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Abstract.
::::
The

:::::::
accurate

:::::::::
simulation

::
of

::::::
climate

::
is

::::::
always

::::::::
critically

::::::::
important

:::
and

::::
also

::
a

::::::::
challenge.

:
This study introduces an im-

proved method of the Globally Resolved Energy Balance Model (GREB) by the Bayes network. Starting from climate elements

relationship included in
::::::::
Bayesian

::::::::
Networks

:::::
based

:::
on

:::
the

:::::::
concept

:::
of

:::::::::
coarse-fine

:::::::
model.

::::
The

::::::::
improved

:::::::
method

:::::::::
constructs

:
a
:::::::::
coarse-fine

::::::::
structure

::::
that

::::::::
combines

::
a
:::::::::
dynamical

::::::
model

::::
with

::
a
::::::::
statistical

::::::
model

:::::
based

:::
on

:::::::::
employing

:
the GREB model ,5

we reconstruct the model by Bayes network to solve the problem of low model accuracy due to over-reliance on boundary

conditions and initial conditions and inability to use observed data for dynamic correction of model parameters. The improved

model
:
as

::::
the

:::::
global

::::::::::
framework,

::::
and

:::::::
utilizing

::
a
::::::::
Bayesian

:::::::::
Networks

::::::::::
constructed

:::
on

:::
the

::::::::::::::
interrelationships

::::::::
between

:::::::
internal

::::::
climate

::::::::
variables

::
of

:::
the

:::::
GREB

::::::
model

::
to

::::::
achieve

:::::
local

:::::::::::
optimization.

::
To

:::::::::
objectively

:::::::
validate

:::
the

:::::::::::
performance

:::
and

::::::::::::
generalization

::
of

:::
the

::::::::
improved

:::::::
method,

::::
the

::::::
method

:
is applied to the simulation of surface average temperature and atmospheric average10

temperature
::::::::::
temperature

:::
and

:::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:
based on the 3.75◦ × 3.75◦ global data sets by Environmental

Prediction (NCEP)/ National Center for Atmospheric Research(NCAR) from 1985 to 2014. The results illustrate
::::::::::
demonstrate

that the improved model has
::::::
exhibits

:
higher average accuracy and lower spatial differentiation than the original GREB model.

And the ,
::::
and

::
is

:::::::::
robustness

::
in

::::::::
long-term

::::::::::
simulations.

::::
This

::::::::
approach

::::::::
addresses

::::::
issues

::::
with

:::
the

:::::::
accuracy

::
of

:::
the

::::::
GREB

::::::
model

::
in

::::
local

:::::
areas,

:::::
which

::::
can

::
be

::::::::
attributed

:::
to

::
an

:::::::::::
over-reliance

:::
on

::::::::
boundary

:::
and

:::::
initial

::::::::::
conditions,

:::
and

::
a

::::
lack

::
of

::::
fully

:::::
using

::::::::
observed15

::::
data.

:::::::::::
Additionally,

::
it

:::::::::
overcomes

:::
the

::::::::
challenge

:::
of

::::
poor

:::::::::
robustness

::
in

::::::::
statistical

:::::::
models

:::
due

:::
to

:::::::::
ambiguous

::::::
climate

::::::::::
inclusions.

:::::
Thus,

::
the

:
improved method provides a strong support for other dynamic model improvements.

::::::::
promising

::::
way

::
to

::::
give

::::::
reliable

::::
and

:::::
stable

:::::::::
simulation

::
of

:::::::
climate.
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1 Introduction

As the global warming progresses, extreme events and meteorological disasters occur frequently(Grant, 2017). Thus, the sim-20

ulation and prediction of climate have become an important topic in current scientific research ( Huang et al., 2019). Climate

model is a model that describes the change law of climatesystem, such as the change law of climate, ocean,
:::
for

:::
the

:::::::::
conceptual

:::::::::::
understanding

::::
and

:::::::::::
development

::
of

::::::::::
hypotheses

:::
for

::::::
climate

::::::
change

::::::::::::::::::::::::::::::::::::::::::::::::
studies(Dommenget and Flöter, 2011; Huang et al., 2019)

:
.
::::::
Climate

:::::::
models

:::
are

:::::::::::
mathematical

:::::::
models

:::
that

::::::::
describe

:::
the

::::::::
temporal

::::::::
evolution

::
of

:::::::
climate,

:::::::
oceans, atmosphere, ice, etc.

:::
and

:::::::
land-use

:::::::::
processes,

:::::
across

::
a

::::::
spatial

::::::
domain

:::
via

:::::::
systems

::
of

::::::
partial

::::::::::
differential

::::::::
equations(Berrocal et al., 2012), which can be25

solved by supercomputer and is an important tool for simulating and predicting future climate change(Kay, 2020).

Generally, climate models mainly include two categories, dynamic model and statistical model. Dynamic model can well

understand and express the dynamic process of climate by modeling various complex climate processes or interactions, but it

still faces two major problems: i) The simulation process overly relies on initial conditions and boundary conditions(Alley et

al., 2019; Zhang et al., 2019; Ludescher et al., 2021); ii) The climate model is too complicated, and its internal characteristics30

cannot be fully expressed(Fan et al., 2021; Zou et al., 2019; Feng et al., 2020). The Globally Resolved Energy Balance Model

(GREB) is a simple but representative dynamic model, which is based on energy balance theory(Dommenget and Flöter,

2011). Compared with other dynamic models, the GREB model is a relatively fast tool
::
for

:::
the

:::::::::
conceptual

::::::::::::
understanding

::::
and

::::::::::
development

:::
of

:::::::::
hypotheses

:::
for

:::::::
climate

::::::
change

:::::::
studies, because it computes about one model year per second on a standard

personal computer, which allows conducting sensitivity studies to external forcing within minutes to hours(Dommenget and35

Flöter, 2011; Dommenget, 2016; Stassen et al., 2019). However, in addition to the two main problems of dynamic models,

the GREB model also faces the problem that the model does not respond well to anomalous climate change because the

parameters of the GREB model are predetermined and the observed data can hardly be used to dynamically correct the model

parameters(Dommenget and Flöter, 2011; Dommenget, 2016). How to solve these problems is an important research topic to

improve the GREB model and further extend it to other dynamic models.40

On the contrary, statistical model, as another type of climate models, can make good use of historical observation data to

dynamically modify the models from data(Feng et al., 2020), and solve the problem that dynamic climate models rely too much

on initial and boundary conditions and underutilize full observation data. Therefore, it provides a possible way to solve those

defects of the dynamical model by combining that with the statistical model. Bayes network
:::::::
Bayesian

::::::::
Networks

:
is a statistical

method which combines graph theory and probability (Cai et al., 2013, 2019; Jansen et al., 2003). The method uses graph to45

express the structure relation of the variables related to the model and has the characteristics of structuring and quantifying the

object relation through the causal relation among the parts of the probability computing system(Pearl, 1986), variable logic

reasoning and predictive simulation can be realized, and it can use a large amount of historical observation data. As described,

it is a possible way to improve the GREB model by the Bayes network
:::::::
Bayesian

::::::::
Networks.

This50

:::
The

:::::::
concept

::
of

:::::::::
coarse-fine

::::::
model

:::::::
provides

::
a

::::
joint

::::::::
modeling

::::::::
approach

::
of

:::::::::::::::::
dynamical-statistical

::::::
hybrid

:::::
model

::::
that

:
is
::::::::
different

::::
from

:::
the

::::::::
traditional

:::
use

:::
of

::::::::
statistical

:::::
model

::
to

:::::::
optimize

:::
the

::::::::
empirical

:::::::::
parameters

::
of

:::
the

:::::::::
dynamical

::::::
model.

::
It

::::
starts

::::
from

::::::::
different
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:::::
coarse

::::
and

:::
fine

:::::::::
granularity

:::
of

:::
the

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
model(Akgul and Kambhamettu, 2003; Pal and Bhattacharya, 2010; Yibo et al., 2009)

:
,
::::
uses

::
the

:::::::::
dynamical

::::::
model

::
as

::
a
::::::
global

:::::::::
framework

:::
and

:::::
uses

:::
the

::::::::
statistical

:::::
model

:::
to

::
do

:::::
local

:::::::::::
optimization,

::::
and

::::::
realizes

::::
the

::::::
unified

::::::::
modeling

::
of

::::
both.

:::::
Based

:::
on

:::
this

::::
idea,

:::
this

:
paper introduces a method for improving the GREB model by the Bayes network

::::::::
Bayesian55

::::::::
Networks. The aim of method is to solve the problem of low model accuracy due to over-reliance on boundary conditions

and initial conditions and inability to use observed datafor dynamic correction of model parameters
::::
fully

::::::
utilize

::::::::
historical

:::::::::
observation

::::
data. The following section presents the original GREB model and the

:::::::
improved

:
method. Section 3 presents the

study case and data sets to test the new improved model. Finally, we give a discussion and conclusion of the results.

2 Methods60

The improved method is developed according to the following procedure. First, the climate elements contained in
::::::
Firstly,

::::::
climate

::::::::
variables

::::::::::
representing

:
different climate processes are selected as nodes

:::::
chosen

::
as
::::::

nodes
::
in

:::
the

::::::::
Bayesian

:::::::::
Networks

:::::::::
constructed

:
by the GREB model. And the structural relationships between

::::::
among different nodes are determined to establish

an abstract model of the components and structural relationships of climate processes. Then, the improved climate model

::::::::
Secondly,

:::
the

:::::::
selected

::::::
climate

::::::::
variables

:::
are

::::::::::
categorized

:::
into

:::::::
variable

::::::
ranges

:::::
based

:::
on

::::
their

::::::::
numerical

::::::
values

::
to

::::
form

::::::::
different65

:::::::::::
classifications

::::
that

:::
are

::::
used

:::
to

:::::::
indicate

:::::::
different

:::::::
climate

::::
state.

:::::::
Thirdly,

::::
the

::::::
climate

::::
state

::::::::::
simulation

::::::
method

:
is reconstructed

based on the structural relationships of the climate processes through Bayes network
:::::::
Bayesian

::::::::
Networks

:::
and

:::::::
climate

::::::::
evolution

::::::
process to achieve the simulation of the target climate elements.

2.1 Climate elements structural relationship

:::::::
variables

::::::
climate

:::::
state.

:::::::
Finally,

::
the

:::::::
climate

::::
state

:::::::::
simulation

:::::
results

::::::::
obtained

::::
from

:::
the

::::::::
Bayesian

::::::::
Networks

:::
are

::::::::
compared

::::
with

:::
the70

::::::
climate

:::::
modal

:::::::::
simulation

::::::
results

:::::
from

:::
the

::::::
original

::::::
GREB

::::::
model

::
to

:::
get

:::
the

::::
local

:::::::::::
optimization

:::::
grids,

:::
and

:::
the

:::::::::
numerical

::::::
results

::
of

:::
the

:::::::
original

:::::
GREB

::::::
model

:::::::::
simulation

:::
are

:::::::::
optimized

:::::
based

:::
on

:::
the

:::::::::
comparison

:::::::
results. Based on the law of conservation of

energy
:::::
above

::::::::::::
considerations,

::::::::
improved

:::::::
method

::
is

::::::::
developed

:::::::::
according

::
to

:::
the

::::::::
following

:::::::::
procedures

:::::::
(Figure

::
1).

:

2.1
::::::::
Structural

:::::::::::
relationship

::::::
among

:::::::
climate

::::::::
variables

:

:::::
Based

::
on

:::
the

::::::
energy

:::::::
balance, the GREB model can simulate the main characteristics and global average

::::::
climate

:::::
mean states75

of global warming, including seven climatic
::::::
climate

:
processes (solar radiation, thermal radiation, hydrological cycle, sen-

sible heat and atmospheric
:::::::::
temperature, atmospheric circulation, sea ice and deep ocean) and four main climatic average

states (surface average temperature, atmospheric average temperature
:::::::
variables

:::::::
(surface

::::::::::
temperature, average temperature of

ocean and atmospheric average humidity ). In order to show the inherent mechanism of the evolution of climate process,

the surfaceaverage temperature and the atmospheric average temperature are selected as the output of the GREB model.80

The simulation of these two average state variables includes most of the climate processes of the GREB and can reflect the

complex coupling process and climate change characteristics of the GREB model.The scene of simulating the surface average

temperature includes solar radiation, thermal radiation, sensible heat and atmospheric, and deep ocean.The main heat source
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Figure 1.
::::::
Overall

::::::::
framework

::
of

:::
the

:::::::
improved

::::::
method.

of the surface temperature is solar radiation, some of which is absorbed by the surface temperature, the other part is reflected

by the surface temperature, and part of the heat on the surface temperature is transferred in the atmosphere, and some of it is85

transferred to the ocean below the surface. Each climate elements in this scene can be expressed by a highly simplified equation,

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere,

::::::::::
temperature

::
of

:::::::::
subsurface

:::
the

::::::
ocean,

::::
and

:::::::
humidity

:::
of

:::
the

:::::::
surface).

:::::
Each

::
of

:::::
these

::::::::
processes

::
is

:::::::::
represented

::::
with

:::::::
strongly

:::::::::
simplified

:::::::::
equations.

:::::::::
Therefore,

:::
we

:::
can

:::::::
abstract

:::
the

::::::::
structural

::::::::::
relationship

::::::
among

:::::::
different

:::::::
climate

:::::::
variables

:::::
from

:::
the

::::::::
simplified

::::::::
equation,

:::
i.e.,

:
which follows the surface average temperature trend equation as follows:

γsurf
dTsurf
dt

=Fsolor+Fthermal+Fsense+Flatent+Focean90

Where Tsurf is surface temperature; γsurf is surface specific heat capacity; Fsolor is the net solar radiation reaching the

surface; Fthermal is thermal radiation in the atmosphere; Fsensel is turbulent heat exchange in the atmosphere; Flatent is heat

exchange produced by water during phase transitiont; Focean is turbulent heat exchange in the ocean
::::::
climate

::::::::
variables

::::::
control

:
a
:::::
given

::::::
climate

::::::::
variable,

:::
and

::::::
which

::::::
climate

::::::::
variables

:::
are

:::::::::
influenced

::
by

::
it.

