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Abstract. The study of the recent variability and the future projections of the poles’ climate currently relies on polar-oriented

Regional Climate Models (RCMs). However, RCMs are subject to biases and systematic errors that impact the results of their

simulations. Remote Sensing (RS) data can help to reduce these ambiguities by providing indirect observations to the modeled

estimates. Using the behavior of radiofrequency signals with regard to the presence of water in a snowpack, passive and active

microwave instruments such as AMSR2, ASCAT, and Sentinel-1 are used to detect melt at the surface of the snowpack. In5

this paper, we investigate the sensitivity of the RCM “Modèle Atmosphérique Régional” (MAR) to the assimilation of surface

melt occurrence estimated by RS datasets. The assimilation is performed by nudging the MAR snowpack temperature to match

the observed melt state by satellite. The sensitivity is tested by modifying parameters of the assimilation: (i) the depth to

which MAR snowpack is warmed up or cooled down (corresponding to the penetration depth of the satellites) to match with

satellite, and (ii) the quantity of water required into the snowpack to qualify a MAR pixel as melting or not, and (iii) by10

assimilating multiple RS datasets. The data assimilation is performed over the Antarctic Peninsula for the 2019-2021 period.

The results show an increase in the melt production (+66.7 % on average, or +95 Gt) going along with a small decrease in

surface mass balance (SMB) (-4.5 % on average, or -20 Gt) for the 2019-2020 melt season. The model is sensitive to the three

parameters tested but with different orders of magnitude. The sensitivity to the assimilated dataset is reduced by using multiple

datasets during the assimilation and discarding the remote observations that are not coherent. For the other two parameters, the15

penetration depth has more impact on the assimilation than the quantity of liquid water used as melt threshold. The first one is

especially sensitive for the sensors with a shorter penetration depth. In the first centimeters, a densification due to a refreeze

can impact the melt production and cause an overestimation of the melt production. For the second threshold, the impact is

more important on the number of melt days rather than the melt production itself. The values tested for the quantity of liquid

water required into the snowpack to qualify a MAR pixel as melting or not (0.1 or 0.2 % of the snowpack mass being water) are20

lower than during typical melt days (∼1.2 %) and impact results mainly at the beginning and end of the melt period when lower
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values are reached. Such an assimilation will allow an uncertainty estimation of MAR’s melt production, as well as identifying

potential issues at the snowpack surface processes.

1 Introduction

The polar ice sheets contain more than two-thirds of the planet’s freshwater (Church et al., 2013). If melted entirely, the25

Antarctic ice sheet (AIS) would cause an elevation of the sea level of 56 m (Fretwell et al., 2013). As for now, the AIS is

mainly losing mass from basal melting and calving (The IMBIE Team, 2018; Rignot et al., 2019; Adusumilli et al., 2020).

However, surface melting is becoming an increasing concern with climate change (Trusel et al., 2015; Bell et al., 2018; Gilbert

and Kittel, 2021). Over the ice shelves, the floating boundaries of the ice sheet, the surface melt is known to weaken the

structure of the shelf and can cause hydrofracturing, leading to even more mass loss(Scambos et al., 2003; Pollard et al., 2015;30

Lai et al., 2020). The thinning of the ice shelves also has consequences on the ice flow of the AIS. Although the ice shelves are

smaller than the ice sheet, they exercise a buttressing effect on the upstream ice flow, controlling the quantity of ice reaching

the surrounding ocean. Their thinning reduces that buttressing effect and consequently leads to an increase in mass loss (Favier

and Pattyn, 2015; Paolo et al., 2015; Sun et al., 2020).

Climate models are nowadays one of the handiest tools to monitor the ice shelf evolution. For example, MAR (for “Modèle35

Atmosphérique Régional” in French) has been developed to monitor the polar ice sheets. However, Regional Climate Models

(RCMs) still have some limitations. Because of the forcing, or the physical assumptions, the models may contain significant

uncertainties. Those may be reduced by using external data with other independent sources of uncertainties to correct the model

at certain points in space and/or time. This technique is known as “data assimilation” and is commonly applied in numerous

fields where observations can be integrated into a model (Evensen, 2009; Bouchard et al., 2010; Navari et al., 2018; Landmann40

et al., 2021).

In this article, we sequentially assimilate satellite-derived surface melt occurrence over the Antarctic Peninsula (AP), West

Antarctica, into the MAR model. Three major ice shelves are located over the AP: Larsen C, Georges VI, and Wilkins (Figure

1). These ice shelves undergo the most surface melt of the AIS, and their surface processes are also poorly understood, with a

complex surface hydrology (Barrand et al., 2013; Datta et al., 2019; Johnson et al., 2020).45

The highly uneven topography of the area is challenging for the RCMs usually operating at kilometer-scale resolution.

Localized phenomena like Foehn-effect induce melt can occur at a smaller spatial extent than the RCMs spatial resolution

(Datta et al., 2019; Chuter et al., 2022; Wille et al., 2022). However, high-resolution satellites can document these local events

that could be missed by RMCs in case of localized or extreme events. In addition, using multiple satellites allows us to

perform the assimilation over the whole studied zone every day for two melt seasons (2019-2020 and 2020-2021). As for now,50

assimilating remotely sensed products in RCMs is a promising method to quantify the surface meltwater quantity in Antarctica.

The scarcity of field observations and the complexity of the surface hydrology (Bell et al., 2018) make it hard to evaluate and

constrain models otherwise.
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Figure 1. Location of the Antarctic Peninsula and the three studied ice shelves. The ice shelves are denoted by color outlines. Larsen C is

outlined in purple, Georges VI in green, and Wilkins in red. Blue crosses indicate the position of the weather stations used for the evaluation

of the model (Sect. 3).

Modeling the surface melt production on the ice shelves is important for several reasons. One consequence of surface melting

is the hydrofracturing, which destabilizes the ice shelves and therefore induces high mass loss (Donat-Magnin et al., 2021).55

Hydrofracturing is impacted by the melting/snowfall ratio and by the snowpack capacity to retain and refreeze meltwater

(Donat-Magnin et al., 2021; Gilbert and Kittel, 2021), a proper modeling of the surface melt is needed to study the conditions

leading to the destabilization. In addition, proper modeling of the surface melt also makes possible the study of the evolution of

the snowpack during strong melt events. Studying the snowpack ability to retain liquid water is crucial because the Antarctic

snowpack could saturate, and stop absorbing surface meltwater in the future, as observed currently over the Greenland ice sheet60

(Noël et al., 2017).

