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Abstract. The accurate simulation of climate is always critically important and also a challenge. This study introduces an

improved method of the Globally Resolved Energy Balance Model (GREB) by the Bayesian Networks based on the concept of

coarse-fine model. The improved method constructs a coarse-fine structure that combines a dynamical model with a statistical

model based on employing the GREB model as the global framework, and utilizing a Bayesian Networks constructed on the5

interrelationships between internal climate variables of the GREB model to achieve local optimization. To objectively validate

the performance and generalization of the improved method, the method is applied to the simulation of surface temperature

and temperature of the atmosphere based on the 3.75◦ × 3.75◦ global data sets by Environmental Prediction (NCEP)/ National

Center for Atmospheric Research(NCAR) from 1985 to 2014. The results demonstrate that the improved model exhibits higher

average accuracy and lower spatial differentiation than the original GREB model, and is robustness in long-term simulations.10

This approach addresses issues with the accuracy of the GREB model in local areas, which can be attributed to an over-reliance

on boundary and initial conditions, and a lack of fully using observed data. Additionally, it overcomes the challenge of poor

robustness in statistical models due to ambiguous climate inclusions. Thus, the improved method provides a promising way to

give reliable and stable simulation of climate.

1 Introduction15

As the global warming progresses, extreme events and meteorological disasters occur frequently(Grant, 2017). Thus, the simu-

lation and prediction of climate have become an important topic in current scientific research for the conceptual understanding

and development of hypotheses for climate change studies(Dommenget and Flöter, 2011; Huang et al., 2019). Climate models

are mathematical models that describe the temporal evolution of climate, oceans, atmosphere, ice, and land-use processes,
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across a spatial domain via systems of partial differential equations(Berrocal et al., 2012), which can be solved by supercom-20

puter and is an important tool for simulating and predicting future climate change(Kay, 2020).

Generally, climate models mainly include two categories, dynamic model and statistical model. Dynamic model can well

understand and express the dynamic process of climate by modeling various complex climate processes or interactions, but it

still faces two major problems: i) The simulation process overly relies on initial conditions and boundary conditions(Alley et

al., 2019; Zhang et al., 2019; Ludescher et al., 2021); ii) The climate model is too complicated, and its internal characteristics25

cannot be fully expressed(Fan et al., 2021; Zou et al., 2019; Feng et al., 2020). The Globally Resolved Energy Balance Model

(GREB) is a simple but representative dynamic model, which is based on energy balance theory(Dommenget and Flöter,

2011). Compared with other dynamic models, the GREB model is a relatively fast tool for the conceptual understanding and

development of hypotheses for climate change studies, because it computes about one model year per second on a standard

personal computer, which allows conducting sensitivity studies to external forcing within minutes to hours(Dommenget and30

Flöter, 2011; Dommenget, 2016; Stassen et al., 2019). However, in addition to the two main problems of dynamic models,

the GREB model also faces the problem that the model does not respond well to anomalous climate change because the

parameters of the GREB model are predetermined and the observed data can hardly be used to dynamically correct the model

parameters(Dommenget and Flöter, 2011; Dommenget, 2016). How to solve these problems is an important research topic to

improve the GREB model and further extend it to other dynamic models.35

On the contrary, statistical model, as another type of climate models, can make good use of historical observation data to

dynamically modify the models from data(Feng et al., 2020), and solve the problem that dynamic climate models rely too

much on initial and boundary conditions and underutilize full observation data. Therefore, it provides a possible way to solve

those defects of the dynamical model by combining that with the statistical model. Bayesian Networks is a statistical method

which combines graph theory and probability (Cai et al., 2013, 2019; Jansen et al., 2003). The method uses graph to express40

the structure relation of the variables related to the model and has the characteristics of structuring and quantifying the object

relation through the causal relation among the parts of the probability computing system(Pearl, 1986), variable logic reasoning

and predictive simulation can be realized, and it can use a large amount of historical observation data. As described, it is a

possible way to improve the GREB model by the Bayesian Networks.

The concept of coarse-fine model provides a joint modeling approach of dynamical-statistical hybrid model that is different45

from the traditional use of statistical model to optimize the empirical parameters of the dynamical model. It starts from different

coarse and fine granularity of the model(Akgul and Kambhamettu, 2003; Pal and Bhattacharya, 2010; Yibo et al., 2009),

uses the dynamical model as a global framework and uses the statistical model to do local optimization, and realizes the

unified modeling of both. Based on this idea, this paper introduces a method for improving the GREB model by the Bayesian

Networks. The aim of method is to solve the problem of low model accuracy due to over-reliance on boundary conditions and50

initial conditions and inability to fully utilize historical observation data. The following section presents the improved method.