::::
This

::::::::
structural

::::::::::
relationship

::::::::
provides

:::
the

:::::::::
possibility

::
to

:::::::
construct

::::::::
Bayesian

::::::::
Networks.95

In the scene of simulating the atmospheric average temperature by the GREB model, atmospheric temperature is not only

related to the thermal radiation reflected from the surface, but also related to the sensible heat in atmospheric transport and
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latent heat exchange of water vapor in the atmosphere. Each climate elements in this scene can be expressed by a highly

simplified equation, which follows the atmospheric average temperature trend equation as follows:

γatmos
dTatmos

dt
+Fsense = F thermal +Qlatent + γatmos

(
k · ∇2Tatmos−

→
u ·∇Tatmos

)
100

Where Tatmos is atmospheric temperature; γatmos is atmospheric specific heat capacity; Fsensel is turbulent heat exchange

in the atmosphere; Fathermal is net thermal radiation of the atmosphere; Qlatent is latent heat released by condensation

of atmospheric water vapor.For different climate average state scenes, the climate processes and relationship structures are

different. Therefore, the selection of nodes in each climate average state scenes will also be different . Not only the selection

of appropriate variablesas nodes is very important, but also the number of nodes will directly affect the simulation of the final105

climate average state. In order to simplify the complex climate evolution process and facilitate calculation, 4-6 climate elements

are selected as key nodes in each climate average state scenes, and the attribute states of climate average state elements in each

scene are simulated by these nodes. Through the trend equation (Eq.1) in the scene of surface average temperature, the relation

equation of

2.2
::::::::::::

Categorization
::
of

:::::::
climate

:::::
state110

::::::::
According

::
to
:::
the

::::::
theory

::
of

:
climate elements can be simplified:

Ts = f(S,O,W,C)

O = f(S)

W = f(S)

:::::::::::::::::::::::::::::::::::::::::::::::::
sensitivity(Annan and Hargreaves, 2006; Dommenget, 2016),

:::::::
Climate

:::::
state,

::::::::
indicated

::
by

::
a
:::::
range

::
of

:::::::::
numerical

::::::
values,

:::
can

:::
be

::::
used

::
to

::::::
replace

:::
the

:::::::
specific

:::::::
numeric

:::
to

:::::::
simulate

::::::
climate

:::::::
change

:::
and

:::::::::::
characterize

:::
the

::::::::
long-term

:::::
trend

::
of

:::::::
climate

::::::
change

::::
and

::::::
extreme

:::::::
weather

::::::::::
conditions.

::::
And

:
it
::
is

:::::
better

::::::
suited

::
to

::::::
capture

:::
the

::::::::
similarity

::
of

::
a
:::::
given

::::::
climate

:::::::
variable

::::::
across

:::::::
different

::::::
spatial115

:::
and

::::::::
temporal

::::::::
locations

::::::::
compared

:::
to

:::
the

::::::::
numerical

::::::
values

:::
of

::::::
specific

:::::::
climate

::::::::
variables.

::::::::::
Therefore,

:
it
::::

can
::
be

:::::
used

::
to

::::::
assess

::
the

:::::::::
similarity

:::::::
between

:::
the

::::::::
simulated

::::::
results

::
of

::
a
:::::
model

::::
and

:::
the

:::::
actual

:::::::
results,

::::::::
indicating

:::
the

::::::::
accuracy

::
of

:::
the

::::::::::
simulation.

::::
This

:::::::
provides

:
a
::::::

simple
::::

and
:::::::
practical

::::::::
approach

:::
to

:::::::::
evaluating

:::
the

:::::::
accuracy

:::
of

::::::::
revealing

::::
local

::::::
abrupt

:::::::
changes

::
in

:::::::::
simulation

:::::::
results.

::::::::
Moreover,

:::
by

:::::::::
simulating

:::::
state

:::::
rather

::::
than

:::::::
specific

::::::::
numeric,

::
it
::
is
::::::::
possible

::
to

:::::::::::
significantly

::::::
reduce

::::::::::::
computational

:::::
effort

::::
and

::::::::
simulation

::::::::
response

::::
time.

::::
This

::
is
:::::::::
consistent

::::
with

:::
the

:::::::
primary

:::::::
objective

::
of

:::
the

::::::
GREB

::::::
model,

:::::
which

::
is
::
to

::::::::
provides

:
a
:::
fast

::::
tool

:::
for120

::
the

::::::::::
conceptual

:::::::::::
understanding

::::
and

:::::::::::
development

::
of

:::::::::
hypotheses

:::
for

::::::
climate

:::::::
change

::::::::::::::::::::::::::::::
studies(Dommenget and Flöter, 2011)

Where Ts is surface temperature; S is solar radiation; O is ocean temperature; W is water vapor content; C is cloud cover.

That is, surface temperature, solar radiation, cloud cover and water vapor content can be selected as the key nodes of the surface

average temperature scene. Through the trend equation (Eq.2) in the scene of atmospheric average temperature, the relation
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equation of climate elements can be simplified:125  Ta = f(V,W,C)

W = f(V )

Where Ta is atmospheric temperature; V is wind speed; C is cloud cover; W is water vapor content. That is, atmospheric

temperature, wind speed, cloud cover and water vapor content can be selected as

:::
The

::::::
natural

::::::
breaks

:::::::::::
classification

::::::
(Jenks)

::::::
method

::
is
::
a

:::::::::
commonly

::::
used

:::::::::::
classification

::::::
method

::::
that

::::
aims

::
to

::::::::
minimize

:::::::::
intra-class

:::::::
variation

::::
and

::::::::
maximize

:::::::::
inter-class

::::::::
variation.

::::
By

::::::::::
categorizing

:::
the

::::::::
numeric

::
of

:::::::
climate

:::::::
variables

::::
into

::::::::
different

::::::::::::
classifications130

::
to

::::::
indicate

:::::::
climate

::::
state

:::::
using

:::
the

::::::
natural

::::::
breaks

:::::::::::
classification

:::::::
method,

::
it
:::
can

:::
be

:::::::::
considered

::
as
::::

that
:::::::
numeric

::::::
within

:::
the

:::::
same

::::::::::
classification

:::::
have

:::
less

::::::::
variation,

:::::::::::
representing

:::
that

:::
the

::::::
results

::
of

:::
this

:::::::::::
classification

::
of

:::::::
numeric

:::::
have

::::::
similar

::::::
climate

:::::
state.

2.3
::::::
Climate

:::::
state

:::::::::
simulation

::::::::
According

:::
to the key nodes of the atmospheric average temperature scene.According to Eq.3, in the scene of surface average

temperature, surface temperature (Ts) is controlled by solar radiation (S), cloud cover (C), water vapor (W ) and ocean135

temperature (O). Ocean temperature (O) and water vapor (W ) are controlled by solar radiation (S). For the above relationship,

the bayes network structure in the surface average temperature scene(Fig1.(a)) can be constructed. According to Eq.4, in the

scene of atmospheric average temperature, atmospheric temperature (Ta) is controlled by cloud cover (C), water vapor (W )

and wind speed (V ).And water vapor (W ) is controlled by wind speed (V ).For the above relationship, the Bayes network

structure in the atmospheric average temperature scene(Fig1.(b)) can be constructed. Fig 1. (a) climate elements structural140

relationship in the surface average temperature scene; (b) climate elements structural relationship in the atmospheric average

temperature scene.
::::::::::::
characteristics

::
of

::::::::
Bayesian

::::::::
Networks,

:::
the

:::::::
climate

::::
state

::::::::
simulation

:::
of

::::::
climate

:::::::
variables

::
is
:::::::
realized

::
by

:::::::
climate

:::::::
evolution

:::::::
process

:::::
based

::
on

::::::::
Bayesian

:::::::::
Networks,

:::
i.e.,

:::
the

:::::::
climate

::::
state

::
of

::::::::
unknown

::::::
climate

::::::::
variables

:
is
:::::::
inferred

::::
from

:::
the

:::::::
climate

::::
state

::
of

::::::
known

::::::
climate

::::::::
variables

::
at

:::
the

::::
same

::::::
spatial

::::::::
locations.

:

2.4 Bayes network145

Bayes network

2.3.1
::::::::
Bayesian

::::::::
Networks

:::::::
Bayesian

:::::::::
Networks

:
is a probabilistic model that simulates the human reasoning process, which is a combination of graph

theory and probability theory, and its network topology is a directed acyclic graph. Where variables are nodes and correlations

or causal relationships between variables are directed edges.The dynamic evolution of Bayes network
:::::::
Bayesian

:::::::::
Networks150

node probabilities is controlled by conditional probabilities, and each node covers a probability distribution table under the

joint distribution of the parent nodes, indicating the strength of the relationship between the nodes.(Sahin et al., 2019). When

the Bayes network
:::::::
Bayesian

::::::::
Networks

:
is constructed, given the state of any node, the probability distribution of the states of

the remaining nodes can be calculated.
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In the Bayes network
::
In

:::
the

::::::::
Bayesian

::::::::
Networks, the probability of a node can be calculated in the form of probability155

using prior knowledge and statistical data, namely the Bayes probability (Maher, 2010). Observed sample are defined as:

G = {X1 = x1,X2 = x2, · · · ,Xn = xn}, where X is event, x is event value or state. When θ is the prior probability of event

X = x, ζ is prior knowledge, P (θ|ζ) is probability density function, then the probability P (Xn+1 = xn+1|θ,ζ) of the n+ 1

eventXn+1 = xn+1 can be obtained from the prior probability density P (θ|ζ) and the sampleG through the Bayes probability.

It can be calculated by total probability formula:160

P (Xn+1 = xn+1|θ,ζ)

=
∫
P (Xn+1 = xn+1|θ,G,ζ)P (θ|,G,ζ)dθ

=
∫
θP (θ|,G,ζ)dθ

P (Xn+1 = xn+1|θ,ζ)

=
∫
P (Xn+1 = xn+1|θ,G,ζ)P (θ|,G,ζ)dθ

=
∫
θP (θ|,G,ζ)dθ

::::::::::::::::::::::::::::::::::::

(1)

Based on Bayes equation, The posterior probability P (θ|,G,ζ) is denated as:

P (θ|,G,ζ) =
P (θ|ζ)P (G|θ,ζ)

P (G|ζ)
(2)165

Where G is given sample, ζ is priori probability of G,

2.4 Climate evolution process based on Bayes network

2.3.1
:::::::
Climate

::::::::
evolution

:::::::
process

:::::
based

:::
on

::::::::
Bayesian

:::::::::
Networks

In a climatic process composed of several climatic elements
:::::::
variables, there is an association relationship between climatic

elements
:::::::
variables. These climatic elements

:::::::
variables

:
are regarded as network nodes, and the association relations between170

climatic elements
:::::::
variables

:
are taken as directed edges. The association relationship between nodes is represented by graph

model, and the action intensity of association relationship is described quantitatively by conditional probability table. Using

the characteristics of Bayes network
:::::::
Bayesian

::::::::
Networks, the attribute feature state of nodes is inferred by probability. To realize

the expression and simulation of the attribute feature state of geographical elements
:::::::
variables.

A climate processMt = {X (m1,m2, . . . ,mi) |m1t,m2t, . . . ,mit} is composed with i climate elements
:::::::
variables,m1,m2, . . . ,mi,175

and X (m1,m2, . . . ,mi) is the structural relationship among the elements
:::::::
variables. Suppose that the climate element

:::::::
variable

mi has j states, then the sataes set of mi is
{
Wmi1 ,Wmi2 , . . . ,Wmij

}
. The climate process is described by a Bayes network

:::::::
Bayesian

:::::::::
Networks B = (S,X). where S is a directed acyclic graph composed of nodes; X is the nodes set of graph, that is

climate elements
:::::::
variablesm1,m2, . . . ,mi. nodes are connected by directed edges to represent the relationship between climate
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elements
:::::::
variables. Each node has an independent conditional probability table, which represents the probability distribution un-180

der the joint distribution of its parent nodes. Assume that a climatemi has one or more parent nodesm1,m2, . . . ,me (e≤ i− 1)

and states d1,d2, . . .de, it can be denoted as :m1,m2, . . . ,me→mi. Under the parent node of all possible states, the conditional

probability table composed of the set of state probabilities of mdeteci is follow:

B
Wm1r1

,Wm2r2
,...,Wmere

mi ={
(Wmi1 ,P

Wm1r1
,Wm2r2

,...,Wmere

Wmi1
),(Wmi2 ,P

Wm1r1
,Wm2r2

,...,Wmere

Wmi2
), . . . ,(Wmij ,P

Wm1r1 ,Wm2r2 ,...,Wmere

Wmij
)
}

(r1 = 1,2, . . . ,d1) ,(r2 = 1,2, . . . ,d2) , . . . ,(re= 1,2, . . . ,de)

(3)185

Where BWm1r1
,Wm2r2

,...,Wmere
mi is a conditional probability table of climate elements

:::::::
variables mi; Wmij

is jth characteristic

state of climate elements
:::::::
variables mi;P

Wm1r1
,Wm2r2

,...,Wmere

Wmij
is the probability of climate element

:::::::
variable mi corresponds

to the jth state under the r1, r2, . . . re characteristic state corresponding to the parent node m1,m2, . . . ,me expression set. The

probability set of climate element
:::::::
variable mi at t moment can be denoted as Cmit :

190

Cmit
={

(Wmi1 ,P
Wm1r1

,Wm2r2
,...,Wmere

Wmi1
),(Wmi2 ,P

Wm1r1
,Wm2r2

,...,Wmere

Wmi2
), . . . ,(Wmij ,P

Wm1r1
,Wm2r2

,...,Wmere

Wmij
)
} (4)

The conditional probability table of each node can be calculated by Eq.5
::
.2 using training data.

2.4
::::

Local
::::::::::::
optimization

:::
The

:::::::::
numerical

::::::
results

::::::::
simulated

:::
by

:::
the

:::::::
original

::::::
GREB

::::::
model

:::
are

::::::::
compared

:::::
with

:::
the

::::::
climate

:::::
state

:::::
results

:::::::::
simulated

:::
by

:::
the

:::::::
Bayesian

:::::::::
Networks,

:::
and

:::
the

:::::
grids

:::::
where

:::
the

::::::::
numerical

:::::
result

:::::::::
simulated

::
by

:::
the

:::::::
original

:::::
GREB

::::::
model

:::
are

:::
not

::
in

:::
the

:::::
range

::
of

:::
the195

::::::
climate

::::
state

::::::::
simulated

:::
by

:::
the

::::::::
Bayesian

::::::::
Networks

:::
are

::::
used

::
as

:::::
grids

::
to

::
be

:::::::::
optimized.