In this work, we present the results of the assimilation of satellite-derived melt into MAR and the methodology applied

to test the sensitivity of the model to the assimilation. Experiments have been performed by varying the depth to which the
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snowpack temperature is changed (called the penetration depth here after) to match satellites, the minimum water quantity to

consider the model state as melting, and the assimilated melt product.65

Depending on the context of the study, like the region of interest, the length, or the resolution, the use of a specific satellite

dataset over another can be useful as depending on the sensor and acquisition times, melt occurrence can be different (Husman

et al., 2022). On the one hand, the passive sensors tend to have coarser resolution than the active ones and provide information

with higher uncertainties in areas with complex topography. Nonetheless, they provide daily images with melt detection algo-

rithms that have proven to be efficient (Zwally and Fiegles, 1994; Torinesi et al., 2003; Colosio et al., 2021), and have been70

available for a longer time in the past. On the other hand, active sensors have a better spatial resolution but may have a lower

revisit time. The choice of the assimilated dataset can thus influence the results of the model.

The satellite data, the model and the assimilation are presented in Sect. 2. The validation of the model is described in Sect. 3.

The results of the sensitivity tests when assimilating data into the model are discussed in Sect. 4. Finally, a general conclusion

and discussions on the perspectives of the assimilation of remote sensing data in the MAR model are included in Sect. 5.75

2 Methods and data

2.1 Satellite data

Three satellite datasets were used to create the binary melt masks. The three sensors operate in the microwaves (GHz spectrum).

Microwave radiometers are commonly used to map snow cover, sea ice, or the extension of surface melt over ice sheets

(Parkinson, 2001; Torinesi et al., 2003; Fettweis et al., 2011; Colosio et al., 2021). The signal is used to detect if the snowpack80

is wet or not as microwaves interact with water. The presence of liquid water in the snowpack induces a change of its emissivity

and absorptivity. This change leads to a change in the satellite observables, the backscattering coefficient σ0 for active sensors

and the brightness temperature for passive sensors (Mätzler, 1987; Zwally and Fiegles, 1994; Johnson et al., 2022; Picard et al.,

2022). In this study, the presence of liquid water below the surface of the snowpack is interpreted as melting.

Using microwaves also brings other advantages such as atmospheric transparency and day/night acquisition capabilities.85

However, the low resolution of radiometers is problematic to determine small scale melt extents (Datta et al., 2018). The

surface of one pixel is observed as homogeneous. With pixels of 100 km2 a majority of the pixels are overlapping regions

with different land cover or topography (Johnson et al., 2020). To override some limitations of the passive sensors, we also

employed active sensors. In this case, the active sensors have a better spatial resolution than the passive ones but longer revisit

time. In total, four melt masks are created from three sensors: one radiometer, one scatterometer and a radar.90

In this study, we used The Advanced Microwave Scanning Radiometer 2 (AMSR2) aboard the Global Change Observation

Mission - Water "SHIZUKU" (GCOM-W1) retrieved from the Japan Aerospace Exploration Agency (JAXA) G-Portal (JAXA,

2021). Thanks to the sun-synchronous orbit at an altitude of 700 km, daily observations of the polar regions are obtained. The

level-3 products contain the daily mean brightness temperature in horizontal polarization at the 18.7 GHz channel, gridded at

a 10km resolution. The 18.7 GHz channel is used as it is slightly more sensitive to liquid water content than the others (Picard95

et al., 2022). Ascending and descending paths were processed separately to create two melt masks.
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Melt detection is based on a change of the snowpack’s physical properties. Dry, the snowpack has a lower emissivity (ϵ)

than wet, changing the microwave behaviors in the snowpack (Mätzler, 1987). For the passive microwave sensors, this change

is observed through an augmentation of brightness temperature (Figure 2), caused by the increase in emissivity (Zwally and

Fiegles, 1994) :100

TB(λ) = ϵ ∗TP (1)

with TB(λ) the wavelength-dependent brightness temperature, and TP the temperature as a physical quantity. The melt

retrieval technique applied for this study is a statistical approach developed by Fahnestock et al. (2002) and modified by

Johnson et al. (2020). The melt detection is performed through a K-mean clustering algorithm (Figure 3). The algorithm is

applied to the annual time series of brightness temperature. Melt is assumed when the time series show a binomial distribution.105

Criterias and thresholds used are the same as in Johnson et al. (2020) to assume the binomial distribution.

To ensure coherency between remote sensing products and our climate model, the melt masks are interpolated on a common

grid. Grids are overlapped and for each MAR pixel, the state of melting is determined by the most dominant melt/no-melt

surface of the satellite mask. This interpolation is made with the hypothesis that the deformations and variations of the area

caused by the spatial projection are negligible between a pixel and its neighbors.110

The radar dataset is retrieved from the Sentinel-1 (S1) satellites constellation from the European Space Agency’s (ESA)

Copernicus space program. Starting with the launch of S1-A in 2014, the Sentinel-1 constellation gives access to data com-

bining high spatial resolution and lower revisit time covering most of the globe. With the Synthetic Aperture Radar (SAR)

technology, S1 products reach a spatial resolution of the order of tens of meters every 6 days. By combining different orbital

paths, it is possible to reduce the time between two observations of the same location to 2-3 days in the AP. Working in C-band115

(5.405 GHz), these SAR sensors can react to the presence of liquid water in the snowpack with changes in backscattering

coefficient σ0 (Figure 4). With the increase in liquid water in the snowpack, comes a change in absorptivity and in scatter-

ing mechanism (Nagler and Rott, 2000; Johnson et al., 2020). These two phenomena both lead to a decrease in the observed

backscattering coefficient σ0 (Moreira et al., 2013). As this coefficient changes little in Antarctica as long as the snowpack is

dry, it is assumed that a significant change in backscattering is likely caused by the presence of water in the snowpack.120

As for the passive sensors, several algorithms have been proposed to detect water in snow with SAR and active sensors in

general. Depending on the polarization, the frequency, and the nature of the snowpack, the threshold applied to the backscat-

tering values is variable (Winebrenner et al., 1994; Koskinen et al., 1997; Nagler et al., 2016). For a C-band radar, a 3-dB

decrease in σ0 has been employed as a threshold by Nagler and Rott (2000) and Johnson et al. (2020). Later, Liang et al. (2021)

proposed a -2.66 dB threshold after the normalization of the images to their winter mean as the threshold was found to be125

effective on the Antarctic ice sheet.

To minimize the time between two acquisitions of Sentinel-1, all the available images were processed. To handle the quantity

of data, image processing was carried out on Google Earth Engine (GEE, Gorelick et al., 2017). The S1 dataset available on

GEE is already preprocessed following the implementation of the Sentinel-1 Toolbox from ESA (GEE, 2022; ESA, 2022).

