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Abstract. Ocean temperature and dissolved oxygen shape marine habitats in interplay with species’ physiological 

characteristics. Therefore, the observed and projected warming and deoxygenation in the 21st century of the world’s oceans in 

the 21st century may strongly affect species’ habitats. Here, we implement an extended version of the Aerobic Growth Index 10 

(AGI), which quantifies whether a viable population of a species can be sustained in a particular location. We assess the impact 

of projected deoxygenation and warming on the contemporary habitat of 47 representative marine species covering the 

epipelagic, mesopelagic/bathypelagic, and demersal realms. AGI is calculated for these species for the historical period and 

into the 21st century using bias-corrected environmental data from six comprehensive Earth System Models. While habitat 

viability decreases nearly everywhere with global warming, the impact of this decrease is strongly species-dependent. Most 15 

species lose less than 5% of their contemporary habitat volume over the 21st century even at 23°C of global warming relative 

to preindustrial, although some individual species are projected to incur losses 2-3 times greater than that. We find that the in-

habitat contemporary spatiotemporal variability of O2 and temperature (and hence AGI) provides a quantifiable measure of a 

species’ vulnerability to change. In the event of potential large habitat losses (over 5%), species vulnerability is the most 

important indicator. Vulnerability is therefore more critical than changes in habitat viability, temperature or pO2 levels. 20 

Species’ vulnerability is the most important indicator for large (>5%) potential habitat losses - not relative or absolute changes 

in habitat viability (i.e., AGIrel or ΔAGI), temperature or O2Loss of contemporary habitat is is for most epipelagic species 

driven by the warming of ocean water and is therefore expanded elevated with increased levels of global warming. In the 

mesopelagic/bathypelagic and demersal realms habitat loss is also affected by pO2 decrease for some species. Our analysis is 

constrained by the uncertainties involved in species-specific critical thresholds, which we quantify, by data limitations on 3D 25 

species distributions as well as by high uncertainty in model O2 projections in equatorial regions. Focus on these topics in 

future research will strengthen our confidence in assessing climate-change driven losses of contemporary habitat across the 

global oceans. 
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1 Introduction 

Ocean temperature and dissolved oxygen (O2) are strongly linked by physical and biogeochemical processes as well as through 30 

their effects on the aerobic performance of aquatic ectotherms (Pörtner, 2010; Verberk et al., 2011; Breitburg et al., 2018; 

Oschlies et al., 2018; Seibel et al., 2021). Indeed, temperature and O2 are both found to be central in shaping species’ 

distributions and are important climatic stressors to marine species worldwide (Perry et al., 2005; Doney et al., 2011; 

Poloczanska et al., 2013; Breitburg et al., 2018; Penn et al., 2018; Deutsch et al., 2020; Clarke et al., 2021). Observed and 

projected warming and deoxygenation are therefore likely to impact species. 35 

Robust observational evidence of anthropogenically-forced deoxygenation is now becoming available as long-term O2 changes 

emerge from their natural variability (Frölicher et al., 2009; Long et al., 2016; Stramma et al., 2020; Buchanan and Tagliabue, 

2021; Sharp et al., 2022). Specifically, an increase in the temporal and spatial resolution of observational data has allowed for 

the discovery and quantification of a ~2% decline in the global top-1000m O2 inventory since the 1960s (Ito et al., 2017; 

Oschlies et al., 2017; Schmidtko et al., 2017; Breitburg et al., 2018). This negative trend is projected to continue during the 40 

21st century for all climate scenarios (Bopp et al., 2013; IPCC, 2019; Kwiatkowski et al., 2020). More than 10% of deep ocean 

O2 is likely to be lost even if CO2 emissions were stopped in the year 2020 (Oschlies, 2021). Earth System Model simulations 

project an O2 loss between 100-600 meter depth of 13.27±5.28 mmol m-3 for a high-emission low-mitigation SSP5-8.5 scenario 

and 6.36±2.92 mmol m-3 loss for a lowhigh-emission highlow-mitigation SSP1-2.6 scenario by the end of the 21st century 

(2080-2099 mean values relative to 1870–1899 ± the inter-model standard deviation; Kwiatkowski et al., 2020).   45 

However, simulated trends seem to underestimate trends in observations (Andrews et al., 2013; Oschlies et al., 2017; Oschlies 

et al., 2018; Buchanan and Tagliabue, 2021) and models poorly represent tropical Pacific Oxygen Minimum Zones (Cocco et 

al., 2013; Cabré et al., 2015), indicating the possibility of even strongerhigher possible trendsimpacts of deoxygenation toward 

the future.  

Ocean temperatures are changing as well: Ocean warming is a direct effect of atmospheric warming, as the ocean takes up 50 

approximately 90% of the excess heat from anthropogenic activities (Von Schuckmann et al., 2020). Global mean sea surface 

temperatures are observed to have increased by ~0.5 °C since the 1960s (Hersbach et al., 2020). Earth System Model 

simulations project sea surface warming of 3.5±0.8°C for a high-emission low-mitigation SSP5-8.5 scenario and 1.42±0.32°C 

warming for a low-emission high-mitigation SSP1-2.6 scenario by the end of the 21st century (2080–2099 mean values relative 

to 1870–1899; Kwiatkowski et al., 2020). Most marine species will thus experience further warming of their habitat, 55 

considering that chances of limiting global atmospheric warming to 1.5°C are low even if all and unconditional pledges by 

countries are implemented in full and on time (IPCC, 2021; Meinshausen et al., 2022). Models that include more complex 

representations of species biology and ecology show that every tenth of a degree of global warming increases impacts on 

marine biodiversity, transforming species assemblages through changes in abundance, biomass and catch potential (Cheung et 

al., 2016). Moreover, the warming signal penetrates the deep ocean where it has major potential to affect marine ecosystems 60 

together with deoxygenation and ocean acidification (Levin and Le Bris, 2015). 
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From a biogeochemical perspective, changes in O2 content of a water parcel are driven by a combination of a) changes in O2 

solubility due to changes in temperature and salinity, b) changes in ventilation and stratification of the water column and 

associated changes in O2 supply, c) changes in the partial pressure of O2 (pO2 ) due to gas diffusion rates that depend on 

temperature, and d) changes in large-scale biological consumption of O2 (Keeling et al., 2010; Kwiatkowski et al., 2020; 65 

Buchanan and Tagliabue, 2021; Oschlies, 2021; Pitcher et al., 2021). The relative importance of these mechanisms for 

deoxygenation varies in space and time (e.g., Frölicher et al., 2009; Keeling et al., 2010; Frölicher et al., 2020), which makes 

it challenging to attribute local deoxygenation to a single driver (Pitcher et al., 2021). Generally however, O2 has reduced over 

the past ~60 years due to a combination of a-c in the extratropical oceans, while changes in large-scale biological consumption 

of O2 (d) also contributed to changes in O2 in low-O2 equatorial zones (Buchanan and Tagliabue, 2021; Oschlies, 2021). 70 

Solubility effects dominate the top-200 meter deoxygenation while biological processes and especially ventilation changes 

increase their importance with depth (Schmidtko et al., 2017).  

Consequences of the observed and projected deoxygenation and warming for marine species can be understood from the 

biogeochemical and physiological balance between pO2 supply and demand, both of which depend on temperature (Pörtner 

and Knust, 2007; Verberk et al., 2011; Deutsch et al., 2015; Deutsch et al., 2020; Clarke et al., 2021). pO2 supply to a water 75 

parcel and hence to a species is governed by a-d, while a species’ O2 demand (respiration) increases with temperature (Sect. 

2.1). 

This study uses the Aerobic Growth Index (AGI; Clarke et al., 2021) to quantify the combined effects of deoxygenation and 

warming on marine species in the 21st century. AGI is a species-specific ratio between pO2 supply and demand and is 

interpreted as a measure of habitat viability. Viable habitat is characterized by a pO2 supply over pO2 demand ratio (i.e., AGI) 80 

sufficient for feeding, movement, defense, as well as growth and thus allows for sustainably maintaining a certain species’ 

population (Clarke et al., 2021). Considering the ongoing deoxygenation and warming, AGI and hence habitat viability are 

expected to decrease (Deutsch et al., 2015; Clarke et al., 2021; Gruber et al., 2021; Oschlies, 2021). Our approach newly 

includes depth variability as well as temporal variability of temperature and O2 in calculating AGI (Sect. 2.1), which we apply 

to 47 representative species thanks to the generalized temperature dependence of pO2 demand in AGI (Sect. 2.2). For 85 

environmental data of temperature and pO2 we use bias corrected Earth System Model projections from the latest version of 

the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Sect. 2.3). Through this approach we assess the potential loss 

of viable contemporary habitat volume due to warming and deoxygenation for a representative selection of species - as well 

as identifying the drivers of such losses (Sect. 3). 

