 183 

altimeter, and details of the L3 dataset (Pujol et al. 2016) for more information on altimeter 184 

standards and the DUACS processing chain). DUACS-DT2018 provides the 1 Hz along-track 185 

data in two resolutions; unfiltered (~7 km spacing between along-track grid points), and filtered 186 

(~14 km spacing, low passed with a 65 km cut-off). The 65 km threshold was chosen based on 187 

signal-to-noise ratio of one in the wavenumber spectra (Dufau et al.,2016).  188 

 189 

 
Figure 2. Locations of vertical temperature/salinity profiles from Argo floats, gliders and other 
routine observing platforms that are available from September 1 through Nov 30, 2019. The colors 
show the observing time (days) from September 1, 2019.   

 190 

 191 

Table 1 DUACS L3 along-track unfiltered (filtered) data  

Acronym J3 S3A S3B ALD C2 

Along-track grid 
spacing (km) 7 (14) 7 (14) 7 (14) 7 (14) 7 (14) 

White noise level 
(cm) 2.9 (1.1) 2.4 (0.9) 2.4 (0.9) 2.1 (0.8)  2.5 (1.0) 

Repeat interval (day) 10 27 27 35 29  

 192 

 193 

        Even with five altimeters, the long repeat intervals limit coverage for one day to only a few 194 

tracks over the model domain (Fig. 3a). It is challenging to assimilate such highly heterogeneous 195 
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observations into a model with a spatial resolution on the order of 1 km. Our experience has 196 

shown that the assimilation of such few tracks of altimetry observations often causes problems –  197 

distorting and/or mis-locating eddies, and even generating spurious eddies. As such, we focused 198 

in previous studies on assimilating only the gridded data products that are highly smoothed. The 199 

high-resolution information from along-track altimetry was thus not used in our previous DA 200 

systems (e.g., Li et al., 2019a, b). To address this limitation, we have formulated the MSDA-201 

SWOT data assimilation scheme to assimilate multiple days of along-track altimetry 202 

observations, by extending the framework of 3DVAR. As we will show, MSDA-SWOT can 203 

effectively and reliably assimilate along-track altimetry observations into a high-resolution 204 

regional model (Section 3). 205 

 
Figure 3. Typical distribution of observations from along-track altimetry for five satellites: Jason-3, Sentinal-3A 
and Sentinal-3B, SARAL-DP/AltiKa, and Cryosat-2. SSH measurements for 1 day (left) on November 2, 2019, 
and 11 days (right) from November 1 through 11, 2019. Color indicates SSH in meters. 

 206 

 207 

        Using the measurements from multiple conventional satellite altimeters, gridded SSH 208 

products can now resolve SSH length-scales larger than approximately 150-km wavelength in 209 

the region near the CalVal site (e.g., Chelton et al., 2007; Pujol et al., 2016; Dufau et al., 2016; 210 

Archer et al., 2020). By merging SSH measurements from all available altimetry satellites, daily 211 

SSH maps can be generated even though they involve smoothing with a time window much 212 

longer than one day. Daily gridded maps by AVISO (Archiving, Validation and Interpretation of 213 
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Satellite Oceanographic) have been extensively used. The root-mean-square difference between 214 

the AVISO gridded and filtered along-track data is around 2.5 cm in this region (Archer et al., 215 

2020). 216 

 217 

2.4 Satellite sea surface temperature 218 

Satellite remote sensing has provided accurate global sea surface temperatures (SST) for 219 

decades. SST measured by satellite microwave (MW) sensors has been gridded at a spatial 220 

resolution of 25 km with an error of 0.6°C. SST measured by infrared (IR) sensors that are 221 

carried on polar orbit satellites has a spatial resolution of about 1 km with an error of 0.7°C, and 222 

they are well into the submesoscale. There are several satellites measuring MW and IR SST, 223 

jointly producing SST observations a few times daily. In Li et al. (2019b), we assimilate 224 

nighttime and morning (Local 12 am-9 am) satellite SSTs, and daytime SSTs with wind speeds 225 

higher than 3 m/s to minimize the impact of skin temperature differences that arise in low wind 226 

daytime conditions. In this study, we will not assimilate IR SST but use them as independent 227 

data for evaluation. 228 

 
Figure 4. Infrared VIIRS (left) and microwave AMSR-2 (right) SST on October 5, 2019. Infrared VIIRS SST has 
a resolution of 0.7 km. No infrared SST is available over cloudy areas. This VIIRS SST map shows a day with a 
relatively good coverage. Microwave AMSR SST has a resolution of 25 km.  No microwave SST is available near 
shore because of land contamination. VIIRS SST is not assimilated but used as independent data for evaluation. 
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2.5 HYCOM 229 
We benchmark MSDA-SWOT against the Global HYbrid Coordinate Ocean Model (HYCOM), 230 

which is coupled with the Navy Coupled Ocean Data Assimilation (NCODA) to produce a 231 

global reanalysis product (Cummings, 2005; Cummings and Smedstad, 2013). This is one of the 232 

leading global reanalysis products available. NCODA uses the 24-hour model forecast as a 233 

