
Data-driven methods to estimate the committor function in
conceptual ocean models
Valérian Jacques-Dumas1,2, René M. van Westen1, Freddy Bouchet3, and Henk A. Dijkstra1,2

1Institute for Marine and Atmospheric research Utrecht, Department of Physics, Utrecht University, Utrecht, the Netherlands
2Centre for Complex Systems Studies, Department of Physics, Utrecht University, Utrecht, the Netherlands
3Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

Correspondence: Valérian Jacques-Dumas (v.s.jacques-dumas@uu.nl)

Abstract. In recent years, several climate subsystems have been identified that may undergo a relatively rapid transition com-

pared to the changes in their forcing. Such transitions are rare events in general and simulating long-enough trajectories in

order to gather sufficient data to determine transition statistics would be too expensive. Conversely, rare-events algorithms like

TAMS (Trajectory-Adaptive Multilevel Sampling) encourage the transition while keeping track of the model statistics. How-

ever, this algorithm relies on a score function whose choice is crucial to ensure its efficiency. The optimal score function, called5

committor function, is in practice very difficult to compute. In this paper, we compare different data-based methods (Analogue

Markov Chains, Neural Networks, Reservoir Computing, Dynamical Galerkin Approximation) to estimate the committor from

trajectory data. We apply these methods on two models of the Atlantic Ocean circulation featuring very different dynamical

behavior. We compare these methods in terms of two measures, evaluating how close the estimate is from the true committor,

and in terms of the computational time. We find that all methods are able to extract information from the data in order to provide10

a good estimate of the committor. Analogue Markov Chains provide a very reliable estimate of the true committor in simple

models but prove not so robust when applied to systems with a more complex phase space. Neural network methods clearly

stand out by their relatively low testing time, and their training time scales more favorably with the complexity of the model

than the other methods. In particular, feedforward neural networks consistently achieve the best performance when trained with

enough data, making this method promising for committor estimation in sophisticated climate models.15

1 Introduction

Global warming may lead to the destabilization of certain subsystems of the climate system, called tipping elements (e.g.

Lenton et al., 2008). A recent inventory of these tipping elements, including the Amazon rainforest and the polar ice sheets,

has provided estimates of their critical temperature thresholds (Armstrong McKay et al., 2022). Two important tipping elements

involving the ocean are the subpolar gyre convection and the Atlantic Meridional Overturning Circulation (AMOC).20

In the case of the AMOC, the salt-advection feedback is known to cause a bistable regime in conceptual ocean models

(Stommel, 1961; Rahmstorf, 1996). Many model studies have shown that the AMOC may collapse under a changing freshwater

forcing, either by crossing a tipping point, or by noise or rate-induced transitions. Observations (Bryden et al., 2011; Garzoli

1

et al., 2013) of an indicator of bistability (de Vries and Weber, 2005; Dijkstra, 2007) suggest that the present-day AMOC is in

such a bistable regime.25

The collapse of the AMOC is thought to be a rare event but because of its high impact, it is important to compute the

probability of its occurrence in the 21st century. The theoretical framework of Large Deviation Theory (Freidlin and Wentzell,

1998) is not applicable as strong assumptions on the noise statistics have to be made. Moreover, the methods from this theory

prove unfeasible in high-dimensional systems, such as global ocean models. Transition probabilities can also be computed

using a simple Monte-Carlo approach in which many long trajectories are simulated to find enough transitions to determine30

statistics. However, this approach is not tractable either for high-dimensional systems because of the required computational

costs.

A good alternative is to use splitting, or cloning algorithms, such as Trajectory-Adaptive Multilevel Splitting (TAMS)

(Lestang et al., 2018; Baars et al., 2021) based itself on the AMS (Adaptive Multilevel Splitting) algorithm (Cérou and Guyader,

2007). Using ensemble simulations (with significantly fewer members compared to a traditional Monte-Carlo approach), these35

methods are suited to compute the probability to reach a state B (e.g., collapsed AMOC) of the phase space starting from a

state A (e.g., present-day-like AMOC), where the transition from A to B is a rare event. TAMS also adds a time threshold: the

transition must be completed before a certain time Tmax. Using a score function to measure how close trajectories are from the

state B, AMS and TAMS encourage the closest ones while discarding the ones where the rare event is least prone to happen.

