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Abstract. This paper discusses the use of

::::
Both

:
regional climate models (RCMs) and remote sensing (RS) data to study climate change in remote regions such as

the polar regions
::
are

::::::::
essential

:::::
tools

::
in

::::::::::::
understanding

:::
the

::::::::
response

::
of

:::::
polar

:::::::
regions

::
to

:::::::
climate

::::::
change. RCMs can simulate

how certain climate variables, such as surface melt, runoff, and snowfall, are likely to change in response to different climate

scenarios, but they are subject to biases and errors. RS data can assist in reducing and quantifying the uncertainties of the5

model
:::::
model

:::::::::::
uncertainties by providing indirect observations of the modeled variables upon

::
on

:
the present climate. In this

work, we investigate the sensitivity of the RCM
::::::
improve

:::
on

:::
an

::::::
existing

:::::::
scheme

::
to

:::::::::
assimilate

:::
RS

::::
wet

::::
snow

::::::::::
occurrence

::::
data

::::
with

:::
the "Modèle Atmosphérique Régional" (MAR)

:::::
RCM

:::
and

:::::::::
investigate

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::
RCM

:
to the parameters of the

assimilation of wet snow occurrence estimated by RS datasets
::::::
scheme. The assimilation is performed by nudging the MAR

snowpack temperature to match the presence of liquid water observed by satellite
:::::::
satellites. The sensitivity

::
of

:::
the

::::::::::
assimilation10

::::::
method

:
is tested by modifying parameters of the assimilation, such as the depth to which the MAR snowpack is warmed up

or cooleddown to match with the satellite based wet-snow extent
:
or

::::::
cooled, the quantity of water required into the snowpack

to qualify a MAR pixel as wet or not
:::::
“wet” (0.1 or 0.2 % of the snowpack mass being water), and assimilating different

RS datasets. The data assimilation is performed over
::::
Data

::::::::::
assimilation

::
is
::::::
carried

::::
out

::
on

:
the Antarctic Peninsula over

:::
for the

2019-2021 period. The results show an increase in surface melt
::::::::
meltwater

:::::::::
production

:
(+66.7 % on average, or +95 Gt)going

:
,15

along with a small decrease in surface mass balance (SMB) (-4.5 % on average, or -20 Gt) for the 2019-2020 melt season
::::
after

::::::::::
assimilation. The model is sensitive to the tested parameters, albeit with varying orders of magnitude. The assimilation depth

has more
::::::::
prescribed

::::::::
warming

:::::
depth

:::
has

::
a

:::::
larger impact on the resulting surface melt than the quantity of

:::::::::
production

::::
than

:::
the

liquid water content (LWC) required in the snowpack
:::::::
threshold

:
due to strong refreeze occurring in

::::::::
refreezing

::::::::
occurring

::::::
within

the top layers of the snowpack. The values tested for the quantity of LWC required into the snowpack to qualify a MAR pixel20
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as wet or not
::::
LWC

::::::::
threshold

:
are lower than during

::
the

:::::
LWC

:::
for

:
typical melt days (approximately 1.2 %) and impact

:::::
results

mainly at the beginning and the end of the melting period. The assimilation will allow an uncertainty estimation of MAR melt

production and identify
::::::
method

::::
will

:::::
allow

:::
for

:::
the

:::::::::
estimation

::
of

:::::::::
uncertainty

::
in

:::::
MAR

:::::::::
meltwater

:::::::::
production

:::
and

::::
will

::::::
enable

:::
the

:::::::::::
identification

::
of potential issues in the

::::::::
modeling near-surface snowpack modeled processes. This paves

::::::::
processes,

::::::
paving the

way for improving models to achieve more accurate simulations of the future
::::
snow

::::::::
processes

::
in

::::::
model

:::::::::
projections.25

1 Introduction

More than two-thirds of the Earth’s freshwater is held in the polar ice sheets (Church et al., 2013), with the majority of it

trapped as ice on the ground
:::
land

:::
ice

:
at the south pole, forming the Antarctic Ice Sheet (AIS). According to Fretwell et al.

(2013), if all the ice in the AIS was
:::
AIS

:::
ice

::::
were

:
to melt, it would result in a sea-level rise of

::
the

::::::
global

:::::
mean

:::
sea

::::
level

::::::
would

:::
rise

::
by

:
56 meters. Currently, the AIS is primarily losing mass due to grounded ice flowing into the ocean. There, the ice is lost30

mainly through a combination of basal melting and calving (The IMBIE Team, 2018; Rignot et al., 2019; Adusumilli et al.,

2020).

However, the surface melt production on the ice sheet is
:::
also

:
important for several reasons. Even moderate surface melt

over the ice shelves, the floating boundaries of the ice sheet, is thought to weaken the shelf structure and to cause ponding

and hydrofracturing, leading to substantial mass loss (Scambos et al., 2003; Lai et al., 2020)and
:
.
::::::::::
Additionally, surface melting35

is becoming a growing concern as it is taught to
:::
may

:
increase greatly with climate change (Trusel et al., 2015; Bell et al.,

2018; Gilbert and Kittel, 2021). Ice shelves exert a buttressing effect on the upstream ice flow, regulating the amount of ice that

reaches the surrounding ocean. As they thin from mass loss
:
or

:::::::
collapse, this buttressing effect is reduced (Favier and Pattyn,

2015; Paolo et al., 2015), and AIS ice flow velocity is
:::
and

:::::
mass

:::
loss

:::
are

:
increased.

Climate models are nowadays
:::::::
currently

:
one of the handiest tools to study

::::
most

:::::
useful

:::::
tools

::
in

::::::::
studying polar climate evo-40

lution. Some of them also include the possibility to model the evolution of the snowpack. A notable example is MAR (for

“Modèle Atmosphérique Régional” in French), a Regional Climate Model (RCM) especially
:::::::
specially developed to monitor

the polar climate and the surface mass balance of both ice sheets.

Proper modeling of the surface melt
:::::
surface

::::
melt

::::::::
modeling

:
is required to study both the conditions leading to the destabilization

:::
ice

::::
shelf

:::::::::::::
destabilization, as hydrofracturing is impacted by the melting/snowfall ratio and by the snowpack capacity

::
as

::::
well

::
as

:::
the45

:::::::
capacity

::
of

:::
the

:::::::::
snowpack to retain and refreeze meltwater (Donat-Magnin et al., 2021; Gilbert and Kittel, 2021), but also

:
.

::::::::::
Additionally,

::::::::
accurate

::::::::
modeling

::
of

::::::
surface

::::
melt

::
is

::::::::
necessary

:
to study the evolution of the snowpack during strong melt events.

Studying the snowpack ability
:::::
ability

::
of

:::
the

:::::::::
snowpack to retain liquid water is crucial because,

::::::
under

:::::
higher

::::
melt

::::::::::
conditions,

the Antarctic snowpack could saturate , and stop absorbing surface meltwater in the future, as it is modeled currently
::
has

:::::
been

:::::::
modeled

::
to

:::::
occur over the Greenland ice sheet (Noël et al., 2017).50

However
::::::
Despite

::::
their

::::::
ability

::
to

:::::::
capture

::::::::
snowpack

::::
melt

::
in

::
a

::::
high

::::
level

::
of

:::::
detail, RCMs still have some limitations. Because

of the
:::::::::
uncertainty

::
in forcing, or the

:::::::::
limitations

::
in physical assumptions, the models may contain significant uncertainties. These

uncertainties can be mitigated by employing external data, which is
:::
are not already incorporated into the model, to improve its
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accuracy at specific points in space and/or time. This technique is known as “data assimilation” and is commonly applied in

numerous fields where observations can be integrated into a model (Evensen, 2009; Navari et al., 2018).55

Assimilation
:::
The

::::::::::
assimilation

:
of data into the model is a crucial step in quantifying the uncertainties associated with the

model output without assimilation. The assimilation process helps to identify areas and periods where the simulations are not

consistent with the observations. This can help us
:
to
:
better understand the underlying physical processes and their interactions.

Accordingly, data assimilation provides a powerful tool for improving the reliability of models. In our case, it is an essential

step in the process of model refinement, leading to improved predictions of
:::
from

:
future scenarios.60

The highly uneven topography of the area a
::::::
region

:
is challenging for the RCMsusually operating at a 10-kilometer spatial

resolution
:::::
RCMs,

::::::
which

:::::::
typically

:::::::
operate

::
at

:
a
:::::::::
resolution

:::
on

:::
the

::::
order

:::
of

::
10

:::::::::
kilometers. Phenomena depending on very local

conditions
:
, such as melt induced by the Foehn effect

:
, can occur at a smaller spatial scale

::::::
smaller

::::::
spatial

:::::
scales

:
than the spatial

resolution of RCMs and thus may be mitigated
:::
not

::
be

::::::::
captured by the model (Datta et al., 2019; Chuter et al., 2022; Wille

et al., 2022). However, high-resolution satellites can document these local events that could
:::::::
localized

::
or

:::::::
extreme

::::::
events

::::
that65

:::
may

:
be missed by RMCs in case of localized or extreme events

::::
RCM

::::::::::
simulations.

In this paper, we assimilate satellite-derived binary wet-snow masks (wet/non-wet) over the Antarctic Peninsula (AP) , West

Antarctica ,
:
in

:::::
West

::::::::
Antarctica

:
into the MAR model for two melt seasons (2019-2020 and 2020-2021). Three major ice shelves

are located over
::
on the AP: Larsen C, George VI, and Wilkins (Figure

:::
Fig. 1). These ice shelves undergo the most surface

melt
:::
The

:::
ice

:::::::
shelves

:::::::::
experience

:::
the

::::::
highest

:::::::
amount

::
of

:::::::
surface

::::
melt

::::::::
compared

::
to
:::

the
:::::

other
::::
part

:
of the AIS, and their surface70

::::::::::
hydrological

:
processes are also poorly understood, with complex surface hydrology

:::::::
complex

:::
and

::::::
poorly

:::::::::
understood

:
(Barrand

et al., 2013; Datta et al., 2018; Johnson et al., 2020). Presently, assimilating remotely-sensed products in RCMs is a promising

method to quantify the surface meltwater quantity
::
of

:::::::::
quantifying

:::::::
surface

::::::::
meltwater

:::::::::
production

:
in Antarctica. The scarcity of

field observations and the complexity of the surface hydrology (Bell et al., 2018) make it difficult to evaluate and constrain

models otherwise.75

The assimilation algorithm performed in this paper is derived from the framework described in Kittel et al. (2022) where

::
the

:
MAR near-surface snowpack is warmed up or cooled down to better

:
or

::::::
cooled

:::
to

:::
best

:
match satellite-derived wet-snow

masks. In this study,
::::::::
sensitivity

:
experiments have been performed by varying the depth to which the snowpack temperature

is changed (called the assimilation depth hereafter)to match satellites, the minimum liquid water quantity to consider
::::::
content

::::::
(LWC)

::::::::
threshold

::::
used

::
to

:::::::
classify the modeled snowpack state as wet

::::
“wet”, and the assimilated wet-snow

::::::
satellite product to80

test the sensitivity of the model to the assimilation.

The satellite data, the model, and the assimilation
::::::
method

:
are presented in Sect. 2. The validation of the model is described in

Sect. 3. The results of the sensitivity tests when assimilating data into the model
:::
data

::::::::::
assimilation

:::::::::
sensitivity

::::
tests are discussed

in Sect. 4. Finally, a general conclusion and discussions on the perspectives of the
::::::
general

::::::::::
conclusions

::::
and

:::::::::
discussion

:::
on

assimilation of remote sensing data in
:::
into the MAR model are included in Sect. 5.

:
585
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Figure 1. Locations of the
:::
The Antarctic Peninsula and the three studied ice shelves

:::::::
examined

::
in

:::
this

::::
study. The ice shelves are denoted

by color outlines. Larsen C is outlined in purple, George VI in green, and Wilkins in red. Blue crosses indicate the position of the weather

stations used for the model’s evaluation (Sect. 3).
:::
The

::
red

::::::
square

:::::
around

:::
the

:::::::
Antarctic

:::::::
Peninsula

:::::::::
corresponds

::
to
:::
the

::::
MAR

::::::
spatial

:::::
extent.