2 Methods and data 90 

2.1 Aerobic Growth Index 

We apply the Aerobic Growth Index (AGI; Clarke et al., 2021) to quantify species-specific impacts on habitat viability in 

response to changes in temperature and pO2. WeTherefore, we interpret AGI as a measure of habitat viability. AGI integrates 
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growth theory, metabolic theory, and biogeography to calculate a theoretical ratio of pO2 supply over pO2 demand for each 

species i (Eq. 1; rewritten from Eq. 14 in Clarke et al., 2021). 95 
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Here, the environmental state is described by pO2supply (mbar) and T as in-situ temperature (K). The variables j1 (the anabolism 

activation energy divided by the Boltzmann constant, 4500K), j2 (the catabolism activation energy divided by the Boltzmann 

constant, 8000K), and d (the metabolic scaling coefficient, 0.7) are species-independent to facilitate its application to a large 

number of species (Pauly, 2010; Cheung et al., 2011; Pauly and Cheung, 2018; Clarke et al., 2021). We note that the ratio 100 

between the mean species’ weight 𝑊! (g) and the species’ asymptotic weight 𝑊,,! (g), .(
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(Clarke et al., 2021). 

We newly consider both vertical and temporal variability in pO2 and temperature in the calculation of the species’ pO2 threshold 

(pO2threshold; mbar) and preferred temperature (Tpref; K). Critical pO2 values as well as preferred temperatures are highly species-

dependent (Vaquer-Sunyer and Duarte, 2008; Pörtner and Peck, 2011; Seibel, 2011). Following Clarke et al. (2021) and Penn 105 

et al. (2018), we take pO2threshold (Tpref) as the volume-weighted 10th (50th) percentile of all in-habitat pO2 (temperature) values. 

AGI can therefore be calculated for any species for which we have distribution data as well as environmental data for 

temperature and pO2. Temporal variations in pO2 and temperature are considered by using monthly climatological mean data 

from the World Ocean Atlas 2018 (WOA18 average of all available decades; Boyer et al., 2018; Garcia et al., 2019; Locarnini 

et al., 2019; Zweng et al., 2019). The horizontal distribution data are extended over the full depth range of each species species 110 

(0-200m for epipelagic species, 200-1000m for mesopelagic and bathypelagic species and bottom layer of the ocean data for 

the demersal species, thereby covering both deep and shallow demersal habitats; see Fig. C1 and Sect. 2.3) to include the 

vertical variability of O2 and temperature in our estimate of pO2threshold, Tpref and hence AGI. The 0-200m depth range is used 

for epipelagic species, 200-1000m for mesopelagic species and the bottom layer of the ocean for the demersal species, thereby 

covering both deep and shallow demersal habitats (see Fig. C1 and Sect. 2.3). This approach facilitates the estimation of 115 

species-specific, temperature-dependent critical pO2 levels and Tpref despite the lack of observational data from multi-stressor 

laboratory experiments that apply to field conditions (Boyd et al., 2018; Collins et al., 2022). Different iterations of the 

metabolic index (Deutsch et al., 2015; Penn et al., 2018; Deutsch et al., 2020), which require laboratory-based estimates of 

temperature dependenttemperature-dependent critical pO2 levels, agree well with AGI in their assessment of habitat loss 

(Clarke et al., 2021) despite the much fewer data needed to calculate AGI. For additional details on the calculation of AGI we 120 

refer to Clarke et al. (2021). 

An AGI of one implies that there is sufficient O2 supply for feeding, movement, and defence, but not growth and reproduction. 

To sustain a viable population, additional aerobic scope is needed until AGI is above its critical value (AGIcrit) for a particular 

species. Following Clarke et al. (2021), AGIcrit is the 10th percentile of all AGI values in a species’ habitat including vertical 

and temporal variability as done similarly for pO2threshold and Tpref. In this study a species is deemed impacted by changes in 125 
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temperature and pO2 whenever AGI drops below AGIcrit on an annual mean basis. All species information is listed in Table 

A1. The coarse resolution and the imperfect harmonization between the biogeographical, temperature and O2 data may affect 

the accuracy of the estimated AGIcrit, as indicated by some species having AGIcrit, at or below 1. We discuss in Sect. 4 how 

such biases may affect the results and conclusion, and how future studies can build on our results to improve the accuracy of 

the analysis.  130 

Relative changes in AGI (AGIrel) between time=t1 and time=t0 can be estimated from Eq. 2: 
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wWhere ΔAGI is AGI(t1)-AGI(t0). Relative changes are thus entirely species-independent (in contrast to the metabolic index 

of Deutsch et al., 2015) and are interpreted as relative changes in habitat viability. Eqs. 1 and 2 show that j2-j1 (8000-

4500=3500K) modulates the influence of the temperature effect on AGI. We maintain a reference period 1995-2014 throughout 135 

this study (i.e., AGI(t0) is the mean AGI over the years 1995-2014). Individual cContributions from pO2 and (temperature) to 

AGIrel are calculated by keeping temperature or (pO2) constant at its 1995-2014 mean state when calculating AGIrel. 

2.2 Species data 

AGI can be calculated for nearly a 1000 commercially exploited marine species due to the generalized temperature dependence 

of the pO2demand. This broad applicability of AGI allows us to select 47 representative species (n=47), which are chosen such 140 

that depth level, climatic zone (tropical and temperate) and body size are represented. In addition, we selected some pelagic and 

deep-water wide-ranging species that inhabit both tropical and temperate regions, as well as the hypoxia toleranthypoxia-

tolerant species Dosidicus gigas. Three depth groups are represented through our selection: Epipelagic species (n=23) in the 

0-200 meter depth range, mesopelagic/bathypelagic species (n=6) in the 200-1000 meter depth range and demersal species 

(n=18) at the sea floor (bottom wet layer of the models; Sect 2.3). The representativeness of our species selection is assessed 145 

in Sect. 3.4. Species’ pO2threshold, Tpref and AGIcrit are listed in Table A1. The contemporary species distributions are based on a 

gridded product from Close et al. (2006) and are assumed to represent the 1995-2014 mean state (Fig. C1). 

2.3 Earth system model data 

Environmental data of O2, potential temperature and salinity for the years 1850-2100 are taken from the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) multi-model ensemble (Eyring et al., 2016). Scenarios ‘historical’, ‘SSP5-8.5’ and 150 

‘SSP1-2.6’ as well as the pre-industrial control simulation ‘piControl’ were used from the six models for which all these 

environmental data were available: CNRM-ESM2-1, MPI-ESM1-2-HR, UKESM1-0-LL, IPSL-CM6A-LR, GFDL-ESM4, 

and CanESM5 (Appendix Table A2). All model data were horizontally regridded to a 1° regular grid before further post-

processing. 

To account for mean errors and model drift, both a drift correction and bias correction were performed. First, the bottom layer 155 

(‘seafloor’) O2 ocean data were linearly detrended for piControl drift over the piControl years corresponding to the scenario 
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years (1850 to 2100) as these trends are more than 10% of the scenario signal for some models. Drift in bottom layer 

temperature and salinity as well as upper water column O2, salinity and temperature were negligible as compared to the scenario 

signals and therefore not accounted for. Secondly, we performed a mean bias correction (e.g., Maraun, 2016) on all model data 

by subtracting the ‘present-day’ monthly mean climatological bias (the difference between WOA18 data vertically interpolated 160 

to the respective model levels and the respective model’s 1995-2014 monthly climatology) from the entire simulated 

timeseries. We used the available WOA18 climatological mean product for the sea floor data because WOA18 climatologies 

are only available at monthly resolution until 1500m depth. The extracted original spatial resolution of the WOA18 data is 1° 

for O2 and 0.25° for temperature and salinity but these were all regridded to 1° to match the regridded model data grid. Note 

that to calculate the temperature biases, the model potential temperature was converted to in-situ temperature.  165 

Finally, pO2 was calculated following Sect. E by Bittig et al. (2018), which is based on earlier work (Benson and Krause, 1984; 

Garcia and Gordon, 1992; Sarmiento and Gruber, 2006), and includes pressure correction (Taylor, 1978) and the correction 

for water vapor pressure (Weiss and Price, 1980) in the calculation of pO2 (Appendix B). 

All results are presented at global warming levels (i.e., global mean air temperature at 2 m; e.g., Hausfather et al., 2022). In 

order to do so we first bias-correct modeled surface air temperatures such that the 1995-2014 global mean air temperature 170 

increase since 1850-1900 is 0.87 °C as observed (HadCRUT.5.0.1.0; Morice et al., 2021) in order to be consistent with the 

bias correctedbias-corrected ocean temperature and oxygen data. We then find the first year where the 15-year running mean 

of these bias-corrected global mean surface air temperature data is greater than or equal to the warming level of interest and 

calculate the 15-year running mean at that year over the data for the analyses. For warming levels above 1.5ºC, we only use 

the results for SSP5-8.5 as not all models reach warming of more than 1.5ºC in SSP1-2.6. 175 

3 Results 

3.1 Global changes in warming, deoxygenation and habitat viability 

Ocean temperature is projected to increase (Fig. 1a) and pO2 to decrease (Fig. 1b) with global warming of the atmosphere. 

