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Abstract. The three IASI instruments on-board the Metop family of satellites have been sounding the atmospheric 14 

composition since 2006. More than 30 atmospheric gases can be measured from the IASI radiance spectra, allowing 15 

the improvement of weather forecasting, and the monitoring of atmospheric chemistry and climate variables.  16 

The early detection of extreme events such as fires, pollution episodes, volcanic eruptions, or industrial releases is key 17 

to take safety measures to protect inhabitants and the environment in the impacted areas. With its near real time 18 

observations and good horizontal coverage, IASI can contribute to the series of monitoring systems for the systematic 19 

and continuous detection of exceptional atmospheric events, in order to support operational decisions. 20 

In this paper, we describe a new approach for the near real time detection and characterization of unexpected events, 21 

which relies on the principal component analysis (PCA) of IASI radiance spectra. By analyzing both the IASI raw and 22 

compressed spectra, we applied a PCA-granule based method on various past well documented extreme events such 23 

as volcanic eruptions, fires, anthropogenic pollutions and industrial accidents. We demonstrate that the method is well 24 

suited to detect spectral signatures for reactive and weakly absorbing gases, even for sporadic events. Consistent long-25 

term records are also generated for fire and volcanic events from the available IASI/Metop-B data record.  26 

The method is running continuously, delivering email alerts on a routine basis using the near real time IASI L1C 27 

radiance data. It is planned to be used as an online tool for the early and automatic detection of extreme events, which 28 

was not done before. 29 

1 Introduction 30 

Atmospheric composition is changing fast locally and globally, under natural and anthropogenic influences combined. 31 

Fire activity and local urban pollution are likely to increase in a warming climate (Hart, 2022). With their potential 32 

consequences on society and health, monitoring the events that impact atmospheric composition becomes increasingly 33 

important.  34 
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Since the end of 2006, the IASI mission has been probing the troposphere from satellite to monitor the atmospheric 35 

composition globally, onboard of 3 successive Metop satellites (Clerbaux et al., 2009). Observation records and trends 36 

are available for several infrared absorbing species, such as methane (CH4) (García et al., 2018), carbon monoxide 37 

(CO) (George et al., 2009), ammonia (NH3) (Van Damme et al., 2021), ozone (O3) (Dufour et al., 2018; Wespes et al., 38 

2019) and dust (Capelle et al., 2014; Clarisse et al., 2019).  As the first goal of this mission is to feed meteorological 39 

forecast using data assimilation, radiance Level 1C (L1C) data are received in near real time, around 2-3 hours after 40 

the overpass of the satellite. This makes the detection of exceptional events possible, potentially right after they occur, 41 

such as large biomass burning fires (Turquety et al., 2009; R’Honi et al., 2013), anthropogenic pollution episodes 42 

(Boynard et al., 2014) or volcanic eruptions (Wright et al, 2022). With more than 1.2 million of radiance spectra per 43 

instrument per day, the search for local extreme events in near real time is not straightforward. A limitation is also 44 

associated with the lack of data when clouds are present in the field of view, as the usual retrieval algorithms fail to 45 

properly derive atmospheric concentrations for trace gases. Cloudy data are hence filtered.  46 

Soon after the launch of the first IASI instrument, it has been suggested to use the principal component analysis (PCA) 47 

method to reduce data volumes by reconstructing the radiances using only the leading eigenvectors (Matricardi, 2010). 48 

This compression not only allows to heavily decrease the data volume but also to ease the data dissemination. Now 49 

available through the EUMETSAT (EUropean organization for the exploitation of METeorological SATellites) 50 

Advanced Retransmission Service (EARS-IASI), the PCA method allows meteorological centers to directly assimilate 51 

the principal components (Collard et al., 2010; Matricardi et al., 2014; Guedj et al., 2015). It was also demonstrated 52 

that using reconstructed IASI radiance results in a substantial reduction of random instrument noise for the analysis of 53 

trace gases such as NH3 or sulfur dioxide (SO2) (Atkinson et al., 2010). However, it was decided to continue the 54 

distribution of the entire radiance spectra (8461 spectral channels) as one of the concerns in the use of the PCA method, 55 

for atmospheric chemistry studies, was the detection of spectral features associated with minor trace gases linked with 56 

rare events in the reconstructed spectra. Examples are volcanic eruptions, which all differ in terms of gas and type of 57 

ash emitted, and hence not enough representative cases were available in the training set. The same holds for biomass 58 

burning fires releasing different amounts of specific species depending on the type of vegetation burned. With the 59 

advent of the second and third IASI instrument together with the improvement of retrieval algorithms over time, a 60 

number of short‐ and long-lived trace gases were identified in the IASI spectra above or downwind from strong 61 

emission sources (Clarisse et al., 2011; De Longueville et al., 2021).  62 

This paper describes the potential of the PCA applied on the IASI L1C (apodized radiance) data for the automatic, 63 

near real time detection and characterization of exceptional events. The paper is organized as follows: Section 2 64 

describes the IASI instrument and the dataset used in this study. Section 3 describes the PCA method. In Section 4, an 65 

innovative approach based on the PCA method and IASI data granules is presented, which allows spectral 66 

characterization of species in near real time. In Section 5, different case studies of exceptional past events are discussed, 67 

such as volcanic, fire, and anthropogenic pollution episodes, along with industrial accidents, detected by IASI/Metop-68 

A and -B. Finally, conclusions are given in Section 6. 69 

2 The IASI radiance data  70 
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IASI is a Fourier transform infrared spectrometer, which records the thermal infrared (TIR) radiation emitted by the 71 

Earth and the atmosphere, between 645 cm-1 and 2760 cm-1, with 8461 channels sampled every 0.25 cm-1 and a spectral 72 

resolution of 0.5 cm-1. An example of IASI spectrum along with the absorption band of several species is illustrated in 73 

Fig. 1.  74 

In this work IASI-A and IASI-B are used as a combined dataset. The IASI-A dataset is used for the study of events 75 

before the launch of IASI-B and for creating the PCA training database (described here-after), and the IASI-B complete 76 

dataset is used for data after 2013 to present. The two datasets have been shown to be highly consistent with no 77 

significant drifts over time (García et al., 2016). 78 

Each IASI instrument provides more of 1.2 million of spectra per day. IASI L1C data are disseminated by EUMETSAT 79 

in 3-minute files (called “granule” hereafter) less than 3 hours after each overpass. Each granule contains 22 or 23 80 