background field in a 3DVAR scheme. It assimilates satellite SSH, in situ and satellite SST, 234 

vertical profiles of temperature and salinity from XBTs, Argo floats and moored buoys. It can be 235 

considered an approximate equivalent to the routine DA run of MSDA. More information on the 236 

system is available at https://www.hycom.org/. We here use a high-resolution run provided by 237 

the Navy, at 0.04 º longitude by 0.02º latitude, and hourly time sampling, for the pre-launch field 238 

campaign period. To remove the tides from the SSH field, we take a daily average and detrend 239 

the SSH in two-dimensions around the CalVal site.  240 

 241 
3 An extended three-dimensional multiscale scheme 242 
 243 

The MSDA-SWOT system has been developed to address new challenges relating to the fine-244 

scale resolution and data density of satellite observations in the SWOT altimetry era. As such, 245 

the numerical ocean model used should be high resolution with a grid spacing on the order of 1 246 

km or finer. This imposes a major computational challenge to formulate MSDA-SWOT. Both 247 

the field campaign and SWOT measurements are localized to a limited area. Another major 248 

challenge is to assimilate these localized measurements seamlessly along with the broad routine 249 

observations. Otherwise, a spurious circulation surrounding the observing area may develop, and 250 

data assimilation could even fail. To address these two major challenges, we have formulated a 251 

particular MSDA scheme, which is based on a 3DVAR algorithm that is extended to assimilate 252 

observations over a time window. 253 

 254 

3.1 An extended 3DVAR scheme 255 

 256 
        For a very high-resolution model, 3DVAR is a scheme extensively used in both 257 

meteorological and oceanic applications (e.g., Gustafsson, et al., 2018), because of its 258 

computational efficiency. However, a 3DVAR scheme can formally assimilate observations 259 

taken only at an instantaneous time. In practice, observations over a time window are assimilated 260 
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with the assumption that they are taken at the DA time. As such, three is a difference between the 261 

observation time and DA time. This time difference inputs error to the system, which we term as 262 

‘sampling time error’. In practice, a short time window is selectively chosen as a compromise 263 

between incorporating more observational information, and keeping the sampling time error at 264 

an acceptable level. 265 

To alleviate this short time window limitation in 3DVAR, we here formulate a scheme to 266 

extend the ability of 3DVAR to assimilate observations in a longer time window. Suppose that at 267 

time 𝑡! 	(𝑘 = 1,2,⋯ , 𝐾), a number 𝑚 of observations (note that 𝑚 could vary in time) are 268 

available and placed into an 𝑚-vector 𝒚!" . 𝑹!"  is observational error covariance, and 𝑹!# =269 

〈𝒆!#(𝒆!#)$〉, where 𝒆!#  is the observational error associated with 𝒚!" .  The state variable at 𝑡# can 270 

be denoted as an 𝑛-vector, 𝒙#. 271 

We extend the standard 3DVAR cost function as 272 

𝐽(𝒙0) =
!
"
%𝒙0 − 𝒙0𝑏'

#
𝑩$%!%𝒙0 − 𝒙0𝑏' +

!
"
∑ +𝐻&(𝒙$) − 𝒚𝑘

𝑜.#%𝑹&$'
%!+𝐻&(𝒙$) − 𝒚𝑘

𝑜.'
&($   .    (1) 273 

Here 𝑩𝟎 is the background error covariance, and  𝑩𝟎 = 〈𝜺#*A𝜺#*B
$〉, where 𝜺#* is the background 274 

error associated with the background state 𝒙#*. 𝑯! 	is often known as an observation operator that 275 

maps the state variable to 𝒚!" . 276 

       The cost function (1) has a form similar to the four-dimensional variational data assimilation 277 

(4DVAR) algorithm (e.g., Li & Navon, 2001), which has been implemented for oceanic 278 

applications (e.g., Weaver et al., 2003; Moore, et al., 2004; Zhang et al., 2010; Ndgodock & 279 

Carrier, 2014). In 4DVAR, 𝒙$ in the observation related terms in (1) is replaced by 𝒙&, so that it can 280 

naturally assimilate observations over a time window. The cost function (1) can be considered as 281 

a reduced 4DVAR cost function, in which a forecast approximation of 𝒙𝒌 = 𝒙𝟎 is applied, or in 282 

which a persistence forecast model is used in 4DVAR. 283 

        Rather than the standard 3DVAR cost function, the cost function (1) is used to account 284 

explicitly for the observation error due to the difference between the observation and DA time.  285 

By definition, the observational error in (1) has the form (e.g., Li et al. 2015), 286 

𝒆&$ = 𝒚𝑘
𝑜 − 𝐻&(𝒙$+ ),                      (2) 287 

where 𝒙!+  is the unknown true state. We can write (2) in the expansion form 288 

𝒆&$ = %𝒚𝑘
𝑜 − 𝒚𝑘

𝑡 ' + 1𝒚𝑘
𝑡 − 𝐻&(𝒙&+ )2 + 1𝐻&(𝒙&+ )− 𝐻&(𝒙$+ )2	290 

																																																		= 𝒆&, + 𝒆&- + 𝒆&
,. ,                                  (3) 289 
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where 𝒚!+  is the unknown true value of 𝒚!" .  291 