Then, new trajectories are simulated by branching from the most promising ones. In this way, the statistics are not altered40

and the transition probability can be obtained at a lower computational cost. Rolland et al. (2015) applied AMS for the first

time to the computation of rare-event probabilities in a 1-D stochastic partial differential equation. Since then, such sampling

algorithms have achieved numerous successes when applied to atmospheric turbulent flows (Bouchet et al., 2019; Simonnet

et al., 2021) or even a full complexity climate model (Ragone et al., 2018).

The main limitation of this kind of algorithm is that they heavily rely on their score function; using a bad score function45

may cancel its time-saving benefit. Fortunately, in the case of TAMS, the optimal score function is known: it is the committor

function q (Cérou et al., 2019). It is defined as the probability to reach a certain set A of the phase space before another set B,

as a function of the initial condition of the trajectory. The committor function is a solution of a backward Kolmogorov equation

and, in theory, it is possible to compute it exactly. In practice, however, this equation is intractable to solve in high-dimensional

models. Even in simpler systems, such as the Jin-Timmermann model, Lucente et al. (2022a) showed that the committor50

function can already have a very complex structure. Moreover, the committor function contains precisely the information we

are looking for when using TAMS. Consequently, another way to estimate that function is required.

When it is assumed that the underlying dynamics can be described by an overdamped Langevin equation, the backward

Kolmogorov equation may be simplified. The committor can then be parametrized using, for instance, feedforward neural

networks (Khoo et al., 2018; Li et al., 2019). A novel way to perform such parametrization has recently been proposed by55

Chen et al. (2023) by using Tensor Networks. More general approaches have also been developed to estimate the committor

from pre-computed trajectories. For instance, Milestoning (Elber et al., 2017) consists in coarsening the phase space into a

cell grid and considering short trajectories between boundaries of these cells. Lucente et al. (2022b) has also recently applied

2

Figure 1. Sketch of the AMOC box model (Castellana et al., 2019). The red arrows represent the volume transport between each box, the

blue arrows the freshwater forcing and the green arrows the wind-driven transports. Solid red arrows are transports that always take place,

dashed arrows are only present in a present-day-like AMOC and dotted arrows in its reversed state.

to this problem a Markov-chain interpretation of the Analogue method (Lorenz, 1969a, b; Yiou, 2014; Yiou and Déandréis,

2019; Lguensat et al., 2017; Platzer et al., 2021a, b), which consists in approximating the dynamics of the system by sampling60

its phase space. The resulting simpler process is a transition matrix which properties can be easily studied. The committor

estimation problem was also approached by trying to solve the backward Kolmogorov equation using a data-driven mode

decomposition of the adjoint of the Fokker-Planck operator (Thiede et al., 2019; Strahan et al., 2021; Finkel et al., 2021).

Finally, neural network methods can also be applied for direct computation of the committor function in this more general

setting, as was shown by Lucente et al. (2019) and recently developed by Miloshevich et al. (2022).65

The contribution of the present paper is to compare the capabilities and performance of these different committor estimation

methods by applying them to two different conceptual, low-dimensional, ocean models. The objective is to assess their strengths

and weaknesses and determine which one could be best suited for applying the committor estimation within TAMS for high-

dimensional models. The structure of the paper is as follows. In Sect. 2, we shortly present both ocean models for which we

estimate the committor. We also explain the methods that will be compared, detail the choices made for their implementation70

and outline our comparison protocol. Results on the performance of the different committor estimation methods are presented

in Sect. 3. In Sect. 4, we discuss possible ways of optimization and future lines of improvement.