IASI scan lines with 120 pixels per line. With a wide swath width of ~2200 km, global observations are provided twice 81 

a day, at 9:30 AM and 9:30 PM local time. IASI has an instantaneous field of view (FOV) at nadir with a spatial 82 

resolution of 50 km x 50 km, composed of 2 x 2 circular pixels (IFOV), each corresponding to a 12 km diameter 83 

footprint on the ground at nadir (Clerbaux et al. 2009).  84 

 85 

Figure 1: Top panel: Example of IASI spectrum. Middle and bottom panels: radiative transfer simulations for the main and 86 
weaker infrared absorbers, respectively.  87 

The atmospheric concentrations of some species are routinely retrieved from the spectral signatures (George et al., 88 

2009; Clarisse et al., 2011; Van Damme et al., 2013) and distributed through the AERIS database (iasi.aeris-data.fr).  89 

Some exceptional events have been studied in detail such as the 2010 Russian fires (R’honi et al., 2013), pollution in 90 

the North China Plain (Boynard et al., 2014), and SO2 anthropogenic pollution (Bauduin et al., 2014, 2016). 91 

3 The Principal Component Analysis Method  92 
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3.1 Basic concepts 93 

The PCA method for high spectral resolution sounders, such as IASI, is described in Atkinson et al. (2008). This 94 

method is well suited to efficiently represent the amount of information contained in the 8641 IASI channels. It relies 95 

on the use of a dataset of thousands of spectra representing the full range of atmospheric conditions from which the 96 

principal components are calculated, the so-called “training database”. 97 

One considers an ensemble 𝑌 of n IASI radiance spectra 𝒚 of dimension m (where m is the number of channels and n 98 

is the number of observations). Let denote 𝑵!"𝒚$ the mean and 𝑺#	(𝑚 ×𝑚) the covariance of the normalized ensemble 99 

of spectra 𝑵!"𝑌. 𝑵 is the noise normalisation matrix and is defined as the square root of 𝑺𝒚(𝑚 ×𝑚) the instrument 100 

noise covariance matrix associated to the IASI spectra.  101 

The PCA is based on the eigen decomposition of the matrix 𝑺#	: 102 

𝑺# = 𝑬	L	𝑬&           (1) 103 

where E is the matrix m x m of eigenvectors and L the diagonal matrix of their associated eigenvalues. 104 

The representation of a measured spectrum 𝒚 in the eigenspace 𝑬 is obtained by: 105 

𝒑 = 𝑬&𝑵!"(𝒚 − 𝒚$)          (2) 106 

𝒑 (dimension 𝑚) is the vector of the principal component scores.  107 

The analysis consists in representing the multidimensional IASI spectra in a lower dimensional space, which accounts 108 

for most of the variance seen in the data. This space is spanned by a truncated set of the eigenvectors of the data 109 

covariance matrix. By noise-normalizing the spectra prior to the application of the PCA, the ability to fit the data is 110 

enhanced by avoiding giving too much weight to variance caused by noise. Giving m* the number of most significant 111 

eigenvectors of 𝑺#, one can represent the spectrum in the eigenspace by a truncated vector of principal component 112 

scores, 𝒑* of rank 𝑚* (𝑚*	< 	𝑚). 𝒑* is thus a compressed representation of 𝒚. The reconstructed spectrum, 𝒚0 113 

(dimension 𝑚) is given by: 114 

𝒚0 = 𝒚$ +𝑵𝑬∗𝒑∗           (3) 115 

where 𝑬∗ is the matrix of the 𝑚* first eigenvectors or principal components. We define the noise normalized residual 116 

vector 𝒓 (dimension 𝑚) of the reconstruction by: 117 

𝒓 = 	𝑵!"(𝒚 − 𝒚0)           (4) 118 

By definition, if m* is taken equal to 𝑚, 𝒚0 = 𝒚  and the residual is the null vector. In nominal cases if the truncation 119 

rank is carefully chosen, r essentially contains noise. Several techniques exist to estimate 𝑚* in order to keep the 120 

essential part of the atmospheric signal and to remove the eigenvectors containing mainly the measurement noise (e.g., 121 

Antonelli et al. (2004), Atkinson et al. (2010)).  122 

In the following the noise normalized residual, which is calculated for each IASI IFOV, is called IFOV-residual.  123 
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3.2 Construction of the training database 124 

The training set includes spectra observed over different types of atmospheric/surface conditions at different scan 125 

angles and for different pixel numbers to ensure that a truncated set of eigenvectors can be adequately used to represent 126 

any observed spectrum. Additionally, if the training set is too small, the specific outcome of the random noise will not 127 

be sufficiently uncorrelated and uniform, and will therefore have an influence on the computed eigenvectors and 128 

eigenvalues. Extensive experience on IASI spectra from EUMETSAT (Hultberg, 2009, 129 

https://www.eumetsat.int/media/8306) and additional experiments with different dataset sizes show that a number of 130 

about 70000 spectra is a reasonable lower limit. For this study, around 120000 IASI/Metop-A L1C spectra were 131 

selected during a full year (which was chosen as a nominal year for avoiding excessive occurrence of extreme events 132 

such fires and volcanoes) on the global scale. The database contains spectra associated with a good quality flag in order 133 

to only keep reliable data, acquired indifferently during the day and the night, over land and sea, and regardless of the 134 

cloud cover. For each month of the year 2013 spectra were selected every five days (1, 6, 11, 16, 21 and 26 of each 135 

month). To avoid over-representing high latitudes, because of the large swath of IASI (~2200 km) and frequent 136 

overpasses over this area with the polar orbiting satellites, the following method was applied:   137 

- between 90 and 75° only one spectrum is selected  138 

- between 75 and 60°, two spectra are selected 139 

- between 60 and 45°, three spectra are selected 140 

- between 45 and 30°, four spectra are selected 141 

- between 30 and 15°, five spectra are selected 142 

- between 15 and 0°, six spectra are selected 143 

To reach a sufficient but reasonable number of IASI spectra/IFOVs (1.3 106 spectra per day, 4.7 108 per year), 120000 144 

IFOVs for year 2013 were randomly chosen to represent all atmospheric/surface situations (air masses, land/sea, 145 

day/night, clear/cloudy) and acquisition conditions (IASI scan mirror position and pixel number).   146 

3.3 Number of eigenvectors 147 

Several techniques exist to estimate 𝑚* in order to keep the essential part of the atmospheric signal and to remove the 148 

eigenvectors containing mainly the measurement noise. Antonelli et al (2004) define a criterium based on the spectral 149 

RMS reconstruction residuals, finding the optimal truncation rank when this value approach the spectral RMS of the 150 

instrument noise. Other methods test directly the behavior of the reconstruction score 3𝟏
𝒎
∑ 𝒓𝒊𝟐𝒎
𝒊,𝟏  as a function of the 151 

truncation rank, by looking at the second derivative of the reconstruction score as a function of the truncation rank 152 