::::::::
According

::
to
:::
the

:::::
Third

::::
Law

::
of
::::::::::::::::::::::::
Geography(Zhu et al., 2018),

:::
the

:::::
more

::::::
similar

:::
the

:::::::::
geographic

:::::::::::
environment,

:::
the

:::::
more

::::::
similar

::
the

::::::::::
geographic

:::::
target

::::::::::::
characteristics

:::
are.

:::::::::
Therefore,

:::
for

::
an

::::::::
unknown

::::::
climate

:::::::
variable

::
at
::
a

::::::
certain

:::::
spatial

::::
and

:::::::
temporal

::::::::
location,

::
the

:::::::
numeric

::
of
:::::
other

::::::
known

::::::
climate

::::::::
variables

::
at

:::
that

::::::
spatial

:::
and

:::::::
temporal

:::::::
location

::::
can

::
be

::::
used

::
to

::::
infer.

:::::::::::
Accordingly,

:::
we

:::::::
propose

:::
that

:::
for

::
an

::::::::
unknown

::::::
climate

::::::::
variable,

:::
the

:::::::
position

::
of

::
its

:::::::
specific

:::::
value

::
in

:::
the

:::::
range

::
of

::
its

:::::::::::
classification

::
is

::::::
related

::
to

:::
the

:::::::
position200

::
of

:::
the

::::::
specific

:::::
value

::
of

:::
the

::::::
known

:::::::
climate

:::::::
variable

::
in

:::
the

:::::
range

::
of

:::
its

:::::::::::
classification

::
at

:::
the

::::
same

::::::
spatial

::::
and

:::::::
temporal

::::::::
location.

:::
For

:
a
:::::::
climate

::::::
variable

:::::::::
containing

::
n
:::::::
relevant

::::::
control

::::::::
variables,

:::
the

:::::::::
numerical

:::::
results

:::
are

:::::::::
calculated

::
as

:::::::
follows:

:

Ex
value = SE

lowerlimit +
1

n
(SE

upperlimit−SE
lowerlimit)

∑
:::::::::::::::::::::::::::::::::::::::::::

Ei
value−Si

lowerlimit

Si
upperlimit−Si

lowerlimit
:::::::::::::::::::

(5)

:::::
Where

::::::
Ex

value:::::::::
represents

:::
an

::::::::
unknown

::::::
climate

::::::::
variable;

:::::::::
SE
lowerlimit ::::::::

represents
:::
the

:::::
lower

:::::
limit

::
of

:::
the

:::::
range

:::
of

:::::::::::
classification

::
in

:::::
which

:::
the

::::::::
unknown

::::::
climate

::::::::
variables

:::
are

::::::::
simulated

:::
by

::::::::
Bayesian

::::::::
Networks;

::::::::::
SE
upperlimit ::::::::

represents
:::
the

:::::
lower

:::::
limit

::
of

:::
the

:::::
range205

::
of

:::::::::::
classification

::
in

::::::
which

:::
the

::::::::
unknown

::::::
climate

::::::::
variables

:::
are

:::::::::
simulated

:::
by

::::::::
Bayesian

:::::::::
Networks;

::
n

::::::::
represents

::::
the

::::::
number

:::
of
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:::::
known

:::::::
climate

::::::::
variables

::::::::
associated

:::::
with

:::
the

::::::::
unknown

:::::::
variables

::
in
:::

the
::::::::

Bayesian
:::::::::
Networks;

::::::
Ei

value:::
the

::::::
actual

:::::
value

::
of

:::
the

:::
ith

:::::
known

:::::::
climate

::::::::
variable;

:::::::::
Si
lowerlimit ::::::::

represents
:::

the
::::::

lower
::::
limit

::
of
::::

the
:::::
range

::
of

:::::::::::
classification

::
in
::::::

which
:::
the

:::
ith

::::::
known

:::::::
climate

::::::::
variables;

:::::::::
Si
upperlimit::::::::

represents
:::
the

:::::
upper

:::::
limit

::
of

:::
the

:::::
range

::
of

:::::::::::
classification

::
in

:::::
which

:::
the

:::
ith

::::::
known

::::::
climate

:::::::::
variables.

::::::::
According

:::
to

:::
the

:::::
above

:::::::
method,

:::
we

:::
can

:::::::
improve

:::
the

::::::::
accuracy

::
of

:::
the

::::::
model

::
by

:::::::::
comparing

:::
the

:::::::
climate

::::
state,

::::::::::
identifying

:::
the210

:::
grid

::
to

::
be

:::::::::
optimized,

::::
and

:::::::::
recalculate

::
the

::::::
values

::::::::
simulated

::
by

:::
the

:::::::
original

::::::
GREB

:::::
model

::::::
within

::
the

::::
grid.

:::
In

:::
this

::::
way,

:::
the

::::::::
improved

:::::
model

::::
with

:::::::::
coarse-fine

::::::::
structure

:::::::::
constructed

::::
with

:::
the

::::::
GREB

::::::
model

::
as

:::
the

:::::
global

:::::::::
framework

::::
and

:::
the

:::::::
Bayesian

:::::::::
Networks

::
as

:::
the

::::
local

:::::::::::
optimization

:::
can

:::::
better

:::::
reflect

:::
the

::::::::
localized

::::::
abrupt

:::::::
changes

::
in

:::
the

::::::
climate

:::::::
process

:::
and

:::::::
achieve

:::
the

:::::::
purpose

::
of

:::::::::
improving

::
the

:::::::
GREB.

3 Case study215

3.1 Data description

In
::
In

:::::
order

::
to

:::::::::::
demonstrate

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
improved

::::::
model

::
in
::::::::::

simulating
::::::
climate

::::::::
variables

::::
and

::
to

:::::
verify

:::
its

:::::::::
reliability,

::::::
surface

:::::::::::
temperatures

:::
and

:::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::::
from

:::
the

::::::
GREB

::::::
model

:::::
were

:::::::
selected

:::
for

:::::::::
simulation

:::::::
objects.

::::
The

::::::::
simulation

:::
of

:::::
these

:::
two

:::::::
climate

::::::::
variables

:::::::
includes

:::::
most

::
of

:::
the

:::::::
climate

::::::::
processes

::
of

:::
the

::::::
GREB

::::
and

:::
can

::::::
reflect

:::
the

::::::::
complex

:::::::
coupling

:::::::
process

::::
and

::::::
climate

::::::
change

::::::::::::
characteristics

:::
of

::
the

::::::
GREB

::::::
model.

:
220

3.1
::::

Data
::::::::::
description

::
In this paper, data produced by National Centers for Environmental Prediction (NCEP) / National Center for Atmospheric

Research (NCAR) is used as the experimental data to evaluate the improved model(IMPM). The data sets include surface

temperature(Ts), atmospheric temperature (Ta::::::
Tsurf ),

::::::::::
temperature

::
of

:::
the

::::::::::::::::
atmosphere(Tatmos), solar radiation(S),

:::::::
Fsolar),

::::
total

cloud cover(C
::::
CLD), water vapor (W ), ocean temperature (O

::::
qair),

::::::::::
temperature

::
of

:::
the

::::::::::
subsurface

:::::
ocean

::::::
(Tocean), and wind225

speed(V
:

→
u ) stored as a 3.75◦ *3.75◦(latitude * longitude) grid NC data from 1985 to 2014. In order to facilitate calculation

and comparative analysis, all climate data is preprocessed. Firstly, the downloaded climate data is removed from the outliers

so that the data are calculated to avoid too large or too small results; secondly, the grid data is resampled and the resampling

method is bilinear interpolation. The bilinear interpolation method is used to interpolate the climate data, which not only fills

the null values, but also unifies the scale size of the data. Finally, the climate
:::::::::
considering

::::
that

:::::::
changes

::
in

:::::::
climate

::::::::
variables230

::
are

:::::::
usually

:::::::::
seasonally

::::::
related,

:::::::
climate

:
data from 1985 to 2014 were processed as quarterly averagesbecause the changes of

climate elements are usually related to seasons.
:
,
:::::
where

:::::::
January,

::::::::
February,

::::
and

::::::
March

::::::::
comprised

::::
first

:::::::
quarter,

:::::
April,

::::
May,

::::
and

::::
June

::::::
formed

::::::
second

:::::::
quarter,

::::
July,

:::::::
August,

:::
and

:::::::::
September

::::::::::
constituted

:
a
:::::
third

::::::
quarter,

::::
and

:::::::
October,

:::::::::
November,

::::
and

:::::::::
December

::::::::
comprised

:::
the

::::::
fourth

::::::
quarter.

Based on the theory of climate sensitivity(Annan and Hargreaves, 2006; Dommenget, 2016), climate state data calculated by235

specific numerical classification of climate data, can be used to replace the specific numerical data to simulate climate change

and characterize the long-term trend of climate change and extreme weather conditions.In order to further reduce the amount
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of calculation and reduce the simulation response time, we use the Natural Breaks method to classify the original data to get

the climate average state as the simulation data. Accordingly, the climate elements data is divided

3.2
::::::::

Structural
:::::::::::
relationship

::::::
among

:::::::
climate

::::::::
variables

::::
and

:::::::
climate

::::
state240

:::
The

:::::::
process

::
of

:::::::::
simulating

:::
the

:::::::
surface

::::::::::
temperature

:::::::
includes

:::::
solar

::::::::
radiation,

:::::::
thermal

::::::::
radiation,

:::::::
sensible

::::
heat

:::
and

:::::::::::
atmospheric

::::::::::
temperature,

:::
and

:::::
deep

:::::::::::::::::::::::::::::
oceanDommenget and Flöter (2011)

:
.
:::
The

:::::
main

::::
heat

:::::
source

::
of

:::
the

::::::
surface

::::::::::
temperature

::
is
:::::
solar

::::::::
radiation,

::::
some

:::
of

:::::
which

::
is

::::::::
absorbed

::
by

:::
the

:::::::
surface

::::::::::
temperature,

::::
the

::::
other

::::
part

::
is

:::::::
reflected

:::
by

:::
the

::::::
surface

:::::::::::
temperature,

::::
and

:::
part

:::
of

:::
the

:::
heat

:::
on

:::
the

::::::
surface

::::::::::
temperature

::
is
:::::::::
transferred

:::
in

:::
the

::::::::::
atmosphere,

:::
and

:::::
some

::
of

::
it
::
is

:::::::::
transferred

::
to

:::
the

:::::
ocean

::::::
below

:::
the

:::::::
surface.

::::
Each

::::::
climate

::::::::
variables

::
in

::::
this

:::::
scene

:::
can

:::
be

::::::::
expressed

:::
by

:
a
::::::
highly

::::::::
simplified

::::::::
equation,

::::::
which

::::::
follows

:::
the

:::::::
surface

::::::::::
temperature245

:::::::
tendency

::::::::
equation

::
as

:::::::
follows:

γsurf
dTsurf
dt

=
::::::::::::

Fsolor
:::::

+
:
Fthermal
:::::::

+
:
Flatent
:::::

+
:
Fsense
:::::

+
:
Focean
:::::

(6)

:::::
Where

::::::
Tsurf :

is
:::::::
surface

::::::::::
temperature;

:::::
γsurf::

is
::::::
surface

::::
heat

::::::::
capacity;

::::::
Fsolar ::

is
::
the

:::::::::
incoming

::::
solar

::::::::
radiation;

::::::::
Fthermal::

is
:::
the

:::
net

::::::
thermal

::::::::
radiation;

:::::::
Flatent :::

the
::::::
cooling

:::
by

:::::
latent

::::
heat

::::
from

::::::
surface

::::::::::
evaporation

:::
of

:::::
water;

::::::
Fsense::

is
:::
the

::::::::
turbulent

::::
heat

::::::::
exchange

::::
with

:::
the

::::::::::
atmosphere;

::::::
Focean::

is
:::
the

::::
heat

::::::::
exchange

::::
with

:::
the

::::::
deeper

:::::::::
subsurface

:::::
ocean.

::::
The

:::::::::::
subprocesses

::
of

:::::::
surface

::::::::::
temperature250

::
are

::::::::
modeled

::
as

:::::::
follows:

Fsolar = (1−αclouds)(1−αsurf )S0 · r (φ,tjulian)

Fthermal =−σT 4
surf + εatmosσT

4
atmos−rad

εatmos = pe8−CLD
pe9

· (ε0− pe10) + pe10

Flatent = L · ρair ·Cw ·
∣∣∣→u∗∣∣∣ · υsoil · (qair − qsat)

Fsense = catmos · (Tatmos−Tsurf )

Focean = Fosense + γsurf ·∆Tentrain
Fosense = cocean · (Tocean−Tsurf )

(7)

:::::
Where

::::::
Fsolar::

is
:::
the

::::::::
incoming

:::::
solar

::::::::
radiation;

:::::::
αclouds::

is
:::
the

:::::::
fraction

::
of

:::
the

:::::::::
incoming

::::
solar

::::::::
radiation

::
is

::::::::
reflected

::
by

:::::::
clouds;

:::::
αsurf ::

is
:::
the

:::::::
fraction

::
of

:::
the

::::::::
incoming

::::
solar

::::::::
radiation

::
is

:::::::
reflected

:::
by

:::
the

:::::::
surface;

::
S0::

is
:::
the

:::::
solar

::::::::
constant;

:::::
αsurf::

is
:::
the

:::::::
fraction

::
of

:::
the

::::::::
incoming

:::::
solar

::::::::
radiation

::
is

:::::::
reflected

:::
by

:::
the

:::::::
surface;

::
r
::
is

:::
the

:::
24

::
h

:::::
mean

:::::::
fraction

:::::::
reaching

::
a
::::::
normal

:::::::
surface

::::
area

:::
on255

:::
top

::
of

:::
the

::::::::::
atmosphere;

::
φ
::
is
:::
the

::::::::
function

::
of

:::::::
latitude;

::::::
tjulian:::

the
::::::

Julian
:::
day

:::
of

:::
the

:::::::
calendar

:::::
year;

::::::::
Fthermal ::

is
:::
the

:::
net

:::::::
thermal

::::::::
radiation;

:::::
Tsurf ::

is
::::::
surface

::::::::::
temperature;

::::::
εatmos::

is
:::
the

:::::::
effective

::::::::::
emissivity;

:::::::::
Tatmos−rad::

is
:::
the

::::::::::
temperature

::::::
defined

:::
in

::
the

:::::::
context

::
of

:::
the

::::::::::
atmospheric

:::::::::::
temperature;