Section 3 presents the study case and data sets to test the new improved model. Finally, we give a discussion and conclusion of

the results.
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Figure 1. Overall framework of the improved method.

2 Methods

The improved method is developed according to the following procedure. Firstly, climate variables representing different cli-55

mate processes are chosen as nodes in the Bayesian Networks constructed by the GREB model. And the structural relationships

among different nodes are determined to establish an abstract model of the components and structural relationships of climate

processes. Secondly, the selected climate variables are categorized into variable ranges based on their numerical values to

form different classifications that are used to indicate different climate state. Thirdly, the climate state simulation method is

reconstructed based on the Bayesian Networks and climate evolution process to achieve the simulation of the target variables60

climate state. Finally, the climate state simulation results obtained from the Bayesian Networks are compared with the climate

modal simulation results from the original GREB model to get the local optimization grids, and the numerical results of the

original GREB model simulation are optimized based on the comparison results. Based on the above considerations, improved

method is developed according to the following procedures (Figure 1).

2.1 Structural relationship among climate variables65

Based on the energy balance, the GREB model can simulate the main characteristics and climate mean states of global warming,

including seven climate processes (solar radiation, thermal radiation, hydrological cycle, sensible heat and atmospheric temper-
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ature, atmospheric circulation, sea ice and deep ocean) and four main climatic variables (surface temperature, temperature of

the atmosphere, temperature of subsurface the ocean, and humidity of the surface). Each of these processes is represented with

strongly simplified equations. Therefore, we can abstract the structural relationship among different climate variables from the70

simplified equation, i.e., which climate variables control a given climate variable, and which climate variables are influenced

by it. This structural relationship provides the possibility to construct Bayesian Networks.

2.2 Categorization of climate state

According to the theory of climate sensitivity(Annan and Hargreaves, 2006; Dommenget, 2016), Climate state, indicated by

a range of numerical values, can be used to replace the specific numeric to simulate climate change and characterize the75

long-term trend of climate change and extreme weather conditions. And it is better suited to capture the similarity of a given

climate variable across different spatial and temporal locations compared to the numerical values of specific climate variables.

Therefore, it can be used to assess the similarity between the simulated results of a model and the actual results, indicating the

accuracy of the simulation. This provides a simple and practical approach to evaluating the accuracy of revealing local abrupt

changes in simulation results. Moreover, by simulating state rather than specific numeric, it is possible to significantly reduce80

computational effort and simulation response time. This is consistent with the primary objective of the GREB model, which is

to provides a fast tool for the conceptual understanding and development of hypotheses for climate change studies(Dommenget

and Flöter, 2011)

The natural breaks classification (Jenks) method is a commonly used classification method that aims to minimize intra-class

variation and maximize inter-class variation. By categorizing the numeric of climate variables into different classifications85

to indicate climate state using the natural breaks classification method, it can be considered as that numeric within the same

classification have less variation, representing that the results of this classification of numeric have similar climate state.

2.3 Climate state simulation

According to the characteristics of Bayesian Networks, the climate state simulation of climate variables is realized by climate

evolution process based on Bayesian Networks, i.e., the climate state of unknown climate variables is inferred from the climate90

state of known climate variables at the same spatial locations.

2.3.1 Bayesian Networks

Bayesian Networks is a probabilistic model that simulates the human reasoning process, which is a combination of graph

theory and probability theory, and its network topology is a directed acyclic graph. Where variables are nodes and correlations

or causal relationships between variables are directed edges.The dynamic evolution of Bayesian Networks node probabilities is95

controlled by conditional probabilities, and each node covers a probability distribution table under the joint distribution of the

parent nodes, indicating the strength of the relationship between the nodes.(Sahin et al., 2019). When the Bayesian Networks

is constructed, given the state of any node, the probability distribution of the states of the remaining nodes can be calculated.
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In the Bayesian Networks, the probability of a node can be calculated in the form of probability using prior knowledge and

statistical data, namely the Bayes probability (Maher, 2010). Observed sample are defined as:G = {X1 = x1;X2 = x2; · · · ;Xn = xn},100

where X is event, x is event value or state. When � is the prior probability of event X = x, � is prior knowledge, P (�|�) is

probability density function, then the probability P (Xn+1 = xn+1|�,�) of the n+1 event Xn+1 = xn+1 can be obtained from

the prior probability density P (�|�) and the sample G through the Bayes probability. It can be calculated by total probability

formula:

P (Xn+1 = xn+1|�,�)

=
R
P (Xn+1 = xn+1|�,G,�)P (�|,G,�)d�

=
R
�P (�|,G,�)d�

(1)105

Based on Bayes equation, The posterior probability P (�|,G,�) is denated as:

P (�|,G,�) =
P (�|�)P (G|�,�)

P (G|�)
(2)

Where G is given sample, � is priori probability of G,

2.3.2 Climate evolution process based on Bayesian Networks

In a climatic process composed of several climatic variables, there is an association relationship between climatic variables.110

These climatic variables are regarded as network nodes, and the association relations between climatic variables are taken as

directed edges. The association relationship between nodes is represented by graph model, and the action intensity of associ-

ation relationship is described quantitatively by conditional probability table. Using the characteristics of Bayesian Networks,

the attribute feature state of nodes is inferred by probability. To realize the expression and simulation of the attribute feature

state of geographical variables.115

A climate process Mt = {X (m1;m2; : : : ;mi) |m1t;m2t; : : : ;mit} is composed with i climate variables, m1;m2; : : : ;mi,

and X (m1;m2; : : : ;mi) is the structural relationship among the variables. Suppose that the climate variable mi has j states,

then the sataes set of mi is
�
Wmi1

;Wmi2
; : : : ;Wmij

	
. The climate process is described by a Bayesian Networks B = (S;X).

where S is a directed acyclic graph composed of nodes; X is the nodes set of graph, that is climate variables m1;m2; : : : ;mi.

nodes are connected by directed edges to represent the relationship between climate variables. Each node has an independent120

conditional probability table, which represents the probability distribution under the joint distribution of its parent nodes.

Assume that a climate mi has one or more parent nodes m1;m2; : : : ;me (e≤ i− 1) and states d1;d2; : : :de, it can be denoted

as :m1;m2; : : : ;me →mi. Under the parent node of all possible states, the conditional probability table composed of the set of

state probabilities of mdeteci is follow:

125

B
Wm1r1 ;Wm2r2 ;:::;Wmere
mi =n
(Wmi1

;P
Wm1r1

;Wm2r2
;:::;Wmere

Wmi1
);(Wmi2 ;P

Wm1r1
;Wm2r2

;:::;Wmere

Wmi2
); : : : ;(Wmij

;P
Wm1r1

;Wm2r2
;:::;Wmere

Wmij
)
o

(r1 = 1;2; : : : ;d1) ;(r2 = 1;2; : : : ;d2) ; : : : ;(re= 1;2; : : : ;de)

(3)
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WhereB
W m 1r 1 ;W m 2r 2 ;:::;W m ere
m i is a conditional probability table of climate variablesmi ; Wm ij is j th characteristic state of

climate variablesmi ;P
W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m ij

is the probability of climate variablemi corresponds to thej th state under the

r 1; r 2; : : : re characteristic state corresponding to the parent nodem1;m2; : : : ;me expression set. The probability set of climate

variablemi at t moment can be denoted asCm it :130

Cm it =n
(Wm i 1 ;P

W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m i 1

); (Wm i2 ;P
W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m i 2

); : : : ; (Wm ij ;P
W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m ij

)
o (4)

The conditional probability table of each node can be calculated by Eq.2 using training data.

2.4 Local optimization

The numerical results simulated by the original GREB model are compared with the climate state results simulated by the135

Bayesian Networks, and the grids where the numerical result simulated by the original GREB model are not in the range of the

climate state simulated by the Bayesian Networks are used as grids to be optimized.

According to the Third Law of Geography(Zhu et al., 2018), the more similar the geographic environment, the more similar

the geographic target characteristics are. Therefore, for an unknown climate variable at a certain spatial and temporal location,

the numeric of other known climate variables at that spatial and temporal location can be used to infer. Accordingly, we propose140

that for an unknown climate variable, the position of its speci�c value in the range of its classi�cation is related to the position

of the speci�c value of the known climate variable in the range of its classi�cation at the same spatial and temporal location.