(e.g., Hultberg, 2009) or plot the principal component score (𝒑) spatial correlation as a function of eigenvector rank 153 

(Atkinson et al., 2009). In this study, the estimation of 𝑚* is based on the analysis of the eigenvalues. The eigenvalues 154 

(sorted in descending order) quantify the variability explained by the corresponding eigenvectors, and the optimal 155 
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number of eigenvectors needed to reproduce the signal in the raw radiances can be determined by analyzing their 156 

magnitude and behavior.  In the present implementation of the PCA method we process the full IASI spectrum and use 157 

a simple method for selecting the truncation rank. The plot of the eigenvalues was examined and PCs were selected up 158 

to the point where the slope of the curve stabilized. This leads to choose the first 150 eigenvectors as done in Atkinson 159 

et al., 2010. Sensitivity tests has been performed to test the impact of using different values (from 120 to 250) on the 160 

reconstructed scores obtained on several atmospheric events (fires and volcanoes cases discussed in the next sections) 161 

and confirm this value. 162 

4 The IASI-PCA granule-extrema (GE) based method 163 

4.1 Granule maxima and minima 164 

The near real time detection of exceptional events is performed on the IASI granule. The choice of applying the method 165 

on the granule is convenient for the near real time aspect as it represents 3 minutes of IASI data which are received 166 

every few 1-2 hours by the antenna. 167 

Each granule contains ~2700 radiance spectra, from which the corresponding IFOV-residuals are computed based on 168 

the IASI-PCA method. For each granule, the largest positive and negative residual value for each spectral channel is 169 

recorded in two arrays, called hereafter “Granule Maxima” (GMA) and “Granule Minima” (GMI). GMI and GMA are 170 

defined as pseudo-residuals of dimension 8461 (the number of radiance channels) and represent the spectral envelope 171 

of the statistics of residuals over the granule. Physically, the GMI (GMA) pseudo-residual is associated with 172 

reconstruction errors of spectral absorption (emission) lines. Since the method is based on the granule extrema (GMI 173 

and GMA), the method is therefore called: IASI-PCA-GE, with GE standing for Granule-Extrema. It is important to 174 

note that these pseudo-residuals associated with a granule are different from the individual IFOV-residual associated 175 

with each IFOV. 176 

Figure 2 illustrates an example of GMA and GMI pseudo-residuals for an intense fire event that occurred in Australia 177 

on 1 January 2020. The GMI pseudo-residual (bottom panel) is characterized by detectable spectral features associated 178 

with a poor reconstruction around 700, 950, 1100 or 2100 cm-1. Using spectroscopic database allows to associate some 179 

of these strong peaks with contribution of different atmospheric components (see Section 5 for the identification of the 180 

molecules). Similar spectral features can be seen in the GMA pseudo-residual (top panel) albeit in emission and less 181 

intense. 182 



7 
 

 183 

Figure 2: Granule Maxima (GMA) (top) and Granule Minima (GMI) (bottom) pseudo-residuals obtained from a granule of 184 
IASI/Metop-B L1C data on 1 January 2020 over Australia.   185 

4.2 Detection thresholds 186 

Two detection thresholds are defined in order to select 1) the granules associated with outliers only (which allows to 187 

gain computation time) and 2) the IFOV-residuals associated with reconstruction errors. For the definition of the 188 

detection thresholds, a dataset of 43000 IASI/Metop-B granules (21 500 granules for day-time and 21500 for night-189 

time), containing outlier and regular spectra and chosen randomly on the first of each month between April 2013 and 190 

April 2021 is used. Note that this dataset differs from that generated for the principal component calculation as the 191 

detection method is applied on a granule basis. From this dataset, 21500 GMI and 21500 GMA pseudo-residuals are 192 

calculated for both day- and night-time conditions. 193 

Figure 3 shows the statistical distribution of the largest minimum and maximum values for each of the 43000 194 

GMI/GMA pseudo-residuals for all channels. The lower and upper limit of the blue box represents the 25th percentile 195 

and the 75th percentile in the data, respectively. The red line represents the median. The black lines represent upper 196 

adjacent value (UAV) and lower adjacent value (LAV), and the red crosses have been considered as “outliers” in a 197 

first analysis of the dataset. Using UAV and LAV as thresholds was observed to be too restrictive. After several tests, 198 

it has been decided to use the 25th percentile of the data to keep granules associated with potential outliers (F1 199 

threshold). All granules associated with GMA or GMI minimum and maximum values (in absolute values) larger than 200 

the 25th percentile of the datasets are then selected, avoiding to process granules without interesting anomalies. 201 

A second threshold (F2 threshold) was defined for each spectral channel based on the 99th percentile value of the GMI 202 

and GMA pseudo-residuals calculated from the 43000 granules (21500 for day-time conditions and 21500 for night-203 

time conditions). This F2 threshold is used in the processing of each granule selected after applying the F1 threshold. 204 

It is applied only on channels of interest associated with a strong absorption of a molecule, which are identified in 205 
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Table 1. For those channels, all IFOV-residuals associated with values larger than the F2 threshold values are selected.  206 

The choice of the 99th percentile as the threshold value is the result of extensive tests performed both on the ensemble 207 

of statistically representative scenes (the 43000 granules) and on specific atmospheric situations of fires and volcanoes. 208 

It corresponds to the empirical compromise allowing 1) a reasonable rate of detection of extreme events (below 4%) 209 

for the processed scenes, 2) the minimization of false positive detections in the statistically representative scenes (false 210 

positive detections are empirically identified as spatially noisy i.e. isolated IFOVs) and 3) the unambiguous detection 211 

of well-identified fire and volcanic events. Values of the F2 thresholds used for the channels of interest are provided in 212 

Table 1. In the detection processing, for each selected IFOV-residual the spectral channel associated with the detection 213 

(and thus the corresponding spectral interval and associated molecule as defined in Table 1) is recorded, along with 214 

the corresponding IFOV-residual value, the latitude and the longitude. This step allows to localize (IFOV latitude and 215 

longitude) and characterize (spectral position and corresponding IFOV-residual value) the outliers. 216 

 217 

Figure 3: Distribution of normalized GMI and GMA extrema in absolute values calculated from 43000 granules (21500 for 218 
day time conditions and 21500 for night time conditions). The lower and upper limit of the blue box represents the 25th 219 
percentile and the 75th percentile in the data. The red line represents the median. The black lines represent the upper 220 
adjacent values (UAV) and lower adjacent value (LAV), and the red crosses are considered as “outliers” in the dataset. The 221 
magenta dashed line represents the F1 threshold. 222 