These processing operations include an update of the orbit metadata, removal of the low-intensity noise on the scene edges,130

5

https://doi.org/10.5194/egusphere-2022-1371
Preprint. Discussion started: 15 December 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 2. Evolution of backscattering coefficient σ0 (in blue) and brightness temperature (orange) over the Larsen C ice shelf (top, 67.54◦S

63.90◦W) and the Wilkin coast (bottom, 68.08◦S 65.86◦W) over the 2019-2020 melt season. In a place where not melting is observed (top),

σ0 and the brightness temperature shows almost no changes. On the contrary, in areas subject to melt (bottom), we can observe a decrease of

σ0 and an increase in the observed brightness temperature.

a reduction of the discontinuities between the sub-swath, a radiometric calibration, and a terrain correction from the ASTER

digital elevation model. The choice has been made to resample S1 images to a 1 km resolution using mean values before

detecting melt. The data will ultimately be interpolated on the 7.5 km MAR grid. Before resampling, a 3x3 refined lee speckle

filter developed by Mullissa et al. (2021) was applied to the images in addition to a radiometric terrain flattening using the 1

arc-minute global ETOP1 DEM (Amante and Eakins, 2009).135
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Figure 3. Detection of melt in an AMSR2 image over the Antarctic Peninsula. The increase in TB between a) and b) is interpreted as the

presence of liquid water in the snowpack. After thresholding, the light red areas are pixels considered as melt.

After resampling, the images are normalized to their winter mean, using a technique called “co-orbit normalization” (Liang

et al., 2021) or “winter-normalization”. The winter mean is calculated with observations from June to October. Pixels with

values lower than -28 dB were removed from the dataset. To deal with the changes in acquisition geometry, even if the images

are supposed to be topography-free (terrain-corrected and terrain flattened), only the acquisitions from the same orbit and

scene are taken into account to calculate the winter mean. Consequently, differences between the acquisitions are independent140

of the topography and the local context. The melt is then detected in the image by applying the -2.66 dB threshold (Figure 4),

following Liang et al. (2021).

To create daily images of melt, images of the same day were combined. In case of overlapping images, the pixel-wise melt

state is selected by a temporal majority filter. The acquisition time is defined as the mean time between the selected acquisitions.

Else, if there are only two images that contradict each other, the non-melting status is assumed.145
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Figure 4. Detection of melt in a Sentinel-1 image over the Antarctic Peninsula. The decrease in backscatter between a) and b) is interpreted

as the presence of liquid water in the snowpack. After thresholding, the light red areas are pixels considered as melt.

The third sensor we are using for this study is the C-band “Advanced Scatterometer” (ASCAT). After resolution enhancement

(Lindsley and Long, 2016), it provides a backscattering coefficient at 4.45-km resolution by accumulating images over about

2 days. In Antarctica, only morning passes are selected for this process. The detection of the melt uses a simple threshold

technique (Ashcraft and Long, 2006). The June-August mean backscattering coefficient is first calculated for each pixel and

each year, and then every measurement lower than this mean -3 dB is considered as melting. Similar to AMSR2 daily products,150

the Sentinel-1 and ASCAT daily melt images are interpolated on the MAR grid.

2.2 The regional climate model

We employed the Regional Climate Model MAR. MAR is a polar-oriented regional climate model mostly used to study both the

Greenland (Delhasse et al., 2020; Fettweis et al., 2021) and Antarctic ice sheet (Glaude et al., 2020; Amory et al., 2021; Kittel

et al., 2021). Its atmospheric dynamics are based on hydrostatic approximation of primitive equations originally described155

8

https://doi.org/10.5194/egusphere-2022-1371
Preprint. Discussion started: 15 December 2022
c© Author(s) 2022. CC BY 4.0 License.



in Gallée and Schayes (1994) and the radiative transfer scheme is adapted from Morcrette (2002). The transfer of mass and

energy between the atmospheric part of the model and the atmosphere is handled by the Soil Ice Snow Vegetation Atmospheric

Transfer module (SISVAT, Ridder and Gallée, 1998), from which snow and ice albedo sub-modules are based on CROCUS

(Brun et al., 1992). The model has been parameterized to resolve the topmost 20 meters of the snowpack, divided into 30 layers

of time varying thickness. Each layer has a maximum water content holding capacity of 5 % beyond which the water freely160

percolates through the snowpack or runoffs above impermeable layers (bare ice or ice lenses).

For this work, MARv3.12 was used, including recent improvements in the snowpack temperature and the mass water con-

servation in soil as described in Lambin et al. (2022). MAR was run at a 7.5 km resolution over the Antarctic Peninsula,

with a 40-second time step. It was forced at its lateral boundaries and over ocean by the 6-hourly ERA5 reanalysis (Hersbach

et al., 2020) between March 2017 and May 2021. Snowpack was initialized in 2017 with a previous MAR simulation (Kittel165

et al., 2021). Finally, the simulations with assimilation were started in January 2019, restarting from the simulation without

assimilation.

2.3 Data assimilation

The satellites sensors are sensitive to the presence of liquid water in the snowpack rather than the physical process of melt

production. The aim of the data assimilation is then to guide or constrain the surface melt production of the model by nudging170

it to match the observed surface state. Correcting the melt occurrence influences the melt production at the same time. For

computational reasons, the assimilation routine is called at each MAR time step only during the melting season, between

October and April. Outside of this period, no assimilation is performed. The routine consists in comparing, pixel by pixel, the

model and the satellites melt masks, and warms or cools the snowpack to fit the observations. The satellite acquisition time

is used for the assimilation if the indicated acquisition time is separated by less than 1.5 hour from the MAR time. As three175

satellite products are assimilated at the same time, three separate cases have been developed. Each case is called according to

the number of acquisitions that is taken into account in the routine (Figure 5).

The first case represents the situation where a single acquisition is available for the timestep. It is also the most frequent

(between 90 and 95 % of the time depending on the year) and the basis for the others. This case is inspired by the assimilation

performed in Kittel et al. (2022). For 3 hours around the observation (1.5 h before the observation and 1.5 after, so the model180

has time to adapt its behavior but the impact remains limited), at each MAR time step, the quantity of liquid water modeled

within the pixel is compared to the RS-based mask. If the quantity of modeled liquid water is under a certain threshold (α)

while the satellite mask indicates melt, first snow layers are heated by 0.15 ◦C up to a certain depth (∆z) that depends on the

sensor wavelength, until the melt threshold is reached. In contrast, if the water quantity is above the threshold α but no melt is

observed by satellites, the snow is cooled down by the same rate of 0.15 ◦C by MAR time step. However, in both cases, two185

conditions prevent the assimilation to change the MAR snowpack temperature. The first is that if the snow density is above

830 km m−3, the layer is considered as ice and the model does not permit liquid water to accumulate into ice. The temperature

is then not changed as the threshold would never be reached. The second condition is the temperature of the snow layers above

the ∆z . If their mean temperature is under -7.5 ◦C, the MAR snowpack is too cold to have melt in the mode by warming its
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Figure 5. Flowchart of the assimilation algorithm. The number of satellite images available around the MAR time step determines the

subprocess that is called in the routine. 3 subprocesses are defined: case A, case B, and case C. They respectively represent the availability

of 1, 2, and 3 satellite images for the assimilation. The cases are funneling to case A so either the images do not give the same information

and are discarded or multiple acquisition can be interpreted as one.

snowpack and the satellite observation is discarded. This operation is repeated until the observation is out of the time range.190

The choices for thresholds α and ∆z are discussed in the two next sections, 2.3.1 and 2.3.2.