       In (3), the first term is the measurement error, and the second term the representation error 292 

due to the inaccurate observation operator. These two terms are well known. The last term is a 293 

new type of observational error. We can understand it in the following way. If all the 294 

observations are taken at 𝑡#, this type of error does not occur. We follow the formulation (3) to 295 

estimate the error arising from the difference between the observation time and DA time. 296 

     The MSDA-SWOT system is based on (1) and (3). Because 𝑡 is allowed to be negative in (1), 297 

we assimilate observations prior to and after the DA time.  We note that this extended 3DVAR 298 

has the same objective as First Guess at Appropriate Time (FGAT), another scheme used in 299 

conjunction with 3DVAR (e.g. Martin et al., 2015), which is discussed in Archer et al. (2021).  300 

 301 
3.2 Multiscale Framework 302 
We have stated that data assimilation is a method to use imperfect observations to correct the 303 

error in the forecast. The essence of a multi-scale data assimilation framework is to correct 304 

forecast errors sequentially from large to small spatial scales in multiple steps, where the number 305 

of steps depends on the characteristics of the observing networks. An MSDA formulation hinges 306 

on the fact that the scales of forecast error that are corrected can be defined and determined by 307 

the background error covariance 𝑩𝟎 (Li et al., 2015, 2016).  308 

       The 	background	error	covariance	𝑩𝟎 can be decomposed as 𝑩𝟎 = 𝜮𝑪𝜮, where 𝜮 is a 309 

diagonal matrix whose elements are the background root-mean-square error (RMSE) associated 310 

with 𝒙#* , and 𝑪 is the correlation matrix whose elements consist of the spatial correlations.  311 

      This error covariance decomposition allows us to separately examine RMSE and correlation. 312 

The background error amplitude is given by 𝜮, which plays a role of weight as we can see in the 313 

cost function.     314 

      It is well known that the correlation plays a key role in spreading the observation innovations 315 

to the surrounding areas. However, a more important role in MSDA is its filtering effect. The 316 

larger the correlation scale is, the stronger the filtering effect that data assimilation imposes on 317 

observation innovations (Li et al., 2016; Jacobs et al., 2020). A rule of thumb is that all the scales 318 

smaller than twice the correlation length scale are filtered out. This filtering effect dictates that 319 

the data assimilation can correct only those scales larger than twice the correlation length scales. 320 

By defining a proper background state and associated correlation length scales, MSDA allows 321 
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for specifying scales that are corrected. In MSDA-SWOT, we implement a three-step MSDA for 322 

constraining different spatial scales (section 4.2).  323 

 324 
 325 
4 Implementation 326 

 327 
The implementation of the scheme formulated above leverages the MSDA system described in 328 

Li et al. (2019b). The difference here is in the use of the extended 3DVAR scheme, as well as in 329 

the treatment of observations, and accordingly, in the adjustment of the multiscale background 330 

error covariances, which will be described in this section.  331 
 332 

4.1 Modeling System 333 

The MSDA-SWOT configuration of the modeling system is similar to the one described in Li et 334 

al. (2019b). Here we give a description. The modeling system is based on ROMS (Shchepetkin 335 

& McWilliams, 2005, 2011).  A one-way nesting procedure is used as described in Mason et al. 336 

(2010) with successive, nearly isotropic grid resolutions, varying from 9 km covering a large 337 

region of the Northeast Pacific, 3- km for an extended region of the California coast. The 338 

bathymetry for three domains is constructed from the ETOPO1 1 arc-minute dataset of Amante 339 

& Eakins (2009). The model domain and its bathymetry are shown in Fig.1.  340 

       The lateral boundary conditions for the 9-km domain are derived from version GOFS3.1 of 341 

the global analysis of HYCOM (https://www.hycom.org/dataserver/gofs-3pt1/analysis). The 342 

temperature, salinity, velocity components and SSH fields are all used. To smooth out possible 343 

unrealistic variability, a 15-day average is applied. The three-hourly atmospheric forcing uses a 344 

bulk flux formula (Fairall et al., 2003). The required atmospheric fields (10m-wind speed and 345 

direction, net shortwave radiation, downward longwave radiation, 2m-air temperature and 346 

relative humidity) are obtained by interpolation from the 25-km resolution of the NCEP GFS 347 

(National Centers for Environmental Prediction Global Forecast System) operational 348 

atmospheric model 3-hourly outputs.  In the calculation of wind stresses, ocean surface currents 349 

are subtracted. 350 

         The model is forced by barotropic tides at the open boundaries of the 3-km resolution 351 

domain, and the Flather boundary condition (Flather, 1976; Wang et al., 2009) is used.  The tidal 352 

sea level and barotropic velocity amplitudes and phases for the 10 dominant tidal constituents 353 

(M2, S2, N2, K2, O1, K1, P1, Q1, Mf, and Mm) were extracted from the 1/12th degree 354 
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resolution tidal model solution for the Pacific basin, which was constrained by the assimilation 355 

of satellite altimetry in the Oregon State University Inverse Tidal Software (OTIS, Egbert and 356 

