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Abstract.
::::
The

:::::::
accurate

:::::::::
simulation

::
of

::::::
climate

::
is

::::::
always

::::::::
critically

::::::::
important

:::
and

::::
also

::
a

::::::::
challenge.

:
This study introduces an im-

proved method of the Globally Resolved Energy Balance Model (GREB) by the Bayes network. Starting from climate elements

relationship included in
::::::::
Bayesian

::::::::
Networks

:::::
based

:::
on

:::
the

:::::::
concept

:::
of

:::::::::
coarse-fine

:::::::
model.

::::
The

::::::::
improved

:::::::
method

:::::::::
constructs

:
a
:::::::::
coarse-fine

::::::::
structure

::::
that

::::::::
combines

::
a
:::::::::
dynamical

::::::
model

::::
with

::
a
::::::::
statistical

::::::
model

:::::
based

:::
on

:::::::::
employing

:
the GREB model ,5

we reconstruct the model by Bayes network to solve the problem of low model accuracy due to over-reliance on boundary

conditions and initial conditions and inability to use observed data for dynamic correction of model parameters. The improved

model
:
as

::::
the

:::::
global

::::::::::
framework,

::::
and

:::::::
utilizing

::
a
::::::::
Bayesian

:::::::::
Networks

::::::::::
constructed

:::
on

:::
the

::::::::::::::
interrelationships

::::::::
between

:::::::
internal

::::::
climate

::::::::
variables

::
of

:::
the

:::::
GREB

::::::
model

::
to

::::::
achieve

:::::
local

:::::::::::
optimization.

::
To

:::::::::
objectively

:::::::
validate

:::
the

:::::::::::
performance

:::
and

::::::::::::
generalization

::
of

:::
the

::::::::
improved

:::::::
method,

::::
the

::::::
method

:
is applied to the simulation of surface average temperature and atmospheric average10

temperature
::::::::::
temperature

:::
and

:::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:
based on the 3.75◦ × 3.75◦ global data sets by Environmental

Prediction (NCEP)/ National Center for Atmospheric Research(NCAR) from 1985 to 2014. The results illustrate
::::::::::
demonstrate

that the improved model has
::::::
exhibits

:
higher average accuracy and lower spatial differentiation than the original GREB model.

And the ,
::::
and

::
is

:::::::::
robustness

::
in

::::::::
long-term

::::::::::
simulations.

::::
This

::::::::
approach

::::::::
addresses

::::::
issues

::::
with

:::
the

:::::::
accuracy

::
of

:::
the

::::::
GREB

::::::
model

::
in

::::
local

:::::
areas,

:::::
which

::::
can

::
be

::::::::
attributed

:::
to

::
an

:::::::::::
over-reliance

:::
on

::::::::
boundary

:::
and

:::::
initial

::::::::::
conditions,

:::
and

::
a

::::
lack

::
of

::::
fully

:::::
using

::::::::
observed15

::::
data.

:::::::::::
Additionally,

::
it

:::::::::
overcomes

:::
the

::::::::
challenge

:::
of

::::
poor

:::::::::
robustness

::
in

::::::::
statistical

:::::::
models

:::
due

:::
to

:::::::::
ambiguous

::::::
climate

::::::::::
inclusions.

:::::
Thus,

::
the

:
improved method provides a strong support for other dynamic model improvements.

::::::::
promising

::::
way

::
to

::::
give

::::::
reliable

::::
and

:::::
stable

:::::::::
simulation

::
of

:::::::
climate.
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1 Introduction

As the global warming progresses, extreme events and meteorological disasters occur frequently(Grant, 2017). Thus, the sim-20

ulation and prediction of climate have become an important topic in current scientific research ( Huang et al., 2019). Climate

model is a model that describes the change law of climatesystem, such as the change law of climate, ocean,
:::
for

:::
the

:::::::::
conceptual

:::::::::::
understanding

::::
and

:::::::::::
development

::
of

::::::::::
hypotheses

:::
for

::::::
climate

::::::
change

::::::::::::::::::::::::::::::::::::::::::::::::
studies(Dommenget and Flöter, 2011; Huang et al., 2019)

:
.
::::::
Climate

:::::::
models

:::
are

:::::::::::
mathematical

:::::::
models

:::
that

::::::::
describe

:::
the

::::::::
temporal

::::::::
evolution

::
of

:::::::
climate,

:::::::
oceans, atmosphere, ice, etc.

:::
and

:::::::
land-use

:::::::::
processes,

:::::
across

::
a

::::::
spatial

::::::
domain

:::
via

:::::::
systems

::
of

::::::
partial

::::::::::
differential

::::::::
equations(Berrocal et al., 2012), which can be25

solved by supercomputer and is an important tool for simulating and predicting future climate change(Kay, 2020).

Generally, climate models mainly include two categories, dynamic model and statistical model. Dynamic model can well

understand and express the dynamic process of climate by modeling various complex climate processes or interactions, but it

still faces two major problems: i) The simulation process overly relies on initial conditions and boundary conditions(Alley et

al., 2019; Zhang et al., 2019; Ludescher et al., 2021); ii) The climate model is too complicated, and its internal characteristics30

cannot be fully expressed(Fan et al., 2021; Zou et al., 2019; Feng et al., 2020). The Globally Resolved Energy Balance Model

(GREB) is a simple but representative dynamic model, which is based on energy balance theory(Dommenget and Flöter,

2011). Compared with other dynamic models, the GREB model is a relatively fast tool
::
for

:::
the

:::::::::
conceptual

::::::::::::
understanding

::::
and

::::::::::
development

:::
of

:::::::::
hypotheses

:::
for

:::::::
climate

::::::
change

:::::::
studies, because it computes about one model year per second on a standard

personal computer, which allows conducting sensitivity studies to external forcing within minutes to hours(Dommenget and35

Flöter, 2011; Dommenget, 2016; Stassen et al., 2019). However, in addition to the two main problems of dynamic models,

the GREB model also faces the problem that the model does not respond well to anomalous climate change because the

parameters of the GREB model are predetermined and the observed data can hardly be used to dynamically correct the model

parameters(Dommenget and Flöter, 2011; Dommenget, 2016). How to solve these problems is an important research topic to

improve the GREB model and further extend it to other dynamic models.40

On the contrary, statistical model, as another type of climate models, can make good use of historical observation data to

dynamically modify the models from data(Feng et al., 2020), and solve the problem that dynamic climate models rely too much

on initial and boundary conditions and underutilize full observation data. Therefore, it provides a possible way to solve those

defects of the dynamical model by combining that with the statistical model. Bayes network
:::::::
Bayesian

::::::::
Networks

:
is a statistical

method which combines graph theory and probability (Cai et al., 2013, 2019; Jansen et al., 2003). The method uses graph to45

express the structure relation of the variables related to the model and has the characteristics of structuring and quantifying the

object relation through the causal relation among the parts of the probability computing system(Pearl, 1986), variable logic

reasoning and predictive simulation can be realized, and it can use a large amount of historical observation data. As described,

it is a possible way to improve the GREB model by the Bayes network
:::::::
Bayesian

::::::::
Networks.

This50

:::
The

:::::::
concept

::
of

:::::::::
coarse-fine

::::::
model

:::::::
provides

::
a

::::
joint

::::::::
modeling

::::::::
approach

::
of

:::::::::::::::::
dynamical-statistical

::::::
hybrid

:::::
model

::::
that

:
is
::::::::
different

::::
from

:::
the

::::::::
traditional

:::
use

:::
of

::::::::
statistical

:::::
model

::
to

:::::::
optimize

:::
the

::::::::
empirical

:::::::::
parameters

::
of

:::
the

:::::::::
dynamical

::::::
model.