2 Methods and data

2.1 Satellite data

Depending on the context of the study, like the region of interest, the length of the simulation, or the spatial resolution, the use

of one specific satellite dataset over another for the assimilation can be useful. Reckoning
::::::::
However,

::::::::
depending

:
on the sensor

:::
type

:
and acquisition times,

:::
the

::::::
derived

:
wet-snow occurrences derived from satellites can differ

::::::::
occurrence

::::
can

:::::
differ

:::::::
between90

:::::::
satellites

:::
and

:::::::
sensors (Husman et al., 2022). Some sensors tend to have

::::::
operate

::
at

:
a
:
coarser resolution and provide information

with higher uncertainties
:::::::::
uncertainty in areas with complex topographybut provide longer ,

:::
but

::::
can

::::::
provide

::::
long

:
time series

of daily images with
::::
using

:
wet snow detection algorithms that have proven to be efficient (Zwally and Fiegles, 1994; Colosio
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Table 1. Technical specifications of the remote sensing datasets employed for the assimilation. Datasets are referred to by the name in bold

characters in the paper

Plateform Sensor Sensor type Pixel size Frequency (GHz) Revisit time (days) Reference

Sentinel-1 (S1) C-SAR Active 10-40m 5.405 6 ESA (2023)

Metop ASCAT Active 4.45km 5.255 1 EUMETSAT (2023)

GCOM-W1 AMSR2 Passive 10km 18.7 2 JAXA (2021)

et al., 2021). On the other hand, other
::::
Other

:
sensors have a better spatial resolution but may have a lower revisit time. The

choice of the satellite dataset can thus influence the results of the assimilated model.95

We employed three satellite datasets (Table 1) to create the binary (dry/wet) wet-snow masks
::::
snow

:::::
masks

::
to
:::
be assimilated.

The three datasets are derived from sensors operating in the microwave spectrum (in the
::
at GHz frequencies). Among them,

one is called
:::::::
AMSR2

::
is a "passive sensor"meaning the sensor records Earth’s natural radiations

:
,
:::::
which

:::::::
records

::::::
Earth’s

::::::
natural

:::::::
radiation, while the other two are classified as "activesensors" since they actively emit electromagnetic pulses to illuminate the

area covered by the satellite. Microwave operating sensors are commonly used to map snow cover, sea ice, or the extension of100

wet snow
:::
wet

:::::
snow

:::::
extent

:
over ice sheets (Parkinson, 2001; Colosio et al., 2021). The signal is used to detect if the snowpack

is wet as microwaves interact with water. The presence of liquid water in the snowpack induces a change in its emissivity

and absorptivity. This change leads to a change in the satellite measurements, :
:
the backscattering coefficient σ0:::

σ0 for active

sensors and the brightness temperature for passive sensors (Zwally and Fiegles, 1994; Johnson et al., 2022; Picard et al., 2022).

In this study, the presence of wet snow detected by satellites is interpreted as the presence of liquid water underneath or at the105

surface of the snowpack. Using microwaves
:::::::::
microwave

::::
data also brings other advantages such as atmospheric transparency and

day-and-night acquisitions
:::::::::
acquisitions

::::::
during

::::
both

:::
day

::::
and

::::
night. However, the lower spatial resolution of passive microwave

sensors (generally 10 to 50 km) compared to
:::
with

:
active sensors (generally 10mto 5

::
-5km) is problematic to determine

::
in

:::::::::
identifying small-scale melt extents

::::::
melting (Datta et al., 2018). Finally, with pixels of

::
∼100 km2 (km2

:::
(e.g.

:
for AMSR2 - See

Table 1), a majority of the pixels are overlapping regions with different
::::
cover

:::::::
regions

::::
with

:::::::
sub-pixel

:::::::::
variations

::
in land cover or110

surface height (Johnson et al., 2020).

2.1.1 Advanced Microwave Scanning Radiometer 2
:::::::::
(AMSR2)

In this study , we used
:::
The

::::
first

:::::::
dataset

::::::::
employed

:::
in

:::
this

::::::
study

::
is

::::
from

:
the Advanced Microwave Scanning Radiometer

2 (AMSR2) aboard the Global Change Observation Mission - Water "SHIZUKU" (GCOM-W1) retrieved from the Japan

Aerospace Exploration Agency (JAXA) G-Portal (JAXA, 2021). Thanks to the
:
a
:
sun-synchronous orbit at an altitude of 700115

km and a
:
large swath,

:::::::
AMSR2

::::::
obtains

:
low-resolution daily observations of the polar regionsare obtained. We used the level-3

products containing the daily mean brightness temperature in
:
at

:
a
:
horizontal polarization in the 18.7 GHz channel, resampled at

a 10 km resolution. The 18.7 GHz channel is used as it is slightly more sensitive to liquid water content than the other frequen-

cies (Picard et al., 2022). Ascending (satellite path goes from south to north) and descending (satellite path goes from north to

5



south)
::::::
satellite paths were processed separately, as they respectively happen in the morning and in the evening. The separated120

processing allows
::::::
separate

::::::::::
processing

:::::
allows

:::
for

:
the creation of two

::::
daily

:
wet-snow masks from one dataset

:::::::::
instrument. Wet-

snow detection with AMSR2 is based on a change in the snowpack physical properties
::::::::::::::::::::::
(Zwally and Fiegles, 1994). A dry snow-

pack has a lower emissivity (ϵ) than a wet snowpack (Zwally and Fiegles, 1994)
:::::::::::::
(Mätzler, 1987). For the passive microwave

sensors, this increased emissivity is observed through augmentation of brightness temperature (Johnson et al., 2020).

The wet-snow retrieval technique applied for this study is a statistical approach developed by Fahnestock et al. (2002) and125

modified by Johnson et al. (2020). The wet-snow detection is performed through a K-mean
:::::::
K-means

:
clustering algorithm. The

algorithm is applied to the annual time series of brightness temperature. Wet snow is assumed when the time series shows a

binomial distribution, using the criteria and thresholds defined in Johnson et al. (2020) (Figure
:::
Fig.

:
2).

To ensure coherency between remote sensing products and our climate model, the wet-snow masks are interpolated on
::::
onto

the MAR grid. The grids are superimposed, and the
:::
This

::::::::
involves

:::::::::
overlaying

:::
the

::::
grids

::::
and

::::::::
assigning

:::
the

::::
wet/dry /wetstate for130

each pixel in the MAR is determined
:::::
MAR

::::
pixel

:
based on the most prevalent wet or dry

:::::
surface

:
condition observed in the

corresponding area of the satellite mask
::::::
satellite

:::::
pixels

:::::::::::
encompassed

::::::
within

:::
the

:::::
MAR

::::
pixel. This interpolation is made with the

hypothesis that the deformations and variations of
:::::::::
assumption

::::
that

::::::::::
deformation

::::
and

::::::::
variations

::
in the area caused by the spatial

projection are negligible between a pixel and its neighbors.

2.1.2 Sentinel-1
:::
(S1)135

One of the active sensor datasets is retrieved from the Sentinel-1 (S1) satellite constellation from the European Space Agency’s

(ESA) Copernicus space program. Starting with the launch of S1-A in 2014, the Sentinel-1 constellation gives access to data

combining high spatial resolution and lower
:::
low

:
revisit time covering most of the globe. With the Synthetic Aperture Radar

(SAR) technology, S1 products reach a spatial resolution of
::
on

:
the order of tens of meters with a repeat pass of 6 days. By

combining different orbital paths, it is possible to reduce the time between two observations of the same location to 2-3 days140

in
::::
over the Antarctic Peninsula. Working in

:::
the C-band (5.405 GHz), it is possible to detect the presence of liquid water in

the snowpack in Sentinel-1 images by identifying changes in
:::
the backscattering coefficient σ0 through time (Johnson et al.,

2020). With the increase in liquid water in the snowpack, comes a change in absorptivity and scattering mechanism (Nagler

and Rott, 2000). These two phenomena both lead to a decrease in the observed backscattering coefficient σ0 (Moreira et al.,

2013). As this coefficient changes little in Antarctica as long as the snowpack is dry, it is assumed that a significant change in145

backscattering is likely caused by the presence of water in the snowpack.

As for the passive sensors, several algorithms have been proposed to detect water in the snow with SAR and active sen-

sors in general. Depending on the polarization, the frequency, and the nature of the snowpack, the threshold applied to the

backscattering values is variable (Koskinen et al., 1997; Nagler et al., 2016)
::::::::::::::::::::::::::::::::::
(Koskinen et al., 1997; Nagler et al., 2016). For a

C-band radar, a 3-dB decrease in σ0 has been employed as a threshold by Nagler and Rott (2000) and Johnson et al. (2020). In150

the present article, we used a -2.66 dB threshold after the normalization of the images to their winter mean to classify
::
as

:::
the

:::::::
threshold

::
to
:::::::
classify

:::
the snowpack as dry /

:
or

:
wet. This threshold has been proposed by Liang et al. (2021) and was found to be

effective on
::
for

:
the Antarctic ice sheet.
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Figure 2. Detection of wet snow in an AMSR2 image over the Antarctic Peninsula. (a) Temperature brightness
:::::::
Brightness

::::::::::
temperature

(
:
K) the 09-06-2019.

::
on

:::
June

::::
9th,

::::
2019.

:
(b) Temperature brightness

:::::::
Brightness

:::::::::
temperature

:
(K) the 16-02-2020.

::
on

:::::::
February

::::
16th,

::::
2020.

:
(c)

Pixels considered as
:
to

::::::
contain wet snow after applying the wet-snow detection algorithm. The increase in temperature brightness

:::::::::
temperature

between (a) and (b) is attributed to the presence of liquid water in the snowpack.

To minimize the time between two acquisitions of Sentinel-1 , all the available images
::::::::::
acquisitions,

:::
all

:::::::
available

:::::::
images

:::::::::
overlapping

::::
the

::::
study

::::::
region

:
were processed. To handle the quantity

::::
large

::::::
amount

:
of data, image processing was carried out155

on Google Earth Engine (GEE, Gorelick et al., 2017). The S1 dataset available on GEE is already preprocessed following the

implementation of the Sentinel-1 Toolbox from ESA (GEE, 2022; ESA, 2022). These processing operations include an update

of the orbit metadata, removal of the low-intensity noise on the scene edges, a reduction of the discontinuities between the

sub-swath
:::::::::
sub-swaths, a radiometric calibration, and a terrain correction from

::::
using

:
the ASTER digital elevation model. The

choice has been made to resample S1 images
::::
from

:::
the

::::::
original

::::::
10-40 m

::::::::
resolution to a 1 km resolution using mean values160

before detecting wet snow as data is ultimately interpolated on
::::
onto the 7.5 km MAR grid. Before resampling, a 3x3 refined

Lee speckle low-pass filter developed by Mullissa et al. (2021) was applied to the images in addition to a radiometric terrain

7



flattening using the 1 arc-minute global ETOP1
::::::::
ETOPO1 DEM (Amante and Eakins, 2009). Pixels with values lower than -28

dB were removed from the dataset.

After resampling, the images are normalized to their austral winter mean. The winter mean is the average value of σ0 for165

each pixel, calculated with the
::::
using

:
observations from June to October. To deal with the changes in volumetric scattering

related to the acquisition geometry, only the acquisitions from the same orbit and overlapping at
:::::::::
overlapping

:::
by more than 95

% are taken into account to calculate the winter mean. Consequently, differences between the acquisitions are independent of

the topography and the local context. The liquid water in the snowpack is then detected in the image by applying the
:
a
:
-2.66

dB threshold (Figure
::::
Fig. 3), following Liang et al. (2021).170

To create daily wet-snow masks, Sentinel-1 images of
:::::::
collected

::
on

:
the same day were combined. In the case where three

or more images overlap, the snow state is selected by a majority filter, and the acquisition time is defined as the mean time

between the selected acquisitions. In the case where there are only two images that contradict each other, the
:
a non-wet status

is assumed. The acquisition time selected is the acquisition time of the non-wet image.

2.1.3 Advanced Scatterometer
::::::::
(ASCAT)175

The third sensor we are using for this study is the C-band “Advanced Scatterometer” (ASCAT) aboard the MetOp satellites

from the space segment of the EUMETSAT Polar System. ASCAT data are retrieved from the EUMETSAT data service

portal (EUMETSAT, 2023). After resolution enhancement (Lindsley and Long, 2016), it
::
the

:::::::
product provides a backscattering

coefficient σ0 at 4.45-km resolution by accumulating images over about
::
∼2 days

:::
day

:::::::
periods. In Antarctica, only morning

passes are selected for this process
::::
study. The detection of the wet snow uses a simple threshold

:::
wet

:::::
snow

::
is

:::::::::
performed

:::::
using180

:
a
::::::
simple

:::::::::::
thresholding technique (Ashcraft and Long, 2006), similar to the one used for Sentinel- 1

::::::::
Sentinel-1

:
images. The

winter-mean backscattering coefficient is first calculated for each pixel and each year from the observations from June-August.

Then every measurement lower than this mean -3
::
by

:
3
:
dB is considered wet snow. Similarly to AMSR2 daily-products

::::
daily

:::::::
products, the Sentinel-1 and ASCAT daily wet/dry images are interpolated on

:::
onto

:
the MAR grid.

In the end, from the three satellite datasets, four binary masks have been created. One from Sentinel-1, one from ASCAT,185

and two from AMSR2by splitting
:
,
:::::::
obtained

:::
by

:::::::::
separating the ascending (evening) and the descending (morning) passes.