For a climate variable containingn relevant control variables, the numerical results are calculated as follows:

E x
value = SE

lowerlimit +
1
n

(SE
upperlimit � SE

lowerlimit )
X E i

value � Si
lowerlimit

Si
upperlimit � Si

lowerlimit
(5)

WhereE x
value represents an unknown climate variable;SE

lowerlimit represents the lower limit of the range of classi�cation in145

which the unknown climate variables are simulated by Bayesian Networks;SE
upperlimit represents the lower limit of the range

of classi�cation in which the unknown climate variables are simulated by Bayesian Networks;n represents the number of

known climate variables associated with the unknown variables in the Bayesian Networks;E i
value the actual value of thei th

known climate variable;Si
lowerlimit represents the lower limit of the range of classi�cation in which thei th known climate

variables;Si
upperlimit represents the upper limit of the range of classi�cation in which thei th known climate variables.150

According to the above method, we can improve the accuracy of the model by comparing the climate state, identifying the

grid to be optimized, and recalculate the values simulated by the original GREB model within the grid. In this way, the improved

model with coarse-�ne structure constructed with the GREB model as the global framework and the Bayesian Networks as the

local optimization can better re�ect the localized abrupt changes in the climate process and achieve the purpose of improving

the GREB.155
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3 Case study

In order to demonstrate the accuracy of the improved model in simulating climate variables and to verify its reliability, surface

temperatures and temperature of the atmosphere from the GREB model were selected for simulation objects. The simulation of

these two climate variables includes most of the climate processes of the GREB and can re�ect the complex coupling process

and climate change characteristics of the GREB model.160

3.1 Data description

In this paper, data produced by National Centers for Environmental Prediction (NCEP) / National Center for Atmospheric Re-

search (NCAR) is used as the experimental data to evaluate the improved model. The data sets include surface temperature(Tsurf ),

temperature of the atmosphere(Tatmos ), solar radiation(Fsolar ), total cloud cover(CLD ), water vapor (qair ), temperature of the

subsurface ocean (Tocean ), and wind speed(
!
u) stored as a 3.75� *3.75� (latitude * longitude) grid NC data from 1985 to 2014.165

In order to facilitate calculation and comparative analysis, all climate data is preprocessed. Firstly, the downloaded climate

data is removed from the outliers so that the data are calculated to avoid too large or too small results; secondly, the grid data

is resampled and the resampling method is bilinear interpolation. The bilinear interpolation method is used to interpolate the

climate data, which not only �lls the null values, but also uni�es the scale size of the data. Finally, considering that changes in

climate variables are usually seasonally related, climate data from 1985 to 2014 were processed as quarterly averages, where170

January, February, and March comprised �rst quarter, April, May, and June formed second quarter, July, August, and September

constituted a third quarter, and October, November, and December comprised the fourth quarter.

3.2 Structural relationship among climate variables and climate state

The process of simulating the surface temperature includes solar radiation, thermal radiation, sensible heat and atmospheric

temperature, and deep oceanDommenget and Flöter (2011). The main heat source of the surface temperature is solar radiation,175

some of which is absorbed by the surface temperature, the other part is re�ected by the surface temperature, and part of the

heat on the surface temperature is transferred in the atmosphere, and some of it is transferred to the ocean below the surface.

Each climate variables in this scene can be expressed by a highly simpli�ed equation, which follows the surface temperature

tendency equation as follows:


 surf
dTsurf

dt
= Fsolor + Fthermal + Flatent + Fsense + Focean (6)180

WhereTsurf is surface temperature;
 surf is surface heat capacity;Fsolar is the incoming solar radiation;Fthermal is the net

thermal radiation;Flatent the cooling by latent heat from surface evaporation of water;Fsense is the turbulent heat exchange

with the atmosphere;Focean is the heat exchange with the deeper subsurface ocean. The subprocesses of surface temperature
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are modeled as follows:
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Fsolar = (1 � � clouds ) (1 � � surf ) S0 � r (�; t julian )

Fthermal = � �T 4
surf + "atmos �T 4

atmos � rad

"atmos = pe8 � CLD
pe9

� ("0 � pe10) + pe10

Flatent = L � � air � Cw �
�
�
�
!
u �

�
�
� � � soil � (qair � qsat )

Fsense = catmos � (Tatmos � Tsurf )