::
It

::::
starts

::::
from

::::::::
different
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:::::
coarse

::::
and

:::
fine

:::::::::
granularity

:::
of

:::
the

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
model(Akgul and Kambhamettu, 2003; Pal and Bhattacharya, 2010; Yibo et al., 2009)

:
,
::::
uses

::
the

:::::::::
dynamical

::::::
model

::
as

::
a
::::::
global

:::::::::
framework

:::
and

:::::
uses

:::
the

::::::::
statistical

:::::
model

:::
to

::
do

:::::
local

:::::::::::
optimization,

::::
and

::::::
realizes

::::
the

::::::
unified

::::::::
modeling

::
of

::::
both.

:::::
Based

:::
on

:::
this

::::
idea,

:::
this

:
paper introduces a method for improving the GREB model by the Bayes network

::::::::
Bayesian55

::::::::
Networks. The aim of method is to solve the problem of low model accuracy due to over-reliance on boundary conditions

and initial conditions and inability to use observed datafor dynamic correction of model parameters
::::
fully

::::::
utilize

::::::::
historical

:::::::::
observation

::::
data. The following section presents the original GREB model and the

:::::::
improved

:
method. Section 3 presents the

study case and data sets to test the new improved model. Finally, we give a discussion and conclusion of the results.

2 Methods60

The improved method is developed according to the following procedure. First, the climate elements contained in
::::::
Firstly,

::::::
climate

::::::::
variables

::::::::::
representing

:
different climate processes are selected as nodes

:::::
chosen

::
as
::::::

nodes
::
in

:::
the

::::::::
Bayesian

:::::::::
Networks

:::::::::
constructed

:
by the GREB model. And the structural relationships between

::::::
among different nodes are determined to establish

an abstract model of the components and structural relationships of climate processes. Then, the improved climate model

::::::::
Secondly,

:::
the

:::::::
selected

::::::
climate

::::::::
variables

:::
are

::::::::::
categorized

:::
into

:::::::
variable

::::::
ranges

:::::
based

:::
on

::::
their

::::::::
numerical

::::::
values

::
to

::::
form

::::::::
different65

:::::::::::
classifications

::::
that

:::
are

::::
used

:::
to

:::::::
indicate

:::::::
different

:::::::
climate

::::
state.

:::::::
Thirdly,

::::
the

::::::
climate

::::
state

::::::::::
simulation

::::::
method

:
is reconstructed

based on the structural relationships of the climate processes through Bayes network
:::::::
Bayesian

::::::::
Networks

:::
and

:::::::
climate

::::::::
evolution

::::::
process to achieve the simulation of the target climate elements.

2.1 Climate elements structural relationship

:::::::
variables

::::::
climate

:::::
state.

:::::::
Finally,

::
the

:::::::
climate

::::
state

:::::::::
simulation

:::::
results

::::::::
obtained

::::
from

:::
the

::::::::
Bayesian

::::::::
Networks

:::
are

::::::::
compared

::::
with

:::
the70

::::::
climate

:::::
modal

:::::::::
simulation

::::::
results

:::::
from

:::
the

::::::
original

::::::
GREB

::::::
model

::
to

:::
get

:::
the

::::
local

:::::::::::
optimization

:::::
grids,

:::
and

:::
the

:::::::::
numerical

::::::
results

::
of

:::
the

:::::::
original

:::::
GREB

::::::
model

:::::::::
simulation

:::
are

:::::::::
optimized

:::::
based

:::
on

:::
the

:::::::::
comparison

:::::::
results. Based on the law of conservation of

energy
:::::
above

::::::::::::
considerations,

::::::::
improved

:::::::
method

::
is

::::::::
developed

:::::::::
according

::
to

:::
the

::::::::
following

:::::::::
procedures

:::::::
(Figure

::
1).

:

2.1
::::::::
Structural

:::::::::::
relationship

::::::
among

:::::::
climate

::::::::
variables

:

:::::
Based

::
on

:::
the

::::::
energy

:::::::
balance, the GREB model can simulate the main characteristics and global average

::::::
climate

:::::
mean states75

of global warming, including seven climatic
::::::
climate

:
processes (solar radiation, thermal radiation, hydrological cycle, sen-

sible heat and atmospheric
:::::::::
temperature, atmospheric circulation, sea ice and deep ocean) and four main climatic average

states (surface average temperature, atmospheric average temperature
:::::::
variables

:::::::
(surface

::::::::::
temperature, average temperature of

ocean and atmospheric average humidity ). In order to show the inherent mechanism of the evolution of climate process,

the surfaceaverage temperature and the atmospheric average temperature are selected as the output of the GREB model.80

The simulation of these two average state variables includes most of the climate processes of the GREB and can reflect the

complex coupling process and climate change characteristics of the GREB model.The scene of simulating the surface average

temperature includes solar radiation, thermal radiation, sensible heat and atmospheric, and deep ocean.The main heat source
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Figure 1.
::::::
Overall

::::::::
framework

::
of

:::
the

:::::::
improved

::::::
method.

of the surface temperature is solar radiation, some of which is absorbed by the surface temperature, the other part is reflected

by the surface temperature, and part of the heat on the surface temperature is transferred in the atmosphere, and some of it is85

transferred to the ocean below the surface. Each climate elements in this scene can be expressed by a highly simplified equation,

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere,

::::::::::
temperature

::
of

:::::::::
subsurface

:::
the

::::::
ocean,

::::
and

:::::::
humidity

:::
of

:::
the

:::::::
surface).

:::::
Each

::
of

:::::
these

::::::::
processes

::
is

:::::::::
represented

::::
with

:::::::
strongly

:::::::::
simplified

:::::::::
equations.

:::::::::
Therefore,

:::
we

:::
can

:::::::
abstract

:::
the

::::::::
structural

::::::::::
relationship

::::::
among

:::::::
different

:::::::
climate

:::::::
variables

:::::
from

:::
the

::::::::
simplified

::::::::
equation,

:::
i.e.,

:
which follows the surface average temperature trend equation as follows:


surf
dTsurf

dt
=Fsolor+Fthermal+Fsense+Flatent+Focean90

Where Tsurf is surface temperature; 
surf is surface specific heat capacity; Fsolor is the net solar radiation reaching the

surface; Fthermal is thermal radiation in the atmosphere; Fsensel is turbulent heat exchange in the atmosphere; Flatent is heat

exchange produced by water during phase transitiont; Focean is turbulent heat exchange in the ocean
::::::
climate

::::::::
variables

::::::
control

:
a
:::::
given

::::::
climate

::::::::
variable,

:::
and

::::::
which

::::::
climate

::::::::
variables

:::
are

:::::::::
influenced

::
by

::
it.

::::
This

::::::::
structural

::::::::::
relationship

::::::::
provides

:::
the

:::::::::
possibility

::
to

:::::::
construct

::::::::
Bayesian

::::::::
Networks.95

In the scene of simulating the atmospheric average temperature by the GREB model, atmospheric temperature is not only

related to the thermal radiation reflected from the surface, but also related to the sensible heat in atmospheric transport and
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latent heat exchange of water vapor in the atmosphere. Each climate elements in this scene can be expressed by a highly

simplified equation, which follows the atmospheric average temperature trend equation as follows:


atmos
dTatmos

dt
+Fsense = F thermal +Qlatent + 
atmos

�
k · ∇2Tatmos−

→
u ·∇Tatmos

�
100

Where Tatmos is atmospheric temperature; 
atmos is atmospheric specific heat capacity; Fsensel is turbulent heat exchange

in the atmosphere; Fathermal is net thermal radiation of the atmosphere; Qlatent is latent heat released by condensation

of atmospheric water vapor.For different climate average state scenes, the climate processes and relationship structures are

different. Therefore, the selection of nodes in each climate average state scenes will also be different . Not only the selection

of appropriate variablesas nodes is very important, but also the number of nodes will directly affect the simulation of the final105

climate average state. In order to simplify the complex climate evolution process and facilitate calculation, 4-6 climate elements

are selected as key nodes in each climate average state scenes, and the attribute states of climate average state elements in each

scene are simulated by these nodes. Through the trend equation (Eq.1) in the scene of surface average temperature, the relation

equation of

2.2
::::::::::::

Categorization
::
of

:::::::
climate

:::::
state110

::::::::
According

::
to
:::
the

::::::
theory

::
of

:
climate elements can be simplified:8>><>>:

Ts = f(S;O;W;C)

O = f(S)

W = f(S)

:::::::::::::::::::::::::::::::::::::::::::::::::
sensitivity(Annan and Hargreaves, 2006; Dommenget, 2016),

:::::::
Climate

:::::
state,

::::::::
indicated

::
by

::
a
:::::
range

::
of

:::::::::
numerical

::::::
values,

:::
can

:::
be

::::
used

::
to

::::::
replace

:::
the

:::::::
specific

:::::::
numeric

:::
to

:::::::
simulate

::::::
climate

:::::::
change

:::
and

:::::::::::
characterize

:::
the

::::::::
long-term

:::::
trend

::
of

:::::::
climate

::::::
change

::::
and

::::::
extreme

:::::::
weather

::::::::::
conditions.