2.2 The regional climate model

We employed the Regional Climate Model MAR
::
For

::::
this

:::::
study,

:::
we

::::::::
employed

:::
the

:::::
MAR

:::::
v3.12

:::::
RCM. MAR is a polar-oriented

regional climate model mostly used to study both the Greenland (Delhasse et al., 2020; Fettweis et al., 2021) and Antarctic

ice sheet
::::
sheets

:
(Glaude et al., 2020; Kittel et al., 2021). Its atmospheric dynamics are based on

:
a
:
hydrostatic approximation190

of primitive equations originally described in Gallée and Schayes (1994) and the radiative transfer scheme is adapted from

Morcrette (2002). The transfer of mass and energy between the atmospheric part of the model and the soil is handled by the

Soil Ice Snow Vegetation Atmospheric Transfer module (SISVAT, Ridder and Gallée, 1998), from which snow and
::::
snow/ice

albedo sub-modules are based on CROCUS
::
the

::::::::
CROCUS

:::::
snow

::::::
model (Brun et al., 1992). The model has been parameterized

to resolve the topmost
::
top

:
20 meters of the snowpack, divided into 30 layers of time-varying thickness. MAR is configured with195
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Figure 3. Detection of wet snow in a Sentinel-1 image over the Antarctic Peninsula. (a) Backscattering coefficient σ0 (dB) the 09-06-2019.
::
on

:::
June

::::
9th,

::::
2019.

:
(b) Backscattering coefficient σ0 (dB) the 23-03-2020.

::
on

::::
23rd

::::::
March,

::::
2020.

:
(c) Normalized backscattering coefficient of

the 23-03-2020
:::

23rd
:::::
March,

:::::
2020,

::::::
relative to its

::
the

:
winter mean. (d) Pixels considered as

::
to

::
be wet snow after thresholding the normalized

image. The decrease in backscatter between (a) and (b) is attributed to the presence of liquid water in the snowpack.

a decreasing vertical resolution of the snow layers from the top to the bottom. The first layers are typically at the centimeter

size while under
::::::::
maximum

::::::::
thickness

::
of

::::::::::
near-surface

::::::
layers

::
is

::
on

:::
the

:::::::::
centimeter

:::::
scale,

:::::
while

::::::
below the first meter, they are at

the meter resolution. The four first maximum layer thicknesses are respectively 2, 5, 10, 30 . Each layer has a maximum water

content holding capacity of 5 of its air content beyond which the water freely percolates to the deeper layer or runoffs above

impermeable layers (bare ice or ice lenses).200

We employed the Regional Climate Model MAR (version 3.12). MAR is a polar-oriented regional climate model mostly used

to study both the Greenland (Delhasse et al., 2020; Fettweis et al., 2021) and Antarctic ice sheets (Glaude et al., 2020; Amory et al., 2021; Kittel et al., 2021)

. Its atmospheric dynamics are based on hydrostatic approximation of primitive equations originally described in Gallée and Schayes (1994)

and the radiative transfer scheme is adapted from Morcrette (2002). The transfer of mass and energy between the atmospheric

9



part of the model and the soil is handled by the Soil Ice Snow Vegetation Atmospheric Transfer module (SISVAT, Ridder and Gallée, 1998)205

, from which snow and ice albedo sub-modules are based on CROCUS (Brun et al., 1992). The model has been parameterized

to resolve the top 20 first meters of the snowpack, divided into 30 layers of time-varying thickness. MAR is configured with

a decreasing vertical resolution of the snow layers from the top to the bottom. The first layers are typically at the centimeter

size while below the first meter, they are at the meter resolution. The four first maximum layer thicknesses are
::
the

:::::::::
maximum

:::::::
thickness

::
is
:::
on

:::
the

:::::
order

::
of

:
1
:
m.

::::
The

::::::::
maximum

:::::
layer

::::::::::
thicknesses

::
for

:::
the

::::
top

:::
four

:::::
snow

:::::
layers

:::
are

:
for example respectively 2,210

5, 10and respectively ,
::::
and 30 cm. Each layer has a maximum liquid water content (LWC) of 5 % of its air content beyond

which the water freely percolates to the deeper layer or runoffs
::::::
deeper

:::::
layers

::
or

::::
runs

:::
off above impermeable layers (bare ice or

ice lenses)
::
(?).

For this work, the version
::::::
Version 3.12 of MAR was used. It includes recent improvements in the snowpack temperature and

the mass water
:::::
water

::::
mass

:
conservation in the soil as described in Lambin et al. (2022). MAR was run at a 7.5 km resolution215

over the Antarctic Peninsula, with a 40-second time step
:
,
::::
with

:::
the

:::::
spatial

::::::
extent

::
of

:::
the

:::::::::
simulations

::::::::::::
corresponding

::
to
:::
the

::::::
extent

::
of

:::::
Figure

::
1. It was forced at its lateral boundaries and over the ocean (sea surface temperature and sea ice cover) by the 6-hourly

ERA5 reanalysis (Hersbach et al., 2020) between March 2017 and May 2021. The snowpack was initialized in March 2017

with a previous MAR simulation (Kittel et al., 2021).
:::
The

:::::::
blowing

:::::
snow

::::::
module

::
of

:::::
MAR

::
is
:::
not

:::::
used

::
in

:::
this

::::::
study,

:::
and

:::::
snow

:::
drift

::
is
::::::::
therefore

:::
not

::::::::::
represented

::
in

:::
the

:::::::::
simulation.

:
220

2.3 Data assimilation

The satellite sensors are sensitive to the presence of liquid water into the snowpack rather than the physical process of melt.

The aim of the data assimilation is then
:::::::
therefore to guide or constrain the model snowpack LWC

::::::::
snowpack

::::
LWC

::
of

:::
the

::::::
model

by nudging its temperature to induce melt or refreeze to match the observed surface state (Figure
:::
Fig.

:
4).

The assimilation routine involves comparing, pixel by pixel, the model
:::::::
modeled

:
and the satellite wet-snow masks. The225

satellite wet-snow mask pixel is used for the assimilation if the indicated acquisition time is separated by less than 1.5 hours

from the MAR time.
::::
time

::
in

:::::
MAR

::::
(1.5

:::::
hours

::::::
before

:::
and

::::
after

:::
the

:::::
MAR

::::::
time).

:::
The

:::::::::
three-hour

:::::::
window

:::::::
enables

:::
the

::::::
model

::
to

::::
adapt

:::
its

::::::::
behavior,

:::
but

::::
with

::::::
limited

:::::::::
short-term

::::::
impact.

:
As up to three satellite products are assimilated at the same time, three

separate cases have been developed depending on the number of assimilated masks. Each case is called according to the number

of acquisitions that are taken into accountin the routine. However, a daily cycle in brightness temperature and thus in wet snow230

can exist over Antarctica (Picard and Fily, 2006). To take it
:::
this into account, if there are 3 satellite observations available

for a pixel for a single day, an observation of dry snow between two wet-snow observations is considered as a false negative.

Consequently, the corresponding pixel from the wet-snow masks
::::::::
dry-snow

:::::
pixel is excluded for the day. For computational

reasons, the assimilation routine is called at each MAR time step only during the melting season, between October and April.

Outside of this period
::::::::
timeframe, no assimilation is performed , as very little melting events are expected

:::
for

::::::::::::
computational235

:::::::::
constraints

:::
and

:::
the

:::::
likely

:::::::::
prevalence

:::
of

:::::::::::::
shorter-duration

:::::::
melting

:::::
events

::::::
during

::::::
winter.

::::::
These

:::::
events

:::
are

::::::::::
commonly

::::::
related

::
to

:::::
Foehn

::::::
effects

::::
near

:::
the

::::::::
grounding

::::
line

:::
(?)

:::::
where

:::
the

:::::::::::
effectiveness

::
of

::::::
passive

:::::::
sensors

::::::::
decreases.
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Figure 4. Flowchart of the assimilation algorithm. The number of satellite images available around the MAR time step determines the

subprocess that is called in the routine. 3
::::
Three subprocesses are defined: case A, case B, and case C. They respectively represent the

availability of 1, 2, and 3 wet-snow masks for assimilation. Cases B and C are funneling
::::::
funneled

:
to case A so

:::
that

:
no contradictory

information is given to
:::::
passed

:::
into MAR.

The first case of assimilation represents the situation where a single acquisition is available for a timestep (case "A" in

Figure
:::
Fig. 4). It is the most frequent case applied (between 90 and 95 % of the occurrence depending on the year). This case is

inspired by the assimilation performed in Kittel et al. (2022). For the 3 hours around the observation(1.5 before the observation240

and 1.5 after, so the model has time to adapt its behavior but the impact remains limited),
:::::::
centered

:::
on

:::
the

:::::::::::
observation, at

each MAR time step, the quantity of liquid water modeled within the pixel is compared to the satellite-based mask
::::::::
wet/snow

::::::::
condition

::
for

:::
the

:::::
same

::::
pixel. If the quantity of modeled LWC into

:::::::
modeled

:::::
LWC

::
of

:
the snowpack is under a certain threshold

(α) while the satellite mask indicates wet snow, the snow layers up to a certain depth (∆z) are heated by 0.15 ◦C if the snow

layer
::::
layers

:
are colder than 0 ◦C. On the opposite , if

::
In

:::
the

::::::::
opposite

::::
case,

::
if
:::
the

:
LWC is above the threshold α but no wet245

snow is observed by satellites, the snowpack is cooled down by the same rate
::::::
amount

:
of 0.15 ◦C. The process is applied at

each MAR time step
::
for

::::::
which

:::
the

:::::::::
conditions

:::::
apply. However, two conditions prevent change

::::::
changes

:
in the MAR snowpack

temperature. The first is that if the snow density is above 830 kgm−3, the layer is considered as
:
to

:::
be ice and the model does

not permit liquid water to accumulate into
::::::
within ice. The temperature is then not changed

::
in

:::
this

::::
case

:::::::
remains

::::::::::
unchanged as

the LWC threshold should never be reached. The second condition is the temperature of the snow layers above the
::::
depth

:
∆z . If250

their mean temperature is under
:::::
below -7.5 ◦C, the MAR snowpack is too cold to be able to produce meltwater in the model by

warmingits snowpack
:::::::
through

:::::::
warming, and the satellite observation is ignored. This operation is repeated

:
at
:::::
each

:::::::
timestep

:::
for

11



:::::
which

:::::
MAR

:::
and

:::::::::::
observations

:::::::
disagree

:
until the α threshold is reached or the observation is out of the time range. The choices

for thresholds α and ∆z are discussed in the two next
::::::::
following

:
sections, 2.3.1 and 2.3.2.

The second case is called when there are two satellite observations at less than 1.5 hours from MAR time
::::::::::
assimilation

::::
case255

(case "B" in Figure 4) . If the two masks agree, the two observations are associated with the first case but with a ∆z equivalent

to the mean values of the thresholds that would have been used for individual masks
:::
Fig.

::
4)

::::::
occurs

:::::
when

:::::
there

:::
are

::::
only

::::
two

::::::
satellite

:::::::::::
observations

::::::
within

:::
the

::::::
3-hour

:::::::
window

:::::::
centered

:::
on

:::
the

:::::
MAR

::::
time. If the two observations indicate different snow

states, a different processing is applied if the acquisitions are close to each other in time (within an hour) or not. For two

inconsistent observations spread by more than one hour, the assimilated snow state is the snow state from the closest image to260

the MAR time, following the first case. For two close contradictory observations, nothing is assimilated as they are considered

both equally likely to be correct or wrong. Valuable information may be lost in this case . The difference in penetration depth

can cause a deeper penetrating signal to observe liquid water (Figure 5). However, as we have no additional information on the

depth at which the water may be present, the model is run as if there was no observation available.

The second case occurs when there are only two satellite observations at less than 1.5 hours from MAR time (case "B" in265

Figure 4). If the two masks agree, the two observations are associated with the first case
:::::::::::::
satellite-derived

::::::::::
observations

::::::
agree,

:::::
MAR

::
is

:::::::
adjusted

::::::::
according

::
to
::::

the
:::::::
observed

:::::
snow

::::
state

:::
as

::
in

::::
case

::::
“A” but with a depth ∆z equivalent to the mean values of

the thresholds that would have been used for individual
::
the

:::::::::
individual

:::::::::::::
satellite-derived

:
masks. If the two observations indicate

different snow states, a different processing is applied if the acquisitions are close to each other in time (within an hour) or not.

For two inconsistent observations spread by more than one hour, the assimilated snow state is the snow state from the closest270

image to the MAR time, following the first case (Case “A”). For two close contradictory observations, nothing is assimilated

as they are considered both equally likely to be correct or wrong
:::::::
incorrect. Valuable information may be lost in this case. The

:::
For

:::::::
instance,

:::
the

:
difference in penetration depth can cause a deeper penetrating signal to observe liquid water (Figure

:::
Fig.

:
5).

However, as we have no additional information on the depth at which the water may be present,
::
in

:::
this

::::
case

:
the model is run

as if there was no observation available.275

The third case is when all three observations are available within the same 3-hour time window (case "C" in Figure
:::
Fig.