Erofeeva, 2002). An evaluation against mooring observations shows that the model realistically 357 

produces baroclinic tides in the region near the CalVal site (Li et al., 2019b). 358 

 359 

4.2 Three-Step MSDA 360 

Following the definition given in section 2, a three-step MSDA is configured respectively to 361 

constrain three scales: 1) large and large mesoscale DA for scales larger than 150 km, 2) small 362 

mesoscale DA for scales larger than 50 km, and 3) submesoscale DA for scales larger than 15 363 

km. 364 

       As discussed in section 3.2, the scales that are constrained are dictated by background error 365 

correlation length scales. We define the background correlation using a Gaussian function, 366 

𝑒-.! /0"
!1 , where 𝑟 is a spatial distance between grid points and 𝐿2 is a decorrelation length scale, 367 

known as the Daley correlation scale (Daley, 1991). Following the rule of thumb that only the 368 

scales larger than two times of the correlation length scale are constrained, we use a 369 

decorrelation length scale 𝐿2 of 75 km, 25 km and 9 km.  370 

      We note that these scales are defined empirically and will benefit from further tuning. Those 371 

three scales are specified mainly by considering the observations assimilated, which are listed in 372 

Table 2. An important consideration is that the observation error should be specified consistently 373 

with the decorrelation length scale and the assimilation window for the use of observations. 374 

      For the large mesoscale DA, a decorrelation scale of 75 km is given mainly because the 375 

AVISO gridded data and daily mean microwave SST can have an effective constraint on about 376 

150 km (Archer et al., 2020), roughly two times the decorrelation length scale. Their observation 377 

errors given in section 2 are used. Since the boundary conditions are derived from the 15-day 378 

average of the HYCOM analysis, we also assimilate the same 15-day average T/S profiles twice 379 

a month to ensure that the state inside the model domain is not drifted away from the lateral 380 

boundary conditions.  381 

      For the small mesoscale DA, a decorrelation scale of 25 km is used for maximizing the 382 

impact of along-track altimetry observations, because the along track observations are filtered 383 

with a cut-off of 65 km (Pujot et al., 2016). Leveraging the extended 3DVAR formulation, we 384 

assimilate along-track altimetry and routine T/S profile observations over a time window of 11 385 
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days. We choose 11 days because the Jason-3 has the smallest repeat interval among five 386 

altimetry satellites, and it is 10 days. It is not uncommon that a few days of observations are 387 

assimilated in 3DVAR. For example, an assimilation windows of 5 days for SSH and 12 days for 388 

T/S profiles is used in Jacobs et al. (2014). The cost function (1) allows the use of a larger 389 

assimilation window, but the sampling time error given in (3) should be added to the observation 390 

error.  391 

            In implementation, a 11-day time window comprises 5 days prior to and 5 days 392 

succeeding the DA Day. To add the sampling time error, we simply assume that the sampling 393 

time error has the form as  394 

𝒆!
34 = 𝛾!(𝒆!3 + 𝒆!. 	),       (4) 395 

where 𝛾! ≥ 0 and  𝑘 = 1,2,⋯ ,5 in day. With (4), the observational error given in (3) becomes 396 

𝒆!# = (1 + 𝛾!)(𝒆!3 + 𝒆!. ). Thus, the observational error is inflated. The value of 𝛾! is estimated 397 

using observations or model simulation outputs. We note that the assumption (4) is not 398 

necessary, since 𝒆!
34 can be directly estimated. We use (4) , so that 𝛾! can be used as an 399 

adjustable parameter  to account for the possible inaccurate representation error. The formulation 400 

(4) is applied to altimetry and T/S vertical profile observations. For altimetry observations, 𝛾! =401 

0.09𝑘. For five days, for example, the estimated sampling time error is 1.45 times of the sum of 402 

measurement and representation error.  For temperature and salinity profile observations, 𝛾! =403 

0.1𝑘 and 𝛾! = 0.08𝑘.  404 

        For the submesoscale DA, a decorrelation length scale of 9 km is tentatively given. This is 405 

because of the SWOT CalVal baseline requirement resolution of 15 km. This scale will smooth 406 

out spatial structures smaller than 18 km. We emphasize that DA smooths out the observation 407 

innovation, but not the background state. The small scales generated by the model during the 408 

forecasting stage will remain, although no correction will be made to them by DA. We do not 409 

use a smaller decorrelation length scale because the model grid space is 3 km. The decorrelation 410 

length scale has been as small as the three-grid point size. When a smaller model grid spacing is 411 

used, this decorrelation length scale can be reduced accordingly. 412 

This three-step implementation is computationally efficient. In the configuration described 413 

above, the wall-clock time for the execution of MSDA is close to that required to carry out the 414 

model forecast using the same CPUs. This implies that MSDA can be implemented on a very 415 

high-resolution model if the configuration is computationally feasible for carrying out 416 
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simulations without data assimilation; that is – the MSDA implementation does not require any 417 

compromise in the configuration of the forecast model.  418 

 419 

 420 

      Table 2 Observations assimilated 421 
Large mesoscale  
(> 150 km) 

Small mesoscale 
(150 – 50 km) 

Small scall 
(< 50 km) 

11-day routine T/S profile 11-day along-track SSH Campaign T/S profile 
AVISO gridded SSH Daily mean campaign T/S profile Satellite IR SST* 
Daily mean MW SST Daily mean HF radar velocities* Other observations* 
Daily mean MW SSS*   
* These observations may be assimilated during the SWOT post-launch field campaign but not in this 
study.  