 223 

 224 

 225 

 226 
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 Table 1: Signal intensity thresholds (𝑭𝟐) for several species for day- and night-time conditions obtained from the 99th 227 
percentile of the GMA or GMI pseudo-residuals. The thresholds are defined based on the more intense peaks associated 228 
with each molecule. Since IASI-PCA sensitivity is generally lower during night-time than during day-time, which is mainly 229 
due to thermal contrast, different thresholds for day and night conditions were defined. 230 

Molecule Spectral range 

(cm-1) 

Peak position 

(cm-1) 

GMI day GMI day GMI night GMA day GMA night 

HCN 711.50 - 713.50 712.50 -4.42     -4.42     -4.41     4.10 4.06 

C2H2 729.25 - 730.00 729.50 -4.01     -4.01     -3.92 3.94 3.88 

C4H4O 744.25 – 744.75 744.50 -4.13 -4.13 -4.10 3.77 3.76 

HONO 790.25 – 790.75 790.50 -4.09 -4.09 -4.08     4.18     4.06 

NH3 966.00 - 968.00 967.00 -8.01     -8.01     -4.60     4.46     4.70 

C2H4 949.00 - 950.50 949.25 -4.41    -4.41    -4.39 4.29     4.25 

CH3OH 1033.00 - 1033.75 1033.50 -4.35 -4.35 -4.27     4.40     4.30 

HCOOH 1104.50 - 1105.75 1105.00  - 6.06      - 6.06     -4.69     4.47     4.26 

HNO3 1325.75 - 1326.25 1326.00 -6.93     -6.93     -6.43     6.01     6.38 

SO2 1344.50 - 1346.50 1345.00 -7.52        -7.52        -4.92 4.38 4.46 

CO 2111.00 – 2112.25 2111.50 -6.89 -6.89 -4.72 4.58 4.28 

 231 

4.3 Towards a detection of extreme events in near real time 232 

Right after the reception of each IASI 3-minutes granule, the two GMA/GMI pseudo-residuals are calculated as well 233 

as other statistics of the residual over the granule. Then the two different thresholds defined in Section 4.2 are applied 234 

to the GMA/GMI pseudo-residuals in order to localize the pixels potentially associated with an event and the associated 235 

channels. In case of anomalies (i.e., threshold overrun) in the GMA/GMI pseudo-residuals, an alert is set-up along 236 

with the targeted channels identified. The corresponding absorbing species with their spectral range are identified in 237 

the following together with the associated peak position of the associated channel, and the spatial distribution map of 238 

the detected pixels in the 3-minute granule is produced. This allows to visualize and further study exceptional events. 239 

The IASI-PCA-GE method was validated for past and documented events, four of which are described hereafter. It is 240 

now running continuously, delivering email alerts on a routine basis using the near real time IASI L1C radiance data. 241 

Most of these alerts are associated with fires and volcanic eruptions.   242 
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5 Case studies 243 

This section presents a demonstration of the IASI-PCA-GE method for several past extreme events. The method is 244 

applied to IASI/Metop-A and the IASI/Metop-B L1C radiance data. Table 2 gives a brief description of the case studies 245 

presented hereafter.  246 

Table 2:  Brief description of the four case studies analyzed in this section.   247 

Type  Location Date AM/PM 

orbit 

Instrument  Observed molecules 

Volcanic Eruption  Ubinas/ 

Peru 

20/07/2019 AM IASI- B SO2, HNO3 

Fires  Australia 01/01/2020 AM IASI-B HCN, C2H2, C2H4, HCOOH, 

CO, NH3, C4H4O, CH3OH 

Anthropogenic 

pollution 

 China 13/01/2013 PM IASI-A NH3, SO2, CO 

Industrial accident  Iraq 24/10/2016 PM IASI-B SO2, HNO3 

 248 

For each event, we identify the molecules in the outliers through analysis of the residual statistic, in order to assign the 249 

spectroscopic feature characteristic of the corresponding species, over a granule and applying the IASI-PCA-GE 250 

method. We also provide distribution maps to illustrate the spatial distribution of the target event. When available, the 251 

maps are compared to the existing retrieved IASI products (CO: Hurtmans et al., 2012; NH3: Van Damme et al., 2021; 252 

CH3OH and HCOOH: Franco et al., 2018; C2H4: Franco et al., 2022; C2H2: as yet unpublished; HCN: Rosanka et al., 253 

2021; SO2: Clarisse et al., 2012). 254 

5.1 Volcanic eruption events  255 

Volcanic eruptions have a major impact on atmospheric composition. SO2, which has several strong absorption bands 256 

in the TIR spectral range, is the most common molecule observed in the volcanic plume (Clarisse et al., 2012). Several 257 

other species were previously observed by satellites in volcanic eruptions such as hydrochloric acid (HCl) (Clarisse et 258 

al., 2020), hydrogen sulfide (H2S) (Clarisse et al., 2011) and sulfuric acid (H2SO4) (Ackerman et al., 1994; Karagulian 259 

et al., 2010), which can be injected in the stratosphere in case of high-altitude eruption (Rose et al., 2006; Millard et 260 

al., 2006).  261 

5.1.1 The Ubinas (Peru) case study 262 

The IASI-PCA-GE method was applied to several volcanic eruptions. Here, we illustrate the findings for the eruption 263 

in Ubinas, Peru on 20 July 2019 (Venzke et al., 2019). Instituto Geofísico del Perú (IGP) mentioned that seismic 264 

activity suddenly increased during June 2019 and remained high during July 2019 with important ash emissions 265 

causing the evacuation of the population in some areas affected by ashfall. Figure 4 illustrates the normalized GMI 266 

pseudo-residual obtained during this volcanic eruption corresponding to a granule taken in the area of the plume during 267 

daytime.  A large difference between the reconstructed spectra and raw spectra is seen in the SO2 ν3 band around ~1371 268 
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cm-1 and ~1377 cm-1 which is in agreement with results of Clarisse et al. (2008, 2012) showing the sensitivity of the ν3 269 

band. Indeed, the peak found at 1371.50 cm-1 is associated with the presence of SO2 plume in the upper 270 

troposphere/lower stratosphere (∼14 km, 150 hPa) between 0.5 DU and 200 DU (saturation) (Clarisse et al., 2011). 271 

Such detection is expected in this case due to the high quantity of SO2 emitted. It is worth noting that other peaks in 272 

the GMI pseudo-residual also show strong absorptions, which were initially associated with HNO3. Even if this 273 

constituent has previously been reported in volcanic plumes in some active degassing volcanoes (Mather et al., 2004), 274 

peaking in the GMI at ~763 cm-1, ~879 cm-1 and ~897 cm-1, and ~1326 cm-1 associated with ν8, ν5, 2ν9, ν3 and ν2 nitric 275 

acid absorption bands, respectively, it has never been observed by remote sensing before. As the analysis of the IASI 276 