:::::
CLD

::
is

:::
the

::::
total

:::::
cloud

:::::
cover;

::::
ε0is

:::
the

:::::::::
emissivity

:::::::
without

:::::::::
considering

::::::
clouds

::::
first;

::::
pe∗::

is
:::
the

:::::::::
parameters;

:::::::
Flatent :::

the
:::::::
cooling

::
by

:::::
latent

::::
heat

:::::
from

::::::
surface

::::::::::
evaporation

:::
of

:::::
water;

::
L
::
is
:::
the

::::::::
constant

:::::::::
parameters

::
of
::::

the
:::::
latent

:::
heat

:::
of

::::::::::
evaporation

:::
and

::::::::::::
condensation

::
of

::::::
water;

::::
ρair::

is
:::
the

:::::::
density

::
of

::::
air;

:::
Cw::

is
::::

the
::::::
transfer

::::::::::
coefficient;

:::::

∣∣∣→u∗∣∣∣ ::
is

:::
the

:::::
wind260

:::::
speed;

:::::
υsoil ::

is
:::
the

::::
Bulk

:::::::
formula

::
is

::::::::
extended

:::
by

:
a
:::::::
surface

:::::::
wetness

::::::::::
fraction;qair::

is
:::
the

::::::
actual

::::::
surface

:::
air

::::
layer

:::::::::
humidity;

::::
qsat

:
is
:::
the

:::::::::
saturation

::::::
surface

:::
air

::::
layer

:::::::
specific

:::::::::
humidity;

::::::
Fsense :

is
:::

the
::::::::

turbulent
::::
heat

::::::::
exchange

::::
with

:::
the

:::::::::::
atmosphere;

::::::
catmos ::

is
:::
the

:::::::
coupling

::::::::
constant;

::::::
Tatmos::

is
::::::::::
temperature

:::
of

:::
the

::::::::::
atmosphere;

::::::
Focean::

is
:::
the

::::
heat

::::::::
exchange

:::::
with

:::
the

::::::
deeper

:::::::::
subsurface

::::::
ocean;

10



:::::::
Fosense ::

is
:::
the

:::::::
turbulent

:::::::
mixing

:::::::
between

:::
the

::::
two

:::::
ocean

::::::
layers;

:::::::::
∆Tentrain::

is
:::
the

::::
heat

::::::::
exchange

::::
with

:::
the

:::::::
surface

:::::
ocean

:::::
layer

:::
due

::
to

:::::::::
decreasing

::
of

:::
the

:::::
mixed

:::::
layer

:::::
depth;

::::::
cocean::

is
:::
the

:::::::
coupling

::::::::
constant;

::::::
Tocean ::

is
::
the

:::::::::::
temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean.

:
265

::
In

::
the

:::::::
process

::
of

:::::::::
simulating

:::
the

:::::::::
temperature

:::
of

::
the

::::::::::
atmosphere

::
by

:::
the

::::::
GREB

::::::::::::::::::::::::::::::
modelDommenget and Flöter (2011),

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

::
is

:::
not

::::
only

::::::
related

::
to

:::
the

:::::::
thermal

::::::::
radiation

:::::::
reflected

:::::
from

:::
the

::::::
surface,

::::
but

:::
also

::::::
related

:::
to

:::
the

:::::::
sensible

::::
heat

::::::::
exchange

::::
with

:::
the

::::::
surface

:::
and

::::::
latent

:::
heat

:::::::
release

::
by

:::::::::::
condensation

::
of
:::::::::::

atmospheric
:::::
water

:::::
vapor.

:::::
Each

::::::
climate

::::::::
variables

::
in

::::
this

::::::
process

:::
can

:::
be

::::::::
expressed

:::
by

:
a
::::::
highly

::::::::
simplified

::::::::
equation,

:::::
which

:::::::
follows

:::
the

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::::::
tendency

::::::::
equation

::
as

:::::::
follows:270

γatmos
dTatmos

dt
+Fsense = F thermal +Qlatent + γatmos

(
k · ∇2Tatmos−

→
u ·∇Tatmos

)
(8)

:::::
Where

:::::::
Tatmos ::

is
::::::::::
temperature

::
of

:::
the

:::::::::::
atmosphere;

::::::
γatmos::

is
::::::::::
atmospheric

::::
heat

::::::::
capacity;

::::::
Fsense::

is
:::

the
::::::::

sensible
::::
heat

::::::::
exchange

::::
with

:::
the

:::::::
surface;

:::::::::
Fathermal ::

is
:::
net

::::::
thermal

::::::::
radiation

::
of

::::
the

::::::::::
atmosphere;

:::::::
Qlatent :

is
::::

the
:::::
latent

::::
heat

::::::
release

::
by

:::::::::::
condensation

:::
of

::::::::::
atmospheric

:::::
water

:::::
vapor;

::

→
u
::
is
:::
the

:::::
wind

:::::
speed.

::::
The

:::::::::::
subprocesses

::
of

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::
are

:::::::
modeled

::
as

:::::::
follows:

:


Fsense = catmos · (Tatmos−Tsurf )

Fathermal = εatmosσ ·T 4
surf − 2εatmosσ ·T 4

atmos−rad

Qlatent =−2.6736 · 103
[
kg/m2

]
·∆qprecip ·L

::::::::::::::::::::::::::::::::::::::::::::::::

(9)275

:::::
Where

::::::
Fsense::

is
:::
the

::::::::
turbulent

::::
heat

::::::::
exchange

::::
with

:::
the

:::::::::::
atmosphere;

::::::
catmos::

is
:::
the

:::::::
coupling

::::::::
constant;

:::::::
Tatmos ::

is
::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere;

:::::::::
Fathermal::

is
:::
net

::::::
thermal

::::::::
radiation

::
of

:::
the

:::::::::::
atmosphere;

:::::
Tsurf ::

is
::::::
surface

:::::::::::
temperature;

::::::
εatmos :

is
:::
the

::::::::
effective

:::::::::
emissivity;

::::::::::
Tatmos−rad::

is
:::
the

::::::::::
temperature

:::::::
defined

::
in

:::
the

:::::::
context

::
of

:::
the

:::::::::::
atmospheric

:::::::::::
temperature;

::::::
Qlatent::

is
::::

the
:::::
latent

::::
heat

::::::
release

::
by

:::::::::::
condensation

::
of

::::::::::
atmospheric

:::::
water

::::::
vapor;

:::::::
∆qprecip::

is
:::
the

:::::::::::
condensation

::
or

:::::::::::
precipitation;

::
L

::
is

::
the

::::::::
constant

:::::::::
parameters

::
of

:::
the

:::::
latent

:::
heat

:::
of

:::::::::
evaporation

::::
and

:::::::::::
condensation

::
of

:::::
water.

:
280

:::
For

:::::::
different

:::::::
climate

:::::::
process,

:::
the

::::::
climate

:::::::::::
subprocesses

::::
and

::::::::::
relationship

::::::::
structures

:::
are

::::::::
different.

:::::::::
Therefore,

:::
the

:::::::
selection

:::
of

:::::
nodes

::
in

::::
each

::::::
climate

:::::::
process

:::
will

::::
also

::
be

::::::::
different.

::::
Not

::::
only

:::
the

:::::::
selection

:::
of

:::::::::
appropriate

::::::::
variables

::
as

:::::
nodes

::
is

::::
very

:::::::::
important,

:::
but

:::
also

::::
the

::::::
number

:::
of

:::::
nodes

::::
will

:::::::
directly

:::::
affect

:::
the

:::::::::
simulation

:::
of

:::
the

::::
final

:::::::
climate

:::::::
average

:::::
state.

::
In

:::::
order

::
to

::::::::
simplify

:::
the

:::::::
complex

::::::
climate

::::::::
evolution

:::::::
process

::::
and

:::::::
facilitate

::::::::::
calculation,

:::
4-6

:::::::
climate

::::::::
variables

:::
are

:::::::
selected

::
as

:::
key

::::::
nodes

::
in

::::
each

:::::::
climate

::::::
process,

::::
and

:::
the

:::::::
variables

:::::::
climate

::::
state

::
in

::::
each

::::::::
processes

:::
are

:::::::::
simulated

::
by

:::::
these

:::::
nodes.285

:::::::
Through

:::
the

::::
trend

:::::::::
equations

:::
(Eq.

::
6
:::
and

:::
7)

::
in

::
the

:::::::::
processes

::
of

::::::
surface

:::::::::::
temperature,

:::
the

::::::
relation

::::::::
equation

::
of

::::::
climate

::::::::
variables

:::
can

::
be

:::::::::
simplified:

:
Tsurf = f(Fsolar,Tocean, qair,CLD)

Tocean = f(Fsolar)

qair = f(Fsolar)
::::::::::::::::::::::::::::::::::

(10)

:::::
Where

:::::
Tsurf::

is
::::::
surface

:::::::::::
temperature;

:::::
Fsolar::

is
::::
solar

::::::::
radiation;

::::::
Tocean::

is
::::::::::
temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean;

::::
qair::

is
:::
the

:::::
actual

::::::
surface

::
air

:::::
layer

::::::::
humidity,

::::
i.e.,

:::::
water

:::::
vapor

:::::::
content;

:::::
CLD

::
is
:::::

total
:::::
cloud

:::::
cover.

::::
That

:::
is,

::::::
surface

:::::::::::
temperature,

::::
solar

:::::::::
radiation,290
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Figure 2.
:::::::
Structural

::::::::::
relationship

:::::
among

::::::
climate

::::::::
variables

::
in

:::
the

:::::::
different

::::::::
simulation

:::::::::
processes.

::
(a)

:::::::
Surface

:::::::::
temperature

:::::::
process;

:::
(b)

:::::::::
Temperature

::
of

:::
the

::::::::
atmosphere

:::::::
process.

::::::::::
temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean,

::::
total

:::::
cloud

:::::
cover

::::
and

:::::
water

:::::
vapor

::::::
content

:::
can

:::
be

:::::::
selected

::
as

:::
the

:::
key

:::::
nodes

:::
of

::
the

:::::::
surface

::::::::::
temperature

:::::::
process.

:::::::
Through

:::
the

::::
trend

::::::::
equation

::::
(Eq.

:
8
::::
and

::
9)

::
in

:::
the

::::::::
processes

::
of

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere,

:::
the

:::::::
relation

:::::::
equation

::
of

:::::::
climate

:::::::
variables

:::
can

:::
be

:::::::::
simplified: Tatmos = f(
→
u,qair,CLD)

qair = f(
→
u)

:::::::::::::::::::::::::

(11)295

:::::
Where

:::::::
Tatmos ::

is
::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere;

:::

→
u

::
is

::::
wind

::::::
speed;

:::::
CLD

::
is

::::
total

:::::
cloud

::::::
cover;

::::
qair ::

is
:::::
water

:::::
vapor

:::::::
content.

::::
That

::
is,

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere,

:::::
wind

:::::
speed,

::::
total

:::::
cloud

:::::
cover

:::
and

:::::
water

:::::
vapor

:::::::
content

:::
can

::
be

:::::::
selected

::
as

:::
the

::::
key

:::::
nodes

::
of

:::
the

::::::::::
temperature

::
of

:::
the

:::::::::
atmosphere

:::::::
process.

::::::::
According

::
to
:::
Eq.

:::
10

:
,
::
in

:::
the

::::::
surface

::::::::::
temperature

:::::::
process,

::::::
surface

::::::::::
temperature

::::::
(Tsurf )

::
is

::::::::
controlled

:::
by

::::
solar

:::::::
radiation

::::::::
(Fsolar),

::::
cloud

:::::
cover

:::::::
(CLD),

:::::
water

:::::
vapor

:::::
(qair)

:::
and

::::::::::
temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean

::::::::
(Tocean).

:::::::::::
Temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean300

:::::::
(Tocean)

:::
and

:::::
water

:::::
vapor

:::::
(qair)

:::
are

:::::::::
controlled

:::
by

::::
solar

::::::::
radiation

:::::::
(Fsolar).

::::
For

:::
the

:::::
above

::::::::::
relationship,

:::
the

::::::::
Bayesian

:::::::::
Networks

:::::::
structure

::
in

:::
the

:::::::
surface

::::::::::
temperature

:::::::
process

:::
can

:::
be

::::::::::
constructed

::::::
(Figure

::::
2a).

:::::::::
According

::
to

::::
Eq.

:::
11,

::
in

:::
the

::::::::::
temperature

:::
of

:::
the

:::::::::
atmosphere

:::::::
process,

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::::::
(Tatmos)

::
is
:::::::::
controlled

::
by

:::::
cloud

:::::
cover

:::::::
(CLD),

:::::
water

:::::
vapor

:::::
(qair)

:::
and

:::::
wind

:::::
speed

:::
(
→
u ).

::::
And

:::::
water

:::::
vapor

:::::
(qair)

::
is

::::::::
controlled

:::
by

::::
wind

:::::
speed

::::
(
→
u ).

:::
For

:::
the

:::::
above

:::::::::::
relationship,

::
the

::::::::
Bayesian

::::::::
Networks

::::::::
structure

::
in

:::
the

:::::::::::
temperature

::
of

:::
the

:::::::::
atmosphere

:::::::
process

:::
can

:::
be

:::::::::
constructed

:::::::
(Figure

:::
2b).

:
305

:::
The

:::::::
climate

::::
state

:::
of

:::
the

::::::::
variables

::
in

:::
the

::::::
above

::::::
climate

:::::::::
processes

::::
was

:::::::::
performed

:::::
using

:::
the

:::::::
natural

::::::
breaks

:::::::::::
classification

:::::::
method.

::::
The

:::::::
climate

:::::::
variables

::::
data

:::
are

::::::::::
categorized

:
into five, seven and nine different classification states to

::::::::::::
classifications

::
to

12



:::::::
indicated

::::::::
different

::::::
climate

::::
state

::
to test the improved model and verify the effect of the classification number of climate elements

:::::::
variables

:
data on the simulation results. Detailed classifications

:::::::
schemes are shown in appendix Table A1, A2, A3

::::::::
Appendix

::::
Table

::::
A1,

:::
A2,

:::
A3.310

3.3 State
:::::::
Climate

:::::
state simulation

From Sect.2.1, we choose surface temperature and atmospheric temperature as the simulation objects
::::::
Surface

::::::::::
temperature

::::
and

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::
are

:::::::::
considered

::
as

::
a

:::::::::
simulation

:::::
object, and other elements

::::::
climate

::::::::
variables as known objects,

and uses the historical data to calculate the conditional probability tables of each nodes through the Bayes network
::::::::
Bayesian

::::::::
Networks structure with Eq 7.