 422 
 423 
 424 
5 Evaluation and Illustration of Performance 425 
 426 
The MSDA-SWOT outlined here is largely based on the DA system presented in Li et al. 427 

(2019b). As described in previous sections, we have implemented three major new capabilities: 428 

(1) assimilation of observations over a longer time window via extended-3DVAR; (2) 429 

assimilation of multi-satellite along-track altimetry observations; and, (3) optimization of the 430 

MSDA implementation. The evaluation presented in this section primarily serves to illustrate the 431 

effectiveness of these new capabilities. A systematic evaluation related to the SWOT pre-launch 432 

field campaign is presented Archer et al. (2021). 433 

      The evaluation here focuses on data assimilation analyses and forecasts for four months from 434 

August 10 to December 10, 2019. The model is initialized on July 30 using a 15-day average of 435 

the HYCOM analyses that are also used to derive the lateral boundary condition as described in 436 

section 4. 1. The data assimilation analyses and forecasts are generated by four experiments: 1) 437 

Routine DA, which assimilates the routine observations; 2) NODA, which has no data 438 

assimilation; 3) Routine DA without along-track altimetry observations; and, 4) DA Cal, which 439 

assimilates routine observations and the SWOT pre-launch field campaign observations. 440 

 441 
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Figure 5. RMSD against filtered along track J3 data from August 10 through December 10, 2019. RMSD of the 
AVISO gridded data product (top left), the MSDA without assimilation of along-track altimetry observations (top 
right), the DA analysis (bottom left), and HYCOM (bottom right). The space-time RMSD values are 2.1 cm, 2.8 
cm, 2.6 cm, and 3.4 cm, respectively. 

 442 

      We emphasize that interpretation of the evaluation results must take into account observation 443 

errors, since most observation errors are close to the analysis and forecast error. Therefore, when 444 

comparing analyses and forecasts with the observations, we use the terminology root-mean-445 

square difference (RMSD) rather than use the term root-mean-square error (RMSE). 446 

 447 
5.1 DA Analysis Evaluation 448 

Since the assimilation of along-track altimetry data is a new implementation, we examine 449 

whether they are assimilated effectively. Figure 5 shows the RMSD between filtered Jason-3 450 

along-track data and the DA analysis. We use Jason-3 data because of its spatially fixed ground 451 

tracks and a short repeat time of 10 days. The mean RMSD over the entire model domain is 2.6 452 
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cm. As a reference, the RMSD between the filtered Jason-3 along-track data AVISO gridded 453 

data is also shown and has a domain mean RMSD of 2.1 cm. The RMSD with the DA analysis is 454 

larger than that with the AVISO gridded data. This result is expected, because the spatial 455 

resolution of the model is higher than the AVISO grid and thus retains smaller scales. This result 456 

is consistent with the same analysis using Sentinel-3A and 3B (not shown). The RMSD with 457 

HYCOM is 3.4 cm. This indicates that MSDA-SWOT performs well for this region in which it is 458 

optimized.  459 

 460 

 
Figure 6. Power spectrum of Jason-3 filtered along track observations (black), de-tided 
daily DA analysis (blue), daily AVISO gridded data (grey), and de-tided daily HYCOM 
(red) averaged from August 10 to December 10, 2019, and the SWOT baseline spectrum 
(dotted black line). Data are interpolated to the along track grid for computing power 
spectra. The two dashed lines represent spectral slopes of k-4 and k-5. The SWOT baseline 
root-mean-square errors, integrated over a variety of wavelengths, are shown in the bottom 
left-hand corner. 
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To explore the variability across different length scales, we compute wavenumber power spectral 462 

densities, where the DA and AVISO data is interpolated to the Jason-3 ground tracks (Fig. 6). 463 

For wavelengths larger than 120 km, the spectral density of the DA analysis is very close to that 464 

of the Jason-3 along-track observations. For wavelengths from 120 km down to round 65 km, the 465 

spectral density of the DA analysis is smaller than that of the Jason-3 along-track data. We 466 

hypothesize this may be due to internal tidal residuals in the along-track altimetry observations 467 