HNO3 L2 products shows no HNO3 enhancement, further investigations were performed to identify where the signature 277 

comes from. 278 

 279 

Figure 4: Top: Example of GMI pseudo-residual calculated from IASI/Metop-B L1C data during a volcanic eruption in 280 
Ubinas, Peru on 20 July 2019 in the morning (AM orbit). Bottom: HITRAN spectroscopic parameters associated with the 281 
absorption of HNO3 and SO2 are shown in blue and in orange, respectively.   282 

The HNO3 detection by the IASI-PCA-GE method was further investigated by applying the whitening method 283 

proposed by De Longueville et al. (2021). The use of a covariance matrix, calculated from a set of IASI spectra shows 284 

similar results as those found with the IASI- IASI-PCA-GE method. However, using a covariance matrix excluding 285 

the SO2 absorption band, no HNO3 spectral feature was found. This suggests that no nitric acid is present in the plume. 286 

The features found in the HNO3 absorption band by the IASI-PCA-GE method is likely related to SO2 features given 287 

that the SO2 n3 absorption band superimposes with the HNO3 v3 band. 288 
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Furthermore, other spectral signatures remain difficult to characterize in the 1200 – 1300 cm-1 spectral domain. This 289 

spectral range corresponds to the absorption of different volcanic compounds such as ash, aerosols and other possible 290 

volcanic molecules such as H2S or H2SO4 (Karagulian et al., 2010) but is also sensible to strong H2O absorptions.   291 

After applying the threshold filters defined in Section 4.2 to the GMI pseudo-residual, the spatial distribution of the 292 

pixels associated with outliers can be mapped. Figure 5 shows a plume of SO2 (left) in Southeast America, with large 293 

signal intensity values reaching around -150 in the center of the plume. The spatial distribution of the retrieved IASI 294 

SO2 L2 operational products (right) also shows the plume located in Southeast America and is in excellent agreement 295 

with the SO2 plume detected from the IASI-PCA-GE method. 296 

 297 

Figure 5: Left: Spatial distribution of the residual values associated with SO2 IASI-PCA-GE detections, using IASI/Metop-298 
B radiance data recorded on 20 July August 2019 in the morning (AM orbit). Right: SO2 total column retrievals in Dobson 299 
Units.  300 

5.1.2 Volcanic eruption archive for IASI/Metop-B 301 

The time series of the SO2 detections derived from the IASI-PCA-GE method is applied to IASI/Metop-B global 302 

dataset over the 2013-2022 period. Figure 6 shows the comparison of the SO2 IASI-PCA-GE signal intensity with the 303 

SO2 hyperspectral range indexes (HRI) product at 5 km (Bauduin et al., 2016). HRIs at 5 km are chosen because of a 304 

good sensitivity around this altitude (Clarisse et al., 2014) compared to L2 SO2 concentration data that are showing 305 

concentration above 5 km (likely the high intensity volcanism). Only daily SO2 extrema of both the IASI-PCA-GE 306 

method and HRI product are compared. They are spatially co-located and associated with documented volcanic events 307 

from the Global Volcanism Program, Smithsonian Institution (https://volcano.si.edu/). It is observed that both methods 308 

are able to detect not only intense eruptions but also moderate or degassing volcanic events. The largest volcanic 309 

eruptions detected during this period for both methods are Calbuco on 22 April 2015, Raikoke on 22 June 2019 and 310 

Ubinas on 19 July 2019 (Sennert, 2015, 2019, 2019b). Furthermore, for all major events (corresponding to 2810 days 311 

over 3373 days in total), an excellent correlation between HRI and IASI-PCA-GE signal intensity (R² = 0.96) is found 312 

between the two datasets.  313 
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 314 

Figure 6: Time series of SO2 detections from IASI-PCA-GE method (grey) and the SO2 HRI at 5 km (orange) based on the 315 
IASI/Metop-B L1C data for the 2013-2022 period. Only the daily extrema are shown in the time series.  316 

In order to analyze and understand the differences between the two records, the correlation between the latitudes of 317 

both datasets shown in Fig. 6 are plotted (see Figure 7). An excellent location correlation between both HRI and IASI-318 

PCA-GE methods is observed for high intensity detections. However, some discrepancies are found in case of low 319 

intensity events, corresponding to commonly active degassing volcanoes.  320 

Some specific latitudes associated with degassing volcanoes such as Sabancaya (Moussallam et al., 2017), the Vanuatu 321 

island arc with Ambae (Ani et al., 2012), Colima and Popocatepetl in Mexico (Varley et al., 2003) and the long eruptive 322 

Kilauea volcano (Garcia et al., 2021) respectively at 15.8° S, 15.4° S, 19.5° N, 19.0° N and 19.4° N are illustrated by 323 

the black horizontal and vertical dashed lines in Fig. 7. Furthermore, some daily maxima are located around 38° S, 324 

37.5° N et 25.2° N and are respectively related to emissions from Copahue (Reath et al., 2019), Etna (Tamburello et 325 

al., 2013 ; Ganci et al., 2012) and several Chilean volcanoes. 326 

The daily maxima located around 56° N have been investigated and found to be associated with Kamchatka degassing 327 

volcanoes. Disperse latitudes of IASI-PCA-GE daily maxima are not consistent with the co-registered HRI maxima. 328 

These differences between the IASI-PCA-GE and HRI methods can also be explained by the relation between plume 329 

altitude/temperature not represented in the principal components that will also affect the spectral reconstruction. As a 330 

result the location of daily maxima can be different in case of low intensity detections because of the PCA 331 

overestimation (or underestimation) of atmospheric anomalies. This also results from the non-linear relationship 332 

between retrieved concentrations and PCA intensities. 333 
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It is interesting to note that both IASI-PCA-GE and HRI detections observed at around 30° N and 65° N are associated 334 

with anthropogenic emissions in the region of Sarcheshmeh Copper, one of largest industrial-mining complexes for 335 

copper that is emitting about 789.9 tons of SO2 per day (Amirtaimoori et al., 2014) and over the Norilsk city, also well 336 

known for its mining and smelting industries (Bauduin et al., 2016). That finding illustrates the capacity of both 337 

methods to detect industrial emissions. 338 

 339 

Figure 7: Comparison of latitudes corresponding to the daily maxima detected for both IASI-PCA-GE SO2 signal intensity 340 
and HRI product between 2013 and 2022 with IASI-B L1C data during the day. The dashed lines show location 341 
discrepancies. 342 