:
4.

:
Among them, the training data is the 10-year historical data from 1985 to 1994.315

In each climate average state scenes
:
In

::::
each

:::::::::
simulation

:::::::
process, there are two training methods for the simulated object. The

first is to train a conditional probability table using the data in all the grids, and then use the conditional probability table to

simulate the states of all grids. The conditional probability table obtained by this training method can reflect the numerical

characteristic relationship between climate elements
:::::::
variables in the whole region. However, it can not show the distribution

law
::::::
pattern of the characteristics of the simulated state in space. The second is to train the data in each grid separately. Because320

the state grading data in each grids is different, the conditional probability table of the simulated object trained in each grids is

also different, and a total of 96 ×48 conditional probability tables are obtained. The conditional probability tables obtained by

this training method can accurately reflect the different numerical characteristic relationship between the simulated object and

the known object in different regions. However, due to the training of more conditional probability tables, the running time of

this training method will be a little longer. Considering the great differences in the law
::::::
pattern of climate evolution in different325

regions, this paper uses the second data training method in state simulation, which first divides the whole world into 96×48

grids, and then uses the data in each grids to train the conditional probability tables of the grid. After the training is completed,

the data of the known climate elements
:::::::
variables

:
will be used to simulate the unknown climate elements

:::::::
variables from 1995

to 2014. The simulation results are shown in Fig 2,3.
:::::
Figure

::
3
:::
and

::
4.

Fig 2. Simulation results of the surface average temperature state . (a) 5 classification; (b) 7 classification; (c) 9 classification.330

Fig 3. Simulation results of the atmospheric average temperature state. (a) 5 classification; (b) 7 classification; (c) 9 classification.

From Fig 2,it can be clearly observed that the distribution of global surface average temperature has latitude

:::::
Figure

::
3
:::::
shows

::::
the

::::::
climate

::::
state

:::
of

:::
the

::::::::
quarterly

:::::::
average

::
of

::::::
surface

:::::::::::
temperature

::::
from

::::::::::
1995-2014.

::::
The

:::::::::
simulation

::::::
results

:::::
under

:::::::
different

::::::::::::
classifications

:::
all

::::::
clearly

:::::
show

:::
the

:::::
global

::::::::
quarterly

:::::::
average

:::::::
surface

::::::::::
temperature

::::::::::
distribution

::::
with

:::::::::
latitudinal

variations. The
:::::
surface

:
temperature starts from the equator and decreases with the increase of latitude, so the temperature in335

the North and South Pole is the lowest. The
::::::
climate

::::
state

:
distribution of surface temperature is basically in line with the real

world. Different from the simulation map of surface average
::::
result

::
of
:::::::

surface temperature, the trend of atmospheric average

temperature
:::::::
quarterly

:::::::
average

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere rises from the equator and increases with the increase of latitude

in Fig.7
::::::
Figure

:
4, which is also basically in line with the real world. The tropospheric height of the poles is lower and the

tropospheric height of the equator is higher, and which phenomenon leads to the result that temperature of the troposphere at the340

same height is higher in the poles. Meanwhile, from the simulations in the two scenes, it can be found that with the increase of

13



Figure 3.
:::::
Climate

::::
state

:::::::::
simulation

:::::
results

::
of

:::
the

::::::
surface

:::::::::
temperature

:::
by

:::::::
Bayesian

:::::::
Networks

:::
for

:::
80

::::::
seasons

:::
(the

::::::
period

:::::::::
1995-2014).

:::
(a)

:::::::::
Categorized

:::
into

:
5
:::::::::::
classifications;

:::
(b)

:::::::::
Categorized

:::
into

::
7

:::::::::::
classifications;

::
(c)

:::::::::
Categorized

:::
into

::
9
:::::::::::
classifications.

Figure 4.
::::::
Climate

::::
state

::::::::
simulation

:::::
results

::
of

::
the

:::::::::
temperature

::
of

:::
the

::::::::
atmosphere

::
by

:::::::
Bayesian

::::::::
Networks

::
for

::
80

::::::
seasons

::::
(the

::::
period

::::::::::
1995-2014).

::
(a)

:::::::::
Categorized

:::
into

::
5
:::::::::::
classifications;

::
(b)

:::::::::
Categorized

::::
into

:
7
:::::::::::
classifications;

:::
(c)

:::::::::
Categorized

:::
into

:
9
:::::::::::
classifications.

the state classification, the color of the simulated effect map becomes more complex, which means that the simulated resolution

will be higher. It shows that this method can finely simulate the state of surface average temperature and the atmospheric

average temperature in the complex environment by increasing the state classification. Given the above, if it takes the actual

numerical value, not state as calculating data, it will get a higher resolution, and less training data of each case.345

3.4 Comparison with the GREB model

In order to verify the improved method, accuracy (the equal proportion of the state level of the simulated value and the real

value) was used as an evaluation index. The state simulation accuracy of each grid is calculated when the number of state

14



classification of climate elements is 5, 7, and 9. And the results are compared with that of the GREB model . The GREB model

350

3.4
::::

Local
::::::::::::
optimization

::::
After

:::
the

:::::::
climate

::::
state

:::::::::
simulation

:::
of

::::::::
Bayesian

:::::::::
Networks,

:::
the

:::::::::
numerical

::::::
results

::::::::
simulated

:::
by

:::
the

:::::::
original

::::::
GREB

::::::
model

:::
are

::::::::
compared

::::
with

:::
the

::::::
climate

::::
state

::::::
results

::::::::
simulated

::
by

:::
the

::::::::
Bayesian

:::::::::
Networks,

:::
and

:::
the

::::
grids

:::::
where

:::
the

:::::::::
numerical

:::::
result

::::::::
simulated

::
by

:::
the

:::::::
original

::::::
GREB

:::::
model

:::
are

:::
not

::
in

:::
the

:::::
range

::
of

:::
the

:::::::
climate

::::
state

::::::::
simulated

:::
by

:::
the

::::::::
Bayesian

::::::::
Networks

:::
are

::::
used

::
as

:::::
grids

::
to

::
be

:::::::::
optimized.

::::
The

:::::
GREB

::::::
model uses the model code of the GREB in the Monash Simple Climate Model (MSCM) laboratory355

repository and runs the code in Fortran
:::::::::
FORTRAN language.

The all average accuracy of different situations from 1985 to 1994 is shown in Fig 4( IMPM-T: average accuracy of

surface temperature by IMPM; GREB-T: average accuracy of surface temperature by GREB; IMPM-A: average accuracy

of atmospheric temperature by IMPM; GREB-A: average accuracy of atmospheric temperature by GREB), and the globe

accuracy of the surface temperature and the atmospheric temperature are shown in Fig 5, 6. Overall, the comparison results360

in the two scenes (Fig 4)show that the improved model (IMPM) has a higher simulation accuracy. Since the total number of

data remains unchanged, as the number of state classifications increases, the number of training data per state classifications

decreases, it results in a decrease in the accuracy of the simulations of the two methods. This implies that the accuracy of the

simulation predictions can be stabilized at a high level when there is enough training data in the long-period simulation. It also

shows that
:::::
Based

::
on

:::
the

:::::::::
optimized

::::
area

::
of

::::::
surface

:::::::::::
temperature

:::::::::
simulations

::::
and

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::::::
obtained

:::::
from365

::
the

:::::::
climate

::::
state

::::::::
accuracy

:::::::::
comparison

::::
(see

:::::::::
Appendix

:
A
:::
for

:::::::
details),

:::
the

:::::::
original

::::::
GREB

:::::
model

:::::::::
simulation

::::::
results

::
of

:
the

::::
grid

::
to

::
be

::::::::
optimized

::
in
:::
the

:::::::::
optimized

::::
area

:::
are

::::::::::
recalculated

::::::::
according

::
to

:::
Eq.

::
5.

::
In

:::::
terms

::
of

::::::
surface

::::::::::
temperature

::::::::::
simulation,

:::
the

:::::::
original

:::::
GREB

::::::
model

::
at

:::
low

::::::::
latitudes

:::::
shows

::::
high

:::::
state

::::::::
accuracy,

::
so

:
a
:::::
local

::::::::::
optimization

:::::::
scheme

:
is
:::::
used,

::::
only

:::
for

:::
the

::::::
middle

:::
and

::::
high

::::::::
latitudes.

::::
The

::::::::
empirical

::::::::
parameter

:::
for

::::::::::
optimization

:::::
range

::
of
:::::::
surface

::::::::::
temperature

:::::::::
simulation

:::
has

::::
been

::::::::::
determined

::
to
:::

be
:::::
90◦N

::
to

:::::
30◦N

::::
and

:::::
30◦S

::
to

:::::
90◦S.

::::
The

::::::::
quarterly

::::::
average

:::::::
surface

:::::::
average370

::::::::::
temperature

::::::::
simulated

::
by

:::
the

:
improved model can compensate well for the shortcoming of

::
for

:
the GREB model to make full

use of the observed data. On the other hand, in
:::::
period

::::::::::
1994-2015

:::
are

::::::::
presented

::
in

::::::
Figure

::
5.
:::

In
:::::
terms

::
of

::::::::::
temperature

:::
of

:::
the

:::::::::
atmosphere

::::::::::
simulation,

:
a
:::::::
spatially

::::::
global

::::::::::
optimization

::::::::
approach

:::
has

:::::
been

::::::
chosen,

::::::
owing

::
to

:::
the

:::::
higher

::::::
global

::::
state

::::::::
accuracy

::
of

::
the

::::::::
Bayesian

:::::::::
Networks.

::::
The

:::::::
quarterly

:::::::
average

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

::::::::
simulated

::
by

:
the improved model , more climate

data are involved in the simulation process. It means that more observational data are involved in the model modification,375

indicating
::
for

:::
the

::::::
period

:::::::::
1994-2015

:::
are

::::::::
presented

::
in
::::::

Figure
::
6.
::::
The

::::::
details

::
in

::::::
Figure

::
5

:::
and

::
6

::::
show

::::
that

:::
the

:::::::::::
optimization

::::
data

:::::
results

:::
are

::::
well

::::::::::::
characterized

::
by

::::::::
localized

::::::
abrupt

::::::::
changes,

:::::
which

::::::
means

:
that the improved model can have a more obvious

response to climate anomalies. From the analysis above, the comparison results(Fig 4) means that the improved method in

this paper is effective.
::
are

::::
able

::
to

:::::::::
effectively

:::::::
address

:::
the

:::::::::
inadequate

::::::::
response

::
of

:::
the

:::::::
original

::::::
GREB

:::::
model

::
to

::::::::
localized

::::::
abrupt

:::::::
changes.380
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Figure 5.
:::::::
Quarterly

::::::
average

::::::
surface

:::::::::
temperature

:::
for

::
80

::::::
seasons

:::
(the

:::::
period

::::::::::
1995-2014).

::
(a)

::::::::
Simulated

::
by

::::::::
improved

:::::
GREB

:::::
model

::::
based

:::
on

:::::::
Bayesian

:::::::
Networks

:::::
under

:
5
:::::::::::
classifications;

:::
(b)

::::::::
Simulated

::
by

::::::::
improved

:::::
GREB

:::::
model

:::::
based

::
on

:::::::
Bayesian

::::::::
Networks

::::
under

::
7

:::::::::::
classifications;

::
(c)

::::::::
Simulated

::
by

:::::::
improved

::::::
GREB

::::
model

:::::
based

::
on

:::::::
Bayesian

::::::::
Networks

::::
under

::
9

:::::::::::
classifications.

Figure 6.
:::::::
Quarterly

::::::
average

:::::::::
temperature

:::
of

::
the

:::::::::
atmosphere

:::
for

:::
80

::::::
seasons

::::
(the

:::::
period

:::::::::
1995-2014).

:::
(a)

::::::::
Simulated

:::
by

:::::::
improved

::::::
GREB

:::::
model

:::::
based

::
on

:::::::
Bayesian

::::::::
Networks

:::::
under

:
5
:::::::::::
classifications;

:::
(b)

:::::::
Simulated

:::
by

:::::::
improved

:::::
GREB

:::::
model

:::::
based

::
on

:::::::
Bayesian

::::::::
Networks

::::
under

::
7

:::::::::::
classifications;

::
(c)

::::::::
Simulated

::
by

:::::::
improved

::::::
GREB

:::::
model

::::
based

::
on

:::::::
Bayesian

::::::::
Networks

::::
under

::
9
:::::::::::
classifications.

3.5
:::::::::
Evaluation

::
of

:::::::::
improved

:::::
model

::
In

::::
order

::
to

:::::::
evaluate

:::
the

:::::::::
simulation

:::::::
accuracy

:::
of

::
the

::::::::
improved

::::::
model

:::
(the

::::::::::
optimizated

::::::
GREB

:::::
model

:::::
based

:::
on

::::::::
Bayesian

::::::::
Networks

::
of

::::::
climate

:::::
state),

:::
the

::::
root

:::::
mean

:::::
square

:::::
error

:::::::
(RMSE)

:::::::
between

:::
the

::::::::
simulated

::::
and

:::::
actual

::::::
values

:
is
:::::::
defined

::
to

:::::::
evaluate

:::
the

::::::
model:
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RMSE =

√
1

n

∑
(Si−Ai)

2

:::::::::::::::::::::::

(12)385

:::::
where

::
Si:::::::::

represents
:::
the

:::::::::
simulated

:::::
value

:::
and

:::
Ai :::::::::

represents
:::
the

:::::
actual

:::::
value,

:::::
when

::::::::
analyzed

:::::::
spatially

::
n
:::::::::
represents

:::
the

::::::
length

::
of

::::
time,

:::::::
whereas

:::::
when

::::::::
analyzed

:::::::::
temporally

::
n

::::::::
represents

:::
the

:::::::
number

::
of

:::::
grids

::
in

:::::
space.