::::
And

:
it
::
is

:::::
better

::::::
suited

::
to

::::::
capture

:::
the

::::::::
similarity

::
of

::
a
:::::
given

::::::
climate

:::::::
variable

::::::
across

:::::::
different

::::::
spatial115

:::
and

::::::::
temporal

::::::::
locations

::::::::
compared

:::
to

:::
the

::::::::
numerical

::::::
values

:::
of

::::::
specific

:::::::
climate

::::::::
variables.

::::::::::
Therefore,

:
it
::::

can
::
be

:::::
used

::
to

::::::
assess

::
the

:::::::::
similarity

:::::::
between

:::
the

::::::::
simulated

::::::
results

::
of

::
a
:::::
model

::::
and

:::
the

:::::
actual

:::::::
results,

::::::::
indicating

:::
the

::::::::
accuracy

::
of

:::
the

::::::::::
simulation.

::::
This

:::::::
provides

:
a
::::::

simple
::::

and
:::::::
practical

::::::::
approach

:::
to

:::::::::
evaluating

:::
the

:::::::
accuracy

:::
of

::::::::
revealing

::::
local

::::::
abrupt

:::::::
changes

::
in

:::::::::
simulation

:::::::
results.

::::::::
Moreover,

:::
by

:::::::::
simulating

:::::
state

:::::
rather

::::
than

:::::::
specific

::::::::
numeric,

::
it
::
is
::::::::
possible

::
to

:::::::::::
significantly

::::::
reduce

::::::::::::
computational

:::::
effort

::::
and

::::::::
simulation

::::::::
response

::::
time.

::::
This

::
is
:::::::::
consistent

::::
with

:::
the

:::::::
primary

:::::::
objective

::
of

:::
the

::::::
GREB

::::::
model,

:::::
which

::
is
::
to

::::::::
provides

:
a
:::
fast

::::
tool

:::
for120

::
the

::::::::::
conceptual

:::::::::::
understanding

::::
and

:::::::::::
development

::
of

:::::::::
hypotheses

:::
for

::::::
climate

:::::::
change

::::::::::::::::::::::::::::::
studies(Dommenget and Flöter, 2011)

Where Ts is surface temperature; S is solar radiation; O is ocean temperature; W is water vapor content; C is cloud cover.

That is, surface temperature, solar radiation, cloud cover and water vapor content can be selected as the key nodes of the surface

average temperature scene. Through the trend equation (Eq.2) in the scene of atmospheric average temperature, the relation
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equation of climate elements can be simplified:125 8<: Ta = f(V;W;C)

W = f(V )

Where Ta is atmospheric temperature; V is wind speed; C is cloud cover; W is water vapor content. That is, atmospheric

temperature, wind speed, cloud cover and water vapor content can be selected as

:::
The

::::::
natural

::::::
breaks

:::::::::::
classification

::::::
(Jenks)

::::::
method

::
is
::
a

:::::::::
commonly

::::
used

:::::::::::
classification

::::::
method

::::
that

::::
aims

::
to

::::::::
minimize

:::::::::
intra-class

:::::::
variation

::::
and

::::::::
maximize

:::::::::
inter-class

::::::::
variation.

::::
By

::::::::::
categorizing

:::
the

::::::::
numeric

::
of

:::::::
climate

:::::::
variables

::::
into

::::::::
different

::::::::::::
classifications130

::
to

::::::
indicate

:::::::
climate

::::
state

:::::
using

:::
the

::::::
natural

::::::
breaks

:::::::::::
classification

:::::::
method,

::
it
:::
can

:::
be

:::::::::
considered

::
as
::::

that
:::::::
numeric

::::::
within

:::
the

:::::
same

::::::::::
classification

:::::
have

:::
less

::::::::
variation,

:::::::::::
representing

:::
that

:::
the

::::::
results

::
of

:::
this

:::::::::::
classification

::
of

:::::::
numeric

:::::
have

::::::
similar

::::::
climate

:::::
state.

2.3
::::::
Climate

:::::
state

:::::::::
simulation

::::::::
According

:::
to the key nodes of the atmospheric average temperature scene.According to Eq.3, in the scene of surface average

temperature, surface temperature (Ts) is controlled by solar radiation (S), cloud cover (C), water vapor (W ) and ocean135

temperature (O). Ocean temperature (O) and water vapor (W ) are controlled by solar radiation (S). For the above relationship,

the bayes network structure in the surface average temperature scene(Fig1:(a)) can be constructed. According to Eq.4, in the

scene of atmospheric average temperature, atmospheric temperature (Ta) is controlled by cloud cover (C), water vapor (W )

and wind speed (V ).And water vapor (W ) is controlled by wind speed (V ).For the above relationship, the Bayes network

structure in the atmospheric average temperature scene(Fig1:(b)) can be constructed. Fig 1. (a) climate elements structural140

relationship in the surface average temperature scene; (b) climate elements structural relationship in the atmospheric average

temperature scene.
::::::::::::
characteristics

::
of

::::::::
Bayesian

::::::::
Networks,

:::
the

:::::::
climate

::::
state

::::::::
simulation

:::
of

::::::
climate

:::::::
variables

::
is
:::::::
realized

::
by

:::::::
climate

:::::::
evolution

:::::::
process

:::::
based

::
on

::::::::
Bayesian

:::::::::
Networks,

:::
i.e.,

:::
the

:::::::
climate

::::
state

::
of

::::::::
unknown

::::::
climate

::::::::
variables

:
is
:::::::
inferred

::::
from

:::
the

:::::::
climate

::::
state

::
of

::::::
known

::::::
climate

::::::::
variables

::
at

:::
the

::::
same

::::::
spatial

::::::::
locations.

:

2.4 Bayes network145

Bayes network

2.3.1
::::::::
Bayesian

::::::::
Networks

:::::::
Bayesian

:::::::::
Networks

:
is a probabilistic model that simulates the human reasoning process, which is a combination of graph

theory and probability theory, and its network topology is a directed acyclic graph. Where variables are nodes and correlations

or causal relationships between variables are directed edges.The dynamic evolution of Bayes network
:::::::
Bayesian

:::::::::
Networks150

node probabilities is controlled by conditional probabilities, and each node covers a probability distribution table under the

joint distribution of the parent nodes, indicating the strength of the relationship between the nodes.(Sahin et al., 2019). When

the Bayes network
:::::::
Bayesian

::::::::
Networks

:
is constructed, given the state of any node, the probability distribution of the states of

the remaining nodes can be calculated.
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In the Bayes network
::
In

:::
the

::::::::
Bayesian

::::::::
Networks, the probability of a node can be calculated in the form of probability155

using prior knowledge and statistical data, namely the Bayes probability (Maher, 2010). Observed sample are defined as:

G = {X1 = x1;X2 = x2; · · · ;Xn = xn}, where X is event, x is event value or state. When � is the prior probability of event

X = x, � is prior knowledge, P (�|�) is probability density function, then the probability P (Xn+1 = xn+1|�,�) of the n+ 1

eventXn+1 = xn+1 can be obtained from the prior probability density P (�|�) and the sampleG through the Bayes probability.