It is found that the relation between concentration and signal intensity is not linear and the PCA-based results cannot 343 

be used for an accurate quantification of SO2 concentrations. Indeed, IASI-PCA-GE signals will be dependent on the 344 

molecule concentration but also on thermal contrast, and other surface parameters and atmospheric conditions. This   345 

is why discrepancies are found at high latitudes between the location of IASI-PCA-GE and HRI maxima, which are 346 

associated with eruptions in the Kamchatka region.  347 

5.2 Fire events  348 

Fires can be a significant source of trace gases and aerosols in the atmosphere and several species were specifically 349 

looked for in fire events: CO, NH3, formic acid (HCOOH), acetylene (C2H2), ethylene (C2H4), nitrous acid (HONO), 350 

ethane (C2H6), acetonitrile (CH3CN), methanol (CH3OH), peroxyacetyl nitrate (CH3CO(OONO2)), hydrogen cyanide 351 

(HCN), formaldehyde (HCHO), glyoxal (CHOCHO), and CH4 (Li et al., 2000; Goode et al., 2000; Sharpe et al., 2004; 352 

Coheur et al., 2009; Duflot et al., 2013; R'Honi et al., 2013; Zarzana et al., 2018, De Longueville et al., 2021). The 353 
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IASI-PCA-GE method was applied to several case studies, but only one is presented here, selected during the fire 354 

season occurring in Australia in 2019-2020. 355 

5.2.1 The Australia case study 356 

In Australia, fire events known as bushfires are occurring every year. Coupled with global warming and the lack of 357 

rainfall in 2019-2020, the fires were particularly intense with burned areas covering more than 186000 km2.  It was 358 

shown that pyro-convection allowed the plume to reach the lower stratosphere around 15-16 km (Khaykin et al., 2020). 359 

Many species were observed by ACE-FTS during that episode (e.g., Boone et al., 2020): CO, C2H6, C2H2, HCN, 360 

HCOOH, CH3OH, PAN, acetone (CH3COCH3) and CH3CN. 361 

The IASI-PCA-GE method was applied to the IASI/Metop-B L1C data on 1 January 2020. Figure 8 illustrates an 362 

example of a normalized GMI pseudo-residual obtained during the Australia fire event. As expected, peaks relative to 363 

the CO absorption lines are found in the 2050-2200 cm-1 spectral domain. Other peaks associated with the absorption 364 

of molecules are also visible: HCN with a peak at 712.50 cm-1, furan (C4H4O) at 744.50 cm-1, C2H2 at 729.50 cm-1, 365 

C2H4 at 949.25 cm-1, HCOOH at 1105.00 cm-1 and 1777.00 cm-1, CH3OH at 1033.50 cm-1, as well as peaks associated 366 

with NH3 at 931.00 cm-1 and 967.00 cm-1. 367 

 368 

Figure 8: Top: Example of GMI pseudo-residual calculated from IASI/Metop-B L1C data during the intense fire event in 369 
Australia on 1 January 2020 in the morning (AM orbit). Bottom: HITRAN spectroscopic parameter associated with the 370 
absorption of different species are shown in colors.   371 

Figure 9 (left column) shows the spatial distribution of the residual values associated with the detected species in the 372 

GMI pseudo-residual. Despite their different lifetimes, the plumes for the different species are located in the same 373 

region (around 180° E in the Pacific Ocean).  374 

Carbon monoxide is retrieved in near real time (George et al., 2009) from IASI L1C and is used for monitoring fires 375 

(Turquety et al., 2009). In Fig. 9, CO is observed both with the IASI-PCA-GE and the L2 retrieval methods. However, 376 
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some discrepancies are found in terms of location and intensity. A few pixels are detected by the IASI-PCA-GE method 377 

in the Southeast of Australia, which is in agreement with the CO operational L2 product. However, the retrieval method 378 

is able to detect a larger plume over Australia compared to the IASI-PCA-GE method. Furthermore, a large plume is 379 

also detected over the Pacific Ocean but is missed by the IASI-PCA-GE method. Note that, the high intensity CO 380 

peaks are clearly detected in the residuals (c.f. Fig. 10). However, most of the missing pixels, in the PCA detection 381 

results, are located above sea. That could be due to the combination between the database chosen in the PCA method 382 

and the high variability in this spectral domain. Indeed, a higher thermal contrast variability is observed above land 383 

(Clerbaux et al., 2009), but the database contains spectra representing the natural variability without differencing sea 384 

and land pixels. As a result, the spectral reconstruction above sea with the PCA method will be less sensitive to spectral 385 

variations, causing a reduced sensitivity above sea. Furthermore, the spectral region between 2050 and 2200 cm-1 has 386 

shown a large statistical distribution of extrema signals within the 21500 granules used for threshold calculation in 387 

Section 4.2 allowing to set a restrictive threshold for the outlier detection for CO. That restriction will also impact the 388 

number of detected pixels. The sensitivity of PCA reconstruction outliers to strong CO concentrations in fires should 389 

be more deeply investigated in further studies. 390 

NH3 is also retrieved in near real time (Van Damme et al., 2017) and observed in low concentration and occurrence 391 

above Australia on the 1st of January 2020 in the L2 retrievals and in low signal and occurrence in the IASI-PCA-GE 392 

method. Some pixels are detected by the IASI-PCA-GE method but are not spatially correlated with the NH3 total 393 

column L2 data. A less frequent detection of NH3 is expected since only low intensity peaks of NH3 are found in the 394 

GMI pseudo-residual but two plumes are observed above both land and sea while L2 retrievals only show many 395 

isolated pixels. 396 

However, for other indicators the size of the plume differs: large plumes are found for C2H2, C2H4 and HCOOH while 397 

smaller plumes are found for HCN, C4H4O and CH3OH. Those differences can be explained by the difference between 398 

both methods. Indeed, the column maps includes the effects of radiative transfer (thermal contrast in particular), and 399 

the presence of clouds can also induce differences between both products as the retrievals are highly sensitive to clouds. 400 

For the IASI-PCA-GE method, the sensitivity for molecules detection highly depends on the selection of spectra to 401 

construct the database and the thresholds chosen for the detection. 402 
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 403 

Figure 9: Left: Spatial distribution of the residual values associated with CO, NH3, HCN, C2H2, C2H4, CH3OH, HCOOH 404 
and C4H4O detections from IASI/Metop-B L1C data during the intense fire event in Australia on 1 January 2020 in the 405 
morning (AM orbit); right: same as left for the total column L2 data. There is no map of C4H4O total column L2 data 406 
because there is no retrieval available. 407 

