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Abstract. The accurate simulation of climate is always critically important and also a challenge. This study introduces an im-
proved method of the Globally Resolved Energy Balance Model (GREB) by the Bayesnetwork—Starting fromelimateelements
relationship-inchuded-in-Bayesian Networks based on the concept of coarse-fine model. The improved method constructs
WMMMMMW% GREB model

model-as the global framework, and utilizing a Bayesian Networks constructed on the interrelationships between internal
climate variables of the GREB model to achieve local optimization. To objectively validate the performance and generalization
of the improved method, the method is applied to the simulation of surface average-temperature-and-atmospherie-average

temperatare-temperature and temperature of the atmosphere based on the 3.75° x 3.75° global data sets by Environmental
Prediction (NCEP)/ National Center for Atmospheric Research(NCAR) from 1985 to 2014. The results tHustrate-demonstrate

that the improved model has-exhibits higher average accuracy and lower spatial differentiation than the original GREB model-

And-the, and is robustness in long-term simulations. This approach addresses issues with the accuracy of the GREB model in
local areas, which can be attributed to an over-reliance on boundary and initial conditions, and a lack of fully using observed
data. Additionally, it overcomes the challenge of poor robustness in statistical models due to ambiguous climate inclusions.
Thus, the improved method provides a strong-stupportforother-dynamic-model-improvements—

promising way to give reliable and stable simulation of climate.
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1 Introduction

As the global warming progresses, extreme events and meteorological disasters occur frequently(Grant, 2017). Thus, the sim-
ulation and prediction of climate have become an important topic in current scientific research (Huang-et-al52619)—Climate
model-is-a-model-that-deseribes-the-changelaw-of-climatesystem;such-as-the-change-law-of climate;-eeeansfor the conceptual
understanding and development of hypotheses for climate change studies(Dommenget and Floter, 2011; Huang et al., 2019)
- Climate models are mathematical models that describe the temporal evolution of climate, oceans, atmosphere, ice, ete:and

land-use processes, across a spatial domain via systems of partial differential equations(Berrocal et al., 2012), which can be
solved by supercomputer and is an important tool for simulating and predicting future climate change(Kay, 2020).

Generally, climate models mainly include two categories, dynamic model and statistical model. Dynamic model can well
understand and express the dynamic process of climate by modeling various complex climate processes or interactions, but it
still faces two major problems: i) The simulation process overly relies on initial conditions and boundary conditions(Alley et
al., 2019; Zhang et al., 2019; Ludescher et al., 2021); ii) The climate model is too complicated, and its internal characteristics
cannot be fully expressed(Fan et al., 2021; Zou et al., 2019; Feng et al., 2020). The Globally Resolved Energy Balance Model
(GREB) is a simple but representative dynamic model, which is based on energy balance theory(Dommenget and Floter,
2011). Compared with other dynamic models, the GREB model is a relatively fast tool for the conceptual understanding and
development of hypotheses for climate change studies, because it computes about one model year per second on a standard
personal computer, which allows conducting sensitivity studies to external forcing within minutes to hours(Dommenget and
Floter, 2011; Dommenget, 2016; Stassen et al., 2019). However, in addition to the two main problems of dynamic models,
the GREB model also faces the problem that the model does not respond well to anomalous climate change because the
parameters of the GREB model are predetermined and the observed data can hardly be used to dynamically correct the model
parameters(Dommenget and Floter, 2011; Dommenget, 2016). How to solve these problems is an important research topic to
improve the GREB model and further extend it to other dynamic models.

On the contrary, statistical model, as another type of climate models, can make good use of historical observation data to
dynamically modify the models from data(Feng et al., 2020), and solve the problem that dynamic climate models rely too much
on initial and boundary conditions and underutilize full observation data. Therefore, it provides a possible way to solve those
defects of the dynamical model by combining that with the statistical model. Bayesnetwork-Bayesian Networks is a statistical
method which combines graph theory and probability (Cai et al., 2013, 2019; Jansen et al., 2003). The method uses graph to
express the structure relation of the variables related to the model and has the characteristics of structuring and quantifying the
object relation through the causal relation among the parts of the probability computing system(Pearl, 1986), variable logic
reasoning and predictive simulation can be realized, and it can use a large amount of historical observation data. As described,
it is a possible way to improve the GREB model by the BayesnetworkBayesian Networks.

This-

The concept of coarse-fine model provides a joint modeling approach of dynamical-statistical hybrid model that is different
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coarse and fine granularity of the model(Akgul and Kambhamettu, 2003 Pal and Bhattacharya, 2010; Yibo et al., 2009), uses
the dynamical model as a global framework and uses the statistical model to do local optimization, and realizes the unified

modeling of both. Based on this idea, this paper introduces a method for improving the GREB model by the BayesnetworkBayesian

Networks. The aim of method is to solve the problem of low model accuracy due to over-reliance on boundary conditions

sfully utilize historical
observation data. The following section presents the original-GREB-medel-and-the-improved method. Section 3 presents the

study case and data sets to test the new improved model. Finally, we give a discussion and conclusion of the results.