It can be calculated by total probability formula:160

P (Xn+1 = xn+1|�,�)

=
R
P (Xn+1 = xn+1|�,G,�)P (�|,G,�)d�

=
R
�P (�|,G,�)d�

P (Xn+1 = xn+1|�,�)

=
R
P (Xn+1 = xn+1|�,G,�)P (�|,G,�)d�

=
R
�P (�|,G,�)d�

::::::::::::::::::::::::::::::::::::

(1)

Based on Bayes equation, The posterior probability P (�|,G,�) is denated as:

P (�|,G,�) =
P (�|�)P (G|�,�)

P (G|�)
(2)165

Where G is given sample, � is priori probability of G,

2.4 Climate evolution process based on Bayes network

2.3.1
:::::::
Climate

::::::::
evolution

:::::::
process

:::::
based

:::
on

::::::::
Bayesian

:::::::::
Networks

In a climatic process composed of several climatic elements
:::::::
variables, there is an association relationship between climatic

elements
:::::::
variables. These climatic elements

:::::::
variables

:
are regarded as network nodes, and the association relations between170

climatic elements
:::::::
variables

:
are taken as directed edges. The association relationship between nodes is represented by graph

model, and the action intensity of association relationship is described quantitatively by conditional probability table. Using

the characteristics of Bayes network
:::::::
Bayesian

::::::::
Networks, the attribute feature state of nodes is inferred by probability. To realize

the expression and simulation of the attribute feature state of geographical elements
:::::::
variables.

A climate processMt = {X (m1;m2; : : : ;mi) |m1t;m2t; : : : ;mit} is composed with i climate elements
:::::::
variables,m1;m2; : : : ;mi,175

and X (m1;m2; : : : ;mi) is the structural relationship among the elements
:::::::
variables. Suppose that the climate element

:::::::
variable

mi has j states, then the sataes set of mi is
�
Wmi1 ;Wmi2 ; : : : ;Wmij

	
. The climate process is described by a Bayes network

:::::::
Bayesian

:::::::::
Networks B = (S;X). where S is a directed acyclic graph composed of nodes; X is the nodes set of graph, that is

climate elements
:::::::
variablesm1;m2; : : : ;mi. nodes are connected by directed edges to represent the relationship between climate

7



elements
:::::::
variables. Each node has an independent conditional probability table, which represents the probability distribution un-180

der the joint distribution of its parent nodes. Assume that a climatemi has one or more parent nodesm1;m2; : : : ;me (e � i � 1)

and statesd1;d2; : : :de, it can be denoted as :m1;m2; : : : ;me ! mi . Under the parent node of all possible states, the conditional

probability table composed of the set of state probabilities of mdeteci is follow:

B
W m 1r 1 ;W m 2r 2 ;:::;W m ere
m i =n
(Wm i 1 ;P

W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m i 1

); (Wm i2 ;P
W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m i 2

); : : : ; (Wm ij ;P
W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m ij

)
o

(r 1 = 1;2; : : : ;d1) ; (r 2 = 1;2; : : : ;d2) ; : : : ; (re = 1 ;2; : : : ;de)

(3)185

WhereB
W m 1r 1 ;W m 2r 2 ;:::;W m ere
m i is a conditional probability table of climateelements

:::::::
variablesmi ; Wm ij is j th characteristic

state of climateelements
:::::::
variablesmi ;P

W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m ij

is the probability of climateelement
:::::::
variablemi corresponds

to thej th state under ther 1; r 2; : : : re characteristic state corresponding to the parent nodem1;m2; : : : ;me expression set. The

probability set of climateelement
:::::::
variablemi at t moment can be denoted asCm it :

190

Cm it =n
(Wm i 1 ;P

W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m i 1

); (Wm i2 ;P
W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m i 2

); : : : ; (Wm ij ;P
W m 1r 1 ;W m 2r 2 ;:::;W m ere
W m ij

)
o (4)

The conditional probability table of each node can be calculated by Eq.5
::
.2 using training data.

2.4
::::
Local

::::::::::::
optimization

:::
The

:::::::::
numerical

::::::
results

::::::::
simulated

:::
by

:::
the

:::::::
original

::::::
GREB

::::::
model

:::
are

::::::::
compared

:::::
with

:::
the

::::::
climate

:::::
state

:::::
results

:::::::::
simulated

:::
by

:::
the

:::::::
Bayesian

:::::::::
Networks,

:::
and

:::
the

:::::
grids

:::::
where

:::
the

::::::::
numerical

:::::
result

:::::::::
simulated

::
by

:::
the

:::::::
original

:::::
GREB

::::::
model

:::
are

:::
not

::
in

:::
the

:::::
range

::
of

:::
the195

::::::
climate

::::
state

::::::::
simulated

:::
by

:::
the

::::::::
Bayesian

::::::::
Networks

:::
are

::::
used

::
as

:::::
grids

::
to

::
be

:::::::::
optimized.

::::::::
According

::
to

:::
the

:::::
Third

::::
Law

::
of

::::::::::::::::::::::::
Geography(Zhu et al., 2018),

:::
the

:::::
more

::::::
similar

:::
the

:::::::::
geographic

:::::::::::
environment,

:::
the

:::::
more

::::::
similar

::
the

::::::::::
geographic

:::::
target

::::::::::::
characteristics

:::
are.

:::::::::
Therefore,

:::
for

::
an

::::::::
unknown

::::::
climate

:::::::
variable

::
at

::
a

::::::
certain

:::::
spatial

::::
and

:::::::
temporal

::::::::
location,

::
the

:::::::
numeric

::
of

:::::
other

::::::
known

::::::
climate

::::::::
variables

::
at

:::
that

::::::
spatial

:::
and

:::::::
temporal

:::::::
location

::::
can

::
be

::::
used

::
to

::::
infer.

:::::::::::
Accordingly,

:::
we

:::::::
propose

:::
that

:::
for

::
an

::::::::
unknown

::::::
climate

::::::::
variable,

:::
the

:::::::
position

::
of

::
its

:::::::
speci�c

:::::
value

::
in

:::
the

:::::
range

::
of

::
its

:::::::::::
classi�cation

::
is

::::::
related

::
to

:::
the

:::::::
position200

::
of

:::
the

::::::
speci�c

:::::
value

::
of

:::
the

::::::
known

:::::::
climate

:::::::
variable

::
in

:::
the

:::::
range

::
of

:::
its

:::::::::::
classi�cation

::
at

:::
the

::::
same

::::::
spatial

::::
and

:::::::
temporal

::::::::
location.

:::
For

:
a

:::::::
climate

::::::
variable

:::::::::
containing

::
n

:::::::
relevant

::::::
control

::::::::
variables,

:::
the

:::::::::
numerical

:::::
results

:::
are

:::::::::
calculated

::
as

:::::::
follows:

:

E x
value = SE

lowerlimit +
1
n

(SE
upperlimit � SE

lowerlimit )
X

:::::::::::::::::::::::::::::::::::::::::::

E i
value � Si

lowerlimit

Si
upperlimit � Si

lowerlimit
:::::::::::::::::::

(5)

:::::
Where

::::::
E x

value :::::::::
represents

:::
an

::::::::
unknown

::::::
climate

::::::::
variable;

:::::::::
SE

lowerlimit ::::::::
represents

:::
the

:::::
lower

:::::
limit

::
of

:::
the

:::::
range

:::
of

:::::::::::
classi�cation

::
in

:::::
which

:::
the

::::::::
unknown

::::::
climate

::::::::
variables

:::
are

::::::::
simulated

:::
by

::::::::
Bayesian

::::::::
Networks;

::::::::::
SE

upperlimit ::::::::
represents

:::
the

:::::
lower

:::::
limit

::
of

:::
the

:::::
range205

::
of

:::::::::::
classi�cation

::
in

::::::
which

:::
the

::::::::
unknown

::::::
climate

::::::::
variables

:::
are

:::::::::
simulated

:::
by

::::::::
Bayesian

:::::::::
Networks;

::
n

::::::::
represents

::::
the

::::::
number

:::
of
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:::::
known

:::::::
climate

::::::::
variables

::::::::
associated

:::::
with

:::
the

::::::::
unknown

:::::::
variables

::
in

:::
the

::::::::
Bayesian

:::::::::
Networks;

::::::
E i

value :::
the

::::::
actual

:::::
value

::
of

:::
the

:::
i th

:::::
known

:::::::
climate

::::::::
variable;

:::::::::
Si

lowerlimit ::::::::
represents

:::
the

::::::
lower

::::
limit

::
of

::::
the

:::::
range

::
of

:::::::::::
classi�cation

::
in

::::::
which

:::
the

:::
i th

::::::
known

:::::::
climate

::::::::
variables;

:::::::::
Si

upperlimit ::::::::
represents

:::
the

:::::
upper

:::::
limit

::
of

:::
the

:::::
range

::
of

:::::::::::
classi�cation

::
in

:::::
which

:::
the

:::
i th

::::::
known

::::::
climate

:::::::::
variables.