5.2.2 Fire archive for IASI/Metop-B  408 

Figure 10 illustrates the time series of the ethylene detections from IASI-PCA-GE method based on the IASI/Metop-409 

B L1C data for the 2013-2022 period. C2H4 is a weak absorber often detected at 949.25 cm-1 in case of high intensity 410 

fires and is able to show many high intensity peaks attributed to fire events. In the figure, the most intense fires are 411 
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characterized by their location (name indicated in black in Fig. 10). The presence of fires was validated by comparing 412 

C2H4 detection to the IASI L2 CO that is shown to be a good fire tracker (Logan et al., 1981). The seasonality of fires 413 

clearly appears during summer in the northern hemisphere mainly related to fires in Canada, Russia and Siberia and 414 

during summer in the southern hemisphere with annual Australian and Indonesian fires. One of the largest detections 415 

of the 2013-2022 period is associated with the 2019-2020 Australian bushfires discussed in section 5.2.1. Note that the 416 

highest C2H4 intensity, observed on 29 July 2021 with a signal of 56, could not be associated with biomass burning as 417 

no other indicators are present in the PCA-residuals. The source of this C2H4 enhancement is likely linked to 418 

anthropogenic activities, as well as some other maxima, all located in Iran near the Iraq border. This will be further 419 

discussed in chapter 5.3.3.  420 

 421 

Figure 10: Time series of C2H4 detections from IASI-PCA-GE method based on the IASI/Metop-B L1C data for the 2013-422 
2022 period. Only the daily extrema are shown in the time series. For clarity, the time series are separated into 2 periods: 423 
2013-2017 (top panel) and 2018-2022 (bottom panel). Some events (blue dots) are associated with sporadic industrial 424 
releases.  425 

5.3 Anthropogenic pollution events 426 

5.3.1 High pollution in China 427 

Boynard et al. (2014) investigated a severe pollution episode occurring in the North China Plain in January 2013. The 428 

episode was caused by the presence of anthropogenic emissions combined with low wind speed and low altitude 429 

boundary layer, leading to weak mixing and dispersion of pollutants. The ability of IASI to detect high concentrations 430 

of trace gases such as CO, SO2, NH3 as well as ammonium sulfate aerosol ((NH4)2SO4) during night-time was 431 

demonstrated in case of large negative thermal contrast related to the winter season and the coal burning in China for 432 
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domestic heating. The IASI-PCA-GE method was applied on 13 January 2013 during night-time. The normalized 433 

GMA pseudo-residual obtained during the China anthropogenic pollution is illustrated in Fig. 11. In order to optimize 434 

the sensitivity of the method for a low intensity event, the 𝐹- thresholds were defined as 𝐹- = 	5	for both day and night-435 

time condition for the three species of interest (CO, NH3 and SO2). We clearly see a signal associated with CO, NH3, 436 

and SO2 spectral emission, with the largest signal for SO2 (value reaching ~18). The detection of SO2 around ~1345 437 

cm-1 is less frequent compared to similar detection of SO2 during volcanic eruptions. This result suggests that the SO2 438 

absorption features around ~1345 cm-1 also allows the detection of SO2 during anthropogenic pollution episodes, which 439 

is in agreement with the finding of Bauduin et al. (2014, 2016). Finally, the spectral features around 1180-1200 cm-1 440 

showing a low signal intensity are likely due to the IASI detector band 1 – band 2 inter-band domain that is well 441 

captured in the IASI-PCA-GE method and should not be associated to an anomalous atmospheric constituent. 442 

 443 

Figure 11: Top: Example of GMA pseudo-residual calculated from IASI/Metop-A L1C data during an anthropogenic 444 
pollution event occurring in China on 13 January 2013 in the evening (PM orbit). Bottom: HITRAN spectroscopic 445 
parameter associated with the absorption of different species are shown in colors.   446 

The spatial distribution of the residual values associated with the detected species in the GMA pseudo-residual (see 447 

Fig. 11) is presented in Fig. 12 (left). The IASI-PCA-GE method allows the spectral detection of NH3, SO2, and CO. 448 

However only a few pixels are detected for NH3, which is due to the very low (<5) signal intensity found for that 449 

species. We see the same behavior for CO. However, a clear SO2 plume characterized by a signal reaching ~18 (at 450 

1345.00 cm-1 - see Fig. 11) is found by the IASI-PCA-GE method.  451 

Figure 12 (right) illustrates the spatial distribution of NH3 and CO total column and SO2 plume altitude L2 data 452 

retrieved from the IASI/Metop-A L1C data (Clarisse et al., 2012). The retrieval and IASI-PCA-GE methods shows 453 
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different patterns. We clearly see two plumes for SO2 plume altitude and CO concentrations, but only few pixels of 454 

detection are found for NH3.  455 

 456 

Figure 12: Analysis of intense fire event in China on 13 January 2013 in the evening (PM orbit) based on IASI/Metop-A 457 
L1C data. Left plots: spatial distribution of residual values associated with SO2, CO and NH3. Right plot: SO2 plume altitude 458 
retrievals (km), and CO and NH3 total column retrievals (molec.cm-2).   459 

5.3.2 SO2 released by a sulfur plant 460 

During the period extending from 20 October to 27 October 2016, a sulfur mine burnt in d’Al-Mishraq near Mosul, 461 

Iraq. This fire on the sulfur plant, which was set by Islamic state, caused a large emission of SO2 and other sulfured 462 

species in the atmosphere, which was observed from several satellite instruments (Björnham et al., 2017). Similar plant 463 

fires occurred in June 2003 during four weeks with approximately 600 kt of SO2 emitted (Carn et al., 2004). This was 464 

a major health hazard (Baird et al., 2012). Nearly thousand people were intoxicated due to toxic fire plumes, and two 465 

Iraqis died.  466 

Figure 13 illustrates the normalized GMI pseudo-residual obtained during the Iraq industrial disaster on 24 October 467 

2016 PM. The GMI pseudo-residual is characterized by an absorption peak at ~1326.00 cm-1 that could be assigned to 468 

HNO3 and two absorption peaks associated with SO2 at 1345.00 cm-1 and 1371.00 cm-1. The signal intensity is about -469 

14 for SO2 which suggests that the event is of low to medium intensity. However, the SO2 peaks found around ~1371 470 

cm-1 and ~1377 cm-1 are mostly seen in case of intense volcanic eruptions, suggesting that the SO2 concentrations are 471 
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larger than concentrations found above most of degassing volcanoes. This suggestion for an industrial origin is well 472 

supported by Fig. 14 showing SO2 total columns up to 5 DU. 473 

The detection at ~1326 cm-1 is not associated to HNO3 and is due to the contribution of SO2 and aerosols, as already 474 

discussed in the case of Ubinas eruption (see section 5.1.1).   475 

 476 

Figure 13: Top: Example of GMI pseudo-residual calculated from IASI/Metop-B L1C data during a sulfur plant fire event 477 
occurring in Iraq on 24 October 2016 in the evening (PM orbit). Bottom: HITRAN spectroscopic parameter associated with 478 
the absorption of different species are shown in colors.   479 