The second case is called when there are two satellite observations at less than 1.5 hours from MAR time. If the two masks

have the same observation, i.e. no melt or melt, the two observations are associated with the first case but with a ∆z equivalent

to the mean values of the thresholds that would have been used for individual observations. If the two observations indicate

different melt states, a different processing is applied if the acquisitions are close to each other in time (within an hour) or not.195

For two inconsistent observations distant by more than one hour, the assimilated melt state is the melt state from the closest

image to the MAR time, following the first case. For two close contradictory observations, nothing is assimilated as they are

considered both equally likely to be correct or wrong. The model is thus run as if there is no observation.

The third case is when all three observations are available at the same time. As for the second case, if the three masks agree

with the same melt status, they are considered as one and as a longer first case. Again, ∆z is equivalent to the mean values of the200

threshold that would have been used otherwise. If an observation is different from the other two, the two closest observations

of the MAR time are analyzed using the second case described here above. For our configuration of sensors, this third case is

only encountered a couple of times (less than 1 % of the time) while using AMSR2 (ascending orbit), ASCAT, and Sentinel-1,

and so have virtually no implication on the melt estimation.
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Before this case selection, if there are 3 satellite observations available for a pixel for a single day another criterion is205

applied. Following Picard and Fily (2006) demonstrating a daily cycle in brightness temperature, and thus surface melt, if melt

is observed in the earliest and latest observation, an in-between observation with no melt is removed.

2.3.1 Choice of water content threshold α

Estimating the quantity of water in the snowpack with a single satellite acquisition is challenging. Despite the numerous

research studies, the knowledge in the subject remains limited (Trusel et al., 2013; Fricker et al., 2021). However, as described210

in Picard et al. (2022), it is possible to find a typical water quantity for which the satellite signal significantly changes, and can

be detected as melting. Picard et al. (2022) shows that a very small amount of water can be detected with the radio frequencies

used in this study. Only 0.11 and 0.05 km m−2 are necessary at respectively 6 GHz and 19 GHz if the water is uniformly spread

over the pixel. This quantity can be higher for heterogeneous pixels containing patches with and without melt. For this study,

the choice has been made to use the same threshold no matter the sensor frequency. The passive microwave sensors acquired215

at higher frequencies are in principle more sensitive, but having a coarser resolution than that of the two active sensors, their

pixels tend to be more heterogeneous, suggesting a compensation. Two thresholds have been proposed to significantly change

the snowpack brightness temperature in the literature. Tedesco et al. (2007) proposed a threshold of 0.2 % when Picard et al.

(2022) proposed 0.1 %. They both have been tested in Kittel et al. (2022) the choice was found to not significantly influence

the melt quantity produced by the MAR model. The sensitivity of the microwave is high enough that the quantities of liquid220

water that can be detected is much smaller than that produced during a typical melting day (1.2 ± 0.6 % as modeled by MAR

over the studied zone).

2.3.2 Choice of penetration depth threshold ∆z

Microwaves have penetration capabilities directly related to their wavelength (Elachi and van Zyl, 2006). As a consequence,

C-band SAR from Sentinel-1 has a different penetration depth than Ku-band from AMSR2. In addition, the water content225

strongly influences the penetration depth, as water at the top of the snowpack can prevent deeper penetration (Fig. 6). In this

experiment, we set different limits of penetration for each remote sensing product to test its influence. Using AMSR2 (Ku-

Band), we consider a depth ∆z = 0.1, 0.2, and 0.4 m successively below the surface. Below this depth, the electromagnetic

wave should not have a noticeable influence (Picard et al., 2022). For Sentinel-1 and ASCAT (C-band), the depth threshold ∆z

is set up to 0.5, 1, and 1.5 m.230

3 Evaluation

Because the integrated physics within RCMs are either partially resolved or contain uncertainties, it is first required to evaluate

models outputs to in situ measurements. The evaluation is there to quantify how close the model is to reality and if the model

is inclined to reproduce this observed situation.
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Figure 6. Illustration of the penetration depth of the microwave sensor according to their wavelength and the depth of the wet snow layer.

(a) Penetration depth in a dry snowpack. The signal of the sensor with the lower frequency (5 GHz) penetrates deeper than the signal of the

higher one (19 GHz). (b) Penetration depth with a layer of liquid water deep in the snowpack. The microwave sensor with deeper penetration

is able to detect melt but the other cannot. (c) Penetration depth with liquid water at the top of the snowpack. Both satellites can observe the

presence of liquid water.

The outputs of the model are evaluated by comparing some modeled variables with in situ observations. The daily ob-235

servations are provided by Automatic Weather Stations (AWS) widespread across the AIS. Here, 9 weather-stations datasets

available in the studied zone (blue crosses displayed in Fig. 1) have been gathered to calculate statistics between the model and

the observations as done in Kittel (2021) and Mottram et al. (2021). The statistics employed for the evaluation are the Mean

Bias (MB), Root Mean Square Error (RMSE), Centered Root Mean Square Error (CRMSE), and correlation (Table 1). The

statistics are listed for the 2016-2021 period for the near surface pressure, temperature, wind speed, relative humidity, short-240

wavelength downward radiations (SWD), short-wavelength upward radiations (SWU), long-wavelength downward radiations

(LWD), and long-wavelength upward radiations (LWU).

Small biases can exist between the observations and the model due to the elevation difference. The observations are punctual

when the model provides zonal information over a 7.5 x 7.5 km2 pixel. Thus the mean elevation of the MAR pixel in which the

AWS falls is not the same as the AWS true elevation. This difference is particularly noticeable for the near-surface pressure,245

directly linked to the elevation. Nonetheless, a high correlation (r > 0.98) reflects the MAR ability to simulate its temporal

variability.