::::
The

:::::::
accuracy

:::
of

::::::
original

::::::
GREB

::::::
model

::::::::
simulation

:::::
result

::::
was

::::
used

::
as

::
a
::::::::::
comparison

Meanwhile, it is obvious in the comparison results(Fig 5, 6) that the accuracy of the IMPM is relatively uniform in spatial

distribution and has no obvious spatial characteristics. However, the accuracy of the GREB model has obvious characteristics of390

latitude differentiation. Based on it, the average accuracy variation trend chart along with latitude(Fig 7) is made. The variances

of the IMPM in six cases are 0.016(IMPM-T-5), 0.014(IMPM-T-7), 0.014(IMPM-T-7), 0.017(IMPM-A-5), 0.008(IMPM-A-7),

0.004(IMPM-A-9),
:::
The

:::::
mean

::
of

::::::
RMSE

::::::::
between

:::
the

::::::::
simulated

::::::
results

::
of

:::
the

:::::::
original

::::::
GREB

::::::
model,

::
as

::::
well

::
as
::::

the
::::::::
improved

::::::
models

:::::
based

::
on

::::
five,

::::::
seven,

:::
and

::::
nine

:::::::::::::
classifications,

:::
and

:::
the

::::::::
observed

:::::
values

:::
for

:::::::
surface

::::::::::
temperature

::::
were

::::::
13.26,

::::
8.66,

:::::
8.85,

:::
and

:::::
9.81,

::::::::::
respectively.

:::
For

:::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere,

:::
the

::::::::::::
corresponding

:::::
mean

:::
of

::::::
RMSE

::::
were

::::::
72.19,

::::::
22.77,

:::::
20.12,

:
and395

the variances of the GREB in six cases are 0.089(GREB-T-5), 0.070(GREB-T-7), 0.060(GREB-T-7), 0.077(GREB-A-5),

0.054(GREB-A-7), 0.036(GREB-A-9). As the chart shown, the fluctuation range of the accuracy of the IMPM is much

smaller than that of the GREB along the latitude direction. Especially, the average accuracy of atmospheric temperature is

0 between 30◦N and 30◦ S,
:::::
17.76,

::::::::::
respectively.

:::::
This

:::::
result

:::::
shows

::::
that

:::
the

::::::::
improved

:::::::
method

::::::::::
significantly

:::::::
reduces

:::
the

::::::
RMSE

::
of

:::
the

:::::::::
simulation,

::::
i.e.,

::
it

::::::::
improves

:::
the

:::::::::
simulation

::::::::
accuracy.

:::::::::
However,

::::
there

:::
are

::::
also

:::::::::
significant

::::::::::
differences

:::::::
between

:::::::
surface400

::::::::::
temperature

:::
and

::::::::::
temperature

::
of
::::

the
::::::::::
atmosphere.

:::::
There

::
is

:::
no

:::::::::
significant

::::::::::
relationship

:::::::
between

::::::
RMSE

:::
and

::::::::::::
classification

::
in

:::
the

::::::::
simulation

:::
of

::::::
surface

::::::::::
temperature,

:::::
while

::::::
RMSE

::::::::
decreases

::::
with

:::::::::
increasing

:::::::::::
classification

::
in

:::
the

:::::::::
simulation

::
of

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere.

:::::
Figure

::
7

::::::
depicts

:::
the

:::::
spatial

::::::::::
distribution

::
of

::::::
RMSE

:::::::
between

:::
the

::::::::
simulated

:::::::
surface

::::::::::
temperature

:::
and

:::
the

::::::::
observed

:::::
values

:::
for

:::
the

::::::
original

::::::
GREB

::::::::::::
model(Figure

:::
7a)

:::
and

:::
the

:::::::::
improved

::::::
models

:::::
based

:::
on

::::
five,

::::::
seven,

:::
and

::::
nine

::::::::::::
classifications

:::::::
(Figure

:::::
7b-d).

::::
The405

:::::::::
comparison

::::::
shows

:::
that

::::
the

::::::::
improved

:::::
model

:::::::::::
significantly

::::::::
improves

:::
the

:::::::::
simulation

::::::::
accuracy

::
of

:::
the

::::::
surface

:::::::::::
temperature

::
in

:::
the

::::
polar

:::::::
regions.

::::::
Figure

:
8
::::::
depicts

:::
the

::::::
spatial

::::::::::
distribution

::
of

::::::
RMSE

:::::::
between

:::
the

::::::::
simulated

::::::::::
temperature

:::
of

:::
the

:::::::::
atmosphere

::::
and

:::
the

:::::::
observed

::::::
values

::
for

:::
the

:::::::
original

::::::
GREB

:::::::::::
model(Figure

:::
8a)

:::
and

:::
the

::::::::
improved

::::::
models

:::::
based

:::
on

::::
five,

:::::
seven,

:::
and

::::
nine

::::::::::::
classifications

::::::
(Figure

:::::
8b-d).

::::
The

::::::::::
comparison

:::::
shows

::::
that

:::
the

::::::::
improved

:::::
model

:::::::::::
significantly

::::::::
improves

:::
the

:::::::::
simulation

:::::::
accuracy

:::
of

::::::::::
temperature

::
of

:::
the

:::::::::
atmosphere

::
at
::::
mid

:::
and

::::
low

::::::
latitude

:::::::
regions.

::::
This

::
is

::::
also

::::
well

::::::
verified

:::
by

:::
the

:::::::
variation

:::::
curve

::
of

::::::
RMSE

:::::
along

:::
the

:::::::
latitude410

:::::::
direction

::::::
shown

::
in

::::::
Figure

::
9.

:::::
Figure

:::
10

:::::
shows

:::
the

::::::::
quarterly

:::::::::
variability

:::
and

:::::
trends

:::
of

::::::
RMSE

:::::::
between

::::
1995

:
and it means that the GREB is not suitable for

atmospheric temperature simulation of the region. After considering the relationship of climate elements in the GREB model

to build the network, the whole simulation process is based on observation data, so it is not affected by local anomalies, and

the accuracy of the improved model is not affected by spatial location. Consequently, the use of the IMPM is not restricted415

by spatial, and there is no significant difference in the global simulation effect. As described, the IMPM not only has a

higher average accuracy, but also has a wider range of application.
::::
2014

:::
for

::::
both

:::
the

:::::::
surface

::::::::::
temperature

:::
and

:::::::::::
temperature
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Figure 7.
:::::
Spatial

:::::::::
distribution

::
of

:::
the

:::::
RMSE

:::
for

::
80

::::::
seasons

::
of

::
the

::::::::
simulated

:::::
surface

::::::::::
temperature.

::
(a)

::::::::
Simulated

::
by

::::::
original

::::::
GREB

:::::
model;

:::
(b)

:::::::
Simulated

:::
by

:::::::::
optimizated

:::::
GREB

:::::
model

:::::
based

::
on

:::::::
Bayesian

::::::::
Networks

:::::
under

:
7
:::::::::::
classifications;

:::
(c)

::::::::
Simulated

::
by

:::::::::
optimizated

::::::
GREB

:::::
model

::::
based

:::
on

:::::::
Bayesian

:::::::
Networks

:::::
under

::
5
:::::::::::
classifications;

:::
(d)

::::::::
Stimulated

:::
by

:::::::::
optimizated

:::::
GREB

:::::
model

:::::
based

:::
on

:::::::
Bayesian

:::::::
Networks

:::::
under

::
9

:::::::::::
classifications.
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Figure 8.
:::::
Spatial

:::::::::
distribution

::
of

:::
the

:::::
RMSE

:::
for

::
80

::::::
seasons

::
of

:::
the

:::::::
simulated

:::::::::
temperature

::
of

:::
the

:::::::::
atmosphere.

::
(a)

::::::::
Simulated

::
by

::::::
original

::::::
GREB

:::::
model;

:::
(b)

:::::::
Simulated

::
by

:::::::::
optimizated

::::::
GREB

::::
model

:::::
based

::
on

:::::::
Bayesian

::::::::
Networks

::::
under

:
5
:::::::::::
classifications;

:::
(c)

:::::::
Simulated

:::
by

:::::::::
optimizated

:::::
GREB

:::::
model

:::::
based

::
on

:::::::
Bayesian

::::::::
Networks

::::
under

::
7
:::::::::::
classifications;

::
(d)

::::::::
Simulated

:::
by

:::::::::
optimizated

:::::
GREB

:::::
model

::::
based

:::
on

:::::::
Bayesian

:::::::
Networks

:::::
under

:
9
:::::::::::
classifications.

::
of

:::
the

::::::::::
atmosphere.

::::
The

:::::::::
comparison

::::::
results

::::::::::
demonstrate

::::
that

:::
the

::::::::
improved

::::::
model

::::::::::
significantly

:::::::
reduces

:::
the

:::::
RMSE

::::
and

:::::::
exhibits

:::::::
temporal

::::::::
stability,

::::::::
indicating

::::
the

:::::::::
robustness

::
of

:::
the

:::::::::
improved

::::::
model.

:::::::::
Moreover,

:::
the

::::::
RMSE

::::::
curves

:::
of

:::
the

::::::::
improved

:::::::
models

::::::
exhibit

:::
the

::::
same

::::::::
seasonal

::::
cycle

::
as

:::
the

:::::::
original

::::::
GREB

::::::
model,

::::
with

:::
the

:::::::
smallest

::::::
RMSE

:::::::::
occurring

::
in

:::
the

:::::
fourth

::::::
quarter

::::
and

:::
the420

:::::
largest

::
in

:::
the

:::::
third

::::::
quarter.

::::
This

:::::::
seasonal

::::::
pattern

::::
can

::
be

::::::::
attributed

::
to

:::
the

:::
fact

::::
that

:::
the

::::::::
improved

:::::
model

::
is
:::::
based

:::
on

:::
the

::::::::
modeling

::
of

:::
the

::::::
climate

:::::::
variable

::::::::::
relationship

:::::
within

:::
the

::::::
GREB

::::::
model,

::::
thus

:::::::::
exhibiting

::::::
similar

:::::::
temporal

::::::::
variation

::::::::::::
characteristics

::
to

:::::
those

::
of

:::
the

::::::
GREB

::::::
model,

:::::
which

::::::
reflects

::::
the

:::::::::
coarse-fine

:::::::
structure

:::
of

::::::::
improved

:::::
model

:::::
with

:::
the

::::::
original

::::::
GREB

::::::
model

::
as

:::
the

::::::
global

:::::::::
framework.

::::
The

::::::
RMSE

::::::
trends

::::
over

::::
time

:::::::::::
demonstrate

::::
that

:::
the

::::::::
improved

::::::
model

::
is

:::::::::
temporally

::::::
stable,

::::
and

:::
its

:::::::
accuracy

:::::
does
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Figure 9.
::::
Mean

::
of

:::
the

:::::
spatial

:::::::::
distribution

::
of

:::
the

::::::
RMSE

::
in

::
the

::::::::
latitudinal

::::::::
direction,

::::::
GREB

::::::::
represents

:::
the

:::::
results

::
of

:::
the

::::::
original

::::::
GREB

:::::
model

:::::::::
simulation,

:::::::::
IMPM− 5

::::::::
represents

:::
the

::::::::
simulation

:::::
results

::
of
:::

the
::::::::
improved

:::::
model

::::
under

::
5
:::::::::::
classifications,

:::::::::
IMPM− 7

::::::::
represents

:::
the

::::::::
simulation

:::::
results

::
of

::
the

::::::::
improved

:::::
model

::::
under

::
7

:::::::::::
classifications,

::::::::
IMPM− 9

::::::::
represents

:::
the

::::::::
simulation

:::::
results

::
of

:::
the

:::::::
improved

:::::
model

:::::
under

:
9
:::::::::::
classifications.

::
(a)

::::::::::
Comparison

:::::
results

::
of

:::::::
simulated

::::::::::
temperature;

::
(b)

:::::::::
Comparison

::::::
results

::
of

:::::::
simulated

:::::::::
temperature

::
of

:::
the

:::::::::
atmosphere.

:::
not

::::::
deviate

::::
over

:::::
time.

::::
This

:::::::
renders

:::
the

::::::::
improved

::::::
model

:::::::
suitable

:::
for

:::::::::
simulating

::::::
surface

::::::::::
temperature

::::
and

::::::::::
temperature

:::
of

:::
the425

:::::::::
atmosphere

::::
over

::::
long

::::
time

::::::
series.

:::::::::
divergence

:

4 Conclusions and discussions

In this study, we introduced an improved method of
:
a
:::::::::
coarse-fine

::::::::
structure

::
to

:::::::
improve

:::
the

::::::
GREB

::::::
model

:::::
based

:::
on

::::::::
Bayesian

::::::::
Networks.

::::
The

::::::::
improved

::::::
model

::::
uses the GREB model by Bayes network. It starts from the structural relationship of climate

elements within the GREB model and re-models the climate process by Bayes network, which can be well integrated with the430

observed data to make dynamic corrections with spatial position change to the model simulation process to improve the model

simulation accuracy
:
as

:::
the

:::::
basis

::
of

:::
the

:::::
global

:::::::::
simulation

:::::::::
framework

::::
and

::::
uses

:::
the

:::::::
Bayesian

:::::::::
Networks

::
to

::
do

:::::
local

:::::::::::
optimization.

::
By

::::::::::
introducing

::
a

::::::::
Bayesian

::::::::
Networks,

:::
the

::::::
results

::
of

:::
the

:::::::
original

::::::
GREB

::::::
model

:::
are

::::::
quickly

:::::::::
evaluated

::::
with

:::
the

::::::
climate

::::
state

:::
as

::
the

:::::::::
evaluation

::::::
index,

:::
the

:::::
local

:::::::::::
optimization

:::::
region

::
is
::::::::::

confirmed,
:::
and

:::
the

::::::::::
simulation

::::::
results

::
of

:::
the

::::::
GREB

::::::
model

::::::
within

:::
the

::::::::::
optimization

::::::
region

:::
are

::::::::::
recalculated,

::::::
which

:::::
makes

:::
the

::::::
model

:::::::
accuracy

:::::::::::
significantly

::::::::
improved.435

The improved model was verified
::::::::
evaluated

:
by two cases: surface temperature and atmospheric temperature

::::::::::
temperature

::
of

::
the

::::::::::
atmosphere. The simulation results of the improved model show that the improved model has higher average accuracy and

lower spatial variability compared to the
:::::::
original GREB model. This means that the improved model has better applicability

and stability on a global scale. Although the simulation results of the improved model do not yield specific numerical solutions,

but only climate states, they can still be applied well in studies on climate sensitivity(Dommenget, 2016; Kutzbach et al., 2013),440

extreme weather(Bellprat and Doblas-Reyes, 2016; Chen et al., 2018), and climate threshold(Mahlstein et al., 2015; Vogel et al., 2020)

, where the climate anomalies characterized by climate states can be a good indicator of climate change trends.
:::::::::
Meanwhile,

:::
on

::
the

:::::
time

:::::
scale,

:::
the

:::::
model

:::::::::
maintains

::::
good

:::::::::
robustness

:::
and

:::::
does

:::
not

:::::
suffer

::::
from

:::
the

::::::::
problem

::
of

::::::::
accuracy

:::::::
diverges

::
of

:::::::::
traditional

::::::::
statistical

::::::
models

::::::
because

:::
the

::::::::
improved

::::::
model

:::
uses

:::
the

::::::
GREB

:::::
model

::
as

:::
the

:::::
basic

:::::
global

::::::::::
framework. The results of the two study

cases not only demonstrate that the improved method can also be used for the simulation of other climate elements
:::::::
variables445
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Fig 4. Comparison result of the average accuracy of different methods. Fig 5. Comparison results of the accuracy of simulation results of

surface average temperature. (a) IMPM under 5 classification; (b) IMPM under 7 classification; (c) IMPM under 9 classification; (d) GREB

under 5 classification; (D) IMPM under 7 classification; (E) IMPM under 9 classification. Fig 6. Comparison results of the accuracy of

simulation results of atmospheric average temperature. (a) IMPM under 5 classification; (b) IMPM under 7 classification; (c) IMPM under 9

classification; (d) GREB under 5 classification; (D) IMPM under 7 classification; (E) IMPM under 9 classification. Fig 7. Average accuracy

variation trend results of latitude. (a) surface average temperature ; (b) atmospheric average temperature .