::::::::
According

:::
to

:::
the

:::::
above

:::::::
method,

:::
we

:::
can

:::::::
improve

:::
the

::::::::
accuracy

::
of

:::
the

::::::
model

::
by

:::::::::
comparing

:::
the

:::::::
climate

::::
state,

::::::::::
identifying

:::
the210

:::
grid

::
to

::
be

:::::::::
optimized,

::::
and

:::::::::
recalculate

::
the

::::::
values

::::::::
simulated

::
by

:::
the

:::::::
original

::::::
GREB

:::::
model

::::::
within

::
the

::::
grid.

:::
In

:::
this

::::
way,

:::
the

::::::::
improved

:::::
model

::::
with

:::::::::
coarse-�ne

::::::::
structure

:::::::::
constructed

::::
with

:::
the

::::::
GREB

::::::
model

::
as

:::
the

:::::
global

:::::::::
framework

::::
and

:::
the

:::::::
Bayesian

:::::::::
Networks

::
as

:::
the

::::
local

:::::::::::
optimization

:::
can

:::::
better

:::::
re�ect

:::
the

::::::::
localized

::::::
abrupt

:::::::
changes

::
in

:::
the

::::::
climate

:::::::
process

:::
and

:::::::
achieve

:::
the

:::::::
purpose

::
of

:::::::::
improving

::
the

:::::::
GREB.

3 Case study215

3.1 Data description

In
::
In

:::::
order

::
to

:::::::::::
demonstrate

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
improved

::::::
model

::
in

::::::::::
simulating

::::::
climate

::::::::
variables

::::
and

::
to

:::::
verify

:::
its

:::::::::
reliability,

::::::
surface

:::::::::::
temperatures

:::
and

:::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::::
from

:::
the

::::::
GREB

::::::
model

:::::
were

:::::::
selected

:::
for

:::::::::
simulation

:::::::
objects.

::::
The

::::::::
simulation

:::
of

:::::
these

:::
two

:::::::
climate

::::::::
variables

:::::::
includes

:::::
most

::
of

:::
the

:::::::
climate

::::::::
processes

::
of

:::
the

::::::
GREB

::::
and

:::
can

::::::
re�ect

:::
the

::::::::
complex

:::::::
coupling

:::::::
process

::::
and

::::::
climate

::::::
change

::::::::::::
characteristics

:::
of

::
the

::::::
GREB

::::::
model.

:
220

3.1
::::
Data

::::::::::
description

::
In this paper, data produced by National Centers for Environmental Prediction (NCEP) / National Center for Atmospheric

Research (NCAR) is used as the experimental data to evaluate the improved model(IMPM). The data sets include surface

temperature(Ts), atmospherictemperature(Ta ::::::
Tsurf ),

::::::::::
temperature

::
of

:::
the

::::::::::::::::
atmosphere(Tatmos ), solar radiation(S),

:::::::
Fsolar ),

::::
total

cloud cover(C
::::
CLD ), water vapor (W ), oceantemperature(O

::::
qair ),

::::::::::
temperature

::
of

:::
the

::::::::::
subsurface

:::::
ocean

::::::
(Tocean ), and wind225

speed(V
:

!
u) stored as a 3.75� *3.75� (latitude * longitude) grid NC data from 1985 to 2014. In order to facilitate calculation

and comparative analysis, all climate data is preprocessed. Firstly, the downloaded climate data is removed from the outliers

so that the data are calculated to avoid too large or too small results; secondly, the grid data is resampled and the resampling

method is bilinear interpolation. The bilinear interpolation method is used to interpolate the climate data, which not only �lls

the null values, but also uni�es the scale size of the data. Finally,the climate
:::::::::
considering

::::
that

:::::::
changes

::
in

:::::::
climate

::::::::
variables230

::
are

:::::::
usually

:::::::::
seasonally

::::::
related,

:::::::
climate

:
data from 1985 to 2014 were processed as quarterly averagesbecausethe changesof

climateelementsareusuallyrelatedto seasons.
:
,
:::::
where

:::::::
January,

::::::::
February,

::::
and

::::::
March

::::::::
comprised

::::
�rst

:::::::
quarter,

:::::
April,

::::
May,

::::
and

::::
June

::::::
formed

::::::
second

:::::::
quarter,

::::
July,

:::::::
August,

:::
and

:::::::::
September

::::::::::
constituted

:
a
:::::
third

::::::
quarter,

::::
and

:::::::
October,

:::::::::
November,

::::
and

:::::::::
December

::::::::
comprised

:::
the

::::::
fourth

::::::
quarter.

Basedonthetheoryof climatesensitivity(Annan and Hargreaves, 2006; Dommenget, 2016), climatestatedatacalculatedby235

speci�c numericalclassi�cationof climatedata,canbeusedto replacethespeci�c numericaldatato simulateclimatechange

andcharacterizethelong-termtrendof climatechangeandextremeweatherconditions.Inorderto furtherreducetheamount
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of calculationandreducethesimulationresponsetime, we usetheNaturalBreaksmethodto classifytheoriginal datato get

theclimateaveragestateasthesimulationdata.Accordingly,theclimateelementsdatais divided

3.2
::::::::
Structural

:::::::::::
relationship

::::::
among

:::::::
climate

::::::::
variables

::::
and

:::::::
climate

::::
state240

:::
The

:::::::
process

::
of

:::::::::
simulating

:::
the

:::::::
surface

::::::::::
temperature

:::::::
includes

:::::
solar

::::::::
radiation,

:::::::
thermal

::::::::
radiation,

:::::::
sensible

::::
heat

:::
and

:::::::::::
atmospheric

::::::::::
temperature,

:::
and

:::::
deep

:::::::::::::::::::::::::::::
oceanDommenget and Flöter (2011)

:
.

:::
The

:::::
main

::::
heat

:::::
source

::
of

:::
the

::::::
surface

::::::::::
temperature

::
is

:::::
solar

::::::::
radiation,

::::
some

:::
of

:::::
which

::
is

::::::::
absorbed

::
by

:::
the

:::::::
surface

::::::::::
temperature,

::::
the

::::
other

::::
part

::
is

:::::::
re�ected

:::
by

:::
the

::::::
surface

:::::::::::
temperature,

::::
and

:::
part

:::
of

:::
the

:::
heat

:::
on

:::
the

::::::
surface

::::::::::
temperature

::
is

:::::::::
transferred

:::
in

:::
the

::::::::::
atmosphere,

:::
and

:::::
some

::
of

::
it

::
is

:::::::::
transferred

::
to

:::
the

:::::
ocean

::::::
below

:::
the

:::::::
surface.