In general, the winter season is slightly better represented with higher correlations and lower mean bias than the summer

season. Larger differences are observed in summer for long-wavelength downward radiations LWD (r = 0.65). This difference

is compensated by the excess of short-wavelength solar radiations over the year. As explained in Delhasse et al. (2020), MAR250

is outperformed by reanalysis when representing downward radiative fluxes. MAR does not assimilate temperature profile nor

coastal temperature but is only forced at its boundaries every 6h for its specific humidity and temperature. Thus modeled clouds

are the outcome of the model climate and microphysics (Delhasse et al., 2020). Moreover, the radiative scheme implemented
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Table 1. Mean Bias (MB), Root Mean Square Error (RMSE), Centered Root Mean Square Error (CRMSE), and correlation between MAR

and daily observation over the Antarctic Peninsula. A negative value implies a lower MAR estimate than the observation. Statistics are given

for the for the near surface pressure, temperature, wind speed, relative humidity, shortwave downward (SWD), shortwave upward (SWU),

longwave downward (LWD), and longwave upward (LWU) annually, for the summer (DJF), and for the winter (JJA) and are calculated for

the 2016-2021 period. During winter, the absence of the Sun implies no short-wavelength solar radiation measurements (SWD and SWU).

Locations of the weather station used for the daily observations are marked by blue crosses in Fig. 1.

Annual Summer Winter

MB RMSE CRMSE Correlation MB RMSE CRMSE Correlation MB RMSE CRMSE Correlation

Near Surface Pressure (hPa) -5.44 14.57 1.25 0.99 -5.69 13.18 0.87 0.99 -6.13 16.09 1.42 0.99

Temperature (◦C) -0.32 3.32 2.81 0.93 -1.13 2.36 1.68 0.76 0.3 3.63 3.11 0.92

Wind speed (ms−1) -0.39 2.58 2.28 0.79 -0.43 2.22 1.85 0.7 -0.35 2.92 2.57 0.78

Relative humidity (%) 3.2 8.73 8.13 0.72 6.88 9.32 6.29 0.75 2.87 9.1 8.64 0.79

SWD (W s−2) 13.87 36.23 33.46 0.97 41.58 59.21 42.15 0.79 / / / /

SWU (W s−2) -0.2 24.04 24.04 0.97 14.38 35.81 32.8 0.78 / / / /

LWD (W s−2) -14.75 26.15 21.59 0.76 -26.56 32.51 18.75 0.65 -7.12 21.08 19.85 0.81

LWU (W s−2) 3.4 14.2 13.79 0.93 -0.52 9.2 9.19 0.76 2.83 17.12 16.88 0.9

in MAR is the one from the ERA-40 reanalysis. This scheme has been updated in the ERA-interim and ERA-5 reanalysis

(Hersbach et al., 2018, 2020) but not in the model. Combined with cloud physics, bias in downward radiative fluxes can appear255

in MAR.

4 Results

The results of an ensemble of twenty MAR simulations is presented here. The reference MAR simulation, MARref , is per-

formed without assimilation. The 19 others are referred to as “assimilations” hereafter. For each one, the satellite melt masks

are assimilated into the model, with different parameters (Table 2). The reference assimilation (Assimref ) is using Sentinel-1260

and AMSR2, both their ascending and descending orbits, and with thresholds ∆z = 1 m and 0.2 m respectively. Also, α is set at

0.1 %. The thresholds of Assimref correspond to values given in the literature (Elachi and van Zyl, 2006; Picard et al., 2022).

The sensitivity tests have been performed from June 2019 to May 2020, and from June 2020 to May 2021. The 2020-2021

season graphs are available in Supplementary materials.

The evolution of several variables (Table 3) including surface Melt (ME), Runoff (RU), Surface Mass Balance (SMB),265

Snowpack Density (ρ), and Liquid Water Content (LWC), is analyzed to study the changes to the model caused by the data

assimilation. The first 3 variables (ME, RU, and SMB) are given for the entire snowpack profile while the other two ρ and LWC)

are taken at 0.2- and 1-meter depth. The average value of the variables of all the assimilations, Assimmean, is compared to

the model with no assimilation. Although Assimmean gives different results from the reference assimilation, Assimref is the

closest simulation to Assimmean.270
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Table 2. Name of the different simulation and parameterization of the simulation with data assimilation. Simulations marked with an asterisk

have been removed from the calculation of the ensemble average.

α (%) Ku band ∆z (m) C-band ∆z (m) Sensors

Assimref 0.1 0.2 1 AMSR2 + S1

MARa01−ku02−c05 0.1 0.2 0.5 AMSR2 + S1

MARa01−ku02−c15 0.1 0.2 1.5 AMSR2 + S1

MARa02−ku02−c10 0.2 0.2 1 AMSR2 + S1

MARa02−ku02−c05 0.2 0.2 0.5 AMSR2 + S1

MARa02−ku02−c15 0.2 0.2 1.5 AMSR2 + S1

MARa01−ku01−c10 0.1 0.1 1 AMSR2 + S1

MARa01−ku01−c05 0.1 0.1 0.5 AMSR2 + S1

MARa01−ku01−c15 0.1 0.1 1.5 AMSR2 + S1

MARa02−ku01−c10∗ 0.2 0.1 1 AMSR2 + S1

MARa02−ku01−c05∗ 0.2 0.1 0.5 AMSR2 + S1

MARa02−ku01−c15∗ 0.2 0.1 1.5 AMSR2 + S1

MARa01−ku04−c10 0.1 0.4 1 AMSR2 + S1

MARa01−ku04−c05 0.1 0.4 0.5 AMSR2 + S1

MARa01−ku04−c15 0.1 0.4 1.5 AMSR2 + S1

MARa02−ku04−c10 0.2 0.4 1 AMSR2 + S1

MARa02−ku04−c05 0.2 0.4 0.5 AMSR2 + S1

MARa02−ku04−c15 0.2 0.4 1.5 AMSR2 + S1

MARa01−ku02−c10 0.1 0.2 1 AMSR2 (asc.) + S1 + ASCAT

MARref / / / None

Table 3. Surface mass balance (SMB), and average snowpack density (ρ) and snowpack liquid water content (LWC) for MARref , the

reference assimilation (Assimref ) and the mean value of the assimilations (Assimmean) over the Antarctic Peninsula for the 2019-2020

melt season. The range comprises all 19 assimilations. LWC and ρ are taken at a depth of 0.2 m and 1 m while the other variable are given

as a snowpack cumulated value.