Figure 10.
:::::::
Quarterly

::::::::
variability

:::
and

:::::
trends

::
of
::::::

RMSE
::::::
between

:::::
1995

:::
and

::::
2014,

::::::
GREB

::::::::
represents

:::
the

:::::
results

::
of
:::

the
::::::
original

::::::
GREB

:::::
model

::::::::
simulation,

:::::::::
IMPM− 5

:::::::
represents

:::
the

:::::
results

::
of

::
the

::::::::
improved

::::
model

:::::
under

:
5
:::::::::::
classifications,

:::::::::
IMPM− 7

:::::::
represents

:::
the

:::::
results

::
of

:::
the

:::::::
improved

:::::
model

:::::
under

::
7

:::::::::::
classifications,

:::::::::
IMPM− 9

::::::::
represents

::
the

::::::
results

::
of

:::
the

:::::::
improved

:::::
model

:::::
under

:
9
:::::::::::
classifications.

:::
(a)

:::::::::
Comparison

::::::
results

::
of

:::::::
simulated

::::::
surface

::::::
average

:::::::::
temperature;

:::
(b)

:::::::::
Comparison

:::::
results

::
of

::::::::
simulated

:::::::::
atmospheric

::::::
average

:::::::::
temperature.

within the GREB model. It also reveals that improving dynamical models through statistical methods such as Bayes networks is

potential means to improve
:::
the

::::::::::
construction

::
of

:::::::::
coarse-fine

:::::::
models

::::::
through

::
a

::::::::::
combination

::
of

:::::::::
dynamical

:::
and

::::::::
statistical

::::::::
methods

::
as

:
a
::::::::
potential

:::::
means

::
of

:::::::::
improving

:
climate simulation and prediction. This improved approach can overcome the shortcomings

of a single dynamical model that cannot accurately describe many nonlinear processes in the climate system and can be ap-

plied to other dynamical models. In terms of development, the improved methods for improving climate dynamical models by450

statistical methods show great possibilities for improving the accuracy of climate predictions.

::
In

:::::::
addition

::
to

::
the

:::::::::
improved

:::::
model

::::
with

::::::::
improved

::::::::
accuracy,

:::
the

::::::
concept

::
of

:::::::::
evaluation

:::::::
through

::::::
climate

::::
state

:::::::::
introduced

::::::
during

::
the

:::::::::::
construction

::
of

:::
the

:::::::::
coarse-fine

:::::
model

:::
can

:::
be

:::
well

::
in

::::::
studies

:::
on

::::::
climate

:::::::::::::::::::::::::::::::::::::::::::
sensitivity(Dommenget, 2016; Kutzbach et al., 2013)
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:
,
::::::
extreme

::::::::::::::::::::::::::::::::::::::::::::::::::
weather(Bellprat and Doblas-Reyes, 2016; Chen et al., 2018),

:::
and

:::::::
climate

:::::::::::::::::::::::::::::::::::::::::
threshold(Mahlstein et al., 2015; Vogel et al., 2020)

:
,
:::::
where

:::
the

::::::
climate

:::::::::
anomalies

:::::::::::
characterized

::
by

:::::::
climate

::::
state

:::
can

:::
be

:
a
:::::
good

:::::::
indicator

::
of

:::::::
climate

::::::
change

::::::
trends.455

However, this improved method still has some shortcomings.1) The scientific problem of state classification of climate

element
:::::::::::
categorization

::
of

:::::::
climate

::::::::
variables attribute features. In this paper, the

::::::
climate

:
state of each node is classified by the

Natural Breaks
:::::::
variables

::
is

::::::::
indicated

::
by

:::
the

::::::::::::
classifications

::::::::::
categorized

::
by

:::
the

:::::::
Natural

::::::
Breaks

:::::::::::
classification method according

to the data characteristics and statistical laws
:::::::::
regularities

:
of the climate model, but this classification method changes with the

data, and the data-based classification model may not be consistent with the actual climate evolution law
:::::
pattern. Therefore,460

the following studies can discuss related issues and choose the appropriate feature classification criteria to achieve a balance

between different simulation.2
:
.
:
2) Balance of accuracy and resolution. If the actual values

:::::::
numeric rather than states are used as

the calculation parameters, a higher resolution will be obtained, and of course the training data for each case will be reduced,

which leads to the loss of accuracy. How to achieve the balance of accuracy and resolution will be an important issue. 3)

Applicability of climate evolution models based on Bayesian networks
::::::::
Networks. Stable conditional probability tables can be465

trained with historical climate data to simulate climate states
::::
state, but conditional probability tables cannot change over time

and cannot be adapted to time-sensitive climate models. The following study can extend the applicability of the method by

dynamically training Bayes networks
::::::::
Bayesian

::::::::
Networks on climate data.

Code availability. The improved method in this paper was conducted in MATLAB R2021a. The code of the improved method used in this

paper is archived on Zenodo(https://doi.org/10.5281/zenodo.7031997). The original GREB model uses the model code from the Monash470

Simple Climate Model (MSCM) laboratory repository for the GREB model and runs the code using the Fortran language. The model code

is available from https://doi.org/10.5281/zenodo.2232282

Data availability. The data used in this paper is is archived on Zenodo(https://doi.org/10.5281/zenodo.7031997). The data used for the

analysis in this paper have been pre-processed and the original data can be gotten from Environmental Predic-tion(NCEP)/ National Center

for Atmospheric Research(NCAR), download from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html475

Appendix A:
::::
State

::::::::
accuracy

:::::::::::
comparison

::
In

::::
order

:::
to

:::::
verify

:::
the

::::::::
reliability

::
of

:::
the

:::::::::
simulated

::::::
climate

::::
state

:::::
using

:::
the

::::::::
Bayesian

::::::::
Networks

::::
and

::
to

::::::
provide

::
a

::::
basis

:::
for

:::::::
guiding

::
the

:::::::::::
optimization

::
of

:::
the

::::::
GREB

::::
local

:::::::::
simulation

::::::
result,

:::
the

::::
state

:::::::
accuracy

::::::::::::::
(dimensionless)

:::
was

::::
used

::
to

:::::::
evaluate

:::
the

:::::::::
reliability

::
of

::
the

:::::::::
simulated

::::::
climate

:::::
state,

:::::
which

::
is

::::::::
expressed

:::
as:

:

State accuracy =
n

N
:::::::::::::::::

(A1)480
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Figure A1.
::::::::
Comparison

::::::
results

:
of
:::
the

::::
mean

::
of
::::
state

:::::::
accuracy

::
of

::::::
different

:::::::
methods.

::
5,

::
7,

:
9
:::
are

::::::
different

:::::::::::
classifications;

:::::::::
BN−Tsurf::::::::

represents

::
the

:::::
mean

::
of

:::
state

:::::::
accuracy

::
of
::::::
surface

:::::::::
temperature

::
by

::::::::
Bayesian

:::::::
Networks

:::::::::
simulation;

:::::::::::
GREB−Tsurf::::::::

represents
:::
the

::::
mean

::
of

::::
state

:::::::
accuracy

:
of
::::::

surface
:::::::::
temperature

:::
by

:::::
GREB

:::::
model;

::::::::::
BN−Tatmos::::::::

represents
:::
the

::::
mean

::
of

::::
state

:::::::
accuracy

::
of

:::::::::
temperature

::
of

:::
the

::::::::
atmosphere

:::
by

:::::::
Bayesian

:::::::
Networks

:::::::::
simulation;

::::::::::::
GREB−Tatmos::::::::

represents
::
the

:::::
mean

::
of

::::
state

::::::
accuracy

::
of

:::::::::
temperature

::
of

:::
the

:::::::::
atmosphere

::
by

:::::
GREB

:::::
model

:::::::::
simulation.

:::::
Where

::
n
:::::::::
represents

:::
the

::::::
number

::
of
:::::

time
:::::
series

::
in

:::::
which

:::
the

::::::::
simulated

:::::
state

::::
value

:::
of

:
a
::::
grid

::
is

:::
the

::::
same

::
as

:::
the

::::::
actual

::::
state

:::::
value

::
in

:::
the

::::
time

:::::
series,

:::
in

:::
this

::::
case

:::::
refers

:::
to

:::
the

::::::
number

:::
of

:::::::
seasons;

::
N

:::::::::
represents

:::
the

::::
total

:::::::
number

:::
of

::::
time

:::::
series.

:::::
State

::::::::
accuracy

:::::
means

:::
the

:::::
same

:::::::::
proportion

::
of

::::::::
simulated

:::
and

::::::
actual

:::::
states

::
in

:::
the

::::
same

::::
grid.

:::
The

:::::::::
numerical

:::::
results

:::::::::
simulated

::
by

:::
the

:::::::
original

::::::
GREB

::::::
model

:::
are

::::
also

::::::::::
transformed

:::
into

:::::::
climate

::::
state

:::
by

:::
the

::::::
natural

::::::
breaks

::::::::::
classification

:::::::
method

:::
for

::::::::::
comparative

:::::::::
evaluation.

:::::
State

:::::::
accuracy

::::::::
averaged

::::
over

:::::
space

::
of

:::::::
different

::::::::
processes

:::::
from

::::
1985

::
to

:::::
1994485

:
is
::::::
shown

::
in
::::::

Figure
::::
A1,

:::
and

::::
the

::::
state

::::::::
accuracy

::
of

:::
the

::::::
surface

:::::::::::
temperature

:::
and

:::
the

::::::::::
temperature

:::
of

:::
the

::::::::::
atmosphere

:::
are

::::::
shown

::
in

:::::
Figure

:::
A2

::::
and

:::
A3.

::::::::
Overall,

:::
the

:::::::::
comparison

::::::
results

:::::::
(Figure

::::
A1)

::::
show

::::
that

:::
the

::::::::
Bayesian

::::::::
Networks

:::
has

::
a
::::::
higher

:::::::::
simulation

::::
state

:::::::
accuracy

:::
in

::::
both

::::::
surface

::::::::::
temperature

::::
and

:::
the

::::::::::
temperature

:::
of

:::
the

::::::::::
atmosphere.

::::
This

::::::
higher

:::::
state

:::::::
accuracy

::::::::
indicates

::::
that

::
the

::::::::
Bayesian

:::::::::
Networks

::::::::
simulates

::::::
climate

::::
state

:::::
better

::::
than

:::
the

::::::
GREB

::::::
model,

::::::
which

:::::::
provides

::
a

::::
basis

:::
for

:::::::::
evaluating

:::
the

::::::
GREB

:::::
model

::::::::::
simulations

::::
with

::::::::
Bayesian

::::::::
Networks

:::::::::
simulation

:::::::
results.

:::::::
Intrinsic

::
to

:::
this

::::::
result

:
is
:::

the
::::

fact
::::
that

::::
since

:::::
more

:::::::::::
observations490

::
are

::::::::
involved

::
in

:::
the

:::::::::
simulation

::::::
process

:::
(in

:::
the

::::::::::
construction

::
of

::::::::::
conditional

:::::::::
probability

::::::
tables)

::
in

:::::::
Bayesian

:::::::::
Networks

::::::::::
simulations,

:::
this

::::::
allows

:::
the

:::::::
Bayesian

:::::::::
Networks

:::::::
response

::
to

:::::::
climate

:::::::
localized

::::::
abrupt

:::::::
changes

::
to

::
be

:::::
more

::::::::::
pronounced.

:::::
When

:
it
::::::
comes

::
to

:::
the

:::::::
number

::
of

:::::::::::
classification,

:::
the

::::
total

:::::::
number

::
of

::::
data

:::::::
remains

::::::::::
unchanged,

::
as

:::
the

:::::::
number

::
of

:::::::::::
classification

::::::::
increases,

:::
the

::::::
number

:::
of

::::::
training

::::
data

:::
per

:::::::::::
classification

:::::::::
decreases,

:
it
::::::
results

::
in

::
a

:::::::
decrease

::
in

:::
the

::::::::
accuracy

::
of

:::
the

::::::::::
simulations

::
of

::
the

::::
two

::::::::
methods.

::::
This

::::::
implies

:::
that

:::
the

::::::::
accuracy

::
of

:::
the

:::::::::
simulation

:::
can

::
be

::::::::
stabilized

::
at

:
a
::::
high

:::::
level

:::::
when

::::
there

::
is

::::::
enough

:::::::
training495

:::
data

::
in
:::
the

::::::::::
long-period

::::::::::
simulation.

::::::
Figures

:::
A2

:::
and

:::
A3

::::::::
elucidate

::
the

::::::
spatial

::::::::::
distribution

::::::::::::
characteristics

::
of

::
the

:::::
state

:::::::
accuracy

::
of

:::
the

::::::::
Bayesian

::::::::
Networks

:::::::::
simulation

:::
and

::::
that

::
of

:::
the

::::::
GREB

::::::
model

::::::::::
simulation,

::::::
which

:::::::
provides

::
a
:::::
basis

:::
for

:::
the

::::::::::
subsequent

:::::::
selection

:::
of

:::::::
regions

:::
for

:::::::::::
recalculating

::
of

::::::
GREB

:::::::::
simulation

::::
data

::::::
based

:::
on

::::::::
Bayesian

::::::::
Networks

::::::::::
simulation

::::::
result.