and initial conditions and inability to us

2 Methods

The improved method is developed according to the following procedure. First-the-etimate-elements—contained-in-Firstly,
climate variables representing different climate processes are seleeted-as—nodes-chosen as nodes in the Bayesian Networks
constructed by the GREB model. And the structural relationships between-among different nodes are determined to establish
an abstract model of the components and structural relationships of climate processes. Fhen,—the-improved—elimate-medel
Secondly, the selected climate variables are categorized into variable ranges based on their numerical values to form different

based on the struetural-relationships-of-the-climate-processes-through-Bayesnetwork-Bayesian Networks and climate evolution
process to achieve the simulation of the target elimate-elements—

2.1 €limate-elementsstruetural-relationship

variables climate state. Finally, the climate state simulation results obtained from the Bayesian Networks are compared with the
climate modal simulation results from the original GREB model to get the local optimization grids, and the numerical results
of the original GREB model simulation are optimized based on the comparison results. Based on the law-of conservation-of
energy-above considerations, improved method is developed according to the following procedures (Figure 1).

2.1 Structural relationship among climate variables

Based on the energy balance, the GREB model can simulate the main characteristics and glebal-average-climate mean states
of global warming, including seven elimatie-climate processes (solar radiation, thermal radiation, hydrological cycle, sen-

sible heat and atmospheric temperature, atmospheric circulation, sea ice and deep ocean) and four main climatic average

variables (surface temperature, average-temperature-of
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Figure 1. Overall framework of the improved method.
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temperature of the atmosphere, temperature of subsurface the ocean, and humidity of the surface). Each of these processes is
represented with strongly simplified equations. Therefore, we can abstract the structural relationship among different climate
variables from the simplified equation, i.e., which e :

deu rf
dt

90 surf :FsoloriFthermaliFsenseiFlatentiFocean,

a given climate variable, and which climate variables are influenced by it. This structural relationship provides the possibilit
95 to construct Bayesian Networks.
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2.2 Categorization of climate state

According to the theory of climate elements-ean-be-simplified:-

8

3 Ts=1(S;0;W;C)
5 0=1©)

- W =1(S)

sensitivity(Annan and Hargreaves, 2006; Dommenget, 2016), Climate state, indicated by a range of numerical values, can be
used to replace the specific numeric to simulate climate change and characterize the long-term trend of climate change and
extreme weather conditions. And it is better suited to capture the similarity of a given climate variable across different spatial
and temporal locations compared to the numerical values of specific climate variables. Therefore, it can be used to assess
the similarity between the simulated results of a model and the actual results, indicating the accuracy of the simulation. This
provides a simple and practical approach to evaluating the accuracy of revealing local abrupt changes in simulation results.
Moreover, by simulating state rather than specific numeric, it is possible to significantly reduce computational effort and
simulation response time. This is consistent with the primary objective of the GREB model, which is to provides a fast tool for
the conceptual understanding and development of hypotheses for climate change studies(Dommenget and Floter, 2011)
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= T.=Ff(V;W;C)
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The natural breaks classification (Jenks) method is a commonly used classification method that aims to minimize intra-class
variation and maximize inter-class variation. By categorizing the numeric of climate variables into different classifications
to indicate climate state using the natural breaks classification method, it can be considered as that numeric within the same

2.3 Climate state simulation

D

temperature-seene—characteristics of Bayesian Networks, the climate state simulation of climate variables is realized by climate

evolution process based on Bayesian Networks, i.e., the climate state of unknown climate variables is inferred from the climate
state of known climate variables at the same spatial locations.

2.4 Bayesnetwork
Bayesnetwork-

2.3.1 Bayesian Networks

Bayesian Networks is a probabilistic model that simulates the human reasoning process, which is a combination of graph
theory and probability theory, and its network topology is a directed acyclic graph. Where variables are nodes and correlations
or causal relationships between variables are directed edges.The dynamic evolution of Bayes-network-Bayesian Networks
node probabilities is controlled by conditional probabilities, and each node covers a probability distribution table under the
joint distribution of the parent nodes, indicating the strength of the relationship between the nodes.(Sahin et al., 2019). When
the Bayesnetwork-Bayesian Networks is constructed, given the state of any node, the probability distribution of the states of

the remaining nodes can be calculated.
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Tn—the Bayesnetworkln the Bayesian Networks, the probability of a node can be calculated in the form of probability
using prior knowledge and statistical data, namely the Bayes probability (Maher, 2010). Observed sample are defined as:

G = {X|=X1;X2=Xp;++;Xn =Xn}, where X is event, X is event value or state. When is the prior probability of event
X =X, is prior knowledge, P ( | ) is probability density function, then the probability P (Xp+1 = Xn+1l , ) of the n+1
event Xp+1 = Xn+1 can be obtained from the prior probability density P ( | ) and the sample G through the Bayes probability.
It can be calculated by total probability formula:

R P (Xn+1 = Xn+1l 5 )
= P (Xn+1R: Xn+1l .G, )P ( 1.G, )d
= P(IG,)d

R P (Xn+1 = Xn+1l 5 )
=" P (e = sl G P (16, )d (1)
= P(ILG, )d

Based on Bayes equation, The posterior probability P ( 1,G, ) is denated as:

P(I)P(I,)

PG, ) = P(Gl)

2

Where G is given sample, is priori probability of G,
2.4 Climate-evolutionproeess-based-onBayesnetwork

2.3.1 Climate evolution process based on Bayesian Networks

In a climatic process composed of several climatic elementsvariables, there is an association relationship between climatic
elementsvariables. These climatic elements-variables are regarded as network nodes, and the association relations between
climatic elements-variables are taken as directed edges. The association relationship between nodes is represented by graph
model, and the action intensity of association relationship is described quantitatively by conditional probability table. Using
the characteristics of BayesnetworkBayesian Networks, the attribute feature state of nodes is inferred by probability. To realize

the expression and simulation of the attribute feature state of geographical elementsvariables.

m; has j states, then the sataes set of Mj is W, ; W,,;:::; W, . The climate process is described by a Bayes-netweork
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WhereB " i1 m ez i#W mee s 5 conditional probability table of climatsementszariablesm;; W, s j th characteristic
state of climatestementszariablesm; Py "1+ m2r2 W mee s the probability of climatelementyariablem; corresponds
....... i
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X _E\i/alue SIiowerlimit (5)

— cE E E
value — SIowerlimit + H(Supperlimit SIowerlimit )

i
SIowerlimit

WhereE*

E
........... value - & Plowerlimit % LOLUIE L
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3 Case study

3.1 Datadeseription

simulationof thesetwo_climate variablesincludesmostof the climate processesf the GREB andcanre ect the complex

In this paper, data produced by National Centers for Environmental Prediction (NCEP) / National Center for Atmospheric
Research (NCAR) is used as the experimental data to evaluate the improvedtiBdél The data sets include surface

speed#{u) stored as a 3.75*3.75 (latitude * longitude) grid NC data from 1985 to 2014. In order to facilitate calculation
and comparative analysis, all climate data is preprocessed. Firstly, the downloaded climate data is removed from the outliers
so that the data are calculated to avoid too large or too small results; secondly, the grid data is resampled and the resamplin

method is bilinear interpolation. The bilinear interpolation method is used to interpolate the climate data, which not only lls
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dsomeof it is transferredo the oceanbelowthe surface.

245 Sin | ec 1 follows the surfacetemperature
(6)
WhereTqys Is surfacetemperature; sy .is surfaceneatcapacity;Fsor Is theincomingsolarradiation;Finermar .is thenet
thermalradiation;Faent  the cooling by latentheatfrom surfaceevaporatiorof water; Fsense .is the turbulentheatexchange
250 with the atmosphereEqcean .is the heatexchangavith the deepeisubsurfac@cean.The subprocessesf surfacetemperature
aremodeledasfollows:
8
Fsolar =(1 clouds ) (1 suf )So r(;t julian )
§ Fthermal = T34urf + "atmos T;ltmos rad
"atmos = peap% ("o pew)+ pewo
Faatent =L ar Cw !U soil (Gair  Gkat) (7)
Fsense = Catmos (Tatmos ~ Tsurf )
Focean = FOsense +  surf Tentrain

FOSEY’ISE = Cocean (Tocean TSUI’f )
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exchangavith the surfaceandlatentheatreleaseby condensatiomf atmospherigvatervapor, Eachclimateyvariablesin this

asfollows:

dTatmos +F - F K r 2T ! T o
atmos T sense = Fthermal + Qlatent +  atmos r atmos U r Tamos ( )
Where Tamos .is tlemperaturedf, the atmosphere; amos . is.atmospheridieatcapacity;Fsense . is.the sensibleheatexchange

with the surface;F amermar IS Netthermalradiationof the atmosphereQaent Is.the latentheat

E FSET‘ISE = cdtl"nOS (Tatmos TSLII’f )

S Fathermal = "atmos T54urf 2"atmos T:tmos rad (9)
Quatent = 2:6736 10° kg=m"  Gprecip L

rameters

8
5 Tsurf = f (Fsolar ; Tocean ; Gair ;CLD)
3 Tocean = f (Fsolar ) (10)

=f (Fsolar )
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3.3 StateClimate state simulation

rst is to train a conditional probability table using the data in all the grids, and then use the conditional probability table to

simulate the states of all grids. The conditional probability table obtained by this training method can re ect the numerical

the state grading data in each grids is different, the conditional probability table of the simulated object trained in each grids is
also different, and a total of 9648 conditional probability tables are obtained. The conditional probability tables obtained by
this training method can accurately re ect the different numerical characteristic relationship between the simulated object and
the known object in different regions. However, due to the training of more conditional probability tables, the running time of
this training method will be a little longer. Considering the great differences irtiapattern of climate evolution in different

regions, this paper uses the second data training method in state simulation, which rst divides the whole world #&o0 96

grids, and then uses the data in each grids to train the conditional probability tables of the grid. After the training is completed,

tropospheric height of the equator is higher, and which phenomenon leads to the result that temperature of the troposphere at th

same height is higher in the polddeanwhile;fromthesimulationsnthetwo-seenesit-canbefoundthatwith-theirerease