4). As for the second case, if the three masks
::::::::::
observations

:
agree with the same wet/non-wet snow status, they are considered

as one and the first case
::::
Case

:::
"A"

:
is called. Again, the depth ∆z used is equivalent to the mean values of the thresholds that

would have been used separately. If an
:
a

:::::
single

:
observation is different from the other two, the two closest observations of

::
to

the MAR time are analyzedusing the second case described here ,
::::::::
applying

::::
Case

::::
"B"

::::::::
described

:
above. For our configuration280

of sensors, this third case is only encountered a couple of times (less than 1 % of all occurrences) while assimilating wet-snow

masks of AMSR2 (ascending orbit), ASCAT, and Sentinel-1.

2.3.1 Choice of water content threshold (α)

Estimating the quantity of liquid water into
:
in

:
the snowpack with a single satellite acquisition is challenging. Despite the

numerous research studies, the knowledge on the subject remains limited (Trusel et al., 2013; Fricker et al., 2021). However,285

as described in Picard et al. (2022), it is possible to find a typical water quantity from
::::
LWC

::::
for which the satellite signal
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significantly changes and can be detected as melting/wet snow. Picard et al. (2022) demonstrates the capability of detecting

little
:::::
small amounts of water using the radio frequencies employed in this study. Only 0.11 and 0.05 kgm−2 of liquid water is

necessary at respectively 6 GHz and 19 GHz if the water is uniformly spread over the pixel. This quantity can be higher for

heterogeneous pixels containing dry/wet patches. For this study, the choice has been made to use the same threshold no matter290

::::::::
regardless

::
of

:
the sensor frequency. AMSR2 acquires data at higher frequencies and is theoretically more sensitive, but it has

a coarser resolution than the two active sensors. Its pixels tend to be more heterogeneous, suggesting a compensation in
::::
with

:::::
regard

::
to

:
liquid water quantity. Two different thresholds are tested to study the sensitivity of the model. Both have been shown

to significantly change the snowpack brightness temperature in the literature. Tedesco et al. (2007) proposed a LWC threshold

of 0.2 % while Picard et al. (2022) proposed
:
a
::::::::
threshold

::
of

:
0.1 % of the snowpack massbeing liquid water. They both have295

already
:
.
:::::
They

::::
have

::::
both

:
been tested in Kittel et al. (2022) where the choice between the two was found not to significantly

influence the melt quantity produced by the MAR model. The sensitivity of the microwave
::::::
sensors

:
is high enough that the

quantities of liquid water that can be detected are much smaller than that produced during a typical melting day (1.2 ± 0.6% as

modeled by MAR over the studied zone in the top meter of snow). Currently, there is no clue to identify
:::::
means

::
of

::::::::::
identifying

the best-fitting threshold for this study.300

2.3.2 Choice of assimilation depth threshold (∆z)

Microwaves have penetration capabilities directly related to their wavelength (Elachi and van Zyl, 2006). As a consequence,

::
the

:
C-band from Sentinel-1 and ASCAT has a different penetration depth than Ku-band from AMSR2. In addition, the water

content strongly influences the penetration depth, as water at the top of the snowpack can prevent deeper penetration (Figure

:::
Fig.

:
5). In this experiment, we set different penetration depths for each remote-sensing product to test its influence. Using305

AMSR2 (Ku-Band
:::::::
Ku-band), we consider a

::
an

::::::::::
assimilation

:
depth ∆z = 0.1, 0.2, and 0.4 m successively below the surface.

Below this depth, the electromagnetic wave should not have a noticeable influence (Picard et al., 2022). For Sentinel-1 and

ASCAT (C-band), the depth thresholds ∆z are set up to 0.5, 1, and 1.5 m, as the signal is expected to penetrate deeper in the

snowpack.

2.3.3 Experiences
:::::::::::
Experiments conducted310

An ensemble of 24 MAR simulations is presented here. Only the reference MAR simulation, MARref , is performed without

assimilation. The others are referred to as “assimilations” hereafter. For each one, the satellite wet-snow masks are assimilated

into the model, with different parameters (Table 2). The reference assimilation (Assimref ) is using Sentinel-1 and AMSR2,

both their ascending and descending orbits, and with thresholds ∆z = 1 and 0.2 respectively. Also, α is set at 0.1 . The thresholds

used to perform Assimref correspond to values given in the literature (Elachi and van Zyl, 2006; Picard et al., 2022). The315

other assimilations have been performed with a combination of 3 satellite products chosen between Sentinel-1, AMSR2

ascending, AMSR2 descending, and ASCAT, and with a combination of the assimilation parameters. The assimilations have

been performed from June 2019 to May 2020, and from June 2020 to May 2021.

13



Figure 5. Illustration of the penetration depth of the microwave sensor according to their wavelength and the depth of the wet snow layer.

(a) Penetration depth in a dry snowpack. The signal of the sensor with the lower frequency (5 GHz, in red) penetrates deeper than the

signal of the higher one
:::::::
frequency

:::::
sensor (19 GHz, in green). (b) Penetration depth with a layer of liquid water deep in the snowpack. The

microwave sensor with deeper penetration can detect water presence but the other cannot. (c) Penetration depth with liquid water at the top

of the snowpack. Both satellites can observe the presence of liquid water.

An ensemble of 24 MAR simulations is presented here (Table 2). Only the reference MAR simulation, MARref , is

performed without assimilation. The others are referred to as “assimilations” hereafter. Their naming convention is “ASA”320

followed by
:
"
::
As

:
"
:::::::
followed

:::
by

::
A

:::
and

:
the value of

::
the

:
α threshold in

::
the

:
subscript (in %)and ,

:
the RS datasets assimilated,

:
and

their corresponding ∆z threshold value in
:::
the subscript (in m). “S1

::
S1” refers to the S1 dataset, “AMA

::::
AMA” to AMSR2 ascend-

ing, “AMD
:::::
AMD” to AMSR2 descending, and “AS

:::
AS” to ASCAT. The assimilations were started in January 2019, and have

been restarted
::::::::
initialized from the simulation without assimilation (initialized

:::::
which

:::::
begins

:
in 2017). For each one

:::::::::
assimilation,

the satellite wet-snow masks are assimilated into the model, with different parameters
:::
for

:::
the

::
α

::::::::
threshold

::::
and

::::::
C-band

::::
and325

:::::::
Ku-band

:::
∆z:::::::::

thresholds
:
(Table 2). The reference assimilation (Assimref ) is

::::::::
performed

:
using Sentinel-1 and AMSR2,

::::
with

both their ascending and descending orbits, and with assimilation depth thresholds ∆z = 1 m and 0.2 m respectively. Also,

the liquid water content threshold α is set at 0.1 %. The thresholds used to perform Assimref correspond to values given in

the literature (Elachi and van Zyl, 2006; Picard et al., 2022). The other assimilated simulations have been performed with a

combination of 3 satellite products chosen between Sentinel-1, AMSR2 ascending, AMSR2 descending, and ASCAT, and with330

a combination of the assimilation parameters. The
::::::::::
assimilations

:::::
have

::::
been

:::::::::
performed

:::
for

:::
the

::::::
period

::::
June

::::
2019

::
to
:::::
May

:::::
2020,

:::
and

::::
June

:::::
2020

::
to

::::
May

:::::
2021.

::::
The

:
present document focuses on the 2019-2020 melt season, while

:::::
figures

:::
for

:
the 2020-2021

season graphs and tables are available in
::
the

:
Supplementary Materials.
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Table 2. Name of the
:::
The different simulations and parameterization of the simulation with

::::::::
performed

:
in
:::
this

:::::
study,

:::::::
including

:
data assimila-

tion
::::::::
parameters. When not mentioned

:::::::
specified, both ascending and descending paths of AMSR2 are assimilated. Simulations marked with

an asterisk,
:
and

:::
those

::::
with

:::::::::
assimilation

::
of

::::
only one sensor assimilation are not taken into account in the calculation of the ensemble average.

Name α (%) Ku-band ∆z (m) C-band ∆z (m) Sensors

Assimref 0.1 0.2 1 AMSR2 + S1

AsA01S105AMA02AMD02 0.1 0.2 0.5 AMSR2 + S1

AsA01S115AMA02AMD02 0.1 0.2 1.5 AMSR2 + S1

AsA02S110AMA02AMD02 0.2 0.2 1 AMSR2 + S1

AsA02S105AMA02AMD02 0.2 0.2 0.5 AMSR2 + S1

AsA02S115AMA02AMD02 0.2 0.2 1.5 AMSR2 + S1

AsA01S110AMA01AMD01 0.1 0.1 1 AMSR2 + S1

AsA01S105AMA01AMD01 0.1 0.1 0.5 AMSR2 + S1

AsA01S115AMA01AMD01 0.1 0.1 1.5 AMSR2 + S1

AsA02S110AMA01AMD01∗ 0.2 0.1 1 AMSR2 + S1

AsA02S105AMA01AMD01∗ 0.2 0.1 0.5 AMSR2 + S1

AsA02S115AMA01AMD01∗ 0.2 0.1 1.5 AMSR2 + S1

AsA01S110AMA04AMD04 0.1 0.4 1 AMSR2 + S1

AsA01S105AMA04AMD04 0.1 0.4 0.5 AMSR2 + S1

AsA01S115AMA04AMD04 0.1 0.4 1.5 AMSR2 + S1

AsA02S110AMA04AMD04 0.2 0.4 1 AMSR2 + S1

AsA02S105AMA04AMD04 0.2 0.4 0.5 AMSR2 + S1

AsA02S115AMA04AMD04 0.2 0.4 1.5 AMSR2 + S1

AsA01S110AMA02AS02 0.1 0.2 1 AMSR2 (asc.) + S1 + ASCAT

AsA01AMA02 0.1 0.2 / AMSR2 (asc.)

AsA01AMD02 0.1 0.2 / AMSR2 (desc.)

AsA01S110 0.1 / 1 S1

AsA01AS10 0.1 / 1 ASCAT

MARref / / / None

3 Evaluation

Because the integrated physics within RCMs is either partially resolved or contains uncertainties, it is first required to evaluate335

model outputs to
::::::
against in situ measurements. The evaluation is there

:::::::::
performed

::
in

::::
order

:
to quantify how close the model is

to reality and
::
to

::::::::
determine

:
if the model is inclined to reproduce this observed situation

::
the

:::::::::::
observations. Since our focus is on

assessing the model sensitivity through assimilation, we exclusively evaluate MAR without assimilation. It is worth noting that

the values derived from
:::
the assimilations may diverge from the observations due to the assimilation algorithm sensitivity rather

than the model physics.340
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The outputs of the non-assimilated model
:::::
model

:::::::::
simulation

:::::::
without

::::::::::
assimilation are evaluated by comparing with in situ ob-

servations. The daily observations are provided by Automatic Weather Stations (AWS) widespread
::::::
spread across the AIS. Here,

9 weather-stations
::::
AWS

:
datasets available in the studied zone

::::
study

::::
area (blue crosses displayed in Figure

:::
Fig. 1) have been

gathered to calculate statistics between the model and
:::
for

:::
the

:::::
model

:::
vs. the observations as done in Kittel (2021) and Mottram

et al. (2021). The statistics employed for the evaluation are the Mean Bias (MB), Root Mean Square Error (RMSE), Centered345

Root Mean Square Error (CRMSE), and correlation
::::::::
coefficient

:
(r) (Table 3). The statistics are listed for the 2016-2021 period

for the near-surface pressure, temperature, wind speed, relative humidity, and modeled energy-balance components, including

short-wavelength downward radiations
::::::::
shortwave

:::::::::
downward

:::::::
radiation

:
(SWD), short-wavelength upward radiations

::::::::
shortwave

::::::
upward

::::::::
radiation (SWU), long- wavelength downward radiations

:::::::
longwave

:::::::::
downward

::::::::
radiation (LWD), and long-wavelength

upward radiations
::::::::
longwave

::::::
upward

::::::::
radiation (LWU).350

Small biases can exist
:::::
occur

::
in

:::
the

::::::::::
comparison

::
as

::
a
:::::
result

::
of

:::
the

::::::::
elevation

:::::::::
difference between the in-situ observations and

the modeldue to the elevation difference. The AWS observations are punctual when
::::
point

:::::::::::::
measurements,

:::::::
whereas

:
the model

provides zonal information over a 7.5 x 7.5 km2 pixel. Thus the mean elevation of the MAR pixel in which the AWS falls is not

the same as the AWS true elevation. This difference is particularly noticeable for the near-surface pressure,
:::::
which

::
is

:
directly

linked to the elevation. Nonetheless, a high correlation (r > 0.98) reflects the ability to simulate its
::
of

:::::
MAR

::
to

::::::::
simulate

:::
the355

:::::::
observed

:
temporal variability.

