1 RC1 Comment

- 2 The authors make a bold claim in the manuscript that they have "extended" the 3DVAR
- 3 algorithm (section 3) by including time distributed observations in the cost function, and
- 4 inflating their associated observation error due to the "sampling time error". First, this is nothing
- 5 new or different than FGAT: even though innovations are calculated in time, collocated
- 6 observations cannot be assimilated simultaneously. Second, analysis increments are still being
- 7 computed only at the analysis time, so the corrections are not applied at the time of the
- 8 observations that is different from the analysis time. This is due to the nature of 3DVAR and its
- 9 static covariance. I thus don't understand why the authors claim this is an extension of 3DVAR.
- 10 The authors also liken their cost function to and consider it to be a reduced 4DVAR cost
- 11 function. The similarity of the const functions should not be a basis for comparison, even via
- 12 reduction, of 3DVAR and 4DVAR. Their respective cost functions are minimized under different
- constraints. In 4DVAR, those constraints include strong or weak model dynamics, and in
 3DVAR there is no dynamical constraints. The authors should avoid making such confusing
- 15 comparisons. The method proposed in section 3 is nothing but a MS3DVAR with FGAT.
- 16 Reply: We revised the manuscript in response to this comment.

17 18 19	3 An three-dimensional multiscale scheme	Deleted: extended
20	The MSDA-SWOT system has been developed to address new challenges relating to the fine-	
21	scale resolution and data density of satellite observations in the SWOT altimetry era. As such,	
22	the numerical ocean model used should be high resolution with a grid spacing on the order of 1	
23	km or finer. This imposes a major computational challenge to formulate MSDA-SWOT. Both	
24	the field campaign and SWOT measurements are localized to a limited area. Another major	
25	challenge is to assimilate these localized measurements seamlessly along with the broad routine	
26	observations. Otherwise, a spurious circulation surrounding the observing area may develop, and	
27	data assimilation could even fail. To address these two major challenges, we have formulated a	
28	particular MSDA scheme, which is based on a 3DVAR algorithm that aims to assimilate	Deleted: is extended
29	observations over a time window.	
30		
31	3.1 <u>3DVAR Formulation</u>	Deleted: An extended 3DVAR scheme
32		
33	For a very high-resolution model, 3DVAR is a scheme often used in both meteorological	Deleted: extensively
34	and oceanic applications (e.g., Gustafsson, et al., 2018), because of its computational efficiency.	Deleted: However,
35	Algorithmically, a 3DVAR scheme can assimilate observations taken only at an instantaneous	Deleted: a
55	Ingertainteening age of the seneme can assumate observations taken only at an instantaneous	Deleted: formally

43 time. In practice, observations over a time window are assimilated with the assumption that they 44 are taken at the DA time. As such, three is a difference between the observation time and DA 45 time. This time difference inputs error to the system, which we term as 'sampling time error'. In 46 practice, a short time window is selectively chosen as a compromise between incorporating more 47 observational information, and keeping the sampling time error at an acceptable level. 48 To alleviate this short time window limitation in 3DVAR, we here present a method to 49 assimilate observations for a longer time window by account for sampling time error., Suppose Deleted: here formulate a scheme to extend the ability of 3DVAR to assimilate observations in a longer time window that at time t_k ($k = 1, 2, \dots, K$), a number m of observations (note that m could vary in time) are 50 available and placed into an *m*-vector y_k^o . R_k^o is observational error covariance, and R_k^0 = 51 52 $(e_k^0(e_k^0)^T)$, where e_k^0 is the observational error associated with y_k^0 . The state variable at t_0 can 53 be denoted as an *n*-vector, \boldsymbol{x}_0 . We write the 3DVAR cost function as 54 Deleted: extend $J(\boldsymbol{x}_{0}) = \frac{1}{2} (\boldsymbol{x}_{0} - \boldsymbol{x}_{0}^{b})^{T} \boldsymbol{B}_{0}^{-1} (\boldsymbol{x}_{0} - \boldsymbol{x}_{0}^{b}) + \frac{1}{2} \sum_{k=0}^{K} [H_{k}(\boldsymbol{x}_{0}) - \boldsymbol{y}_{k}^{o}]^{T} (\boldsymbol{R}_{k}^{0})^{-1} [H_{k}(\boldsymbol{x}_{0}) - \boldsymbol{y}_{k}^{o}] \quad (1)$ Deleted: standard 55 Here B_0 is the background error covariance, and $B_0 = \langle \varepsilon_0^b (\varepsilon_0^b)^T \rangle$, where ε_0^b is the background 56 57 error associated with the background state x_0^b . H_k is often known as an observation operator that maps the state variable to y_{ν}^{o} . 58 The cost function (1) has a form similar to the four-dimensional variational data assimilation 59 60 (4DVAR) algorithm (e.g., Li & Navon, 2001), which has been implemented for oceanic applications (e.g., Weaver et al., 2003; Moore, et al., 2004; Zhang et al., 2010; Ndgodock & 61 Carrier, 2014). In 4DVAR, x_0 in the observation related terms in (1) is replaced by x_k , in order to 62 63 assimilate observations over a time window. Although the cost function (1) has a form of a Deleted: so that it can naturally Deleted: T 4DVAR cost function. It is fundamentally different from 4DVAR, since no forecast is applied, or 64 Deleted: can be considered as 65 only a persistence forecast model is used in 4DVAR. Deleted: reduced 66 The cost function (1) is mainly used to account explicitly for the observation error due to the Deleted: , in which Deleted: a 67 difference between the observation and DA time. By definition, the observational error in (1) **Deleted:** approximation of $x_k = x_0$ 68 has the form (e.g., Li et al. 2015), Deleted: in which 69 $\boldsymbol{e}_{k}^{0}=\boldsymbol{y}_{k}^{o}-H_{k}(\boldsymbol{x}_{0}^{t}),$ (2)Deleted: Rather than the standard 3DVAR cost function, Deleted: t where \mathbf{x}_{k}^{t} is the unknown true state. We can write (2) in the expansion form 70 $\boldsymbol{e}_{k}^{0} = (\boldsymbol{y}_{k}^{0} - \boldsymbol{y}_{k}^{t}) + (\boldsymbol{y}_{k}^{t} - H_{k}(\boldsymbol{x}_{k}^{t})) + (H_{k}(\boldsymbol{x}_{k}^{t}) - H_{k}(\boldsymbol{x}_{0}^{t}))$ 72

71 $= \boldsymbol{e}_k^m + \boldsymbol{e}_k^r + \boldsymbol{e}_k^{mp} ,$

2

87	where \boldsymbol{y}_k^t is the unknown true value of \boldsymbol{y}_k^o .	
88	In (3) , the first term is the measurement error, and the second term the representation error	
89	due to the inaccurate observation operator. These two terms are well known. The last term is a	
90	new type of observational error. We can understand it in the following way. If all the	
91	observations are taken at t_0 , this type of error does not occur. We follow the formulation (3) to	
92	estimate the error arising from the difference between the observation time and DA time.	
93	The MSDA-SWOT system is based on (1) and (3). Because t is allowed to be negative in (1),	
94	we assimilate observations prior to and after the DA time. We note that this 3DVAR has the	
95	same objective as First Guess at Appropriate Time (FGAT), another scheme used in conjunction	

with 3DVAR (e.g. Martin et al., 2015), which is <u>also</u> discussed in Archer et al. (2021).

Deleted: extended