These changes occur in all three depth layers considered here, and for all CMIP6 models. Noticeably, the response of ocean 

warming and deoxygenation to global atmospheric warming is approximately linear (Fig. 1). From a linear fit to the multi-180 

model mean CMIP6 changes in Fig. 1 we find that the epipelagic realm warms the most with 0.50±0.03 °C per degree of 

atmospheric warming (standard deviation given across the individual model fits). This signal is dampened toward depth to 

0.18±0.02 °C per degree of global warming in the mesopelagic/bathypelagic realm and 0.08±0.01 °C per degree of global 

warming in the demersal realm (Fig. 1a). In addition to the warming, we find that the epipelagic realm loses 0.40±0.55 mbar 

of pO2, the mesopelagic/bathypelagic loses 1.35±0.89 mbar of pO2 and the demersal realm loses 1.17±0.97 mbar of pO2 on 185 

average and per degree global warming of the atmosphere (Fig. 1b).  hence Thaving the largest changes in pO2 realized are 

projected at depth in contrast to ocean warming. The warming (Fig. 1a) and deoxygenation (Fig. 1b) drive reduce AGI relative 



7 
 

to its contemporary state (i.e., a negativea reduction in AGIrel ; Fig. 1c)), which we interpret as a loss of habitat viability (Sect. 

2.1; Fig. 1c) that is independent of species (Eq. 2). In the epipelagic, AGIrel is decreasesreduced by 2.17±0.69 % per degree of 

global warming (Fig. 1c), while AGI decreases 2.33±1.64 % per degree of global warming  . The global mean reduction in 190 

habitat viability (i.e., AGIrel) in the mesopelagic/bathypelagic realm is 2.33±1.64 % per degree of global warming.  Last, The 

demersal decrease in AGI loss of habitat viability is 0.86±0.48 % per degree of global warming, making it is the least 

pronounced of the three studied depth intervals. The approximately linear response of marine warming, deoxygenation, and 

loss of habitat viability to global atmospheric surface warming (Fig. 1) highlights and confirms that all any additionally realized 

atmospheric warming will affect the marine environment (Cheung et al., 2016). 195 

The projected changes are independent of greenhouse gas emission pathway and only depend on the amount of global warming 

to a first degree. NeverthelessEven though our results in Fig. 1 are presented at warming levels, we here highlight that the 

scenario determines the a sharp contrast exists between maximum changes in temperature, pO2 and AGIrel realized in scenario 

SSP1-2.6 and those changes of scenario SSP5-8.5: (Fig. C2): Relative to the 1850-1900 mean, global multi-model mean 

warming by 2081-2100 in SSP1-2.6 is limited to 1.14±0.28 °C in the epipelagic, 0.62±0.07 °C in the mesopelagic/bathypelagic 200 

and 0.22±0.02 °C in the demersal realm. For SSP5-8.5 the changes are approximately doubled to 2.70±0.76 °C, 1.00±0.15 °C 

and 0.40±0.06 °C of warming, respectively. Deoxygenation is also much reduced in the low-emission scenario as compared to 

the high-emission SSP5-8.5 scenario by 2081-2100, although model uncertainty is larger here: Global mean pO2 is reduced by 

at most 0.88±1.42 mbar in the epipelagic, 3.23±2.96 mbar in the mesopelagic/bathypelagic, and 5.42±3.80 mbar in the demersal 

realm for SSP1-2.6 while maximum global mean deoxygenation is projected to be stronger in SSP5-8.5 with 2.27±2.85 mbar, 205 

7.13±4.22 mbar and 5.61±4.23 mbar pO2 loss respectively. The relative loss of habitat viability is 6.39 % lower in SSP1-2.6 

than in SSP5-8.5 by 2081-2100 in the epipelagic (-11.58±4.48 % under SSP5-8.5 vs. -5.18±2.08 % under SSP1-2.6), 4.62 % 

lower in the mesopelagic/bathypelagic (-11.48±7.50 % under SSP5-8.5 vs. -6.86±5.60 % under SSP1-2.6), and 0.90 % lower 

in the demersal realm (-4.23±1.90 % under SSP5-8.5 vs. -3.33±1.69 % under SSP1-2.6). 

 210 
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Figure 1 Simulated gGlobal mean changes in ocean insituin-situ temperature in ºC (a), pO2 in mbar (b) and AGIrel in % (c) for 
different depth layers and global warming levels, where global warming is calculated as global surface air temperature increase 
relative to the 1850-1900 mean. The multi-model running mean is given in opaque blue (SSP1-2.6) and red (SSP5-8.5) and has for 
several decades the corresponding 20-year multi-model mean year labeledlabelled. Individual models are shown in transparent light 215 
blue and red without taking a running mean. AGIrel is given relative to the 1995-2014 mean as in the remainder of the manuscript, 
and the mean contribution from temperature only (excluding the small effect of temperature on pO2) is indicated by the black line 
in panel (c) and calculated by keeping pO2 constant at its 1995-2014 mean state when calculating AGIrel. AGIrel (%) is entirely 
species-independent (Eq. 2) and values that exceed 1000% or are below -1000% were excluded during the calculation of the global 
mean AGI changes to omit several grid-cells with extreme outliers caused by very small absolute changes in O2 causing very large 220 
changes in AGIrel. 

3.2 Local changes and drivers of habitat viability 

A relative reduction in habitat viability (i.e., a reduction negativein AGIrel; Fig. 1c) is projected to occur almost everywhere at 

2 ºC of global warming (Fig. 2a-c; see Fig. C3 and C4 for 1.5 and 3 ºC of global warming, respectively), indicating that for 

most habitats and therefore species we expect a reduction in habitat viability. The relative reduction in habitat viability is 225 

generally largestr in the epipelagic and mesopelagic/bathypelagic realms (Figs. 1c, 2a, b), but the larger spatial heterogeneity 

at mesopelagic/bathypelagic depths reveals that locally mesopelagic/bathypelagic AGIrel reductions may far exceed those in 

the epipelagic, particularly in the North Pacific (Fig. 2b). Hence the location of a species’ habitat, both vertically and 

horizontally, is key to projected changes in habitat viability for a specific species. Note that the patterns in each of the panels 

of Fig. 2 remain similar for higher degrees of global warming, only the intensity of change increases (not shown), which agrees 230 

with the approximately linear response of the global average AGIrel to global warming (Fig. 1c). 
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Figure 2 Multi-model mean AGIrel relative to the 1995-2014 mean at 2 °C global warming (using SSP5-8.5 simulations), vertically 
averaged over the epipelagic and mesopelagic realms, and shown for the demersal realm (a-c). AGIrel is split up into the 
contributiondivided into contributions from (d-f) pO2 and (g-i) temperature. Data are hatched where more than 2 out of the 6 models 235 
disagree about the sign of change. Note that sea floor depth and thus demersal depth dependsdepend strongly on location. 
Contributions from pO2 (temperature) are calculated by keeping temperature (pO2) constant at its 1995-2014 mean state when 
calculating AGIrel. Further note that since [O2] depends on temperature too, the contribution to AGIrel from pO2 also contains a 
minor temperature component. 

When considering the contribution from the two drivers of AGI change, pO2 and temperature changes, AGIrel at 2 ºC of global 240 

warming is driven mostly by temperature in the epipelagic and by pO2 in the mesopelagic/bathypelagic and demersal realms 

(Fig. 2d-i). The AGIrel at 2 ºC of global warming due to pO2 is -0.16±5.12% for the epipelagic, -2.52±6.96% for the 

mesopelagic/bathypelagic, and -0.62±2.02% for the demersal realm (Fig. 2d-f), while the respective AGIrel due to temperature 

are -2.32±1.36%, -0.91±1.18%, and -0.39±0.95% (Fig. 2g-i). In the mesopelagic/bathypelagic the drivers of loss in habitat 

viability depend more strongly on location (Fig. 2e,h). Hence, ~Globally, on average 9487% of AGIrel is on average driven by 245 

the relatively pronounced warming in the epipelagic (black lines in Fig. 1c) since changes in pO2 are minor (Fig. 1b). This is 

because  because the epipelagic realm is generally well ventilatedwell-ventilated with O2-rich surface waters. For the 

mesopelagic/bathypelagic (demersal), warming accounts for only 27% (39%) of the total AGIrel is for only 274% (397%) 

explained by warming (black lines in Fig. 1c). In the mesopelagic, the drivers of loss in habitat viability depend more strongly 

on location (Fig. 2e,h). Nevertheless, theThe larger contribution from pO2 to AGIrel increases uncertainty for the 250 
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mesopelagic/bathypelagic and demersal realms because model projections are uncertain for pO2 (Fig. 1b, C52). In some regions 

the effects of pO2 and temperature on AGIrel may compensate each other and result in negligible changes in AGI. We find 

examples of this in the Northern Indian Ocean at epipelagic depths, in the Gulf of Guinea at mesopelagic depths, and in the 

North Atlantic around Iceland at demersal depths.  

 255 

AGIrel is has large model uncertaintyuncertain for species having a large part of their habitat in eastern-boundary equatorial 

upwelling regions or around Antarctica at epipelagic depths, the western equatorial Pacific at mesopelagic/bathypelagic depths, 

north of the equator in the Indian Ocean at epipelagic and mesopelagic/bathypelagic depths or regions scattered across all 

ocean basins for demersal depths (hatched areas in Fig. 2a-c). Most of this uncertainty is coming from pO2 (Fig. 2 d-f, Fig. 