In general, the winter season is slightly better represented
::
by

:::::
MAR

:
with higher correlations and lower mean bias than the

summer season. A weaker correlation is observed in summer for long-wavelength downward radiations
::::::::
longwave

:::::::::
downward

:::::::
radiation

:
(r = 0.65). This difference is compensated by the excess of short-wavelength solar radiations

:::
for

::
by

::
an

:::::::::::::
overestimation

::
of

::::::::
shortwave

:::::::::
downward

:::::
solar

:::::::
radiation

:
in summer. MAR does not assimilate temperature profile nor coastal temperature but360

is only
::::::::
observed

::::::::::
temperature

:::::::
profiles

::
or

::::::
coastal

:::::::::::
temperatures

::::
but

::
is

:
forced at its lateral boundaries

::
and

:::
at

:::
the

:::
sea

:::::::
surface

every 6h for its specific humidity
::::
with

:::::::
specific

::::::::
humidity,

::::::
wind,

:::
sea

:::::::
surface

::::::::::
temperature

:
and temperature. Thus

:
,
:
modeled

clouds are
:::::::
strongly

:::::::::
influenced

:::
by

:::
the

:
the outcome of the

::::::
internal

:
model climate and microphysics Delhasse et al. (2020)

::::::::::::::::::
(Delhasse et al., 2020). Moreover, the radiative scheme implemented in MAR is the one from

::::::
scheme

::::::::
employed

:::
by the ERA-

40 reanalysis. This scheme has been updated in the ERA-5 reanalysis (Hersbach et al., 2020)
:::::::::::::::::::
(Hersbach et al., 2020) but not in365

the model. MAR underestimates
:::::
MAR.

:::::
MAR

::::
also

:::::
tends

::
to

:::::::::::
underestimate

:
the liquid water path during summer when compared

to Cloudsat-CALISPO estimates described in (Van Tricht et al., 2016). Such
::::
This underestimation is partially responsible for

the LWD bias in summer.

In addition, Jakobs et al. (2020) provide melt estimates from the AWS . These estimates
:::::
which can be compared to the

surface melt production of the four closest MAR pixels of
::
to the AWS (Figure 6). MAR tends to overestimate some extremes370

of melting while simultaneously underestimating or overestimating
::
in

::::::::
meltwater

::::::::::
production,

:::
but

::::
also

:::::
tends

::
to

::::::::::::
underestimate

::::
melt

:::::
during

::::::::
low-melt

:::::::
seasons.

:::::
There

:::
are

::::
also

:::::::::
differences

::
in

:::
the

:::::
length

::
of

:::
the

::::
melt

::::::
season,

::::
with

:::::
MAR

:::::::::
sometimes

:::::::::::::
overestimating

:::
and

:::::::::
sometimes

::::::::::::::
underestimating the duration of periods during which the ice shelves are experiencing melting. Even though

there can be a
:::
the

::::::
season.

::::::::
Although

:::
the difference in altitude between the AWS and MAR pixels that explains

::::
may

::::::
explain

:::::
some
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Table 3. Mean Bias (MB), Root Mean Square Error (RMSE), Centered Root Mean Square Error (CRMSE), and correlation between MAR

and daily observation
:::::::::

observations over the Antarctic Peninsula. A negative value implies a lower MAR estimate than
:::::::
compared

::
to

:
the

observation. Statistics are given for the near-surface pressure, temperature, wind speed, relative humidity, shortwave downward (SWD),

shortwave upward (SWU), longwave downward (LWD), and longwave upward (LWU)
::::::

radiation
:
annually, for the summer (DJF) , and

for the winter (JJA)
::::::
seasons,

:
and are calculated for the 2016-2021

::::
2016-

::::
2021

:
period. During winter, the absence of the Sun implies no

short-wavelength
:::::::
incoming solar radiation measurements

:
is
::::::
absent,

:::
and

:::::::
therefore

::::::::
shortwave

::::
solar

:::::::
radiation

:::::::
estimates (SWD and SWU)

::
are

::
not

:::::::
provided. Locations of the weather station

:::::
stations

:
used for the daily observations are marked by blue crosses in Figure

:::
Fig. 1.

Annual Summer Winter

MB RMSE CRMSE Correlation MB RMSE CRMSE Correlation MB RMSE CRMSE Correlation

Near Surface Pressure (hPa) -5.44 14.57 1.25 0.99 -5.69 13.18 0.87 0.99 -6.13 16.09 1.42 0.99

Temperature (◦C) -0.32 3.32 2.81 0.93 -1.13 2.36 1.68 0.76 0.3 3.63 3.11 0.92

Wind speed (ms−1) -0.39 2.58 2.28 0.79 -0.43 2.22 1.85 0.7 -0.35 2.92 2.57 0.78

Relative humidity (%) 3.2 8.73 8.13 0.72 6.88 9.32 6.29 0.75 2.87 9.1 8.64 0.79

SWD (Wm−2) 13.87 36.23 33.46 0.97 41.58 59.21 42.15 0.79 / / / /

SWU (Wm−2) -0.2 24.04 24.04 0.97 14.38 35.81 32.8 0.78 / / / /

LWD (Wm−2) -14.75 26.15 21.59 0.76 -26.56 32.51 18.75 0.65 -7.12 21.08 19.85 0.81

LWU (Wm−2) 3.4 14.2 13.79 0.93 -0.52 9.2 9.19 0.76 2.83 17.12 16.88 0.9

::
of the differences between the two datasets, these discrepancies also highlight the importance of nudging MAR to correspond375

to
:::::
better

::::::::
reproduce

:
the remote sensing observation of wet snowpack

::::::::::
observations

::
of

:::
the

:::::::::
snowpack

::::
state.

4 Results

Table 4 provides a comprehensive summary of the results obtained from the 24 MAR simulations. The summary includes the

number of melt days (i.e. the number of days where melt is occurring over at least 10 % of the studied zone
::
ice

:::::
sheet

::::
and

::
ice

:::::::
shelves

::
of

:::
the

:::::
study

::::
area), surface Melt

::::
melt

:
(ME), Runoff

:::::
runoff

:
(RU), Refreeze

::::::::
refreezing (RZ), and the Surface Mass380

Balance
::::::
surface

::::
mass

:::::::
balance

:
(SMB). This table offers a concise overview of the simulation results. In the case of assessing

:::
We

:::::::
analyzed

::::
the

::::::::
evolution

::
of

::::::
several

::::::::
variables

::
in
:::::

order
:::
to

:::::
assess

:
the sensitivity of the MAR model to the assimilation, we

analyzed the evolution of several variables (Table 5) including ME, RU, SMB, Snowpack Density
:::::::
snowpack

:::::::
density (ρ), and

Liquid Water Content
:
),
:::
and

::::::
liquid

:::::
water

::::::
content (LWC) to study the impact caused by the data assimilation

:::::
(Table

::
5).The first

4
:
3 variables (ME, RU, RZ, and SMB) are given

:::::::
provided

:
for the entire snowpack profile while the other two ρ

:
) and LWC are385

given
:::::::
provided

:
for the first meter. The average value of the variables of all the

:::::
across

:::
all assimilations, Assim, is compared

to the model with no assimilation
:::::::::
simulation

::::::
without

:::::::::::
assimilation

::::::::::
(Assimref ). Although Assim differs from the reference

assimilation, Assimref is the closest simulation to Assim. Three simulations have been discarded to calculate Assim because

of the
::
an

:
unrealistic freeze/thaw cycle induced by the assimilation. These simulations are marked with an asterisk in Table 2 .

Not to include bias from one
:::
and

::
4.

::
So

::
as

::::
not

::
to

:::::::::
incorporate

::::
bias

::::
from

::
a
:::::
single

:
wet-snow mask, simulations assimilating only390

one wet-snow mask are also not used
::::::
omitted

:
in the calculation of Assim.
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Figure 6. Comparison of surface melt
:::::::
meltwater

:
production (mmWEday−1) as modeled by MARref (in red) and estimated surface melt

:::::::
meltwater

:
production from AWS

::::::
stations (a) 14, (b) 15, (c) 17, and (d) 18 (in blue),

:
described in Jakobs et al. (2020).In comparison to the

AWS, MAR tends to overestimate peaks of melt but underestimate smaller melt seasons.

The surface melt production is larger for all assimilations, compared to MARref .

On average, the wet-snow extent provided by the wet-snow masks is larger than the extent modeled by MARref on the

Antarctic Peninsula. This difference impacts the melt
::::::::
meltwater

:
production in the model. No matter the parametrization of

:::::::::
Regardless

::
of

:::
the

:::::::::::::
parametrization

:::::
used

:::
for the assimilation, the surface melt

::::::::
meltwater production is increased compared to395

MARref (Table 5), leading to a cumulated melt
:::::::::
cumulative

::::::::
meltwater

:
production increase of 66.7 % for Assim over the year.

The meltwater
::::::::
Meltwater

::::
that

::
is

::::::::
produced

::::::
within

:::
the

::::::::
snowpack

:
will eventually either refreeze or runoff

::
run

:::
off, depending

on the saturation level
:::
and

::::::
thermal

:::::::::
condition of the snowpack. The snowpack can saturate, either from excess in meltwater

production or from densification. If
:::
the

:::::
MAR

:
snowpack LWC exceeds 5 % of the firn air content

:::
(the

::::::::::
irreducible

:::::
water

:::::::::
saturation), the excess water starts to trickle and runoff (irreducible water saturation)

:::::::
percolate

::
to
::::::
deeper

:::::
layers

::::
and

:::
run

:::
off. The400

evolution of runoff is thus directly related to the evolution of melt and the snowpack saturation level (Figure
:::
Fig.

:
7). Therefore,

the relative increase in surface melt and runoff is almost similar between
::
for

:
Assim and

::::::
relative

::
to MARref (66.7

:::
67.7%and
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Table 4. Summary of the results of the different experiments conducted for the study. The number of melt days, cumulated surface meltwater,

runoff, refreeze, and surface mass balance over the 2019-2020 melt season are provided for each experiment
::
for

:::
the

::::
entire

::::
MAR

::::::
spatial

:::::
extent,

:::::::
excluding

:::::
ocean

::::
areas.

Simulation Number of melt days ME (Gtyr−1) RU (Gtyr−1) RZ (Gtyr−1) SMB (Gtyr−1)

Assimref 121 214 56 182 427

AsA01S105AMA02AMD02 123 214 55 181 429

AsA01S115AMA02AMD02 121 213 55 180 429

AsA02S110AMA02AMD02 129 297 59 256 425

AsA02S105AMA02AMD02 129 299 58 258 426

AsA02S115AMA02AMD02 126 298 60 256 424

AsA01S110AMA01AMD01 122 293 56 257 428

AsA01S105AMA01AMD01 123 289 48 258 436

AsA01S115AMA01AMD01 121 288 51 255 432

AsA02S110AMA01AMD01:::::::::::::::::::::::
AsA02S110AMA01AMD01∗ 130 604 186 430 298

AsA02S105AMA01AMD01:::::::::::::::::::::::
AsA02S105AMA01AMD01∗ 131 626 203 433 280

AsA02S115AMA01AMD01:::::::::::::::::::::::
AsA02S115AMA01AMD01∗ 126 581 177 418 307

AsA01S110AMA04AMD04 120 184 45 161 438

AsA01S105AMA04AMD04 123 186 47 163 437

AsA01S115AMA04AMD04 120 183 45 161 439

AsA02S110AMA04AMD04 127 214 53 184 431

AsA02S105AMA04AMD04 129 221 56 187 427

AsA02S115AMA04AMD04 126 213 52 183 431

AsA01S110AMA02AS02 122 191 47 167 436

AsA01AMA02 121 177 48 153 436

AsA01AMD02 120 143 39 128 445

AsA01S110 119 148 39 131 444

AsA01AS10 121 155 41 137 442

MARref 123 142 32 132 451

:
)
::
is

::::::
similar

::
to

:::
the

::::::
relative

:::::::
increase

::
in
::::::
runoff

:
(63.8%, respectively)but,

:
),
:::
but

:
their absolute increase is not the same

::
in Gtyr−1

:
is
::::::::
different (+95 Gtyr−1 and +21 Gtyr−1, respectively).

The difference between the increase in meltwater production and the increase in runoff corresponds to the
::
an

:
increase in405

refreezing.
:
,
::::
with

:
a
::::::
similar

::::::::::
percentage

::::::
change

::::
over

:::
the

:::::
entire

:::::::
domain This suggests that the snowpack can still absorb liquid

water
:::
and

::::::
convert

::
it

:::
into

:::::::
refrozen

:::
ice

::
in

:::
our

::::::::::
simulations unless it reaches its maximum LWC. The

::::::::
However,

::
as

::::::::
discussed

::::::
further

:::::
below,

:::
the

:
strongest increase in runoff occurs together with firn air content depletion over the ice shelves. Liquid can stay in

the porous layers of the surface snowpack. Then, depending on the available energy in the system, the water either refreezes
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Table 5. Difference (in Gtyr−1
:::
and

:
%) in surface melt

:::::::
meltwater

:
production (ME), runoff (RU), refreeze

:::::::
refreezing

:
(RZ), surface mass

balance (SMB), snowpack liquid water content (LWC), and snowpack density (ρ) between MARref and the mean value of the assimilations

(Assim) over
::
for

::::::::
2019-2020

::
for

:
the Antarctic Peninsula in 2019 - 2020.