ME (Gtyr−1) RU (Gtyr−1) SMB (Gtyr−1) ρ0.2m (kgm−3) ρ1m (kgm−3) LWC0.2m (kgkg−1) LWC1m (kgkg−1)

MARref 142 32 451 447 434 0.004 0.005

Assimref 214 56 427 480 456 0.003 0.005

Assimmean 237 53 431 481 457 0.003 0.005

Range 183 - 299 45 - 60 424 - 439 472 - 490 451 - 463 0.003 - 0.004 0.004 - 0.007

Evolution (%) 66.7 63.8 -4.5 7.4 5.2 -8.1 -2.2

Although there are divergences while using different parameters in the assimilation, the surface melt production is larger

compared to MARref for all assimilations. On average, the melt extent provided by the melt masks are larger than the melt
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Figure 7. Cumulated surface melt production (Gt) for the 2019-2020 melt season as modeled by MAR without assimilation (MARref in

light red), with data assimilation (Assimmember in dashed lines), and their averaged value (Assimmean in blue). Shaded areas represent

the range of the assimilations.

extent modeled by MARref on the Antarctic Peninsula. This difference impacts the melt production in the model (Fig. 7). No

matter the parametrization of the assimilation, the surface melt production is increased compared to MARref , leading to an

cumulated melt production increase of 63.8 % for the Assimmean.275

The snowpack can saturate, either from meltwater production or from densification. If snowpack liquid water content exceeds

5 %, the excess water starts to trickle and run off. In Antarctica, runoff is driven by the surface melt production and rainfall

(Gilbert and Kittel, 2021). The evolution of runoff is thus directly related to the evolution of melt and the snowpack saturation

level. Nonetheless, if the relative evolution between Assimmean and MARref is the same for surface melt and runoff (+66.7

% and +63.8 % respectively), it is not the case in absolute (+95 Gt y−1 and +21 Gt y−1). In other words, the snowpack is280

still able to absorb liquid water as long as it is not fully saturated. The strongest increase in runoff occurs together with firn

air content depletion over the ice shelves. Liquid can stay in the porous layers of the surface snowpack. Then, depending on

the temperature and the melt production, the water either refreezes during the night or percolates deeper in the snowpack.
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Figure 8. Cumulated surface mass balance (Gt) for 2019-2020 melt season as modeled by MAR without assimilation (MARref in red),

with data assimilation (Assimmember in dashed lines), and their averaged value (Assimmean in blue). Shaded areas represent the range of

the assimilations.

By refreezing, the water densify the firn, causing firn air content depletion, leaving less storage space for liquid water in the

perennial snowpack (Banwell et al., 2021).285

As it can be seen in Fig. 8, the data assimilation only has a slight effect on the SMB. The surface mass balance is defined as

the sum of the ablation terms (runoff, melt, and sublimation) and accumulation terms (e.g. precipitation and snow transported

by the wind). The cumulated SMB for the 2019-2020 melt season is only decreased by 4.5 % compared to the model without

assimilation. The general trend of SMB remains positive in the studied zone. Only the ice shelves show negative SMB during

periods of intense melting (Fig. 9).290

The density and liquid water content of the snowpack are also impacted by the assimilation. As presented in Table 4, on

the ice shelves, where most of the surface melt and refreezing occurs, densification has an effect on the deeper liquid water

content. Because the snowpack is denser, there is less space for liquid water and thus the liquid water quantity in the snowpack

is lower after assimilation.
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Figure 9. Cumulated SMB (mmWE) from 2019-10-01 to 2020-02-28 over the AP as modeled by Assimref . Larsen C is outlined in purple,

Georges VI in green, and Wilkins in red. The ice shelves and the northernmost coastlines are experiencing a decrease in SMB in opposition

to the rest of the AP.

For the three highlighted ice shelves (Larsen C, Wilkins, and Georges VI), the evolution follows the same general trend as295

for the global zone but at different speeds (Table 4). The only exception is that even if Larsen C is the ice shelf experiencing

the higher increase of melt (+20 Gt y−1), and consequently runoff (+5.7 Gt y−1), both its liquid water content at 0.2 m depth

and 1m depth is increasing instead of decreasing (respectively +4 %, and +12 %).

With the exception of the liquid water content, the changes in the snow related variables of the model are so strong that

MARref is out of the range of the different assimilations. The increase in surface melt production leads to an increase in the300

runoff and consequently a decrease in surface mass balance. The increase in runoff is explained by the densification of the first

layers of the snowpack and thus the decrease of its ability to buffer for the meltwater.

In the end, the results illustrate that Assimref is the closest simulation to Assimmean, and makes it an appropriate candidate

when computational resources are limited.

17

https://doi.org/10.5194/egusphere-2022-1371
Preprint. Discussion started: 15 December 2022
c© Author(s) 2022. CC BY 4.0 License.



Table 4. Evolution of surface melt production (ME), runoff (Ru), surface mass balance (SMB), snowpack density (ρ), and snowpack liquid

water content (LWC) for MARref , the reference assimilation (Assimref ) and the mean value of the assimilations (Assimmean) over the

3 studied ice shelves for the 2019-2020 melt season. LWC and ρ are given at a depth of 0.2 m and 1 m while the other variable are given as

a snowpack average value.

Larsen C ME (Gt yr−1) RU (Gt yr−1) SMB (Gt yr−1) ρ0.2m (kg m−3) ρ1m (kg m−3) LWC0.2m (kg kg−1) LWC1m (kg kg−1)

MAR 23 1.8 24 519 554 0.00097 0.00060

Assimref 38 6.6 19 570 612 0.00099 0.00066

Assimmean 44 7.5 19 575 614 0.00101 0.00067

σ 11 2.1 2.2 55 47 0.00091 0.00063

Wilkins ME (Gt yr−1) RU (Gt yr−1) SMB (Gt yr−1) ρ0.2m (kg m−3) ρ1m (kg m−3) LWC0.2m (kg kg−1) LWC1m (kg kg−1)

MAR 9.5 1.5 5.5 630 628 0.00035 0.00027

Assimref 13 5.4 1.6 697 689 0.00026 0.00022

Assimmean 14 4.4 2.7 683 685 0.00027 0.00022

σ 3 1.4 1.4 69 101 0.00017 0.00011

Georges VI ME (Gt yr−1) RU (Gt yr−1) SMB (Gt yr−1) ρ0.2m (kg m−3) ρ1m (kg m−3) LWC0.2m (kg kg−1) LWC1m (kg kg−1)

MAR 15 2 11 567 607 0.00058 0.00040

Assimref 20 3.4 9.6 618 641 0.00052 0.00040

Assimmean 22 3.1 10 607 638 0.00056 0.00042

σ 5.1 0.4 0.4 59 58 0.00029 0.00029

4.1 Penetration Depth Sensitivity305

The penetration depth influences melt production. For the assimilation, we are using a relative liquid water mass in relation

to the snowpack weight. Because of the refreezing, the first 10 centimeters of the snowpack are denser than the first meter.