(e.g., Zhao et al., 2016). For wavelengths smaller than 65 km, the spectral density of the DA 468 

analysis is much larger, because the scales smaller than 65 km are significantly filtered in the 469 

along-track altimetry observations (Pujol et al, 2016). The results indicate that the DA has the 470 

capability of excluding along-track altimetry observation errors due to internal tidal 471 

contamination and smoothness. 472 

       It is desirable that the spectral density of the DA analysis is larger at wavelengths smaller 473 

than 65 km. It is actually an objective of MSDA-SWOT. The MSDA-SWOT system is 474 

formulated to allow the assimilation of smoothed data without smoothing the DA analysis. This 475 

is demonstrated in Fig. 6. For example, the AVISO gridded data is assimilated, and Figure 6 476 

shows that the spectral density of the gridded AVISO data is much smaller than that of the along-477 

track altimetry data, but the spectral density of the DA analysis closely follows the along-track 478 

data. This shows that assimilating the highly smoothed AVISO gridded data does not smooth the 479 

DA analysis. In contrast, the HYCOM power spectrum, while similar in character to MSDA-480 

SWOT, does not exhibit small-scale variability, but rather follows the filtered along-track power 481 

level.    482 

         To quantify the impact of along-track altimetry observations in the analysis, they are 483 

withheld in a DA experiment. The RMSD increases by a substantial amount (Fig. 5 top right), 484 

with a space-time mean RMSD increase from 2.6 cm to 2.8 cm. 485 

 486 
5.2 DA Forecast Evaluation 487 

As stated in the introduction, the MSDA-SWOT system is developed not for prediction but for 488 

state estimation. One question for DA analysis is whether observations are assimilated with 489 

dynamical consistency. In particular, the SSH increment from the assimilation of altimetry 490 

observations must be consistent with the increment in T/S vertical profiles, otherwise the SSH 491 

increment could create external gravity waves that may propagate away in a few hours.  Also, all 492 
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observations can be considered as independent data when we evaluate forecasts. We thus here 493 

focus on the evaluation of short-time forecasts.  494 

 495 

 
Figure 7.   (top) SSH field on November 1st, 2019. The time mean of forecasts between 24 h to 48 h (left), the 
AVISO SSH field (right). The star indicates the pre-launch campaign site. (bottom) the timeseries of spatial RMSD 
and correlation between DA forecast 24-hr to 48-hr mean and AVISO, with an average of 2.3 cm over 4 months 
from August 10 to December 10, 2019. In the calculation, the daily domain average error, which ranges from 0.0 
cm to 1.5 cm, has been removed.  

 496 

5.2.1 Comparison with altimetry data 497 

The gridded AVISO data can resolve wavelengths down to 150-200 km in this region (Pujol, 498 

2016; Taburet et al., 2019; Archer et al., 2020). Therefore, the AVISO gridded data can be 499 
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reliably used to evaluate large mesoscale eddies from the forecast. Here we compare the mean of 500 

the forecast from 24 h to 48 h to AVISO daily gridded data 501 

      As an example, Fig. 7 shows the 24–48 hr mean of the forecast and the AVISO gridded data 502 

on November 1. The model forecast reproduces the large mesoscale eddies and filaments. 503 

Because of the high resolution of the model, there are finer scale eddies and other circulation 504 

features in the forecast. To quantify the similarity between the forecast and the AVISO data, we 505 

compute RMSD and spatial correlation over the entire model domain (Fig. 7 bottom). The spatial 506 

correlation ranges from 0.96 to 0.97 day-by-day, indicating a high resemblance in spatial 507 

structure. The RMSD ranges from 1.8 cm to 2.9 cm, while the mean RMSD over this time period 508 

is 2.3 cm. We conclude that the eddies that the AVISO gridded data resolves are realistically 509 

reproduced. 510 

     As discussed, the MSDA-SWOT system is based on the previous MSDA system described in 511 

Li et al. (2019b), but with a set of new implemented formulations. In Li et al. (2019b), a similar 512 

comparison with the AVISO data was made. The average correlation was 0.91 and RMSD 3.3 513 

cm. Although the experiment was for a different period of time and thus the results are not 514 

directly comparable, the significant difference in both correlation and RMSD indicate that the 515 

MSDA-SWOT shows a significant improvement in SSH prediction.  516 

  517 

 
Figure 8. RMSD of model forecast to Jason-3 SSH observations for DA with along-track assimilation (left) and 
without along track asimilation (right). The space-time RMSD for each experiment is 2.9 cm, and 3.3 cm. 
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      In subsection 5.1, the DA analysis was evaluated against the Jason-3 along-track altimetry 519 

data. The RMSD with the 2-day forecast is given in Fig. 8a. The RMSD shows an increase over 520 

the majority of the model domain. The domain average RMSD is 2.9 cm.  As we can see in Fig. 521 

7, mesoscale eddies have an amplitude ranging from about 10 cm to 40 cm in the region. The 522 

relatively small RMSD implies that mesoscale eddies can be reproduced in the forecast.  523 

      To further illustrate the accuracy of the forecast, we compare the RMSD to the experiment 524 

without DA. Without DA, the RMSD is much larger (not shown), and the domain average 525 

RMSD is as large as 10.0 cm, more than 3 times larger than the forecast with DA. Thus, the DA 526 

effectively reduces the forecast error. 527 

 528 

 
Figure 9. Daily forecast RMSD and spatial correlation against MW 
SST that is not assimilated. 