The spatial distribution of the residual values associated with SO2 detections is illustrated in Fig. 15. The IASI-PCA-480 

GE method allows the spectral detection of this molecule in the region of interest four days after the fire started showing 481 

the transport of the plume on the east part of the country. Less pixels are detected by the IASI-PCA-GE method than 482 

by the L2 retrieval method. This can be explained by the fact that SO2 thresholds associated with the IASI-PCA-GE 483 

method were empirically chosen to minimize false positive detections, and thus the detections of low intensity residuals 484 

can be missed. 485 

 486 
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Figure 14: Analysis of sulfur plant fire event in Iraq on 24 October 2016 in the evening (PM orbit) based on IASI/Metop-A 487 
L1C data. Left plot: spatial distribution of residual values associated with SO2. Right plot: SO2 total column in Dobson Unit. 488 

5.3.3 C2H4 sporadic emission at the border of Iran/Iraq 489 

In Section 5.2.2 we reported that the IASI-PCA-GE method is well suited to detect biomass burning by using the C2H4 490 

indicator, found in conjunction with other signatures of molecules usually associated with fire activity. Among the 491 

events that we detected, on a few occasions, we found intense signatures in the Iran/Iraq region with no other absorption 492 

than C2H4, which suggests that sources other than biomass burning – likely due to anthropogenic activities – are at 493 

play. The main event occurred in July 2021 and some other weaker ones are also identified in Fig. 10. By averaging 494 

IASI data over time and using a super-sampling technique, Franco et al. (2022) uncovered and identified over 300 495 

worldwide emitters of C2H4, emanating from petrochemical clusters, steel plants, coal-related industries, and 496 

megacities. However, no C2H4 point source was formally identified in this Iran/Iraq region. But the method described 497 

in this paper is well suited to also detect sporadic events, which contrasts with the continuous emissions identified by 498 

Franco et al. (2022). Indeed, oversampling methods are well suited for the detection of regular, even weak, 499 

anthropogenic sources, but typically miss transient sources lasting for less than 24 hours. A new analysis was therefore 500 

performed on the events spotted by the IASI-PCA-GE method, which led to the identification of plumes lasting for 501 

only a few hours (see Fig. 15), for specific days as identified on Fig. 10. Although visible satellite imagery and 502 

independent online information indicate the presence of oil and gas activities in that area, no firm identification was 503 

possible, and further investigation is needed to identify the potential sources of these sporadic emissions.  504 

 505 

Figure 15: Analysis of acetylene sporadic emission event in Iraq on 29 July 2021 based on IASI/Metop-A L1C data. Left 506 
plot: spatial distribution of residual values associated with C2H4 during the morning orbit. Right plot: spatial distribution 507 
of residual values associated with C2H4 during the evening orbit. 508 

6 Conclusions and perspectives   509 
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This paper presents an innovative approach, based on a PCA method applied on the IASI radiance spectra, allowing 510 

the detection and characterization of exceptional events in near real time. This new method, the IASI-PCA granule 511 

extrema (GE) method, consists in focusing on extrema calculated within a given geographical region. A statistical 512 

selection is made focusing on anomalous variability in IASI channels (detection of outliers) in order to identify the 513 

contribution of specific molecules from different types of events. The method is applied to the standard three-minute 514 

granules of IASI observations allowing the near real time detection of a series of short-lived trace gases.  515 

Using a dataset representing the full range of atmospheric conditions, we show that the PCA method is well suited to 516 

efficiently detect outliers. The analysis of the outliers allows the identification of spectral features exceeding the natural 517 

variability of several absorbing species especially for weak absorbers, emitted during fires, volcanic, anthropogenic 518 

pollution, or industrial disaster. The method is more robust than previous retrieval methods when the spectra are cloud-519 

contaminated. 520 

The analysis of several case studies shows a good sensitivity of the IASI-PCA-GE method, which is able to detect 521 

weak absorbers such as SO2, HCN, C2H2, C2H4, CH3OH, C4H4O and NH3. We also showed that the method is well 522 

suited to detect transient events that last only a few hours/days. 523 

Our work shows that within a granule the negative part of residuals (GMI) contains more information than the positive 524 

part represented by the GMA. However, the latter contains relevant information in case of negative thermal contrasts, 525 

allowing the detection of specific events such as the recurrent anthropogenic pollution events occurring in China in 526 

winter. 527 

The IASI-PCA-GE method is better suited to detect spuriously emitted species. In this study, only species associated 528 

with narrow (as Q branches of C2H2 and C2H4) spectral features have been considered. Species such as PAN, 529 

CH3COOH and CH3COCH3 characterized by broadband absorption features are more difficult to detect with the IASI-530 

PCA-GE method. Also, unconclusive results were obtained for CO because its variability is already well captured by 531 

a truncated reconstruction due to the high variability of this species, from background conditions (50 ppb) to highly 532 

polluted areas (4000 ppb). Finally, as explained above concerning SO2 and HNO3, the spectral coincidence of some of 533 

the intense spectral features of these two species can affect the reconstruction of one when the other one is highly 534 

present. In the frame of this study, this is the only identified example of confounding situations (i.e., unusual 535 

perturbation in a limited number of channels impacts the reconstruction residual in other channels) leading to false 536 

detection. Considering the high numbers and diversity of detections and extreme situations analyzed in this work, such 537 

confounding situations are rare and PCA-based detection of atmospheric events can be effectively and efficiently 538 

exploited. 539 

Overall, this paper shows the capacity of PCA detection to identify different species from an event to another, 540 

especially in case of fire events, which suggest the possibility to categorize fire events based on judicious combinations 541 

of species. The method also proves useful to derive consistent long-term records for fire and volcanic events, and data 542 

will continue to accumulate over time as the method is now routinely implemented. Further work is still needed to 543 

avoid false detections, such as those associated with HNO3 which are due to the correlation between different 544 
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absorption bands for the same molecule, one of them likely interfering with SO2 present in the volcanic or industrial 545 

plumes. 546 

A first version of this method is currently running continuously, delivering email alerts on a routine basis using the 547 

near real time IASI L1C radiance data. Although the method is still being tested, it is planned to be used as an online 548 

tool for the early and systematic detection of extreme events. 549 
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