Consequently, when using a shallow threshold, the quantity of water required to reach the threshold will be greater as the

densification will eventually cause a heavier snowpack. Also, with firn air depletion, two other phenomena enhance the melt

production. First, the available energy is consumed by refreezing/melting processes, prevailing the snowpack to heat up. A310

colder snowpack produces less melt and constantly needs larger forcing to reach the melt threshold. Second, because the upper

layers are saturated with less water in the bottom layers, the runoff increases during melt events, and the remaining water

percolates faster in the deeper layers. If the model would keep liquid water for a longer time in its top snow layers, less melt

production would be necessary to match the observations.

This phenomenon is illustrated in Fig. 10, where using a 10 cm threshold for AMSR2 gives double the melt of the 20 cm315

threshold, either the water content threshold is 0.1 % or 0.2 %. The effect ends up so important that using a 10 cm threshold for

ASMR can result in improbable results. Consequently, the three simulations with ∆z = 10 cm for the Ku-band sensors have

been discarded to calculate the average melt for the assimilations. The intense refreezing and firn air content depletion lead to

a strong increase in runoff that causes a decrease in SMB for the Antarctic Peninsula. This evolution is in contradiction with
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Figure 10. Cumulated surface melt production (Gt) for 2019-2020 melt season as modeled by the different assimilation. Curves of the same

color have different ∆z for the C-band sensors.

the observed trend that is generally accepted (Rignot et al., 2019; Kittel et al., 2021; Chuter et al., 2022). They were considered320

outliers and removed from the analysis of the results.

In contrast, with Sentinel-1, the effect of choosing a different threshold is less pronounced. As illustrated in Fig. 10, lines

with the same color represent assimilations that have all parameters in common except the S1 penetration threshold. Almost

no variation can be observed between the group of assimilation.

Multiple reasons can explain the lighter effect. S1 has a much larger revisit time compared to AMSR2 (6 days revisit time325

vs daily images). With fewer images, the choice of penetration depth is less often considered in the melt assimilation process

in MAR. In addition, as explained previously, the liquid water is kept longer in these slightly deeper layers and thus no melt

is required to reach the water quantity threshold. The model is thus more sensitive to a shallower penetration depth threshold.

The sensitivity is linked to near-surface events, more likely to occur in the first centimeter of the snowpack. The penetration

depth for the C-band sensors is larger than for Ku-band sensors, using sensors with higher frequencies makes the threshold330

choice more sensitive.
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Table 5. Comparison between the melt season length and number of melt days modeled for the three studied ice shelves for MARref and

the assimilations for the 2019-2020 melt season.

Larsen C Melt season length (days) Number of melt days modeled

MARref 143 90

α = 0.1 % 147 110

α = 0.2 % 152 119

Wilkins Melt season length (days) Number of melt days modeled

MARref 292 127

α = 0.1 % 294 125

α = 0.2 % 298 129

GeorgesVI Melt season length (days) Number of melt days modeled

MARref 120 120

α = 0.1 % 123 122

α = 0.2 % 157 134

4.2 Water content sensitivity

The water content sensitivity has a lesser impact compared to the penetration depth. In fact the required amount of liquid water

to reach the thresholds is small compared to a typical melt day. For the 2019-2020 melt season, the value reaches 1.2 % for a

melt day on average, far above the 0.2 % threshold. Choosing a threshold over the other mostly influences the number of melt335

days modeled, thus expanding the melt season duration (Table 5) rather than the mass of liquid water produced by melting. For

this study, the melt season length is defined as the number of days between the first day of the year where more than 10 % of

the ice shelf is experiencing melt. The melt season is different from the number of melt days of the ice shelf that is defined as

the number of days of the melt season where 10 % of the ice shelf is experiencing melt, with possible colder periods where no

melting event occurs.340

Using a higher threshold results in an increase in the average number of melt days on the studied ice shelves (Fig. 11).

The increase in melt days between the 0.1 and 0.2 % threshold is caused by the definition of a melt day we used. A pixel is

considered as melting for the day if the average mass of liquid water is superior to 0.1 % of the snowpack mass. The definition

is close to the one used for the assimilation except that the water mass is averaged for the days rather than taking an instantiate

value. Using a higher threshold in the assimilation eventually leads to more melt production and thus a higher averaged value345

for the day.

The biggest difference occurs on Larsen C with an augmentation of the mean number of melt days on the ice shelf by 15

days. For the other two ice shelves, the differences are smaller with 8 and 9 days for Wilkins and Georges VI, respectively.

Similar conclusions can be drawn when using 0.2 % for the definition of melt days.

Taking the assimilation individually leads to a similar conclusion. The water content threshold choice only emphasizes the350

differences that are caused by the penetration depth threshold. It is important to note that the simulations that were discarded
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Figure 11. Distribution of the number of melt days fot the 2019-2020 melt season as modeled by MARref and the assimilations for the two

values of α for the three studied ice shelves. Dashed lines represent the mean value of the distribution.

from the computation of Assimmean are assimilation that had 0.2 % as the value for the threshold. With a densified snowpack,

reaching α = 0.2 % required more intense melting.

4.3 Dataset sensitivity

The melt datasets used can be highly influential on the results. For a given period, MAR snowpack temperature is forced until355

a certain level of liquid water in the snowpack is reached in case of a mismatch between the model and the dataset.

Each of the four melt masks has been assimilated individually into MAR to test its influence. Assimilating multiple datasets

tend to smooth the sensor characteristics as they are processed to be used where they provide consistent information.

In this study, several characteristics of the remote sensing data have been pinpointed as they influence the results of the

assimilation. The acquisition time, the resolution, and the revisit time are discussed hereafter.360

First, the acquisition time can artificially lower the number of melt days. Because of the daily cycle of the water quantity in

the snowpack, images taken earlier in the morning are less likely to observe melt (Picard and Fily, 2006). In this manner, over
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the Antarctic Peninsula, the descending orbit of AMSR2 observes less melt than the ascending one. Using satellites whose

passage times are well distributed during the day allows them to observe this cycle and not miss melt days.

Second, the way spatial resolution influences the results of the assimilation is trivial. Sensors that have coarser resolution365

have more heterogeneous pixels and consequently detect melt in places that they should not (and inversely). In this study,

AMSR2 is the only sensor to have a coarser resolution than the model and whose spatial resolution can be seen in the assimi-

lation results.