::::
Each

::::::
climate

::::::::
variables

::
in

::::
this

:::::
scene

:::
can

:::
be

::::::::
expressed

:::
by

:
a

::::::
highly

::::::::
simpli�ed

::::::::
equation,

::::::
which

::::::
follows

:::
the

:::::::
surface

::::::::::
temperature245

:::::::
tendency

::::::::
equation

::
as

:::::::
follows:


 surf
dTsurf

dt
=

::::::::::::

Fsolor:::::
+
:

Fthermal:::::::
+
:

Flatent:::::
+
:

Fsense:::::
+
:

Focean:::::
(6)

:::::
Where

::::::
Tsurf :

is
:::::::
surface

::::::::::
temperature;

:::::

 surf ::

is
::::::
surface

::::
heat

::::::::
capacity;

::::::
Fsolar ::

is
::
the

:::::::::
incoming

::::
solar

::::::::
radiation;

::::::::
Fthermal ::

is
:::
the

:::
net

::::::
thermal

::::::::
radiation;

:::::::
Flatent :::

the
::::::
cooling

:::
by

:::::
latent

::::
heat

::::
from

::::::
surface

::::::::::
evaporation

:::
of

:::::
water;

::::::
Fsense ::

is
:::
the

::::::::
turbulent

::::
heat

::::::::
exchange

::::
with

:::
the

::::::::::
atmosphere;

::::::
Focean ::

is
:::
the

::::
heat

::::::::
exchange

::::
with

:::
the

::::::
deeper

:::::::::
subsurface

:::::
ocean.

::::
The

:::::::::::
subprocesses

::
of

:::::::
surface

::::::::::
temperature250

::
are

::::::::
modeled

::
as

:::::::
follows:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Fsolar = (1 � � clouds ) (1 � � surf ) S0 � r (�; t julian )

Fthermal = � �T 4
surf + "atmos �T 4

atmos � rad

"atmos = pe8 � CLD
pe9

� ("0 � pe10) + pe10

Flatent = L � � air � Cw �
�
�
�
!
u �

�
�
� � � soil � (qair � qsat )

Fsense = catmos � (Tatmos � Tsurf )

Focean = Fosense + 
 surf � � Tentrain

Fosense = cocean � (Tocean � Tsurf )

(7)

:::::
Where

::::::
Fsolar ::

is
:::
the

::::::::
incoming

:::::
solar

::::::::
radiation;

:::::::
� clouds ::

is
:::
the

:::::::
fraction

::
of

:::
the

:::::::::
incoming

::::
solar

::::::::
radiation

::
is

::::::::
re�ected

::
by

:::::::
clouds;

:::::
� surf ::

is
:::
the

:::::::
fraction

::
of

:::
the

::::::::
incoming

::::
solar

::::::::
radiation

::
is

:::::::
re�ected

:::
by

:::
the

:::::::
surface;

::
S0:: is:::the

:::::
solar

::::::::
constant;

:::::
� surf ::

is
:::
the

:::::::
fraction

::
of

:::
the

::::::::
incoming

:::::
solar

::::::::
radiation

::
is

:::::::
re�ected

:::
by

:::
the

:::::::
surface;

::
r

::
is

:::
the

:::
24

::
h

:::::
mean

:::::::
fraction

:::::::
reaching

::
a

::::::
normal

:::::::
surface

::::
area

:::
on255

:::
top

::
of

:::
the

::::::::::
atmosphere;

::
�

::
is

:::
the

::::::::
function

::
of

:::::::
latitude;

::::::
t julian :::

the
::::::
Julian

:::
day

:::
of

:::
the

:::::::
calendar

:::::
year;

::::::::
Fthermal ::

is
:::
the

:::
net

:::::::
thermal

::::::::
radiation;

:::::
Tsurf ::

is
::::::
surface

::::::::::
temperature;

::::::
"atmos ::

is
:::
the

:::::::
effective

::::::::::
emissivity;

:::::::::
Tatmos � rad::

is
:::
the

::::::::::
temperature

::::::
de�ned

:::
in

::
the

:::::::
context

::
of

:::
the

::::::::::
atmospheric

:::::::::::
temperature;

:::::
CLD

::
is

:::
the

::::
total

:::::
cloud

:::::
cover;

::::
"0is

:::
the

:::::::::
emissivity

:::::::
without

:::::::::
considering

::::::
clouds

::::
�rst;

::::
pe� ::

is
:::
the

:::::::::
parameters;

:::::::
Flatent :::

the
:::::::
cooling

::
by

:::::
latent

::::
heat

:::::
from

::::::
surface

::::::::::
evaporation

:::
of

:::::
water;

::
L

::
is

:::
the

::::::::
constant

:::::::::
parameters

::
of

::::
the

:::::
latent

:::
heat

:::
of

::::::::::
evaporation

:::
and

::::::::::::
condensation

::
of

::::::
water;

::::
� air ::

is
:::
the

:::::::
density

::
of

::::
air;

:::
Cw::

is
::::
the

::::::
transfer

::::::::::
coef�cient;

:::::

�
�
�
!
u �

�
�
� ::

is
:::
the

:::::
wind260

:::::
speed;

:::::
� soil ::

is
:::
the

::::
Bulk

:::::::
formula

::
is

::::::::
extended

:::
by

:
a

:::::::
surface

:::::::
wetness

::::::::::
fraction;qair ::

is
:::
the

::::::
actual

::::::
surface

:::
air

::::
layer

:::::::::
humidity;

::::
qsat

:
is

:::
the

:::::::::
saturation

::::::
surface

:::
air

::::
layer

:::::::
speci�c

:::::::::
humidity;

::::::
Fsense :

is
:::
the

::::::::
turbulent

::::
heat

::::::::
exchange

::::
with

:::
the

:::::::::::
atmosphere;

::::::
catmos ::

is
:::
the

:::::::
coupling

::::::::
constant;

::::::
Tatmos ::

is
::::::::::
temperature

:::
of

:::
the

::::::::::
atmosphere;

::::::
Focean ::

is
:::
the

::::
heat

::::::::
exchange

:::::
with

:::
the

::::::
deeper

:::::::::
subsurface

::::::
ocean;

10



:::::::
F osense ::

is
:::
the

:::::::
turbulent

:::::::
mixing

:::::::
between

:::
the

::::
two

:::::
ocean

::::::
layers;

:::::::::
� Tentrain ::

is
:::
the

::::
heat

::::::::
exchange

::::
with

:::
the

:::::::
surface

:::::
ocean

:::::
layer

:::
due

::
to

:::::::::
decreasing

::
of

:::
the

:::::
mixed

:::::
layer

:::::
depth;

::::::
cocean ::

is
:::
the

:::::::
coupling

::::::::
constant;

::::::
Tocean ::

is
::
the

:::::::::::
temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean.

:
265

::
In

::
the

:::::::
process

::
of

:::::::::
simulating

:::
the

:::::::::
temperature

:::
of

::
the

::::::::::
atmosphere

::
by

:::
the

::::::
GREB

::::::::::::::::::::::::::::::
modelDommenget and Flöter (2011),

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

::
is

:::
not

::::
only

::::::
related

::
to

:::
the

:::::::
thermal

::::::::
radiation

:::::::
re�ected

:::::
from

:::
the

::::::
surface,

::::
but

:::
also

::::::
related

:::
to

:::
the

:::::::
sensible

::::
heat

::::::::
exchange

::::
with

:::
the

::::::
surface

:::
and

::::::
latent

:::
heat

:::::::
release

::
by

:::::::::::
condensation

::
of

:::::::::::
atmospheric

:::::
water

:::::
vapor.

:::::
Each

::::::
climate

::::::::
variables

::
in

::::
this

::::::
process

:::
can

:::
be

::::::::
expressed

:::
by

:
a

::::::
highly

::::::::
simpli�ed

::::::::
equation,

:::::
which

:::::::
follows

:::
the

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::::::
tendency

::::::::
equation

::
as

:::::::
follows:270


 atmos
dTatmos

dt
+ Fsense = F thermal + Qlatent + 
 atmos

�
k � r 2Tatmos �

!
u �r Tatmos

�
(8)

:::::
Where

:::::::
Tatmos ::

is
::::::::::
temperature

::
of

:::
the

:::::::::::
atmosphere;

::::::

 atmos ::

is
::::::::::
atmospheric

::::
heat

::::::::
capacity;

::::::
Fsense::

is
:::
the

::::::::
sensible

::::
heat

::::::::
exchange

::::
with

:::
the

:::::::
surface;

:::::::::
Fathermal ::

is
:::
net

::::::
thermal

::::::::
radiation

::
of

::::
the

::::::::::
atmosphere;

:::::::
Qlatent :

is
::::
the

:::::
latent

::::
heat

::::::
release

::
by

:::::::::::
condensation

:::
of

::::::::::
atmospheric

:::::
water

:::::
vapor;

::

!
u

::
is

:::
the

:::::
wind

:::::
speed.