 529 

        We also evaluate the extent to which assimilating along-track altimetry data reduces the 530 

error (Figure 8). Without assimilating along-track altimetry data the domain-averaged forecast 531 

error is 3.3 cm. After assimilating along-track data, it is 2.9 cm, so the RMSD is reduced by as 532 

much as 14 %. Therefore, improvement in the DA analysis from along-track altimetry 533 

assimilation remains in the 24-48-hr forecast.  534 

 535 

5.3 Comparison with independent satellite SST 536 

Since microwave (MW) SST measurements are not affected by clouds, they provide more 537 

consistent spatial coverage than infrared (IR) SST (compare Fig. 4a to 4b). We thus compute 538 

RMSDs and spatial correlations over the entire model domain day-by-day. MW SST is 539 
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assimilated at UTC 03 using observations within a time interval of 12 h from UTC 21 to UTC 09 540 

of the subsequent day. Therefore, the observations from UTC 9 to UTC 21 are not assimilated 541 

and so are independent observations that can be used for evaluating the DA system. The RMSD 542 

is around 0.5° C, and the spatial correlation over the entire model domain higher than 0.95 day-543 

by-day (Figure 9). Given expected differences between the model upper-bin temperature and 544 

MW satellite-observed skin temperature, this RMSD is very acceptable.  545 

VIIRS SST is a high-resolution product. Its resolution of 0.7 km allows for resolving 546 

submesoscale features down to a few kilometers. Unfortunately, the CCS region is prone to low-547 

elevation cloud coverage, and the VIIRS IR sensor cannot measure SST over cloudy areas. Over 548 

the majority of the model domain VIIRS has no observations. We thus interpolate the model data 549 

to the time and location of VIIRS SST observations. Figure 10 shows the distribution of the 550 

temperature difference. More than 75% of the difference is smaller than 0.75 °C. The overall 551 

RMSD is 0.78 °C, which is close to the measurement error.  552 

 553 

 
Figure 10. Distribution of difference between forecast and VIIRS 
SST observations. The RMSD is 0.77°C, and the correlation 0.96. 

 554 

5.4 Evaluation of subsurface temperature and salinity profiles 555 

The MSDA-SWOT goal is to be able to assimilate observations concentrated in a very limited 556 

area, and avoid the so-called spurious “campaign area circulation” that can occur when small-557 

scale observations are assimilated into the background field of a numerical model that may have 558 

a bias.   559 
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The strategy used in MSDA-SWOT is to assimilate all routine observations to minimize 560 

the model bias and constrain mesoscale variability down to about 100 km or further, then the 561 

innovations of the dense but localized field campaign observations become small enough to be 562 

effectively assimilated without being smoothed, via the multiscale data assimilation 563 

methodology (Li et al., 2015a).  The evaluation of the SSH and SST forecasts has shown that the 564 

forecast errors are reduced to less than 3 cm and 1°C, respectively. These errors are a few times 565 

smaller than the amplitudes of their signal standard deviation (not shown).   566 

 567 

 
Figure 11. The vertical profile RMSD against the middle mooring observations for temperature (left) and salinity 
(right), for: DA Cal, DA Routine, and HYCOM. In DA Cal, both routine and campaign observations are assimilated 
(including the middle mooring), while only routine observations assimilated in DA Routine and HYCOM.  

 568 

Compared against the T/S profiles from the middle mooring CTD (Fig. 1 and 11), which 569 

are independent observations for the routine DA, there is a significant reduction in the forecast 570 

errors at all depths for both temperature and salinity when compared to the NODA run (not 571 

shown). For depths below 150 m, the temperature error is reduced to 0.25ºC from about 1ºC in 572 
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the experiment without DA, while the maximum error located near the mixed layer base reduces 573 

from 4.0ºC to 1.2ºC. Overall, the assimilation of routine observations reduces the error to less 574 

than one third of the error without DA. Except the depth between 200 m and 300 m, in which the 575 

NODA experiment shows an error as small as 0.07 psu and is close to the Routine DA, the 576 

impact of the routine observations is also significant in salinity.  The largest error reduction 577 

occurs at a depth of 100 m, from 0.55 PSU in the NODA experiment to 0.14 PSU.   578 

The comparison of HYCOM to the middle mooring shows similar performance to the 579 

routine DA run. There are some differences however, most notably in salinity. HYCOM exhibits 580 

largest error at the top of the halocline, but then the error quickly falls away. In contrast, the 581 

routine MSDA has less error above the halocline, but the error more slowly reduces with depth 582 

than HYCOM. Both the routine MSDA and HYCOM have errors greater than the signal variance 583 

for depths above ~100-m.   584 

           In the DA Cal experiment, the T/S profiles from the south and middle mooring CTD 585 

observations (Fig. 1) are assimilated in the small mesoscale and small-scale DA (Table 2). 586 

Compared to the middle mooring CTD observations, the assimilation of the campaign T/S 587 

profiles further reduces the forecast error (Fig. 11). The subsurface error reduces to below 0.2℃, 588 

except near the bottom of the mixing layer depth. The largest error is 0.5℃ and located at a depth 589 

of around 40 m. The salinity error reduces to be smaller than 0.02 psu below 200 m, and the 590 

largest error is 0.1 psu and occurs at a depth of around 100 m. For both temperature and salinity 591 