C52), with temperature contributing to uncertainty in the North-Atlantic south of Greenland and in the western equatorial 260 

Pacific at mesopelagic/bathypelagic depths. Exceptions to the decrease in AGIrel are limited to some smaller parts of the 

world’s oceans including equatorial regions and the North-Atlantic south of Greenland in the epi- and 

mesopelagic/bathypelagic, and around the Antarctic continent in the epipelagic. Model disagreement is generally large in these 

regions of positive AGIrel increase and is mostly attributable to projected increases in pO2 which have large uncertainties 

(hatching in Fig. 2a-f and model range in Fig. C52).  265 

Notably, in some regions the effects of pO2 and temperature on AGIrel may compensate each other and result in negligible 

changes in AGI: We find examples of this in the Northern Indian Ocean at epipelagic depths, in the Gulf of Guinea at 

mesopelagic/bathypelagic depths, and in the North Atlantic around Iceland at demersal depths. Note that the patterns in each 

of the panels of Fig. 2 remain similar for higher degrees of global warming, only the intensity of change increases (not shown), 

which agrees with the approximately linear response of AGIrel to global warming (Fig. 1c). 270 

Besides considering the model uncertainty, we performed a sensitivity analysis of AGIrel to the choice of generalized 

temperature dependence parameters (i.e., j2-j1). If j2-j1 is adjusted to represent an arbitrary low temperature sensitivity of 

1000K, global mean AGIrel is 34% of the standard case j2-j1=3500K in the epipelagic, 67% in the mesopelagic and 73% in the 

demersal realm. On the other hand, for an arbitrary high temperature sensitivity (j2-j1=6000K), global mean AGIrel is 165% of 

the standard case j2-j1=3500K in the epipelagic, 118% in the mesopelagic and 126% in the demersal realm. Projections for 275 

epipelagic species are therefore most sensitive to the choice of j2-j1, as temperature changes are largest there. Further work is 

needed to explore the uncertainty in j2 and j1. 

3.3 Impacts of AGI changes on habitat volume of individual species 

The overall decrease negativein AGIrel and hence relative loss of habitat viability with global warming (Figs. 1c and 2) causes 

loss of contemporary habitat volume (i.e., newly exposed volume with AGI<AGIcrit) and hence local extinction for species at 280 

each of the studied depth ranges (Figs. 3 and 4). Habitat loss is expressed relative to its contemporary volume (Fig. 3) to 

facilitate comparison between wide-ranging and more narrowly distributed species. Loss of contemporary habitat is generally 

less than ~150% at 21.5°C global warming, and mostly under 5%, but increases to up to ~25% for individual species at 3°C 
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(Fig. 3). Wide-ranging epipelagic species (e.g., Acanthocybium solandri, Coryphaena hippurus, Katsuwonus pelamis, Thunnus 

obesus, or Elagatis bipinnulata;: Fig. C1) experience losses of contemporary habitat volume of less than 5% for any of the 285 

analyzed warming levels, while more narrowly distributed species experience the largest losses of up to ~25% of their 

contemporary habitat at 3°C global warming (e.g., Micromesistius poutassou, Thunnus atlanticus, Sebastes mentella, or 

Anarhichas denticulatus). Notably, species that have the largest contemporary habitat loss at 1.5°C generally are those species 

that also lose the most at 3°C of global warming, which is in line with the earlier findings of approximately linear response of 

relative changes in habitat viability to warming and deoxygenation (Fig. 1). Any early (i.e., 1.5°C) response of a species to 290 

warming and deoxygenation is therefore a warning indicator for additional loss of contemporary habitat at increased levels of 

global warming.  

We separately assess the impact of the uncertainty of AGIcrit on these results by calculating habitat loss with an AGIcrit of a) 

minimum AGI, b) 5th percentile, c) 10th percentile (i.e., the default case), d) 15th percentile and e) 20th percentile of in-habitat 

AGI. We find that even when including much higher thresholds (AGIcrit as 20th percentile), our results are similar with a few 295 

species having large losses but most losing less than 5% at 2°C of warming relative to the 1995-2014 state (Fig. C63). 

Moreover, a sensitivity analysis for species Thunnus atlanticus and Gadus morhua shows that our median result is robust to 

the choice of the generalized temperature dependence parameters j2-j1 (we explored j2-j1 ± ~710%; Fig. C7). 

Absolute losses in habitat volume (i.e., loss expressed in volumetric terms instead of a percentage) show that small relative 

losses (Fig. 3) often correspond to the largest volumetric losses (Fig. 4). As an example, median Thunnus alalunga habitat loss 300 

is less than ~2.5% at any of the analyzed warming levels (Fig. 3), while absolute losses are the largest of all 47 species at 

ranging from  ~0.25 to -1.5e6 km3 - depending on the global warming level (Fig. 4). On the other hand, we find species like 

Sebastes mentella for which relative losses are large (median ~8-26% of the contemporary habitat depending on global 

warming level; Fig. 3) while absolute losses are comparably small (~0.6-1.8e5 km3) because the contemporary volume of 

Sebastes mentella is relatively small (Fig. 4). Note that epipelagic species lose habitat volume in the order of a million km3.: 305 

In comparison, the entire Black Sea has a volume of about 0.5 million km3. Depending on the location of viable contemporary 

habitat loss, for species of commercial interest such large absolute loss can be particularly impactful to local fisheries. 
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Figure 3 Percentage of remaining Habitat change (%) of contemporary (1995-2014) habitat volume for different levels of global 
warming, with negative values indicating habitat loss and positive values indicating habitat gain. Note the different y-axis scale for 310 
3ºC global warming. Habitat volume is considered lost when AGI<AGIcrit on an annual mean basis. For 1.5°C global warming both 
the SSP1-2.6 and SSP5-8.5 scenarios are included (number of datapoints n=2 scenarios * 6 models = 12 for each boxplot), while at 
higher levels of global warming we use SSP5-8.5 as not all models reach these warming levels under the SSP1-2.6 scenario (n=6 
models). The species are ordered such that species with the largest median losses at 1.5°C global warming are on the left-hand side 
for each realm subplot. Each boxplot indicates the median in orange and a box bounded by the interquartile range (IQR; the 25th to 315 
75th percentiles) and the whiskers extending to the data range with a maximum of 1.5×IQR, with outliers as open circles. Stars 
indicate the median contribution from temperature, the remainder is therefore due to pO2 changes. As changes are expressed relative 
to the contemporary viable habitat volume (which is by definition 90% of the total habitat volume), values up to 1011 % (=100-/90) 
are possible. 
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 320 
Figure 4 Contemporary habitat loss (km3) for different levels of global warming. Note the different y-axes for both the depth groups 
and warming levels. Habitat volume is considerd lost when AGI< AGIcrit on an annual mean basis. For 1.5°C global warming both 
the SSP1-2.6 and SSP5-8.5 scenarios are included (number of datapoints n=2 scenarios * 6 models = 12 for each boxplot), while at 
higher levels of global warming we use SSP5-8.5 as not all models reach these warming levels under the SSP1-2.6 scenario (n=6 
models). Species are ordered in the same order as in Fig. 3. Each boxplot indicates the median in orange and a box bounded by the 325 
interquartile range (IQR; the 25th to 75th percentiles) and the whiskers extending to the data range with a maximum of 1.5×IQR, 
with outliers as open circles. 

For most species, temperature is the main driver of habitat loss (black stars in Fig. 3). Exceptions exist for example in the 

mesopelagic/bathypelagic, where pO2 drives about half of the habitat loss for the two species with the largest loss (i.e., Sebastes 

mentella and Aphanopus carbo) as well as for the demersal species Anarhichas denticulatus. Even though most of the realized 330 

loss can be explained by warming, not all species have large losses despite warming being relatively uniform although 
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dampened toward depth (Kwiatkowski et al., 2020). We understand Tthese differences can be explained from by considering 

the original spatial and temporal pO2 and temperature variability in each species’ habitat, which shapes their vulnerability to 

change. This is investigated next. (Sect. 3.4). 

3.4 Drivers of habitat volume loss of individual species 335 

The differences in habitat loss between species as shown in Figs. 3 or 4 are better understood from the probability density of 

contemporary (1995-2014) in-habitat AGI for each species (conceptual Fig. 5 and species results in Fig. C84). The spatial 

variability of the contemporary pO2 and temperature in each species’ habitat results in a species-specific probability density 

function (PDF) for AGI (black lines in Fig. 5a,b). Depending on this shape, a given reduction in AGI (ΔAGI) exposes a 

relatively large or small part of the species’ habitat to subcritical AGI values (red lines and stippling in Fig. 5a,b), thereby 340 

causing volume loss.We can quantify this “vulnerability” of a species to changes in AGI by calculating the cumulative sum of 

the PDFs (i.e., the cumulative density function, CDF, Figs. 5c,d and C5). 