::::
The

:::::::::::
subprocesses

::
of

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::
are

:::::::
modeled

::
as

:::::::
follows:

:

8
>><

>>:

Fsense = catmos � (Tatmos � Tsurf )

Fathermal = "atmos � � T4
surf � 2"atmos � � T4

atmos � rad

Qlatent = � 2:6736� 103
�
kg=m2

�
� � qprecip � L

::::::::::::::::::::::::::::::::::::::::::::::::

(9)275

:::::
Where

::::::
Fsense::

is
:::
the

::::::::
turbulent

::::
heat

::::::::
exchange

::::
with

:::
the

:::::::::::
atmosphere;

::::::
catmos ::

is
:::
the

:::::::
coupling

::::::::
constant;

:::::::
Tatmos ::

is
::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere;

:::::::::
Fathermal ::

is
:::
net

::::::
thermal

::::::::
radiation

::
of

:::
the

:::::::::::
atmosphere;

:::::
Tsurf ::

is
::::::
surface

:::::::::::
temperature;

::::::
"atmos :

is
:::
the

::::::::
effective

:::::::::
emissivity;

::::::::::
Tatmos � rad ::

is
:::
the

::::::::::
temperature

:::::::
de�ned

::
in

:::
the

:::::::
context

::
of

:::
the

:::::::::::
atmospheric

:::::::::::
temperature;

::::::
Qlatent ::

is
::::
the

:::::
latent

::::
heat

::::::
release

::
by

:::::::::::
condensation

::
of

::::::::::
atmospheric

:::::
water

::::::
vapor;

:::::::
� qprecip ::

is
:::
the

:::::::::::
condensation

::
or

:::::::::::
precipitation;

::
L

::
is

::
the

::::::::
constant

:::::::::
parameters

::
of

:::
the

:::::
latent

:::
heat

:::
of

:::::::::
evaporation

::::
and

:::::::::::
condensation

::
of

:::::
water.

:
280

:::
For

:::::::
different

:::::::
climate

:::::::
process,

:::
the

::::::
climate

:::::::::::
subprocesses

::::
and

::::::::::
relationship

::::::::
structures

:::
are

::::::::
different.

:::::::::
Therefore,

:::
the

:::::::
selection

:::
of

:::::
nodes

::
in

::::
each

::::::
climate

:::::::
process

:::
will

::::
also

::
be

::::::::
different.

::::
Not

::::
only

:::
the

:::::::
selection

:::
of

:::::::::
appropriate

::::::::
variables

::
as

:::::
nodes

::
is

::::
very

:::::::::
important,

:::
but

:::
also

::::
the

::::::
number

:::
of

:::::
nodes

::::
will

:::::::
directly

:::::
affect

:::
the

:::::::::
simulation

:::
of

:::
the

::::
�nal

:::::::
climate

:::::::
average

:::::
state.

::
In

:::::
order

::
to

::::::::
simplify

:::
the

:::::::
complex

::::::
climate

::::::::
evolution

:::::::
process

::::
and

:::::::
facilitate

::::::::::
calculation,

:::
4-6

:::::::
climate

::::::::
variables

:::
are

:::::::
selected

::
as

:::
key

::::::
nodes

::
in

::::
each

:::::::
climate

::::::
process,

::::
and

:::
the

:::::::
variables

:::::::
climate

::::
state

::
in

::::
each

::::::::
processes

:::
are

:::::::::
simulated

::
by

:::::
these

:::::
nodes.285

:::::::
Through

:::
the

::::
trend

:::::::::
equations

:::
(Eq.

::
6

:::
and

:::
7)

::
in

::
the

:::::::::
processes

::
of

::::::
surface

:::::::::::
temperature,

:::
the

::::::
relation

::::::::
equation

::
of

::::::
climate

::::::::
variables

:::
can

::
be

:::::::::
simpli�ed:

:

8
>><

>>:

Tsurf = f (Fsolar ;Tocean ;qair ;CLD )

Tocean = f (Fsolar )

qair = f (Fsolar )
::::::::::::::::::::::::::::::::::

(10)

:::::
Where

:::::
Tsurf ::

is
::::::
surface

:::::::::::
temperature;

:::::
Fsolar ::

is
::::
solar

::::::::
radiation;

::::::
Tocean ::

is
::::::::::
temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean;

::::
qair ::

is
:::
the

:::::
actual

::::::
surface

::
air

:::::
layer

::::::::
humidity,

::::
i.e.,

:::::
water

:::::
vapor

:::::::
content;

:::::
CLD

::
is

:::::
total

:::::
cloud

:::::
cover.

::::
That

:::
is,

::::::
surface

:::::::::::
temperature,

::::
solar

:::::::::
radiation,290
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Figure 2.
:::::::
Structural

::::::::::
relationship

:::::
among

::::::
climate

::::::::
variables

::
in

:::
the

:::::::
different

::::::::
simulation

:::::::::
processes.

::
(a)

:::::::
Surface

:::::::::
temperature

:::::::
process;

:::
(b)

:::::::::
Temperature

::
of

:::
the

::::::::
atmosphere

:::::::
process.

::::::::::
temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean,

::::
total

:::::
cloud

:::::
cover

::::
and

:::::
water

:::::
vapor

::::::
content

:::
can

:::
be

:::::::
selected

::
as

:::
the

:::
key

:::::
nodes

:::
of

::
the

:::::::
surface

::::::::::
temperature

:::::::
process.

:::::::
Through

:::
the

::::
trend

::::::::
equation

::::
(Eq.

:
8

::::
and

::
9)

::
in

:::
the

::::::::
processes

::
of

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere,

:::
the

:::::::
relation

:::::::
equation

::
of

:::::::
climate

:::::::
variables

:::
can

:::
be

:::::::::
simpli�ed:

8
<

:
Tatmos = f (

!
u ;qair ;CLD )

qair = f (
!
u)

:::::::::::::::::::::::::

(11)295

:::::
Where

:::::::
Tatmos ::

is
::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere;

:::

!
u

::
is

::::
wind

::::::
speed;

:::::
CLD

::
is

::::
total

:::::
cloud

::::::
cover;

::::
qair ::

is
:::::
water

:::::
vapor

:::::::
content.

::::
That

::
is,

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere,

:::::
wind

:::::
speed,

::::
total

:::::
cloud

:::::
cover

:::
and

:::::
water

:::::
vapor

:::::::
content

:::
can

::
be

:::::::
selected

::
as

:::
the

::::
key

:::::
nodes

::
of

:::
the

::::::::::
temperature

::
of

:::
the

:::::::::
atmosphere

:::::::
process.

::::::::
According

::
to

:::
Eq.

:::
10

:
,

::
in

:::
the

::::::
surface

::::::::::
temperature

:::::::
process,

::::::
surface

::::::::::
temperature

::::::
(Tsurf )

::
is

::::::::
controlled

:::
by

::::
solar

:::::::
radiation

::::::::
(Fsolar ),

::::
cloud

:::::
cover

:::::::
(CLD ),

:::::
water

:::::
vapor

:::::
(qair )

:::
and

::::::::::
temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean

::::::::
(Tocean ).

:::::::::::
Temperature

::
of

:::
the

:::::::::
subsurface

:::::
ocean300

:::::::
(Tocean )

:::
and

:::::
water

:::::
vapor

:::::
(qair )

:::
are

:::::::::
controlled

:::
by

::::
solar

::::::::
radiation

:::::::
(Fsolar ).