::::
The

::::
state

::::::::
accuracy

:::
of

:::
the

::::::::
Bayesian

:::::::::
Networks

::::::::
simulation

::::::
result

::
is

::::::::
relatively

:::::::
uniform

::
in
::::::

spatial
::::::::::

distribution
::::

and
:::
has

:::
no

:::::::
obvious

::::::
spatial

:::::::::::::
characteristics.

::::::::
However,

:::
the

:::::
state500

:::::::
accuracy

::
of

::::
the

::::::
GREB

:::::
model

::::
has

:::::::
obvious

::::::::::::
characteristics

::
of

:::::::
latitude

:::::::::::::
differentiation.

:::::
Based

:::
on

::::::
above,

:::
the

::::
state

::::::::
accuracy

:::
on

::
the

:::::
space

::
is
::::::::

averaged
:::::
along

:::
the

:::::::::
latitudinal

::::::::
direction

::
as

::::::
shown

::
in

::::::
Figure

:::
A4.

::::
The

::::::::
variances

::
of
::::

the
::::
state

::::::::
accuracy

::
of

::::::::
Bayesian
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Figure A2.
:::::::::
Comparison

:::::
results

::
of

::
the

::::
state

:::::::
accuracy

::
of

::::::::
simulation

:::::
results

::
of
::::::

surface
::::::::::
temperature.

::
(a)

::::
State

:::::::
accuracy

::
of

:::::::
Bayesian

::::::::
Networks

::::
under

::
5

:::::::::::
classifications;

::
(b)

::::
State

:::::::
accuracy

::
of
::::::::

Bayesian
:::::::
Networks

:::::
under

:
7
:::::::::::
classifications;

:::
(c)

::::
State

:::::::
accuracy

::
of

:::::::
Bayesian

::::::::
Networks

::::
under

::
9

:::::::::::
classifications;

::
(d)

::::
State

:::::::
accuracy

::
of

:::
the

:::::
GREB

:::::
model

::::
under

::
5

:::::::::::
classifications;

::
(e)

::::
State

:::::::
accuracy

::
of

:::
the

:::::
GREB

:::::
model

::::
under

::
7

:::::::::::
classifications;

::
(f)

::::
State

:::::::
accuracy

::
of

::
the

::::::
GREB

::::
model

:::::
under

:
9
:::::::::::
classifications.

::::::::
Networks

:::::::::
simulation

:::::
result

::
in

:::
six

:::::
cases

:::
are

:::::
0.016

:::::::::::::::
(BN− 5−Tsurf ),:::::

0.014
:::::::::::::::
(BN− 7−Tsurf ),:::::

0.014
::::::::::::::::

(BN− 9−Tsurf ), :::::
0.017

::::::::::::::::
(BN− 5−Tatmos),:::::

0.008
::::::::::::::::
(BN− 7−Tatmos),:::::

0.004
:::::::::::::::::
(BN− 9−Tatmos),:::

and
:::
the

::::::::
variances

::
of

:::::
state

:::::::
accuracy

::
of

::::::
GREB

::::::
model

::::::::
simulation

:::::
result

:::
in

:::
six

::::
cases

:::
are

:::::
0.089

::::::::::::::::::
(GREB− 5−Tsurf ),::::::

0.070
::::::::::::::::::
(GREB− 7−Tsurf ), :::::

0.060
::::::::::::::::::
(GREB− 7−Tsurf ), :::::

0.077505

:::::::::::::::::::
(GREB− 5−Tatmos),:::::

0.054
:::::::::::::::::::
(GREB− 7−Tatmos),:::::

0.036
:::::::::::::::::::
(GREB− 9−Tatmos).::::

The
:::::::
variance

:::::::
indicates

::::
that

:::
the

:::::::::
fluctuation

::::
range

:::
of

::
the

:::::
state

:::::::
accuracy

::
of

:::
the

::::::::
Bayesian

::::::::
Networks

::
is

:::::
much

::::::
smaller

::::
than

:::
that

::
of

:::
the

::::::
GREB

:::::
model

:::::
along

:::
the

:::::::
latitude

::::::::
direction.

::::
This

:::::
means

::::
that

:::::::
Bayesian

:::::::::
Networks

::::
have

:
a
:::::
wide

:::::
range

::
of

::::::::::
applications

::
in

::::::
global

::::::
climate

::::
state

::::::::::
simulation.

::::::::
Although

:::
the

::::::::
Bayesian

::::::::
Networks

::::
has

::::::
higher

::::
state

::::::::
accuracy

::
in

::::
both

:::::::::::
simulations,

:::
we

::::
also

:::::
found

::::
that

:::
the

:::::
state

:::::::::
simulation

:::::::
accuracy

::
of
::::

the
::::::
GREB

::::::
model

::
in

:::
the

:::::
range

:::
of

::::
30◦S

:::
to

:::::
30◦N

:::::
tends

::
to

:::
be

::::::
higher

::::
than

:::
that

:::
of

:::
the

::::::::
Bayesian

:::::::::
Networks

:::::
when510

::
the

::::::::::::
classification

:::::::
numbers

:::
are

::
5,
:::

7,
:::
and

::
9
::
in

:::
the

:::::::
surface

::::::::::
temperature

:::::::::
simulation.

:::::::::
Therefore,

:::
we

:::::
think

::::
that

:::
the

::::::
GREB

::::::
model

:::
can

:::::::::
accurately

::::::::
represent

:::
the

::::::
surface

::::::::::
temperature

:::::::::
simulation

:::::::
process

::
in

::::
this

:::::
range,

::::
and

:::::
there

::
is

::
no

::::::
abrupt

::::::
change

::::::
region

::::
that

:::::
cannot

:::
be

:::::::::
expressed,

::
so

::
in

:::
the

::::::::::
subsequent

:::::::::::
optimization,

::::
only

:::
the

:::::
range

:::
of

::::
90◦N

:::
to

:::::
30◦N

:::
and

::::
30◦s

::
to
:::::

90◦N
::

is
:::::::
selected

:::
as

:::
the

::::::::::
optimization

::::::
region

:::
for

::::::
surface

::::::::::
temperature

:::::::::
simulation.

:

:::::
Based

::
on

:::
the

::::::
above

::::::::::
comparative

:::::::
analysis

::
of

:::
the

::::
state

::::::::
accuracy

::
of

::::::::
Bayesian

::::::::
Networks

::::::::::
simulations

::::
and

:::
the

::::
state

::::::::
accuracy

::
of515

:::::
GREB

::::::
model

::::::::::
simulations,

:::
the

:::::
range

::
of

:::::
90◦N

::
to

:::::
30◦N

:::
and

:::::
30◦S

::
to

:::::
90◦S

:::
was

:::::::
selected

::
as

:::
the

::::::::
empirical

:::::::::
parameter

:::
for

:::
the

:::::
range
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Figure A3.
::::::::
Comparison

::::::
results

::
of

::
the

::::
state

:::::::
accuracy

::
of

::::::::
simulation

:::::
results

::
of

:::::::::
temperature

::
of
:::
the

:::::::::
atmosphere.

:::
(a)

::::
State

:::::::
accuracy

::
of

:::::::
Bayesian

:::::::
Networks

:::::
under

:
5
:::::::::::
classifications;

:::
(b)

::::
State

::::::
accuracy

::
of
:::::::
Bayesian

::::::::
Networks

::::
under

::
7
:::::::::::
classifications;

::
(c)

::::
State

:::::::
accuracy

::
of

:::::::
Bayesian

::::::::
Networks

::::
under

::
9

:::::::::::
classifications;

:::
(d)

::::
State

:::::::
accuracy

::
of
:::

the
::::::
GREB

:::::
model

:::::
under

:
5
::::::::::::

classifications;
::
(e)

:::::
State

:::::::
accuracy

::
of

:::
the

:::::
GREB

:::::
model

:::::
under

::
7

:::::::::::
classifications;

::
(f)

::::
State

:::::::
accuracy

::
of

::
the

::::::
GREB

:::::
model

::::
under

:
9
:::::::::::
classifications.

::
of

:::::::::
subsequent

::::
data

:::::::::::
recalculating

::
in
:::::::

surface
::::::::::
temperature

::::::::::
simulations,

::::
and

:::
the

::::::
global

:::::
range

::::
was

:::::::
selected

::
as

:::
the

:::::
range

:::
of

::::
data

::::::::::
recalculating

::
in
::::::::::
temperature

:::
of

:::
the

:::::::::
atmosphere

::::::::::
simulations.

:

Appendix B: Tables

Table A1. Five levels of
:::::::::
classification

::
to

::::::
indicate

:
climate elements stateclassification

State T
:::::
Tsurf (K) A

:::::
Tatmos(K) S

:::::
Fsolar(W/m2) O

:::::
Tocean(◦C) W

:::
qair(kg/kg) C

::::
CLD(kg/kg) V

::

→
u (m/s)

1 <242.73 <198.30 <131.69 <3.44 <0.003 <33.06 <-3.44

2 242.73-264.81 198.29-205.11 131.69-160.62 3.44-10.82 0.003-0.007 33.06-45.51 -3.44 - -0.9

3 264.81-279.03 205.11-212.03 160.62-193.67 10.82-17.86 0.007-0.011 45.51-56.24 -0.90 - 1.51

4 279.03-291.24 212.03-217 193.67-224.48 17.86-24.17 0.011-0.016 56.24-66.1 1.51 - 4.55

5 >291.24 >217.00 >224.48 >24.17 >0.016 >66.10 >4.55
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Figure A4.
:::::
Mean

:
of
:::
the

:::::
spatial

:::::::::
distribution

::
of

::
the

::::
state

:::::::
accuracy

::
in

::
the

::::::::
latitudinal

:::::::
direction,

::::::
BN− 5

::::::::
represents

::
the

::::
state

:::::::
accuracy

::
of

:::::::
Bayesian

:::::::
Networks

:::::
under

::::
state

::::::::::
classification

:::::::::
simulation,

::::::
BN− 7

::::::::
represents

:::
the

::::
state

:::::::
accuracy

::
of

::::::::
Bayesian

:::::::
Networks

:::::
under

::
7

::::
state

::::::::::
classification

::::::::
simulation,

::::::
BN− 9

::::::::
represents

:::
the

::::
state

:::::::
accuracy

::
of

:::::::
Bayesian

::::::::
Networks

::::
under

::
9

::::
state

::::::::::
classification

::::::::
simulation,

:::::::::
GREB− 5

::::::::
represents

:::
the

:::
state

:::::::
accuracy

::
of
:::

the
::::::
GREB

:::::
model

::::
under

::
5
::::
state

::::::::::
classification

:::::::::
simulation,

:::::::::
GREB− 7

::::::::
represents

::
the

::::
state

:::::::
accuracy

::
of
:::

the
::::::
GREB

:::::
model

::::
under

:
7
::::

state
::::::::::
classification

:::::::::
simulation,

:::::::::
GREB− 9

:::::::
represents

:::
the

::::
state

:::::::
accuracy

::
of

::
the

::::::
GREB

:::::
model

::::
under

::
9

:::
state

::::::::::
classification

:::::::::
simulation.

::
(a)

:::::::::
comparison

:::::
results

::
of

::::::
surface

:::::::::
temperature;

:::
(b)

:::::::::
comparison

:::::
results

::
of

:::::::::
temperature

::
of

::
the

:::::::::
atmosphere.

Table A2. Seven levels of
:::::::::
classification

::
to
::::::
indicate

:
climate elements stateclassification

State T
:::::
Tsurf (K) A

:::::
Tatmos(K) S

:::::
Fsolar(W/m2) O

:::::
Tocean(◦C) W

:::
qair(kg/kg) C

::::
CLD(kg/kg) V

::

→
u (m/s)

1 <236.92 <196.02 <122.28 <1.97 <0.003 <28.24 <-4.94

2 236.92-252.70 196.02-200.22 122.28-139.30 1.97-6.54 0.003-0.005 28.24-38.05 -4.94 - -2.56

3 252.70-264.68 200.22-205.53 139.30-162.10 6.54-11.51 0.005-0.008 38.05-46.85 -2.56 - -0.53

4 264.68-275.57 205.53-210.36 162.10-188.67 11.51-16.79 0.008-0.011 46.85-54.51 -0.53-1.14

5 275.57-285.52 >210.36-214.34 188.67-212.89 >16.79-21.61 0.011-0.014 >54.51-61.71 1.14-3.16

6 285.52-294.63 >210.34-217.89 212.89-237.12 >21.61-25.76 0.014-0.017 >61.71-69.05 3.16-5.66

7 >294.63 >217.89 >237.12 >25.76 >0.017 >69.05 >5.66
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Table A3. Nine levels of
::::::::::
classification

::
to

::::::
indicate climate elements stateclassification

State T
:::::
Tsurf (K) A

:::::
Tatmos(K) S

:::::
Fsolar(W/m2) O

:::::
Tocean(◦C) W

:::
qair(kg/kg) C

::::
CLD(kg/kg) V

::

→
u (m/s)

1 <235.71 <195.10 <121.03 <-0.67 <0.001 <25.31 <-5.37

2 235.71-250.23 195.10-198.07 121.03-136.52 -0.67-2.24 0.001-0.00 25.31-33.31 -5.37- -3.41

3 250.23-259.75 198.07-201.69 136.52-154.71 2.24-6.58 0.003-0.005 33.31-40.68 -3.41- -1.65

4 259.75-268.10 201.69-206.06 154.71-174.83 6.58-11.23 0.005-0.008 40.68-47.40 -1.65 - -0.26

5 268.10-276.19 >206.06-209.96 174.83-193.40 11.23-15.91 0.008-0.01 47.40-53.36 -0.26-0.95

6 276.19-283.38 >209.96-213.38 193.40-210.80 15.91-19.99 0.01-0.013 53.36-59.13 0.95-2.38

7 283.38-290.23 >213.38-216.46 210.80-227.90 19.99-23.60 0.013-0.015 59.13-64.92 2.38-4.18

8 290.23-296.32 >216.46-218.86 227.90-248.00 23.60-26.67 0.015-0.018 64.92-70.91 4.18-6.26

9 >296.32 >218.86 >248.00 >26.67 >0.018 >70.91 >6.26
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