Figure 5 Conceptual figure based on Thunnus atlanticus (a,c) and Thunnus obesus (b,d) showing the difference in impact (change 
in volume ΔV)	of an example mean AGI reduction of ΔAGI of 0.1 (i.e., habitat-mean ΔAGI=0.1) below the 1995-2014 
contemporary mean (black lines). This difference is shown to be related to the shape of the PDF and the slope of the CDF at 0.1 345 
(i.e., at AGIcrit), which we refer to as the species’ “vulnerability”. 
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We can quantify theis “vulnerability” of a species to changes in AGI by calculating the cumulative sum of the PDFs (i.e., the 

cumulative density function, CDF;, conceptual Figs. 5c,d and species-specific results in C95). The slope of the CDF at a 

cumulative density of 0.1 (i.e., 10% of the volume where AGIcrit is defined) indicates the potential loss in habitat for a certain 

change in AGI (Fig. 5 and C95). If the slope of the CDF is steep at the critical threshold, the species is relatively vulnerable to 350 

warming and deoxygenation as: oOnly a small reduction in habitat viability (i.e., AGI) will push a relatively large volume 

below the critical threshold. AIn example is given in Fig. 5, where for an identical change in mean in-habitat DAGI of 0.1 just 

1% of the volume is pushed below AGIcrit for a species with a small slope of 0.14 (Fig. 5b,d, ‘Thunnus obesus’ schematic), 

while the same change in AGI results in 9% volume loss for a species with a large slope of 1.67 (Fig. 5a,c, ‘Thunnus atlanticus’ 

schematic). Changes in the slope of some species’ CDFs indicates that different vulnerabilities exist for different parts of that 355 

species’ habitat (Fig. C9). Hence, in habitat areas which that are represented by a part of the CDF with a relatively steep slope, 

a relatively small change in AGI is needed to bring a relatively large volume closer to AGIcrit. Nevertheless, onlyOnly the CDF 

slope at AGIcrit relates directly to viable habitat volume loss as only AGI values below AGIcrit are considered to have an impact 

on habitat volume. 

Indeed, projected habitat volume loss increases with species’ vulnerability (i.e., the CDF slope at AGIcrit; Fig. 6d), as well as 360 

to a lesser extent with warming and deoxygenation (Fig. 6b,c). Notably, the largest absolute reductions of mean in-habitat AGI 

do not indicate those species who lose most contemporary habitat volume (Fig. 6a). On the contrary, the environmental state 

of the contemporary habitat as captured in the PDFs and thus the slope of the CDFs and vulnerability is the strongest indicator 

for impact: 87% of the variance in volume loss at 2 °C global warming can be explained by vulnerability (R2 of linear fit in 

Fig. 6d). This result holds across different levels of global warming.: At 1.5°C of global warming, 85% of the variance in 365 

volume loss can be explained by vulnerability, and at 3°C of global warming this is 88% (see Figs. C10 and C11). The 

correspondent linear equation taken across all depth realms is 𝑣𝑜𝑙𝑢𝑚𝑒	𝑙𝑜𝑠𝑠	(%) = 7.31 ∗ vulnerability − 0.10. 

Figure 6 Multi-model mean in-habitat changes at 2°C of global warming of (a) AGI, (b) temperature, (c) pO2 (in SSP5-8.5) and (d) 
vulnerability (CDF slope at a cumulative density of 0.1 based on 1995-2014 mean data, Fig. C9) plotted against loss of contemporary 
habitat volume for each species (model range indicated by error bars). Species with > 5% loss marked in red, more than –0.1 ΔAGI 370 
in blue, and volume loss < 5% as well as vulnerability > 0.3 in yellow. There is no uncertainty in the vulnerability calculation because 
all models have the same 1995-2014 CDF slope due to the WOA18 bias-correction. From a linear regression to the data which is 
plotted in dashed grey we find an R2 of 0.0% for (a) which line is therefore not plotted, 18% for (b), 21% for (c) and 87% for (d).  
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Habitat viability thus strongly depends on the variability of temperature and O2 in the habitat of the species as captured by the 

species’ vulnerability (Figs. C95 and 6d). Therefore, reports of relative losses in habitat viability based on pO2 supply over 375 

pO2 demand ratios (e.g., Deutsch et al., 2015; Oschlies, 2021) should not be interpreted as leading to actual reductions of viable 

habitat for individual species as they do not include species-specific thresholds nor their vulnerabilities. 

We highlight three groups of species for further discussion of the results at 2°C of global warming: (1) The most affected and 

vulnerable species due to high vulnerability despite small DAGI (red markers in Fig. 6): Micromesistius poutassou, Thunnus 

atlanticus, Sebastes mentella, Aphanopus carbo, Anarhichas denticulatus, Melanogrammus aeglefinus and Hippoglossoides 380 

platessoides, (2) the resilient species which have low losses despite high DAGI due to low vulnerability (blue markers in Fig. 

6): Centrolophus niger, Hippoglossus hippoglossus and Theragra chalcogramma, and (3) the vulnerable, but not affected 

species who lose <5% of their habitat volume due to small DAGI despite relatively high vulnerability (yellow markers in Fig. 

6): Clupea harengus, Thunnus maccoyii, Neocyttus rhomboidalis, Epinephelus nigritus, Gadus morhua and Nezumia aequalis. 

Considering the range captured in Fig. 6a-d we expect that our selection of species is representative of a wide range of marine 385 

ectotherms. 

Interestingly, species with high vulnerability and loss (red markers in Fig. 6) all have a high pO2threshold above ~150 mbar (Table 

A1, Fig. C126). Thus, even though warming explains most of the loss of contemporary habitat (black stars in Fig. 3), loss is 

only high for vulnerable species (Fig. 6d) – which in turn all are sensitive to pO2 as evidenced by their pO2threshold above ~150 

mbar (Fig. C126). A high sensitivity to pO2 and hence a high pO2threshold is therefore an indicator of vulnerability, although not 390 

all species with high pO2threshold are vulnerable (Fig. C126). The high vulnerability for species with a high pO2threshold shows that 

also species in well-oxygenated regions can be vulnerable to climate change as their natural pO2 range is limited. We further 

note that vulnerability does not depend on the depth realm of a species. Resilient species (blue markers in Fig. 6) have strong 

spatiotemporal variability of AGI (broad PDF in Fig. C84) such that even large mean changes of AGI (Fig. 6a) do not expose 

a large volume to subcritical AGI values. Noticeable is that the two species with a PDF skewed to the right (Fig. C8; 395 

Hippoglossus hippoglossus and Theragra chalcogramma) are both in this group, while all other species tend to have a left-

skewed PDF of AGI values in their habitat. These two species are both demersal-dwelling and are very pO2 tolerant (i.e., low 

pO2threshold; Table A1) and have a wide range of different AGI values in their habitat, with a relatively large volume of high-

AGI values causing the right skew (Fig. C8) and resilience (Fig. C12). Whether AGI is the right metric for determining habitat 

viability for these two species needs further investigation that goes beyond the scope of this study. The six species with 400 

relatively high vulnerability but small habitat volume losses (yellow markers in Fig. 6) experience relatively small AGI changes 

in their habitats even at 3°C global warming (Fig. C84) thereby preventing large habitat losses. 

4 Discussion 

We introduce a new version of AGI that adds vertical temporal variability in the calculation of pO2threshold, Tpref, and AGIcrit, - 

which makes it possible to assess volumetric habitat changes. The original AGI applies and assesses temporal variability in 405 
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the horizontal  (surface or bottom ocean layers for pelagic and demersal species, respectively) direction only (surface or bottom 

ocean layers for pelagic and demersal species, respectively; Clarke et al., 2021), as commonly practiced (e.g., Bryndum-

Buchholz et al., 2019; Tittensor et al., 2021). In other words, e, i.e., either surface or sea floor data were applied for the 

calculation of pO2threshold, Tpref, AGIcrit and hence AGI in earlier work. To assess the differences between our new approach and 

the original approach we repeated the analysis as presented in Fig. 3, (Fig. C137), now using surface ocean data only for 410 

mesopelagic/bathypelagic and epipelagic species as well as calculating pO2threshold, Tpref, AGIcrit from the surface monthly mean 

WOA18 data only (Fig. C13). We find that the sensitivity to global warming of all species is higher for the original AGI as 

compared to our new approach which includes vertical and seasonal variability of temperature and pO2. This is understood 

from the combination of a) limited spatial variability of surface ocean pO2 as well as temperature, leading to higher Tpref and 

pO2threshold estimates and therefore stronger sensitivity to warming and deoxygenation as compared to our new approach and b) 415 

larger AGIrel changes closer to the surface. We expect that including temporal and vertical spatial variability in calculating 

AGI provides a more realistic estimate of the pO2 and temperature variability experienced by a species and therefore a better 

estimate of its sensitivity to warming and deoxygenation. Nevertheless, we acknowledge that further increasing spatiotemporal 

resolution (e.g., using daily-mean data and including interannual variability) can may increase affect variability (Deser et al., 

2009; Baumann et al., 2015) which can affect estimates of Tpref, pO2threshold and AGIcrit. Unfortunately, no established theory 420 

exists yet to decide what temporal variability in environmental parameters best captures species’ Tpref, pO2threshold or AGIcrit. By 

considering WOA18 monthly mean climatological data as the basis for our estimates of Tpref, pO2threshold and AGIcrit, we are 

consistent with the time resolution of the CMIP6 model data (monthly mean).  