::::
entire

:::::
MAR

:::::
spatial

:::::
extent

::::::::
(including

:::::::
grounded

::
ice

:::
and

:::
ice

:::::::
shelves).

Variables are cumulated
:::::::::
accumulated annually and over summer (from November to the end of

::::::
through April) except for snowpack density

and the liquid water content which are averaged over the periods. LWC and ρ are given as for the average of
:::::
within the snowpack first meter

:
of
:::

the
::::::::
snowpack while the other variables are cumulated on the whole modeled

::::
total

::
for

:::
the

::::
entire

:
snowpack.

Annual Summer

MARref Assimref Assim Range % Difference MARref Assimref Assim Range % Difference

ME (Gtyr−1) 142 214 237 183 - 299 66.7 140 212 235 180 - 296 67.1

RU (Gtyr−1) 32 56 53 45 - 60 63.8 32 56 53 45 - 60 64.5

RZ (Gtyr−1) 132 182 206 161 - 258 55.7 128 176 201 157 - 253 56.5

SMB (Gtyr−1) 451 427 431 424 - 439 -4.5 253 229 233 226 - 240 -8.2

LWC1m (g kg−1) 19 17 18 14 - 24 -6.4 33 29 31 24 - 40 -6

ρ1m (kgm−3) 407 422 421 418 - 424 3.6 425 445 445 440 - 449 4.6

during the following night or percolates deeper in the snowpack. But, by refreezing , the water densifies the firn , causing firn410

air content depletion,
::
In

:::
this

::::
case

:::::::::
refreezing

::
is

::::
large

:::::::
enough

::
to

:::::::::::
substantially

::::::
deplete

:::
the

::::
firn

:::
air

::::::
content

:
leaving less storage

space for liquid water in the perennial snowpack (Banwell et al., 2021).

As it can be seen in Figure
:::
Fig.

:
8, the data assimilation only has a slight effect on the

:::::
overall

:
SMB. The SMB expression is

defined as the sum of the ablation terms (runoff,
:::::::::::
evaporation, and sublimation) and accumulation terms (snowfall and rainfall).

The cumulated
:::::::::
cumulative SMB for the 2019-2020 melt season is only decreased by 4.5 % compared to the model without415

assimilation. The general trend of
::
in SMB remains positive in the studied zone

::::::
within

::
the

:::::
study

::::
area. Only the ice shelves show

negative SMB during austral summer (Figure
:::
Fig. 9).

The density and LWC of the snowpack are also impacted by the assimilation. As presented
:::
can

:::
be

::::
seen in Table 6, on the

ice shelves, where most of the surface melt and refreezing occurs, densification affects the LWC. With a denser snowpack, firn

air content is reduced and there is less space for liquid water to be absorbed. Therefore, despite the increase in surface melt420

production, the assimilation process eventually led
::::
leads

:
to a decrease in the amount of liquid water retained in the snowpack.

This reduction occurs due to the assimilations
:
’
:
impact on water retention capabilities of the snowpack

::::::
through

:::::::::
increased

::::::::
refreezing.

All three highlighted ice shelves (Larsen C, Wilkins, and George VI) are experiencing
::::::::
experience

:
an increase in surface

melt, refreeze, and runoff (Table 6). On Larsen C and Wilkins ice shelves, the increase in runoff is strongly superior to the425

increase in surface melt production. Larsen C is the ice shelf experiencing the higher increase of melt in absolute and relative

(+21 , i.e. +85.7 ) of the three, and its runoff is tripled (+6 , i.e. +311.2 ). However, over the year, its liquid water content

tends to slightly increase (+1). It would therefore seem that on ice shelves, the increase in refreezing is not strong enough to

compensate for the increase in melting. The depletion of firn air content leads to a swift saturation of the snowpack, making

the surplus of meltwater resulting in a more pronounced decrease in SMB compared to other regions of the AP.430
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Figure 7. Comparison between the cumulated
::::::::
cumulative

:
surface melt

:::::::
meltwater

:::::::::
production (Gt) in green and the cumulated

::::::::
cumulative

runoff (Gt) in orange
:::
over

:::
the

:::::
whole

::::
MAR

::::::
domain

::::::::
(excluding

:::::
ocean

::::
areas)

:
for the 2019- 2020

:::::::
2019-2020

:
melt season as modeled by MAR

without assimilation and with data assimilation. Shaded areas represent the range of the assimilations. While the increase in Gt is larger for

melt
:::::::
meltwater production, the relative increase is mostly the same

:::::
similar for melt

:::::::
meltwater

:
production and runoff.

All three highlighted ice shelves (Larsen C, Wilkins, and George VI) are experiencing an increase in surface melt, refreeze,

and runoff (
:
as

::
a
:::::
result

::
of

:::
the

:::::::::::
assimilation

:
(Table 6). On Larsen C and Wilkins ice shelves, the

:::::::::
percentage increase in runoff

is strongly superior to the
::::::
strongly

:::::::::
outweighs

:::
the

:::::::::
percentage

:
increase in surface melt production. Larsen C is

:::
For

::::::
Larsen

:::
C,

the ice shelf experiencing the higher increase of melt in absolute and relative
:::::
terms (+21 Gtyr−1, i.e. +85.7 %)of the three,

and its runoff is tripled
:
,
:::::
runoff

::::::
triples (+6 Gtyr−1, i.e. +311.2 %). However, over the year, its liquid water content tends to435

slightly increase
:::
only

:::::::
slightly

::::::::
increases (+1 %). It would therefore seem

:::::::
therefore

:::::::
appears that on ice shelves, the increase in

refreezing is not strong enough to compensate for the increase in melting. The depletion of firn air content leads to a swift

saturation of the snowpack, making the
::::::::
producing

::
a surplus of meltwater resulting

:::
that

:::::
results

:
in a more pronounced decrease

in SMB compared to other regions of the Antarctic Peninsula.

Except for the LWC, which remains relatively small and stable as it has been averaged over the season, the analyzed440

variables (ME, RU, RZ, SMB, and snowpack density) have undergone noticeable variations
::
as

:
a
:::::
result

:::
of

:::
the

::::::::::
assimilation,

causing MARref variables to always be outside of the assimilated-simulations range during summer
::::
range

::
of

:::
the

::::::::::
assimilated
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Figure 8. Cumulated
::::::::
Cumulative

:
surface mass balance (Gt)

:::
over

::
the

:::::
entire

:::::
MAR

::::::
domain

::::::::
(excluding

::::
ocean

:::::
areas)

:
for

:::
the 2019-2020 melt

season as modeled by MAR without assimilation (MARref in red), with data assimilation (Assimmember in dashed lines), and their

averaged value (Assim in blue). Shaded areas represent the range of the assimilations. Despite the increase in surface melt
::::::::
production, the

surface mass balance does not significantly decrease.

:::::::::
simulations. The amplified surface melt production leads to concurrent effects, including increased runoff, reduced surface

mass balance, and an increased occurrence of refreezing. This increase in runoff is attributed to the compaction
:::::::
increase

::
in

::::
melt

::::::::
combined

:::::
with

:::
the

:::::::::::
densification of the upper layers of the snowpack, which reduces

:::::::
reducing

:
its capacity to absorb445

meltwater.

In the end, the results illustrate that, on average, Assimref is the assimilation that gives the closest results to Assim and

makes it an appropriate candidate when computational resources are limited (
::
in

:::
the

::::
case

::
of

::::::
limited

:::::::::::::
computational

::::::::
resources

::::::::
(allowing

:::
for

:
one simulation instead of 24). If the sensitivity to the different parameters of the assimilation is discussed

hereafter, the parameters
:::
The

::::::::::
parameters used in Assimref seem to be an appropriate option

::::
given

:::
the

::::::
results

:::::::::
presented450

:::::
below

::::::::
regarding

:::::::::
sensitivity

::
to

:::
the

::::::::::
assimilation

:::::::::
parameters.
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Figure 9. Cumulated
:::::::::
Cumulative SMB (mmWE) from 2019-10-01 to 2020-02-28 over the AP as modeled by Assimref . Larsen C is

outlined in purple, George VI in green, and Wilkins in red. The southern ice shelves and the northernmost coastlines are experiencing a

negative SMB in opposition to
::::::
contrast

::::
with

:
the rest of the AP. Larsen C is divided in two

:::::
regimes. Its northern part is experiencing a

negative SMB while the southern part is positive.

4.1 MAR sensitivity

4.1.1 Assimilation
:::::::::
Sensitivity

::
to

:::
the

:::::::::::
assimilation

:
depth thresholdsensitivity

The assimilation depth of
:::
used

:::
for

:
low penetrating sensors influences melt

::::
MAR

:::::::::
meltwater

:
production by inducing firn air

content depletion. Due to refreezing, the uppermost 10 centimeters
:::::
portion

:
of the snowpack becomes densercompared to the455

top meter. The refereeze .
::::
The

:::::::::
refreezing is accentuated when using a shallow-depth threshold (for example 10 centimeters

with AMSR2) as the top layers of the snowpack will contain the majority of the liquid water. Consequently, the increase

in melt production
::::::::
meltwater

:::::::::
production

:::::::
needed to reach the α threshold (0.1 % or 0.2 %) will be greater

:::::::
(because

:::
of

:::
the

:::::
denser

:::::::::
snowpack)

:
than for a deeper assimilation depth where less densification occurs. Also, with firn air content depletion,
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Table 6. Difference (
:
in
:
Gtyr−1

:::
and %) in surface melt

:::::::
production

:
(ME), runoff (RU), refreeze

:::::::
refreezing

:
(RZ), surface mass balance (SMB),

snowpack liquid water content (LWC), and snowpack density (ρ) between MARref and the mean value of the assimilations (Assim) over

the three highlighted ice shelves in 2019 - 2020.
:::::::
2019-2020

:::::
using

::
the

::::::
regions

:::::
shown

::
in

:::
Fig.

::
1. Variables are cumulated

:::::::::
accumulated

:
annually

and over summer (from November to the end of
:::::

through
:
April) except for snowpack density and the liquid water content,

:
which are averaged

::::::
averages

:
over the

::::::
specified

:
periods. LWC and ρ are given as for the average of the snowpack first meter while the other variables are

cumulated on
::::
totals

:::
for the whole

::::
entire modeled snowpack.

Annual Summer

Larsen C MARref Assimref Assim Range % Difference MARref Assimref Assim Range % Difference

ME (Gtyr−1) 23 38 44 31 - 58 85.7 23 38 43 30 - 57 87.6

RU (Gtyr−1) 2 7 8 4 - 10 311.2 2 7 8 4 - 10 311.6

RZ (Gtyr−1) 22 32 36 28 - 50 62.2 22 31 36 27 - 49 63.6

SMB (Gtyr−1) 24 19 18 15 - 21 -25.1 15 10 9 6 - 13 -38.9

LWC1m (g kg−1) 3.6 3.5 3.6 3.1 - 4.6 1.5 6.1 6.0 6.2 5.2 - 7.8 1.1

ρ1m (kgm−3) 463 508 509 495 - 519 9.8 500 549 552 536 - 564 10.3

Wilkins

ME (Gtyr−1) 9 13 14 10 - 19 48.4 9 12 14 10 - 19 48.2

RU (Gtyr−1) 2 5 4 2 - 7 185.6 2 5 4 2 - 7 185.6

RZ (Gtyr−1) 9 9 11 9 - 15 22.2 9 8 10 8 - 15 21

SMB (Gtyr−1) 6 2 3 0 - 5 -51.3 2 -2 -1 -4 - 1 -141.4

LWC1m (g kg−1) 1.3 1.0 1.0 1.0 - 1.21 -21 2.2 1.7 1.7 1.6 - 2.0 -21.2

ρ1m (kgm−3) 529 591 578 564 - 597 9.3 599 657 646 626 - 659 7.8

Georges VI

ME (Gtyr−1) 15 20 22 16 - 30 53.2 15 20 22 16 - 30 53.1

RU (Gtyr−1) 2 3 3 3 - 4 56.9 2 3 3 3 - 4 56.9

RZ (Gtyr−1) 14 18 20 15 - 27 45.8 14 18 20 15 - 27 45.2

SMB (Gtyr−1) 11 10 10 9 - 11 -10.3 5 3 3 2 - 4 -25

LWC1m (g kg−1) 2.1 1.8 2.0 1.7 - 2.4 -4.1 3.6 3.2 3.5 2.9 - 4.1 -4.1

ρ1m (kgm−3) 493 537 526 521 - 537 6.8 544 595 584 577 - 595 7.3

two other phenomena enhance melt production. First, the available energy in the system is consumed by the melting process,460

preventing the layer under
:::::
layers

:::::
below

:
1 m from heating up and

:::::::
reducing

:::
the

::::::
release

::
of latent heat from the refreeze processto

be released
::::::::
refreezing

:::::::
process. Therefore, the snowpack will be cooled down by the underneath layers, and will need

::::::
deeper

:::::
layers

:::
will

::::
tend

::
to
::::
cool

:::
the

:::::::::
snowpack,

:::::::::::
necessitating

:
more nudging. The second point

:::::::::
phenomena

:
is that during melt events the

upper layers saturate with less water because of
:::
due

::
to

:
the densification. The saturation results in increased runoff and faster

percolation of the water into deeper layers , outside of the assimilation depth range. If the model were to retain liquid water in465

its top snow layers for a longer duration, it would require less nudging to match the RS datasets.
::::
This

:::::
effect

:::::
could

::
be

::::::::
achieved

::
by

:::::::::
increasing

:::
the

:::::::::
maximum

:::::
liquid

:::::
water

::::::
content

:::
of

:::
the

::::
snow

::::::
layers.