(except for 250-300-m), the DA Cal experiment shows errors smaller than the signal for all 592 

depths.  593 

Fig. 12 shows the SSH at the middle mooring location (Fig. 1). All DA experiments and the 594 

AVISO product can effectively represent the longer period variability exhibited by the mooring. 595 

However, DA Cal shows a much improved ability to resolve the shorter-scale fluctuations. The 596 

analysis by Archer et al. (2021) shows that the forecast steric height can reach the basic SWOT 597 

CalVal requirement of an accuracy of the order of 1 cm. 598 

 599 

 600 

 601 
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Figure 12. Time evolution of 1000-m steric height at the middle mooring location for: middle mooring (grey), 
AVISO SSH (black), Cal DA (blue), Routine DA (orange), and HYCOM (red).  

 602 

We have cautioned that the assimilation of observations from a localized area may create a 603 

spurious “campaign area circulation”. Following Fig. 12, we can articulate it further. The RMSD 604 

with the AVISO gridded data is as large as 16.0 cm for the NODA experiment (not shown). This 605 

large RMSD arises because the mooring is located in the high SSH ridge extended from the open 606 

ocean toward the coast, but in the lower SSH zone extended offshore (Fig. 7) in the NODA 607 

experiment. Consider the width of the SWOT swath of 50 km and an error of 16.0 cm. The 608 

assimilation of the mooring T/S vertical profiles may correct the SSH locally, create large 609 

spurious SSH gradients or geostrophic velocities that may be as large as 0.32 m/s, and thus a 610 

sporous “observing system circulation”. In contrast, after the routine observations are 611 

assimilated, the SSH error has been reduced to around 1.5 cm. The localized observations can be 612 

aggressively assimilated, and no intense spurious “observing system circulation” would be 613 

generated. 614 

 615 

6 Conclusions and Discussion 616 
 617 
A data assimilation system for a high-resolution model has been developed to address the 618 

opportunities and challenges posed by the upcoming SWOT satellite mission. This system, 619 

dubbed MSDA-SWOT, is based on a multi-scale data assimilation scheme documented in Li et 620 

al. (2015b, 2019b). Three major changes have been implemented. First, the conventional 621 
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3DVAR formulation has been extended to effectively assimilate observations over a longer time 622 

window, which is 11 days for the large and small mesoscale DA in the present configuration 623 

(Table 2). In this extended 3DVAR, the error due to the difference between the observation and 624 

DA time is explicitly accounted for. Second, the assimilation of multi-satellite along-track 625 

altimetry observations has been implemented, and the effectiveness has been demonstrated. And 626 

third, the multi-scale data assimilation configuration has been optimized for inputs, such as 627 

background error covariances.  628 

       The system has been used to produce a reanalysis for the SWOT pre-launch field campaign 629 

that took place at the planned SWOT CalVal site in the California Current System, from 630 

September–December 2019. The reanalysis dataset has been preliminarily evaluated against 631 

assimilated and independent observations. MSDA-SWOT showed a significantly improved 632 

performance on top of the MS-3DVAR (Li et al., 2019b). Archer et al. (2021) presents a 633 

comprehensive evaluation of the system based on the pre-launch campaign moorings and glider 634 

observations. 635 

      As we reiterated, the most important consideration in the formulation and configuration of 636 

MSDA-SWOT is the assimilation of all routine observations to minimize the model bias and 637 

constrain mesoscale variability down to about 100 km or further. The background error is 638 

relatively dominated by small scale errors. As a consequence, the background error correlation 639 

length scale becomes small.  A small correlation length scale ensures that the dense but localized 640 

field campaign observations are effectively assimilated without being smoothed (Li et al., 2015a, 641 

b).  Further, the evaluation of the SSH, SST and subsurface vertical profile forecasts has shown 642 

that the forecast errors can be a few times smaller than the amplitudes of their signal standard 643 

deviation (STD).  Mathematically, only in a pure linear system can observations be assimilated 644 

fully, reduce the error in the analysis that is the initial condition for the subsequent forecast, and 645 

ensure a reduction in forecast errors (e.g., Li & Navon, 2001). With nonlinearity in the model, a 646 

reduction in the initial condition does not ensure a reduction in forecast errors. In MSDA-SWOT, 647 

the forecast error has been significantly reduced by assimilation of routine observations. The 648 

innovation associated with the campaign observations and thus the analysis increment has been 649 

small. With a small analysis increment, the model performs more linearly in the time evolution 650 

related to the increment. 651 
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       The impact of routine observations in MSDA-SWOT has an important implication for 652 

observing system design for the SOWT postlaunch field campaign. It strongly supports the 653 

suggestion proposed in Li et al. (2019a) that a field campaign should be designed to leverage 654 

routine observing networks.  A field campaign should make observations that augment the 655 

routine observing networks for resolving smaller scales and higher frequency variability, and/or 656 

measure variables that the routine observing networks do not provide. 657 
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