RFurther, regarding the choice of the 10th percentile threshold and impact of its uncertainty on our results (Fig. C63), we 

consider an AGIcrit threshold above the 20th percentile of in-habitat AGI values unlikely as then by definition already 20 percent 425 

of the habitat would be unsuitable to sustain a viable population of that species. Nevertheless, for species where AGIcrit is very 

close to 1 or even below 1 (Table A1), a higher percentile may be warranted as a meaningful critical value. At the 10th 

percentile, some uncertainty in the species-specific physiological parameters is considered. We find for most species that the 

10th percentile is located at an AGI above which habitat volume steeply increases suggesting it acts as an appropriate threshold 

(Fig. C84). 430 

Regarding species’ data, we assume that our results can be generalized to commercial fish and invertebrates worldwide, as 

they are based on representative species from different climatic zones (tropical, temperate, polar), vertical habitat (epipelagic, 

mesopelagic, bathypelagic, demersal), geographic range breadths, taxonomic groups (fish and invertebrates) and size classes. 

Species distribution ranges were generated by an algorithm developed by the Sea Around Us project (see Close et al., 2006; 

Cheung et al., 2008). The resulting distributions, and the parameters used for their construction are available at http://www. 435 

seaaroundus.org. These distributions have been used to project climate-impacts on fishery resources in a great number of 

studies (Cheung et al., 2009; Cheung et al., 2010; Fernandes et al., 2013), and are assumed to represent species distributions 

in over the period 1995-2014 (Tai et al., 2021). Our assumption to extend the 2D distributions provided by Close et al. (2006) 

over the entire depth range of each species’ depth realm is driven by data sparsity and reliability of 3D species distributions 
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for our selection of species. When reliable 3D habitats, or even time-varying habitats, can be constructed from species’ 440 

observations these could be included (e.g., distribution data are continuously collected in the Ocean Biodiversity Information 

System but are currently are too sparse to provide 3D distribution data). Some species may be limited to only part of their 

assigned depth range or live partly (and possibly temporarily) above or below it. Nevertheless, we expect that the assigned 

depth range generally provides a good estimate of in-habitat pO2 and temperature variability, which affects pO2threshold, Tpref 

and therefore AGI and AGIcrit.  445 

Our results for the mesopelagic include two vertical migrators (Dosidicus gigas and Aphanopus carbo). As opposed to most 

other species, the distribution range of vertical migrators is limited at the cold boundary of the distribution because of their 

low aerobic scope in cold waters (Seibel and Birk, 2022). Therefore, the temperature sensitivity of these species is likely not 

captured by the generalized temperature dependence in AGI, and contemporary habitat loss due to warming and deoxygenation 

as estimated for Aphanopus carbo is likely overestimated. We nevertheless project negligible loss of contemporary habitat for 450 

Dosidicus gigas (Fig. 3) due to its low vulnerability and low pO2threshold, which is in good agreement with the findings of Seibel 

and Birk (2022) despite the generalized temperature dependence of AGI. In addition,S species-specific thresholds pO2threshold 

and AGIcrit and preference Tpref are calculated based on the in-habitat spatiotemporal variability of pO2, temperature and AGI 

respectively. This is done in lack of observation-based thresholds and preferences that translate to field conditions (Boyd et 

al., 2018; Collins et al., 2022). Detrimental effects from deoxygenation such as reduced visionas visual hypoxia actually 455 

become relevant at much higher pO2 than (near) lethal pO2 levels (Mccormick and Levin, 2017), while only the latter is often 

what is assessed in the lab. As an effect, the exact threshold of impact remains unknown and probably depends on many factors 

including the impact itself, and the abruptness, magnitude, intensity, duration, heterogeneity, and recurrence of exposure to 

subcritical values (Gruber et al., 2021), as well as timing of and adaptability to unfavorable temperatures, subcritical pO2 and 

hence subcritical AGI. 460 

Through the bias correction of the CMIP6 model data all monthly mean biases relative to WOA18 are removed from our 

analysis. We acknowledge the influence of observational uncertainties as well as resolution mismatch between our model and 

the observational WOA18 data used in our bias correction (Casanueva et al., 2020). More complex bias adjustment such as 

correction for variance biases is prevented by the spatial and temporal resolution of the model and observation data at the 

global scale. The ongoing effort to collect, compile, and quality-control O2 data in open-access repositories (e.g., Grégoire et 465 

al., 2021) will hopefully make it possible to do more advanced bias correction in the future. Until that time the strong temporal 

variability and spatial heterogeneity of O2 trends complicate the comparison between model and observational data. 

Nevertheless, the remaining forced response of the models likely underestimates deoxygenation (Andrews et al., 2013; 

Oschlies et al., 2017; Oschlies et al., 2018; Buchanan and Tagliabue, 2021) and overestimates atmospheric warming (Tokarska 

et al., 2020) and therefore ocean warming for some CMIP6 models. Part of these warming biases are due to the relatively high 470 

climate sensitivities in the CMIP6 models (Meehl et al., 2020). As a further measure to limit model uncertainty, we therefore 

present results at different global warming levels such that they are insensitive to the differences in model climate sensitivity 

(Hausfather et al., 2022). We last acknowledge the relatively coarse resolution of the CMIP6 data (typically ca. 100km in the 
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ocean) which for species with a highly local distribution (Fig. C1) may lead to higher model uncertainties, especially along the 

coasts where model disagreement is larger (Fig. C52). 475 

Our approach may give a conservative estimate of contemporary habitat loss since a) crossings of the critical thresholds on 

timescales shorter than a year are excluded from our analysis, b) CMIP6 projections likely underestimate deoxygenation 

(Andrews et al., 2013; Oschlies et al., 2017; Oschlies et al., 2018; Buchanan and Tagliabue, 2021), but considering the 

importance of temperature in driving habitat loss (Fig. 3), especially in the epipelagic realm, the uncertainty of pO2 projections 

likely has a relatively small effect on our results, and c) we do not include other potential stressors on species’ habitats in our 480 

analysis such as acidification, changes in ecosystem structure, overfishing, marine phenology, disease pressure, food resources, 

predation pressure, pollution or eutrophication (e.g.; Poloczanska et al., 2016; Bindoff et al., 2019; Whalen et al., 2020). 

Examples of crossings of the critical thresholds on timescales shorter than a year would be short hypoxic events and marine 

heatwaves (Frölicher and Laufkötter, 2018; Jacox et al., 2020; Cheung et al., 2021). Projected deoxygenation and particularly 

hypoxic or anoxic events have the potential to worsen and even surpass the effects of warming, marine heatwaves, and 485 

acidification (Gruber et al., 2021; Sampaio et al., 2021).  

On the other hand, for some species the impact will be overestimated if they are able to adapt to future warming and 

deoxygenation (Cheung et al., 2009; Pinsky et al., 2013; García-Molinos et al., 2016; Palumbi et al., 2019; Collins et al., 2021; 

Liao et al., 2021). Further note that we considered potential loss of contemporary habitat only: Mobile species have been 

observed to redistribute based on the rate and direction of climate change (Pinsky et al., 2013) which can preserve the species 490 

range area if they are able to expand into newly suitable areas - however this can alter the original ecosystem structure and 

function. 

For most species we find a loss of habitat volume of less than 10%. It is found for example by Gotelli et al. (2021) that only a 

small percentage of species drives the observed changes in marine species assemblages, showing that even when only a few 

species experience large losses, impacts can be profound for the ecosystem as a whole. For the individual species however, 495 

the loss of only a small fraction of their contemporary habitat likely provides adaptation opportunities. Our results imply that 

species that are deemed vulnerable due to their limited range of in-habitat pO2 and temperature are likely to be the most 

impacted by global warming (i.e., 'vulnerable species’ in Fig. 6 and species with steep CDF slopes in Fig. C9). Our study can 

therefore inform e.g., fisheries management by identifying species particularly vulnerable to ocean warming and 

deoxygenation. Such identification provides species-specific information complementing earlier studies that found reduced 500 

impact on fisheries at lower levels of global warming (Cheung et al., 2016). Indeed, for every tenth of a degree ofany additional 

global warming, our study shows increased marine deoxygenation and warming as well as increased loss of contemporary 

habitat across all species albeit with a strongly species-specific magnitude. These results confirm the need to limit global 

warming levels to the minimum to prevent loss of contemporary habitat and support the identification of the species that would 

be most vulnerable to marine deoxygenation and warming. 505 
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5 Conclusions 

• Marine warming and deoxygenation are projected to intensify with global warming and drive a relative decrease in 

global habitat viability penetrating to all depths (Fig. 1 and 2). 

• The generally negative relative decreasechanges in habitat viability (i.e., AGIrel) areis dominated by warming at the 

surface while deoxygenation becomes increasingly important with depth (Fig. 2). 510 

• Species’ Lloss of contemporary habitat is driven mostly by warming in the epipelagic realm, while in the 

mesopelagic/bathypelagic and demersal realms reduced pO2 is also contributing for some species (Fig. 3). 

• Deoxygenation and warming cause most species to lose less than 5% of their contemporary habitat volume over the 

21st century relative to preindustrial (Fig. 3). Some individual species are however projected to incur losses 2-3 times 

greater than that at 1.5 and 2 ºC of global warming and 4-5 times greater at 3ºC of global warming. At 2 ºC of global 515 

warming, epipelagic losses are generally in the order of 0.1-0.5 million km3, while mesopelagic losses are 0.01-0.15 

million km3 and demersal losses are in the order of about 0.00025 million km3. 