:::::::::
However,

::::::::
enhancing

:::::
water

::::::::
retention

::
in

:::
the

:::::::::::
near-surface
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::::::::
snowpack

:::::
layers

::::::
might

:::
lead

:::
to

::::::::
increased

::::::::
refreezing

::::
and

:::::::::::
consequently,

::::::::::::
densification,

:::::::::
depending

::
on

:::
the

:::::::::
snowpack

::::::::::
temperature

:::::::::::::::::
(Fettweis et al., 2011)

:
.

This phenomenon is illustrated in Figure
:::
Fig. 10, where using a 10 cm assimilation depth threshold for AMSR2 gives470

more melt production
:::::::
produces

:::::
more

::::
melt

:
than the 20 cm and the 40 cm threshold, with both the water content threshold at

:::::::::
thresholds,

:::
for

:::::
water

::::::
content

:::::::::
thresholds

::
of

::::
both 0.1 % or

:::
and 0.2 %. The effect ends up being so important that using a 10 cm

assimilation depth and 0.2 % α threshold for AMSR2 can result in an intense refreezing and a firn air content depletion that lead

::::
leads

:
to a strong increase in runoffthat causes a decrease in

:
,
:::::::
reducing

:
SMB for the Antarctic Peninsula. This decrease in SMB

is in contradiction with
:::::::
contrary

::
to

:
the generally observed trend (Rignot et al., 2019; Chuter et al., 2022). Consequently, the475

three simulations using those
:::
that

:::
use

:::::
these parameters for the Ku-band sensors have been discarded to calculate

:
in

:::::::::::
computation

::
of the average melt for the assimilations.

In contrast, with Sentinel-1, the effect of choosing a different ∆z threshold
::::::::
thresholds is less pronounced. As shown in Table

4, assimilations that have all parameters in common except the S1 assimilation depth threshold only vary by a few Gtyr−1 for

all variables. Multiple reasons can explain this comparatively lighter effect. S1 has a larger revisit time compared to AMSR2 (6480

days
:
a
:::::
6-day

:
revisit time vs daily images). With fewer images, the specific assimilation depth related to

::::::::::
assimilation

:::::
depth

:::
for

S1 is less frequent
::::
used

:::
less

:::::::::
frequently

:
in the melt assimilation process within MAR. In addition, as explained previously, the

liquid water is kept longer in these slightly deeper layers
:::
due

::
to
::
a
:::::
higher

::::::::
retention

:::::::
capacity, and thus no

:::
less melt is required to

reach the water content threshold. The model is thus
::::::
Overall,

:::::
these

:::::
results

:::::::
indicate

::::
that

:::::
MAR

::
is more sensitive to a shallower

assimilation depth threshold. The
::::
Most

::
of

:::
the

:
sensitivity is linked to near-surface events

:::::::
refreeze

:::
and

:::::::::::
densification, more likely485

to occur in the first centimeter of the snowpack. The penetration depth for the C-band sensors is larger than for Ku-band sensors,

:::
and using sensors with higher frequencies makes the

:::::::
increases

:::
the

::::::::
sensitivity

:::
to

::
the

:
choice of the thresholdsmore sensitive.

4.1.2 Water
:::::::::
Sensitivity

::
to

:::
the

:::::
water

:
content thresholdsensitivity

The water content sensitivity has
::::::::::
Experiments

::::
with

::::::
varying

:::
the

:::::
liquid

:::::
water

:::::::
content

::::::::
threshold

::::
have a smaller impact compared

to the assimilation depth . The assimilation
:::::::::::
experiments.

:::::::
Varying

:::::
liquid

:::::
water

:::::::
content

:
influences the number of melt days490

modeled, thus expanding the melt season duration (Table 7) rather than the quantity of liquid water produced by melting. The

required amount of liquid water required to reach the water content thresholds α is small compared to the modeled LWC of a

typical melt day. In MARref , for the 2019-2020 melt season, the value reaches 1.2 % for a melt day on average, above the 0.2

% threshold.

For this study, the number of melt days is defined as the number of days of the melt season where 10 % of the ice shelf is495

experiencing
:::::::::
experiences

:
melt, while the melt season length corresponds to the number of days between the first melt day after

the first of June and the last melt days
:::
day before the last day of May of the the following

::
in

:::
the

:::::::::
subsequent

:
year. Thus, the

melt season length also encompasses possible colder periods where no melting event occurs.

Choosing a threshold over the other
:::
The

::::::
choice

::
of

:::::
liquid

:::::
water

::::::
content

::::::::
threshold

:
also influences the average number of melt

days on the studied ice shelves (Figure
:::
Fig. 11). A pixel is considered as melting for the day if the daily-averaged mass of500
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Figure 10. Cumulated
::::::::
Cumulative

:
surface melt production (Gt)

:::
over

:::
the

::::
entire

:::::
MAR

::::::
domain for the 2019-2020 melt season as modeled

by the different assimilation
:::::::::
experiments. The assimilations are grouped by their α and Ku-band ∆z thresholds. Shaded areas represent the

range of the assimilation of the groups. Groups of assimilations with Ku-band ∆z = 0.1 m produce more melt than the group of assimilations

with the sameα but different ∆z .

liquid water within the first meter of snow is superior to
::::::
greater

::::
than 0.1 % of the snowpack mass. Therefore, using the 0.2 %

threshold over 0.1 % will increase the number of melt days.

By computing the mean value of each pixel
:::
the number of melt days of the ice shelves

:::
for

::::
each

:::
ice

::::
shelf

:::::
pixel, it was found

that the largest deviation occurs on Larsen C
:::::
Larsen

::
C

::
is

:::
the

::::
most

:::::::
sensitive

::
to
:::
the

::::::::
threshold

::::::
chosen, with an increase of 15 melt

days compared to MARref . The other two ice shelves exhibit comparatively smaller differences, with Wilkins and George VI505

experiencing an increase of 8 and 9 melt days, respectively (Figure
:::
Fig.

:
11).

Taking the assimilation
::::::::
Examining

:::::::::::
assimilation

::::::::::
simulations individually leads to a similar conclusion. The water content

threshold choice only emphasizes the differences that are caused by the assimilation depth threshold. It is important to note

that the simulations that were discarded from the computation of Assim are assimilations that had 0.2 % as the value for

the threshold. With a densified snowpack, reaching α = 0.2 % required more intense melting .
::::::::
producing

:::::::::
unrealistic

:::::::
surface510

:::::::::
conditions.

26



Table 7. Comparison between the number of days between the first day with observed
:::
The

:
melt and the last one (the melt season length

:::
(first

::
to
::::

last
:::
melt

::::
day) and the number of melt days modeled for the three studied ice shelves for MARref and the average number for

assimilations depending on their
:::::::::
assimilation

::::::::
simulations

:::::::
grouped

::
by αbetween June 2019 and May 2020.

:::::
-value

:::
over

:::
the

::::
three

:::::::::
highlighted

::
ice

::::::
shelves

::
in

:::
Fig.

:
1
:::
for

::::::::
2019-2020.

:
A melt day over an ice shelf is considered as a day where more than 10 % of the ice shelf is experiencing

melt.

Larsen C Melt season length (days) Number of melt days modeled

MARref 143 90

α = 0.1 % 147 110

α = 0.2 % 152 119

Wilkins Melt season length (days) Number of melt days modeled

MARref 292 127

α = 0.1 % 294 125

α = 0.2 % 298 129

GeorgeVI Melt season length (days) Number of melt days modeled

MARref 120 120

α = 0.1 % 123 122

α = 0.2 % 157 134

4.1.3
:::::::::
Sensitivity

::
to

:::
the

:::
RS

:::::::
Dataset

4.1.4 Dataset sensitivity

Each of
::
In

::::::
another

:::
set

:::
of

:::::::::
sensitivity

::::::::::
experiments,

:::::
each

::
of

:
the four wet-snow masks (AMSR2 desc., AMSR2 asc., ASCAT,

S1) has been assimilated individually into MAR to study its influence. Assimilating multiple datasets tend
::::
tends

:
to smooth515

the sensor characteristics as they are only processed to be used where they provide consistent information. In this study,

several characteristics of the remote sensing data have been pinpointed as they influence the results of the assimilation: the
:::
are

::::::::
examined,

::::::::
including

:::
the

:
acquisition time, the

:::::
spatial resolution, and the revisit time. They are discussed hereafter.

First, the
:
,
:::
and

::::
their

::::::
impact

::
is

::::::::
discussed

::::::
below.

::::
First,

::
an

::::::
earlier acquisition time can artificially lower the number of melt days.

Because of the daily cycle of the water quantity in the snowpack, images taken earlier in the morning are less likely to observe520

wet snow (Picard and Fily, 2006). In this manner, over
::::
Over the Antarctic Peninsula, the descending orbit of AMSR2

:::::::
therefore

observes less wet snow than the ascending one. Using satellites whose acquisition times are well distributed during the day

allows them to observe
::
for

::::::::::
observation

::
of the daily melt-refreezing cycle and not miss

::::::
reduces

:::
the

::::::::
possibility

::
of

:::::::::
excluding melt

days.

Second, the spatial resolution influences the results of the assimilation because of the pixel heterogeneity. Sensors that have525

:
a
:
coarser resolution hide a highly heterogeneous surface dynamics and it is possible that while only a fraction of the region

covered by one pixel is experiencing melting or enough water is present in the snowpack, the whole pixel is considered
:::::
entire
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Figure 11. Distribution of the number of melt days for the 2019-2020 melt season as modeled by MARref and the assimilations grouped

by their values of
::
the

:::::::
specified α threshold

:::::
values for the three studied ice shelves. Dashed lines represent the mean value of the distribution.

On the three ice shelves, assimilations with α = 0.2 % are experiencing
::::::
produce more melt days than MARref and the other assimilations.

Assimilations with α = 0.2 % are experiencing
:::::
exhibit

:
an increase of

::
in the mean number of melt days

::::::
relative

:
to
::::::::
MARref:

over the Larsen

C ice shelf of 15 days, 8 days on the Wilkins ice shelf, and 9 days on the Georges VI ice shelf.

::::
pixel

::
is

:::::::::::
characterized as wet snow Picard et al. (2022). In steep regionslike ,

::::
e.g. near the grounding line, this phenomenon can

lead to the detection of wet snow in places where there should not be
::
it

:
is
:::::::
unlikely

::
to
:::::
occur. In this study, the passive microwave

sensor AMSR2 has a coarser resolution than MAR and can trigger the assimilation process
::
in

:::::::
locations

:
where it should not

::
be530

::::::
applied.

To study the influence of the spatial resolution, ASCAT has been assimilated
::
we

::::
have

:::::::::
performed

:
a
:::::::::

simulation
:::::::::::

assimilating

::::::
ASCAT

::::
data

:
(AsA01S110AMA02AS02 in Table 2) instead of AMSR2 in

:::
the descending orbit. The assimilations gave smaller

numbers
:::::::::
assimilation

:::::
with

:::::::
ASCAT

::::::::
produces

:
a
:::::::
smaller

:::::::
number of melt days and surface melt production on the Antarctic

Peninsula for the studied period (191 Gtyr−1 for AsA01S110AMA02AS02 and 214 Gtyr−1 for Assimref ). If
:::::
While the535

assimilation depth is different between AMSR2 and ASCAT, the major influence comes from the spatial resolution of the

sensor
::::
(with

:::::::
ASCAT

:::::
having

::
a
:::::
higher

::::::
spatial

:::::::::
resolution). The difference can be seen on

::
in the wet-snow masks (Figure

:::
Fig.

:
12).
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AMSR2 detects melt on Alexander Island, between George VI and Wilkins ice shelves when ASCAT
:::::::
whereas

:::::::
ASCAT,

:
with a

finer resolution and another frequency than AMSR2
:
a
:::::::
different

:::::::::
frequency does not. Even if wet snow is observed in

::
for

:
one

of the AMSR masks, the duration of the increased MAR snowpack temperature is too short to produce the water quantities540

necessary to be detected as a meltday at these places
::::
melt. This preservation of a cold snowpack persists throughout the rest of

the day.

Finally, the requirement of the low
::::::
impact

::
of

:
revisit time is highlighted by studying the wet-snow extent resulting from

the assimilation of only one sensor at a time (Figure
:::
Fig.