Focean = Fosense + 
 surf � � Tentrain

Fosense = cocean � (Tocean � Tsurf )

(7)185

WhereFsolar is the incoming solar radiation;� clouds is the fraction of the incoming solar radiation is re�ected by clouds;

� surf is the fraction of the incoming solar radiation is re�ected by the surface;S0 is the solar constant;� surf is the fraction

of the incoming solar radiation is re�ected by the surface;r is the 24 h mean fraction reaching a normal surface area on

top of the atmosphere;� is the function of latitude;t julian the Julian day of the calendar year;Fthermal is the net thermal

radiation;Tsurf is surface temperature;"atmos is the effective emissivity;Tatmos � rad is the temperature de�ned in the context190

of the atmospheric temperature;CLD is the total cloud cover;"0is the emissivity without considering clouds �rst;pe� is the

parameters;Flatent the cooling by latent heat from surface evaporation of water;L is the constant parameters of the latent

heat of evaporation and condensation of water;� air is the density of air;Cw is the transfer coef�cient;
�
�
�
!
u �

�
�
� is the wind

speed;� soil is the Bulk formula is extended by a surface wetness fraction;qair is the actual surface air layer humidity;qsat

is the saturation surface air layer speci�c humidity;Fsense is the turbulent heat exchange with the atmosphere;catmos is the195

coupling constant;Tatmos is temperature of the atmosphere;Focean is the heat exchange with the deeper subsurface ocean;

F osense is the turbulent mixing between the two ocean layers;� Tentrain is the heat exchange with the surface ocean layer

due to decreasing of the mixed layer depth;cocean is the coupling constant;Tocean is the temperature of the subsurface ocean.

In the process of simulating the temperature of the atmosphere by the GREB modelDommenget and Flöter (2011), tempera-

ture of the atmosphere is not only related to the thermal radiation re�ected from the surface, but also related to the sensible heat200

exchange with the surface and latent heat release by condensation of atmospheric water vapor. Each climate variables in this

process can be expressed by a highly simpli�ed equation, which follows the temperature of the atmosphere tendency equation

as follows:


 atmos
dTatmos

dt
+ Fsense = F thermal + Qlatent + 
 atmos

�
k � r 2Tatmos �

!
u �r Tatmos

�
(8)

WhereTatmos is temperature of the atmosphere;
 atmos is atmospheric heat capacity;Fsense is the sensible heat exchange205

with the surface;Fathermal is net thermal radiation of the atmosphere;Qlatent is the latent heat release by condensation of

atmospheric water vapor;
!
u is the wind speed. The subprocesses of temperature of the atmosphere are modeled as follows:

8
>><

>>:

Fsense = catmos � (Tatmos � Tsurf )

Fathermal = "atmos � � T4
surf � 2"atmos � � T4

atmos � rad

Qlatent = � 2:6736� 103
�
kg=m2

�
� � qprecip � L

(9)
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WhereFsense is the turbulent heat exchange with the atmosphere;catmos is the coupling constant;Tatmos is temperature

of the atmosphere;Fathermal is net thermal radiation of the atmosphere;Tsurf is surface temperature;"atmos is the effective210

emissivity;Tatmos � rad is the temperature de�ned in the context of the atmospheric temperature;Qlatent is the latent heat

release by condensation of atmospheric water vapor;� qprecip is the condensation or precipitation;L is the constant parameters

of the latent heat of evaporation and condensation of water.

For different climate process, the climate subprocesses and relationship structures are different. Therefore, the selection of

nodes in each climate process will also be different. Not only the selection of appropriate variables as nodes is very important,215

but also the number of nodes will directly affect the simulation of the �nal climate average state. In order to simplify the

complex climate evolution process and facilitate calculation, 4-6 climate variables are selected as key nodes in each climate

process, and the variables climate state in each processes are simulated by these nodes.

Through the trend equations (Eq. 6 and 7) in the processes of surface temperature, the relation equation of climate variables

can be simpli�ed:220

8
>><

>>:

Tsurf = f (Fsolar ;Tocean ;qair ;CLD )

Tocean = f (Fsolar )

qair = f (Fsolar )

(10)

WhereTsurf is surface temperature;Fsolar is solar radiation;Tocean is temperature of the subsurface ocean;qair is the actual

surface air layer humidity, i.e., water vapor content;CLD is total cloud cover. That is, surface temperature, solar radiation,

temperature of the subsurface ocean, total cloud cover and water vapor content can be selected as the key nodes of the surface

temperature process.225

Through the trend equation (Eq. 8 and 9) in the processes of temperature of the atmosphere, the relation equation of climate

variables can be simpli�ed:
8
<

:
Tatmos = f (

!
u ;qair ;CLD )

qair = f (
!
u)

(11)

WhereTatmos is temperature of the atmosphere;
!
u is wind speed;CLD is total cloud cover;qair is water vapor content.