• The impact of reductionsnegative relative changes in habitat viability (i.e., AGIrel: Figs. 1c and 2) on lost habitat 

volume (Figs. 3 and 4) depends on species' vulnerability (Figs. 5, 6d, C95).  

• Species’ vulnerability is shown to be the most important indicator for potential large (>5%) potential habitat losses - 520 

not relative or absolute changes in AGI, pO2 or temperature (Fig. 6). A species’ pO2threshold above ~150 mbar is an 

indicator for high species vulnerability to warming (Fig. C126). Our approach of quantifying vulnerability can help 

identify those species most vulnerable to marine warming and deoxygenation. 

• We introduce an updated version of AGI.: By including temporal and vertical spatial variability in the calculation of 

the species-specific O2 thresholds and temperature preference, we include a more realistic representation of the in-525 

habitat variability of O2 and temperature and therefore likely the species’ tolerance to these. The updated AGI has 

lower sensitivity than in the original AGI of Clarke et al. (2021) (Figs. 3 and C137). 

Appendix A Tables 

Table A1 Species information, ordered alphabetically by species name. Group 1 is epipelagic; group 2 is mesopelagic/bathypelagic, 
and group 3 is demersal. pO2

threshold (mbar), Tpref (°C) and AGIcrit (-) are based on the WOA18 monthly climatology in the habitat 530 
(Fig. C1) of the species except for species in the demersal group for which only a mean climatology is available (see also Sect. 2.2). 
The slope (change in fraction of total habitat volume per unit change in habitat-mean AGI at AGIcrit) is calculated from the species’ 
CDF (Sect. 3.4). 
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Acanthocybium solandri 1 108.70 23.87 1.73 0.14 
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Alopias superciliosus 1 130.58 24.00 1.54 0.167 

Alopias vulpinus 1 139.30 22.11 1.39 0.220 

Anarhichas denticulatus 3 157.21 2.11 1.31 0.7166 

Aphanopus carbo 2 167.60 9.05 1.23 01.318

7 Auxis thazard 1 102.87 22.91 1.66 0.089 

Beryx decadactylus 3 61.96 4.54 1.22 0.18 

Beryx splendens 3 64.53 4.01 1.21 0.2019 

Bothus pantherinus 3 59.14 13.69 1.56 0.16 

Brama brama 1 148.56 19.67 1.22 0.3227 

Carangoides malabaricus 3 63.66 16.39 1.73 0.176 

Carcharhinus falciformis 3 89.78 2.90 1.03 0.27 

Carcharhinus longimanus 1 126.28 25.17 1.62 0.153 

Centrolophus niger 2 61.08 9.45 1.47 0.08 

Cephalopholis miniata 3 58.51 14.05 1.60 0.15 

Clupea harengus 1 197.80 6.23 1.10 0.269 

Coryphaena hippurus 1 126.95 21.68 1.50 0.14 

Decapterus russelli 3 60.18 14.10 1.56 0.167 

Dosidicus gigas 2 36.09 9.68 1.43 0.07 

Elagatis bipinnulata 1 120.27 23.10 1.62 0.143 

Epinephelus nigritus 3 108.37 10.45 1.32 0.358 

Euthynnus affinis 1 111.61 25.59 1.73 0.07 

Gadus morhua 3 180.36 3.77 1.17 0.562 

Hippoglossoides platessoides 3 166.72 5.06 1.29 0.2634 

Hippoglossus hippoglossus 3 45.47 2.43 1.39 0.07 

Hoplostethus atlanticus 2 114.96 8.73 1.47 0.158 

Istiophorus platypterus 1 127.49 21.88 1.50 0.14 

Katsuwonus pelamis 1 124.89 22.27 1.55 0.14 

Lepidocybium flavobrunneum 3 55.14 4.69 1.19 0.15 

Lutjanus argentimaculatus 3 65.19 14.84 1.61 0.167 

Makaira nigricans 1 135.23 20.88 1.53 0.350 

Melanogrammus aeglefinus 3 174.00 5.09 1.21 0.3243 

Micromesistius poutassou 1 202.61 7.90 0.94 21.077

8 Neocyttus rhomboidalis 2 111.72 8.82 1.49 0.39 

Nezumia aequalis 3 121.60 4.27 1.04 0.4037 
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Prionace glauca 1 134.23 23.07 1.46 0.168 

Sarda sarda 1 131.21 16.89 1.33 0.267 

Scomber japonicus 1 121.70 20.11 1.48 0.13 

Scomberomorus commerson 1 134.73 26.23 1.55 0.147 

Sebastes mentella 2 174.62 2.74 1.34 10.508

9 Spectrunculus grandis 3 118.23 1.75 1.34 0.237 

Theragra chalcogramma 3 35.08 2.08 1.31 0.11 

Thunnus alalunga 1 141.59 19.75 1.33 0.178 

Thunnus albacares 1 139.70 20.20 1.35 0.167 

Thunnus atlanticus 1 174.86 25.65 1.48 1.6730 

Thunnus maccoyii 1 194.28 13.76 1.00 0.664 

Thunnus obesus 1 124.90 22.15 1.53 0.14 
 
Table A2 CMIP6 multi-model data used in this study. 535 

Model name Institute References 

CNRM-ESM2-1 CNRM: Centre National de Recherches Meteorologiques, 

Toulouse 31057, France 

CERFACS: Centre Européen de Recherche et de Formation 

Avancée en Calcul Scientifique, Toulouse 31057, France 

SSP1-2.6 (Voldoire, 2019a) 

SSP5-8.5 (Voldoire, 2019b) 

historical (Séférian, 2018a)  

piControl (Séférian, 2018b) 

MPI-ESM1-2-

HR 

MPI-M (historical and piControl): Max Planck Institute for 

Meteorology, Hamburg 20146, Germany 

DKRZ (SSP1-2.6 and SSP5-8.5): Deutsches 

Klimarechenzentrum, Hamburg 20146, Germany 

SSP1-2.6 (Schupfner et al., 2019b) 

SSP5-8.5 (Schupfner et al., 2019a) 

historical (Jungclaus et al., 2019b) 

piControl (Jungclaus et al., 2019a) 

UKESM1-0-LL MOHC: Met Office Hadley Centre, Fitzroy Road, Exeter, 

Devon, EX1 3PB, UK 

SSP1-2.6 (Good et al., 2019a) 

SSP5-8.5 (Good et al., 2019b) 

historical (Tang et al., 2019b) 

piControl (Tang et al., 2019a) 

IPSL-CM6A-LR IPSL: Institut Pierre Simon Laplace, Paris 75252, France SSP1-2.6 (Boucher et al., 2019b) 

SSP5-8.5 (Boucher et al., 2019a) 

historical (Boucher et al., 2018b) 

piControl (Boucher et al., 2018a) 
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CanESM5 CCCma: Canadian Centre for Climate Modelling and 

Analysis, Environment and Climate Change Canada, Victoria, 

BC V8P 5C2, Canada 

SSP1-2.6 (Swart et al., 2019d)  

SSP5-8.5 (Swart et al., 2019b) 

historical (Swart et al., 2019a) 

piControl (Swart et al., 2019c) 

GFDL-ESM4 NOAA-GFDL: National Oceanic and Atmospheric 

Administration, Geophysical Fluid Dynamics Laboratory, 

Princeton, NJ 08540, USA 

SSP1-2.6 (John et al., 2018a) 

SSP5-8.5 (John et al., 2018b) 

historical (Krasting et al., 2018b) 

piControl (Krasting et al., 2018a) 

Appendix B Calculation of pO2 

pO2 [mbar] at depth (Taylor, 1978; equation 5 rewritten; Bittig et al., 2018; Sect. E) can be written as a modified Henry’s Law: 

𝑝𝑂9 =
[#!]
=9
∙ exp	(>+∙?

@∙:
) ,          (B1) 

with 𝐾A =
#!",.

B#!∙(/A/0.9D+"E!#)
 ,  

and 540 

[O2] as the insitu O2 concentration (mol kg-1),  

Vm the partial molar volume of O2 (31.7×10-6 m3 mol-1 (Enns et al., 1965)),  

P the approximated pressure (Pa; 𝑃 = 1025	 ∙ 9.81 ∙ 𝑑𝑒𝑝𝑡ℎ with depth in m),  

R the gas constant (8.3145 m3×Pa×K-1×mol-1),  

T the absolute temperature (K),  545 

O2sat the saturation O2 concentration (mol kg-1),  

xO2 the dry air mole fraction of O2 in air (0.20946; Glueckauf, 1951), and  

pH2O the water vapor pressure (mbar). 

 

Where The term exp	(>+∙?
@∙:

) (unitless) is the pressure correction term for O2sat. We then first calculate the saturation 550 

concentration of O2 in seawater (Garcia and Gordon, 1992) in mol kg-1 in using Eq. B2. 