:
13). The

:::::::::
assimilated

:
S1 wet-snow mask assimilated does not cover

the entire AP every day and thus shows a smaller wet-snow extent than the other masks. As a consequence, there are fewer545

instances in which the model and the mask exhibit discrepancies regarding the snow status, resulting in reduced application

of the nudging technique. Eventually,
:::::::::
Ultimately,

:::
the S1-only assimilation (AsA01S110 in Table 2) has the closest wet-snow

extent to the extent of MARrefof the assimilation,
:::::::
despite

:::
the

:::
bias

:::
in

:::
the

:::
raw

::::
data. The resilience of the model snowpack is

such that only relying
::::::
relying

:::::
solely on a non-daily dataset with intermittent nudging , allows it to freely evolve with minimal

external forcing. . Consequently, while the high spatial resolution of Sentinel-1 brings
:::::::
provides

:
valuable information, this550

advantage is not sufficient enough to be used as the only dataset assimilated. The S1 dataset needs to be used in conjunction

with other datasets to combine high spatial resolution with low revisit time.

The resilience of the snowpack
::::::::
simulation

:
also decreases the feasibility of only assimilating one dataset with

::::::::::
assimilating

::::
only

:::
one

::::::
dataset

:::::
using the algorithm described in this paper. If

:::::
While ASCAT-only assimilation (AsA01AS10 in Table 2) tends

to be closest to its wet-snow masks,
::::
mask

:
during peaks of melt (end of November 2019, beginning of 2020) or strong refreeze555

(mid-March 2020), the effects of nudging do not persist over long time periods and make the required changes of
:::::::::
necessitate

::::::
changes

::
in
:
the model to match the observed wet-snow mask.

Assimilating two datasets that entirely cover the studied zone
::::
study

::::
area

:
as well as a dataset that has a finer spatial reso-

lution than
::::::::
compared

::
to

:
MAR serves as a means to mitigate

::
of

:::::::::
mitigating the sensitivity of the model to the chosen datasets.

The restrained
:::::::::
constraints

::
on

:::
the

:
period in which the model snowpack temperature can be changed and the possibility of not560

assimilating data in case of
:
a discrepancy between the sensors also regulate

:::::::
regulates the dependence of the model on the obser-

vations. Future developments in the technique should allow the possibility to assimilate more
:::
for

:::
the

::::::::
possibility

:::
of

::::::::::
assimilating

::::::::
additional datasets and weighting wet-snow masks according to the relevance of their wet/dry snow status.

5 Discussion and conclusions

In this paper, we presented
::::::
results

::::::::
regarding the assimilation of wet-snow occurrence estimated by

:::
data

::::::::
estimated

::
by

::::::::::
spaceborne565

microwave sensors into the regional climate model MAR
::::::
through

::::::::::
adjustments

::
in

:::::
MAR

:::::::::::
near-surface

::::::::::
temperature

::
to

:::
best

::::::
match

::
the

:::::::
satellite

::::
data. Sensitivity tests have been performed to evaluate the effect of the data assimilation parameters on the model

results.

We identified the assimilation depth (∆z) to be the most influential parameter when applied for shallow-penetration sensors.

The influence on the quantity of water produced in the snowpack partially comes from the liquid water content threshold (α)570
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Figure 12. (a) Number of days with wet snow observed by AMSR2 ascending on the AP for the 2019-2020 melt season. (b) Number of days

with wet snows
:::
snow

:
observed by ASCAT on the Antarctic Peninsula for the 2019-2020 melt season. ASCAT observes more wet snow than

AMSR2 over the ice shelves but less in altitude and slopes
:::

melt on average
::
at

:::::
higher

::::::
altitudes

:::
and

::
in
::::
areas

::
of
::::
steep

::::::
terrain.
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Figure 13. Evolution of the wet-snow extent
:::
over

:::
the

:::::
entire

::::
MAR

::::::
domain

::::::::
(including

::::::::
grounded

::
ice

:::
and

:::
ice

::::::
shelves)

:
during the 2019-2020

melt season as modeled by MARref , the assimilation of only S1
::::
alone (AsA01S110), the assimilation of only ASCAT

::::
alone

:
(AsA01AS10),

and the wet-snow masks from S1, and ASCAT. The S1 wet-snow mask has a lower extent as the AP is not covered entirely every day by S1

images.

calculation. The uppermost layer of the snowpack is considerably denser than the underlying layers, owing to the increase

in refreezing caused by the exceeding liquid meltwater from
:::::::
produced

:::
as

:
a
::::::

result
::
of

:::
the

:
assimilation. Heavier and denser

layers require more liquid water to
::
be

:::::::
present

::
to reach the required α threshold. Also, the densification causes firn air content

depletion, leaving less space for liquid water. The densified layer saturates faster, and more runoff occurs. A threshold of

0.2 m for the Ku-band sensors causes no extreme refreeze
::::::::
refreezing

:
or melt and may be considered a good candidate for575

assimilation depth thresholds. For the C-band sensors, the three thresholds tested yield similar results one or the other
:
to

::::
one

::::::
another, and the implementation of a varying threshold should be considered to take into account the depth at which the wet

snow is observed. In contrast to assimilation depth (∆z), the
::::::::
maximum LWC threshold (α) has a smaller impact on the model

surface melt
:::::::::
production (in Gt). The choice of α = 0.2 % over α = 0.1 % will mostly increase

::::::
mostly

:::::::
increases

:
the duration of

the melting season(in number of days),
:::::
rather

::::
than

:::
the

:::::::
amount

::
of

::::::::
meltwater

::::::::
produced.580
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With constant snowfall (480 GGtyr−1) and an increase in the surface melt
::::::
surface

:::::::::
meltwater

:::::::::
production (+95 Gtyr−1 or

+66.7 %)), the increase in runoff (+21 Gtyr−1 or +63.8 %)
:
)
::::::::
associated

:::::
with

::::::::::
assimilation translates into a decrease in SMB

(-4.5 %)), for the 2019-2020 melt season. Nonetheless, runoff values are relatively small compared to the surface mass balance,

explaining the small impact
:
of

:::::::::::
assimilation on the SMBfrom the assimilation. The general tendency of SMB remains positive

in the studied zone
::::
study

::::
area. Only the ice shelves show negative SMB during periods of intense melting.585

The assimilated dataset
:::::
choice

::
of
:::
the

::::::
dataset

::
to
:::
be

:::::::::
assimilated

:
was also found to influence the results of the model after data

assimilation. Each sensor has its particularities and wet-snow masks may differ from each other
:::::::
between

::::::
sensors. Several of

these characteristics have been pinpointed previously. The most important ones are the signal frequency, the revisit time, and

the spatial resolution.

The signal frequency of the sensor impacts the resulting melt production by its difference in liquid water sensitivity
::::::::
estimated590

::::::::
meltwater

:::::::::
production

::::
due

::
to

:::::::::
differences

::
in

:::::::::
sensitivity

::
to

:::::
liquid

:::::
water

:
and the depth to which the signal penetrates. Because it

is difficult to provide accurate surface water depth estimates (Fricker et al., 2021) and because microwave signals can be

intercepted by the water in the snowpack, the limit at which we stop
::::::
vertical

::::
limit

:::::::::
necessary

:::
for the assimilation is not always

clear. If there is enough water in the top layers, potential liquid water in the
::::::::::
near-surface

:::::
layers,

:::::::::
additional

:::::
liquid

:::::
water

::::::
within

deeper layers cannot be observed. In the same way, a thin layer of
::::::
surface

:
water can be interpreted as the presence of water in595

the first meter of the snowpack when the underneath layers are dry (Figure 5). The assimilation depth threshold ∆z has been

set with different values for the different wavelengthsof the sensors
:
to
::::::::

different
::::::
values

::::::::
depending

:::
on

::::::
sensor

:::::::::::
wavelengths, but

remains constant no matter the wet state
::::::::
regardless of the snowpack

:::
state. Introducing a LWC/density varying

:::::::::::::
density-varying

::::
LWC

:
threshold could decrease the melt production after the assimilation

::::::::
meltwater

:::::::::
production

::
in
:::
the

:::::::::::
assimilation

:::::::::
simulations.

However, we encourage field observation
::::::::::
observations

:
of the evolution of the LWC in the snowpack vertical profile; a required600

step to introduce and validate
::::::
needed

::
in

:::::::::
introducing

::::
and

::::::::
validating

:
the assimilation algorithm.

The revisit time of the satellite
:::::::
satellites

:
is influential as the model freely evolves if the forcing is not performed every day.

The assimilation of only Sentinel-1 satellites (
:::
with

::
a
:
revisit time of 6 days, which translates

:::::::::
translating into one image per

::::
every

:
2-3 days over the studied zone) is pretty close to the results of the non-assimilated model

::::
study

:::::
area)

::::::::
produces

::::::
results

::::
close

::
to

:::::
those

::
of

:::
the

::::::
model

:::::::::
simulation

::::::
without

::::
data

:::::::::::
assimilation. Multiple datasets need to be assimilated during

::
on

:
the same605

day for the model to durably
::::::::::
consistently change its behavior. The resilience of the model comes

::::::
results from the refreezing of

the snowpack during the night and the winter period
:::::
nights

::::
and

::
in

:::::
winter

::::::
months. When taking into account a few melt seasons,

at the beginning of the melt season, the model snowpack is more or less similar to its previous year state
:::
state

::
in

:::
the

::::::::
previous

:::
year.

Assimilating multiple datasets into MAR also brings challenges and consideration alongside its
::::::::::::
considerations

::::::::
alongside

:::
the610

advantages. If some missing information is fulfilled by another dataset, it adds another layer of complexity to the algorithm or

additional uncertainties linked to the assimilation method used and its thresholds. Datasets may not carry the same information

and may not be compatible for all the time steps. Here, none of the datasets is considered to have better wet-snow detection than

the other. A possible enhancement of the technique would be to add weight to the masks in case of contradiction
::::::::::::
contradictions

between them. The weight could be constructed using the confidence level of the wet-snow detection technique employed,615
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the satellite spatial resolution, the topography gradient inside the
::::::::::
topographic

:::::::
gradient

::::
from

::::::
higher

:::::::::
resolution satellite pixels

interpolated to the MAR grid or the sensor sensitivity to
:::::
liquid water.

The results highlight the importance of
:::
and

::::::
impact

::
of

::::::::
utilizing data assimilation. While the assimilation does not induce a

complete change in the behavior of the model as surface melt remains marginal to snowfall, the snowpack properties tend to

deviate from the non-assimilated model impacting in the end the snowpack ’s ability to retain future meltwater
:::::
model

:::::::::
simulation620

::::::::
performed

:::::::
without

::::::::::
assimilation,

:::::::::
impacting

:::
the

:::::
ability

::
of

:::
the

:::::::::
snowpack

::
to

::::
retain

:::::::::
meltwater

::
in

:::
the

:::::
future. Here, satellite data have

only been assimilated for two melt seasons over a small area. The study can be conducted for
:::::::
expanded

::
in

:::
the

:::::
future

::
to
:::::
cover

:
a

longer period, at a larger scale or over
:
a
:::::
larger

::::::
spatial

::::::
extent,

::
or the Greenland ice sheet,

:
where surface melt is the main driver

of SMB variability (Slater et al., 2021). Further attention should be given to ice shelves as they are the most sensitive region of

Antarctica and important to the Antarctic ice sheet stability (Favier and Pattyn, 2015; Paolo et al., 2015; Sun et al., 2020).625

Finally, The results obtained in this paper pinpoint the uncertainties of the regional climate model over the Antarctic Penin-

sula
:
, where, without increasing the snowpack wet extent significantly

::::::::
significant

::::::::
increases

::
in
:::::::::

simulated
::::
melt

::::
area, the surface

melt production significantly increased. The assimilation of remotely sensed data into RCMs is a promising way of reduc-

ing the biases and errors inherent to climate modelsknowing that there is
:
,
:::::
given

:::
that

:::::
there

:::
are

:
currently no direct large-scale

measurement of meltwater content in the snowpack in Antarctica
:::::
within

:::
the

::::::::
Antarctic

:::::::::
snowpack. This is also an easy way to630

provide robust uncertainties on model outputs over
::
in

:::::
model

:::::::
outputs

::
for

:
present climate. Using multiple RS datasets with spa-

tial resolution
::::::::
resolutions

:
higher than the one of the model will allow correcting the non-assimilated model by better assessing

:::::
model

:::::::::
resolution

::::::
would

::::
also

:::::
allow

::
for

:::::::::
improved

:::::
model

:::::::::
corrections

:::::::
through

:::::
better

::::::::::
assessment

::
of the snowpack water content.

Code and data availability. The MAR code used in this study is tagged as v3.12 on https://gitlab.com/Mar-Group/MARv3 (MAR model,

2022). Instructions to download the MAR code are provided at https://www.mar.cnrs.fr (MAR Team, 2022). The MAR outputs used in this635

study are available on request by email (tdethinne@uliege.be). Python code and the necessary files to perform the assimilation with MAR

are available at https://gitlab.uliege.be/tdethinne/assim_mar
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