To study its influence, ASCAT has been assimilated (MARa01−ku02−c10 in Table 2) instead of AMSR2 in descending

orbit. The two assimilations gave similar numbers of melt days and close surface melt production on the Peninsula ice shelves370

(191 Gt y−1 for MARa01−ku02−c10 and 214 Gt y−1 for Assimref ). The major influence for this case comes from the spatial

resolution of the sensor. AMSR2 detects melt on Alexander island, between Georges VI and Wilkins ice shelves, when ASCAT

with a finer resolution and other frequency does not (Fig. 12). With assimilation that uses AMSR2 in ascending and descending

orbit, the model ends up melting there. On the contrary, the assimilation taking ASCAT data into account does not force MAR

for a long enough time to produce the water quantities necessary to be detected as a melt day at these places.375

Finally, the requirement of the low revisit time is highlighted with the assimilation of Sentinel-1 only. The results of the

assimilation are close to the MARref results (Fig. 13). The resilience of the model is too strong to only use a non-daily

dataset. The nudging applied cannot induce significant changes by being applied every couple of days. Thus, the high spatial

resolution of Sentinel-1 is not sufficient enough for it to be used as the only dataset assimilated. However, Sentinel-1 data can

be used in complementarity to other datasets to solve the ambiguity problems induced by their spatial resolution.380

For now, the restrained period during which the snowpack temperature is modified as well as the possibility not to assimilate

data in case of discrepancy between the sensors reduce the sensibility to the data set used. Future developments of the technique

should allow the inclusion of more datasets during the run.

5 Discussion and conclusion

In this paper, we presented the assimilation of surface melt occurrence estimated by microwave sensors into the regional385

climate model MAR. Sensitivity tests have been performed to evaluate the effect of the data assimilation parameters on the

model results.

We identified the depth to which the snowpack temperature (∆z) as the most influential parameter when applied for low

penetration sensors. The influence on the quantity of water produced in the snowpack partially comes from the water content

threshold (α) calculation. The very first centimeters of the snowpack are very dense compared to slightly deeper layers because390

of refreezing induced by the liquid meltwater caused by the assimilation and the low temperature at night. Heavier and denser

layers require more liquid water to reach the required threshold α. Also, the densification causes firn air content depletion,

leaving less space for liquid water. Densified, the layer saturates faster and more runoff occurs.

However, the assimilation of surface melt occurrence has a small impact on the atmosphere. With constant snowfall and an

increase in the surface melt (+95 Gt y−1 or +66.7 %), the increase in runoff (+21 Gt y−1 or +63.8 %) translates into a decrease395
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Figure 12. a) Number of melt days observed by AMSR2 on the AP for the 2019-2020 melt season. b) Number of melt days observed by

ASCAT on the AP for the 2019-2020 melt season.

in SMB, for the 2019-2020 melt season. Nonetheless, runoff values are relatively small compared to the surface mass balance.
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Figure 13. Evolution of the surface melt extent during the 2019-2020 melt season as modeled by MARref (in light red), Assimmean (in

blue), the assimilation of only S1 melt mask (AssimS1, in green), and as observed by AMSR2 in ascending orbit (in grey), and by ASCAT

(in purple).

SMB is therefore only slightly affected (-4.5 %). The general tendency of SMB remains positive in the studied zone. Only the

ice shelves show negative SMB during periods of intense melting.

The assimilated dataset was also found to influence the results of the model after data assimilation. Each sensor has its

particularities and melt masks may differ from each other. Several of these characteristics have been pinpointed previously.400

The most important ones are the frequency, the revisit time, and the spatial resolution.

The frequency of the sensor impacts the resulting melt production by its difference in liquid water sensitivity and the depth

to which the signal penetrates. Because it is difficult to provide accurate surface water depth estimates (Fricker et al., 2021)

and because microwave signals can be blocked by the water in the snowpack, the limit at which we stop the assimilation is not

always clear. If there is enough water in the top layers, potential liquid water in the deeper layers cannot be observed. In the405

same way, a thin layer of water can be interpreted as the presence of melt in the snowpack when the underneath layers are dry.

The depth threshold ∆z has been set with different values for the different wavelengths of the sensors but remains constant
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no matter the melting state of the snowpack. Introducing a liquid water content/density varying threshold could decrease the

melt production after the assimilation. However, field observation of the evolution of the liquid water present in the snowpack

profile would be necessary to introduce and validate such an evolution in the assimilation algorithm.410

The revisit time of the satellite is influential as the model is particularly resilient to the nudging of the snowpack temperature

if the forcing is not performed every day. The assimilation of only Sentinel-1 (revisit time of 6 days, which translates into

one image per 2-3 days) is pretty close to the results of the non-assimilated model. Multiple datasets have to be assimilated

during the same day for the model to durably change its behavior. The resilience of the model comes from the refreezing of the

snowpack during the night and the winter period. When taking into account a few melt seasons, at the beginning of the melt415

season, the model snowpack is more or less similar to its previous year state.

Assimilating multiple datasets into MAR does not only have advantages. If some missing information is fulfilled by another

dataset, it adds another layer of complexity to the algorithm or additional uncertainties linked to the assimilation method used

and its thresholds. Datasets may not carry the same information and may not be compatible for all the time steps. Here, none of

the datasets is considered to have better melt detection than the other. A possible enhancement of the technique would be to add420

weight to the masks in case of contradiction between them. Weight could be constructed using the confidence level of the melt

detection technique employed, the satellite spatial resolution, the topography gradient inside the satellite pixels interpolated to

the MAR grid, or the sensor sensitivity to water.

The results highlight the importance of data assimilation. While the assimilation does not induce a complete change in the

behavior of the model as surface melt remains marginal with respect to snowfall, the snowpack properties tend to deviate from425

the non-assimilated model impacting at the end the snowpack ability to retain future meltwater. Here, satellite data have only

been assimilated for two melt seasons over a small area. The study can be conducted for a longer period of time, at a larger

scale or over the Greenland ice sheet where surface melt is the main driver of SMB variability (Slater et al., 2021). Further

attention should be given to ice shelves as they are the most sensitive region of Antarctica and important to the Antarctic ice

sheet stability (Favier and Pattyn, 2015; Paolo et al., 2015; Sun et al., 2020).430

Finally, The results obtained in this paper pinpoint the uncertainties of the regional climate model over the AP. The assim-

ilation of remotely sensed data into RCMs is a promising way of reducing the biases and errors inherent to climate models

knowing that there is no direct measurement of meltwater content into the snowpack in Antarctica.

Code and data availability. The MAR code used in this study is tagged as v3.12 on https://gitlab.com/Mar-Group/MARv3 (MAR model,

2022). Instructions to download the MAR code are provided on https://www.mar.cnrs.fr (MAR Team, 2022). The MAR outputs used in this435

study are available upon request by email (tdethinne@uliege.be) Python code and necessary files to perform the assimilation with MAR are

available on https://gitlab.uliege.be/tdethinne/assim_mar
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