::::
For

:::
the

:::::
above

::::::::::
relationship,

:::
the

::::::::
Bayesian

:::::::::
Networks

:::::::
structure

::
in

:::
the

:::::::
surface

::::::::::
temperature

:::::::
process

:::
can

:::
be

::::::::::
constructed

::::::
(Figure

::::
2a).

:::::::::
According

::
to

::::
Eq.

:::
11,

::
in

:::
the

::::::::::
temperature

:::
of

:::
the

:::::::::
atmosphere

:::::::
process,

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::::::
(Tatmos )

::
is

:::::::::
controlled

::
by

:::::
cloud

:::::
cover

:::::::
(CLD ),

:::::
water

:::::
vapor

:::::
(qair )

:::
and

:::::
wind

:::::
speed

:::
(
!
u).

::::
And

:::::
water

:::::
vapor

:::::
(qair )

::
is

::::::::
controlled

:::
by

::::
wind

:::::
speed

::::
(
!
u).

:::
For

:::
the

:::::
above

:::::::::::
relationship,

::
the

::::::::
Bayesian

::::::::
Networks

::::::::
structure

::
in

:::
the

:::::::::::
temperature

::
of

:::
the

:::::::::
atmosphere

:::::::
process

:::
can

:::
be

:::::::::
constructed

:::::::
(Figure

:::
2b).

:
305

:::
The

:::::::
climate

::::
state

:::
of

:::
the

::::::::
variables

::
in

:::
the

::::::
above

::::::
climate

:::::::::
processes

::::
was

:::::::::
performed

:::::
using

:::
the

:::::::
natural

::::::
breaks

:::::::::::
classi�cation

:::::::
method.

::::
The

:::::::
climate

:::::::
variables

::::
data

:::
are

::::::::::
categorized

:
into �ve, seven and nine differentclassi�cationstatesto

::::::::::::
classi�cations

::
to

12



:::::::
indicated

::::::::
different

::::::
climate

::::
state

::
to test the improved model and verify the effect of the classi�cation number of climateelements

:::::::
variables

:
data on the simulation results. Detailedclassi�cations

:::::::
schemes are shown inappendixTableA1, A2, A3

::::::::
Appendix

::::
Table

::::
A1,

:::
A2,

:::
A3.310

3.3 State
:::::::
Climate

:::::
state simulation

FromSect.2.1,we choosesurfacetemperatureandatmospherictemperatureasthesimulationobjects
::::::
Surface

::::::::::
temperature

::::
and

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere

:::
are

:::::::::
considered

::
as

::
a

:::::::::
simulation

:::::
object, and otherelements

::::::
climate

::::::::
variables as known objects,

and uses the historical data to calculate the conditional probability tables of each nodes through theBayesnetwork
::::::::
Bayesian

::::::::
Networks structure with Eq7.

:
4.

:
Among them, the training data is the 10-year historical data from 1985 to 1994.315

In eachclimateaveragestatescenes
:
In

::::
each

:::::::::
simulation

:::::::
process, there are two training methods for the simulated object. The

�rst is to train a conditional probability table using the data in all the grids, and then use the conditional probability table to

simulate the states of all grids. The conditional probability table obtained by this training method can re�ect the numerical

characteristic relationship between climateelements
:::::::
variables in the whole region. However, it can not show the distribution

law
::::::
pattern of the characteristics of the simulated state in space. The second is to train the data in each grid separately. Because320

the state grading data in each grids is different, the conditional probability table of the simulated object trained in each grids is

also different, and a total of 96� 48 conditional probability tables are obtained. The conditional probability tables obtained by

this training method can accurately re�ect the different numerical characteristic relationship between the simulated object and

the known object in different regions. However, due to the training of more conditional probability tables, the running time of

this training method will be a little longer. Considering the great differences in thelaw
::::::
pattern of climate evolution in different325

regions, this paper uses the second data training method in state simulation, which �rst divides the whole world into 96� 48

grids, and then uses the data in each grids to train the conditional probability tables of the grid. After the training is completed,

the data of the known climateelements
:::::::
variables

:
will be used to simulate the unknown climateelements

:::::::
variables from 1995

to 2014. The simulation results are shown inFig 2,3.
:::::
Figure

::
3

:::
and

::
4.

Fig 2.Simulationresultsof thesurfaceaveragetemperaturestate. (a)5 classi�cation;(b) 7 classi�cation;(c) 9 classi�cation.330

Fig 3.Simulationresultsof theatmosphericaveragetemperaturestate.(a)5classi�cation;(b)7classi�cation;(c)9classi�cation.

FromFig 2,it canbeclearlyobservedthatthedistributionof globalsurfaceaveragetemperaturehaslatitude

:::::
Figure

::
3

:::::
shows

::::
the

::::::
climate

::::
state

:::
of

:::
the

::::::::
quarterly

:::::::
average

::
of

::::::
surface

:::::::::::
temperature

::::
from

::::::::::
1995-2014.

::::
The

:::::::::
simulation

::::::
results

:::::
under

:::::::
different

::::::::::::
classi�cations

:::
all

::::::
clearly

:::::
show

:::
the

:::::
global

::::::::
quarterly

:::::::
average

:::::::
surface

::::::::::
temperature

::::::::::
distribution

::::
with

:::::::::
latitudinal

variations. The
:::::
surface

:
temperature starts from the equator and decreases with the increase of latitude, so the temperature in335

the North and South Pole is the lowest. The
::::::
climate

::::
state

:
distribution of surface temperature is basically in line with the real

world. Different from the simulationmapof surfaceaverage
::::
result

::
of

:::::::
surface temperature, thetrendof atmosphericaverage

temperature
:::::::
quarterly

:::::::
average

::::::::::
temperature

::
of

:::
the

::::::::::
atmosphere rises from the equator and increases with the increase of latitude

in Fig.7
::::::
Figure

:
4, which is also basically in line with the real world. The tropospheric height of the poles is lower and the

tropospheric height of the equator is higher, and which phenomenon leads to the result that temperature of the troposphere at the340

same height is higher in the poles.Meanwhile,from thesimulationsin thetwo scenes,it canbefoundthatwith theincreaseof
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Figure 3.
:::::
Climate

::::
state

:::::::::
simulation

:::::
results

::
of

:::
the

::::::
surface

:::::::::
temperature

:::
by

:::::::
Bayesian

:::::::
Networks

:::
for

:::
80

::::::
seasons

:::
(the

::::::
period

:::::::::
1995-2014).

:::
(a)

:::::::::
Categorized

:::
into

:
5
:::::::::::
classi�cations;

:::
(b)

:::::::::
Categorized

:::
into

::
7

:::::::::::
classi�cations;

::
(c)

:::::::::
Categorized

:::
into

::
9

:::::::::::
classi�cations.

Figure 4.
::::::
Climate

::::
state

::::::::
simulation

:::::
results

::
of

::
the

:::::::::
temperature

::
of

:::
the

::::::::
atmosphere

::
by

:::::::
Bayesian

::::::::
Networks

::
for

::
80

::::::
seasons

::::
(the

::::
period

::::::::::
1995-2014).

::
(a)

:::::::::
Categorized

:::
into

::
5

:::::::::::
classi�cations;

::
(b)

:::::::::
Categorized

::::
into

:
7

:::::::::::
classi�cations;

:::
(c)

:::::::::
Categorized

:::
into

:
9
:::::::::::
classi�cations.

thestateclassi�cation,thecolorof thesimulatedeffectmapbecomesmorecomplex,whichmeansthatthesimulatedresolution

will be higher. It showsthat this methodcan �nely simulatethe stateof surfaceaveragetemperatureand the atmospheric

averagetemperaturein thecomplexenvironmentby increasingthestateclassi�cation.Given theabove,if it takestheactual

numericalvalue,not stateascalculatingdata,it will getahigherresolution,andlesstrainingdataof eachcase.345

3.4 Comparisonwith the GREB model

In orderto verify the improvedmethod,accuracy(the equalproportionof the statelevel of the simulatedvalueandthe real

value)wasusedasan evaluationindex. The statesimulationaccuracyof eachgrid is calculatedwhenthe numberof state
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