𝑂9FG8 =	10+H ∗ 	exp	(𝑙) with         (B2) 

𝑙 = 𝐴A + 𝐴/ ∗ 𝑇FIG32J + 𝐴9 ∗ 𝑇FIG32J9 +	𝐴0 ∗ 𝑇FIG32J0 + 𝐴K ∗ 𝑇FIG32JK + 𝐴D ∗ 𝑇FIG32JD + 	𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦 ∗ ]𝐵A + 𝐵/ ∗ 𝑇FIG32J +

𝐵9 ∗ 𝑇FIG32J9 + 𝐵0 ∗ 𝑇FIG32J0_ + 𝐶A ∗ 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦9,  

 555 

+	𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦 ∗ ]𝐵A + 𝐵/ ∗ 𝑇FIG32J + 𝐵9 ∗ 𝑇FIG32J9 + 𝐵0 ∗ 𝑇FIG32J0_ 

+𝐶A ∗ 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦9, 
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wWhere 𝑇FIG32J =	 ln(
9LM./D+:(-"(.#
=NO:(-"(.#

),	KC=273.15 K and using salinity (psu) and insitu temperature Tinsitu (°C). The The 

unitless constants A0-5, B0-3, and C0 are listed in Table B1 A constants provide a correction for temperature, the B and C 

constants a correction for salinity (Benson and Krause, 1984; Garcia and Gordon, 1992; Sarmiento and Gruber, 2006).and are 560 

listed in Table B1. 

 

Table B1 Constants for the calculation of O2
sat 

Constant Value 

A0 5.80871 

A1 3.20291 

A2 4.17887 

A3 5.10006 

A4 -0.0986643 

A5 3.80369 

B0 -0.00701577 

B1 -0.00770028 

B2 -0.0113864 

B3 -0.00951519 

C0 -0.000000275915 

 

WLast, we calculate the water vapor pressure pH2O (mbar) following Weiss and Price (1980) (Eq. B3). 565 

𝑝𝐻9𝑂 = 1013.25	 ∙ exp	(𝐷A +𝐷/ ∙
/AA

:(-"(.#O=N
+𝐷9 ∙ ln 1

:(-"(.#O=N
/AA

2 + 𝐷0 ∙ 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦),    (A3) 

 wherewith D0=24.4543, D1=-67.4509, D2=-4.8489, D3=-5.44·10-4 . 



25 
 

Appendix C Additional figures 

 
Figure C1 Horizontal distributions for each species in dark greyblue as based on Close et al. (2006), with superscript indicating the 570 
species’ depth realm as in Table A1 (1=epipelagic, 2=mesopelagic/bathypelagic, 3=demersal). Species are ordered based on the slope 
of the CDF (Fig. C95). These 2D habitats were extended over the depth range of the respective species’ group for the analysis (Sect. 
2.2). 
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Figure C2 Global mean changes in ocean in-situ temperature in ºC (a), pO2 in mbar (b) and AGIrel in % (c) for years 1850-2100. The 575 
multi-model mean is given in opaque blue (SSP1-2.6) and red (SSP5-8.5). Individual models are shown in light blue and red without 
taking a running mean. AGIrel is given relative to the 1995-2014 mean, and the mean contribution from temperature only (excluding 
the small effect of temperature on pO2) is indicated by the black line in panel (c) and calculated by keeping pO2 constant at its 1995-
2014 mean state when calculating AGIrel. AGIrel is entirely species-independent (Eq. 2) and values that exceed 1000% or are below 
-1000% were excluded during the calculation of the global mean AGI changes to omit several grid-cells with extreme outliers caused 580 
by very small absolute changes in O2 causing very large changes in AGIrel. 
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Figure C3 Multi-model mean AGIrel relative to the 1995-2014 mean at 1.5 °C global warming (using the mean of the SSP1-2.6 and 
SSP5-8.5 simulations), vertically averaged over the epipelagic and mesopelagic realms, and shown for the demersal realm (a-c). 
AGIrel is split up into the contribution from (d-f) pO2 and (g-i) temperature. Data are hatched where the scenario mean of more than 
2 out of the 6 models disagree about the sign of change. Note that sea floor depth and thus demersal depth depends strongly on 585 
location. Contributions from pO2 (temperature) are calculated by keeping temperature (pO2) constant at its 1995-2014 mean state 
when calculating AGIrel. Further note that since [O2] depends on temperature too, the contribution to AGIrel from pO2 also contains 
a minor temperature component. 
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Figure C4 Same as Figure C3, but for 3°C global warming (and therefore using SSP5-8.5 simulations only). 

 590 
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Figure C52 Multi-model range of AGIrel at 2°C global warming for the three depth intervals studied. 

Figure C63 Habitat change (%) Percentage of remaining contemporary (1995-2014) habitat volume for 2°C global warming shown 
similar to Fig. 3, including 5 levels of AGIcrit in every species’ boxplot (number of datapoints n=5 AGIcrit levels * 6 models = 30): 
AGIcrit is taken as the minimum in-habitat AGI value, the 5th percentile, the 10th percentile, the 15th percentile and the 20th percentile, 
respectively. Note the different y-axis when comparing to Fig. 3. Each boxplot indicates the median in orange and a box bounded by 595 
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the interquartile range (IQR; the 25th to 75th percentiles) and the whiskers extending to the data range with a maximum of 1.5×IQR, 
with outliers as open circles. 

Figure C7 Habitat change (%) sensitivity to the choice of j2-j1 for the species Gadus morhua and Thunnus atlanticus. Standard results 
are as in Fig. 3 and use the standard j2-j1=3500K (Sect. 2.1). For ‘j2-j1 sensitivity’, j2-j1 is adjusted to represent low (high) temperature 
sensitivity of 1000K (6000K), which is equivalent to varying the standard j2 and j1 by ± 20% (resulting in the difference j2-j1 being 600 
varied by ± ~710%), and recalculating AGI, AGIcrit and volume loss for each j2-j1. The standard, low and high j2-j1 are all included 
in the ‘j2-j1 sensitivity’ boxplots. 
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Figure C84 Probability density of AGI for each species for the contemporary reference period 1995-2014 (in black) and for 3°C 615 
global warming (in red with shaded model range). The PDF is a kernel-density estimate using Gaussian kernels, calculated using 
Python’s SciPy package function ‘gaussian_kde’ with grid-cell volume taken as weights, following Scott’s Rule, and evaluated at 
50000 points from an AGI of 0 to 25. Species are ordered based on the slope of the CDF (Fig. C95). 
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Figure C95 Cumulative density function of AGI at 1995-2014 for each species with “vulnerability” annotated in upper right corner 620 
(=slope at cumulative density of 0.1; i.e., at AGI=AGIcrit). The cumulative density is calculated as the cumulative sum of the 
probabilities in the PDF estimate (Fig. C84), normalized to a sum of 1. Species are ordered based on their slope. 
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Figure C10 Multi-model mean in-habitat changes at 1.5°C of global warming of (a) AGI, (b) temperature, (c) pO2 (mean over SSP1-625 
2.6 and SSP5-8.5) and (d) vulnerability (CDF slope at a cumulative density of 0.1 based on 1995-2014 mean data, Fig. C9) plotted 
against loss of contemporary habitat volume for each species (model range indicated by error bars). There is no uncertainty in the 
vulnerability calculation because all models have the same 1995-2014 CDF slope due to the WOA18 bias-correction. From a linear 
regression to the data which is plotted in dashed grey we find an R2 of 0.0% for (a) which line is therefore not plotted, 25% for (b), 
27% for (c) and 85% for (d). 630 

 

Figure C11 Same as Fig. C10, but for 3°C global warming (and therefore using SSP5-8.5 simulations only). 

 

 
 635 
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Figure C12 For each species Tpref, AGIcrit and pO2
threshold (see also Table A1) plotted against their vulnerability (=slope at cumulative 

density of 0.1; i.e., at AGI=AGIcrit; see also Fig. C9, Fig. 6, Table A1). Colors as in Fig. 6: For 2 °C global warming, species with > 
5% loss marked in red, more than –0.1 ΔAGI in blue, and volume loss < 5% as well as vulnerability > 0.3 in yellow. 640 
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Figure C137 Habitat change (%) of contemporary (1995-2014) habitat volume for different levels of global warming, with negative 
values indicating habitat loss and positive values indicating habitat gain.Percentage of remaining contemporary (1995-2014) habitat 
volume of the surface layer (or bottom layer/sea floor for demersal species) for different levels of global warming. This figure is the 
same as Fig. 3, but here applying surface values only in calculating pO2

threshold, Tpref and AGIcrit and hence AGI and volume<AGIcrit. 655 
Demersal results are logically the same as in Fig. 3 as these consider only the sea floor. Note the different y-axes (also when comparing 
to Fig. 3). Each boxplot indicates the median in orange and a box bounded by the interquartile range (IQR; the 25th to 75th 
percentiles) and the whiskers extending to the data range with a maximum of 1.5×IQR, with outliers as open circles. As changes are 
expressed relative to the contemporary viable habitat volume (which is by definition 90% of the total habitat volume), values up to 
1011 % (=100-/90) are possible. 660 
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Data availability 

Scripts used in our analysis will be shared with a DOI upon publication of this manuscript.The CMIP6 model data are available 

at the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip6; see Table A2 for references). The 

HadCRUT.5.0.1.0 data (retrieved 26th of April 2022) are taken from Morice et al. (2021). The species habitat data are available 

at (DOI made upon publication of this manuscript). Scripts to make the figures will be shared on request to A. L. Morée. 665 
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