That is, temperature of the atmosphere, wind speed, total cloud cover and water vapor content can be selected as the key nodes230

of the temperature of the atmosphere process.

According to Eq. 10 , in the surface temperature process, surface temperature (Tsurf ) is controlled by solar radiation (Fsolar ),

cloud cover (CLD ), water vapor (qair ) and temperature of the subsurface ocean (Tocean ). Temperature of the subsurface ocean

(Tocean ) and water vapor (qair ) are controlled by solar radiation (Fsolar ). For the above relationship, the Bayesian Networks

structure in the surface temperature process can be constructed (Figure 2a). According to Eq. 11, in the temperature of the235

atmosphere process, temperature of the atmosphere (Tatmos ) is controlled by cloud cover (CLD ), water vapor (qair ) and wind

speed (
!
u). And water vapor (qair ) is controlled by wind speed (

!
u). For the above relationship, the Bayesian Networks structure

in the temperature of the atmosphere process can be constructed (Figure 2b).
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Figure 2. Structural relationship among climate variables in the different simulation processes. (a) Surface temperature process; (b) Temper-

ature of the atmosphere process.

The climate state of the variables in the above climate processes was performed using the natural breaks classi�cation

method. The climate variables data are categorized into �ve, seven and nine different classi�cations to indicated different240

climate state to test the improved model and verify the effect of the classi�cation number of climate variables data on the

simulation results. Detailed schemes are shown in Appendix Table A1, A2, A3.

3.3 Climate state simulation

Surface temperature and temperature of the atmosphere are considered as a simulation object, and other climate variables as

known objects, and uses the historical data to calculate the conditional probability tables of each nodes through the Bayesian245

Networks structure with Eq 4. Among them, the training data is the 10-year historical data from 1985 to 1994.

In each simulation process, there are two training methods for the simulated object. The �rst is to train a conditional prob-

ability table using the data in all the grids, and then use the conditional probability table to simulate the states of all grids.

The conditional probability table obtained by this training method can re�ect the numerical characteristic relationship between

climate variables in the whole region. However, it can not show the distribution pattern of the characteristics of the simulated250

state in space. The second is to train the data in each grid separately. Because the state grading data in each grids is different,

the conditional probability table of the simulated object trained in each grids is also different, and a total of 96� 48 conditional

probability tables are obtained. The conditional probability tables obtained by this training method can accurately re�ect the

different numerical characteristic relationship between the simulated object and the known object in different regions. How-

ever, due to the training of more conditional probability tables, the running time of this training method will be a little longer.255

Considering the great differences in the pattern of climate evolution in different regions, this paper uses the second data training
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Figure 3. Climate state simulation results of the surface temperature by Bayesian Networks for 80 seasons (the period 1995-2014). (a)

Categorized into 5 classi�cations; (b) Categorized into 7 classi�cations; (c) Categorized into 9 classi�cations.

Figure 4.Climate state simulation results of the temperature of the atmosphere by Bayesian Networks for 80 seasons (the period 1995-2014).

(a) Categorized into 5 classi�cations; (b) Categorized into 7 classi�cations; (c) Categorized into 9 classi�cations.

method in state simulation, which �rst divides the whole world into 96� 48 grids, and then uses the data in each grids to train

the conditional probability tables of the grid. After the training is completed, the data of the known climate variables will be

used to simulate the unknown climate variables from 1995 to 2014. The simulation results are shown in Figure 3 and 4.

Figure 3 shows the climate state of the quarterly average of surface temperature from 1995-2014. The simulation results260

under different classi�cations all clearly show the global quarterly average surface temperature distribution with latitudinal

variations. The surface temperature starts from the equator and decreases with the increase of latitude, so the temperature in

the North and South Pole is the lowest. The climate state distribution of surface temperature is basically in line with the real

world. Different from the simulation result of surface temperature, the quarterly average temperature of the atmosphere rises
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