2 Models and methods

2.1 The AMOC model

The AMOC box-model used here was presented in Cimatoribus et al. (2014) and slightly extended in Castellana et al. (2019).75

The Atlantic Ocean is divided into five boxes as shown in Fig. 1. The Northern and Southern Atlantic boxes are labelled n and

3

s, respectively. The pycnocline layer is modelled as two boxes, the Tropical box (t) and the Tropical Southern box (ts), the

latter located south of 30◦S. Finally, a Deep box (d) extends throughout the whole ocean below the pycnocline depth D. The

temperature in each box is prescribed, so that the water density only depends on its salinity. Due to conservation of salt, the

state vector of the model is determined by 5 of the 6 quantities St, Sts, Sn, Ss, Sd and D.80

The flows between the boxes are represented by three main quantities. Firstly, the volume transport qn accounts for the

downwelling of dense water taking place in the Northern box. Secondly, qs corresponds to the difference between the wind-

driven Ekman flow (qEk) and the eddy-induced flow (qe). Finally, qu models the upwelling from the Deep box to the Tropical

box. Two additional terms, rs and rn, represent the salinity transport due to the wind-driven subtropical gyres. The equations

of the model are given in the Appendix A.85

The model is subject to two forced freshwater fluxes: a constant symmetric forcing, Es, from the Tropical box to the boxes

n and s and an asymmetric forcing Ea from the box s to the box n. Only Ea contains a random white noise component,

i.e. Ea(t) = Ea(1+ fσζ(t)), where ζ(t) is a white noise process with zero mean and unit variance. The quantity fσ is the

noise ratio ranging from 0 to 0.5 (Castellana et al., 2019). Fixing all other parameters (see Appendix A), the behaviour of the

trajectories of the system is entirely determined by the values of the two parameters (Ea,fσ).90

2.2 The double-gyre model

The double-gyre model is a well-studied model of the wind-driven ocean circulation in a rectangular basin of size Lx ×Ly

and characteristic horizontal scale L. This model describes the flow in an ocean layer of constant density and fixed thickness,

forced by an idealised zonal wind stress. The dimensionless equation for the geostrophic stream function Ψ and the potential

vorticity Q are given by95

Q≡∇2Ψ−Ψ+βy (1)

∂Q

∂t
+ J(Ψ,Q)− r∇2Ψ= σ(1+ γζ(t))sin

(
2π

L

Ly
y

)
(2)

where J is the Jacobian J(u,v) =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
. β stands for the strength of the planetary vorticity gradient and r for the

bottom friction coefficient. The wind-stress forcing amplitude is σ(1+ γζ(t)), where ζ(t) is again a zero-mean unit-variance

white-noise process, σ is the deterministic strength of the wind-stress and γ is a stochastic noise ratio. In deriving a reduced100

model, a Fourier expansion (with a western-boundary layer structure) is pursued (Jiang et al., 1995), i.e.,

Ψ(x,y, t) =

4∑
k=1

Ak(t)e
−sx sin(x)sin(ky) (3)

where s represents the fixed width of the boundary layer. In a Galerkin method, the equations are projected onto the same

Fourier basis. As shown in the Appendix B, this truncation gives four ODEs that capture (Simonnet et al., 2005) the first

bifurcations of the full model (Eq. 2). When all other parameters are fixed (values given in Appendix B), the behavior of the105

model is fully determined by the values of the two parameters (σ,γ).

4

2.3 Committor function

Consider two sets A and B in the phase space Ω of a given dynamical system. From a trajectory X(t) of that dynamical system,

one can define its first-passage time τC in any set C ∈ Ω as:

τC =min{t | X(t) ∈ C} (4)110

The committor function, q(x), is the probability that a trajectory X(t) starting at x reaches the set A ∈ Ω before the set B ∈ Ω,

i.e.,

q(x) = P(τA < τB | X(0) = x) (5)

In the case of a stochastic dynamical system with dimension d (which is the case we always consider here), the committor

function is a solution to the backward Kolmogorov equation. In other words, it obeys the following Dirichlet problem:115

Lq(x) = 0 ∀x ∈ (A∪B)c (6)

q(x) = 1 ∀x ∈A (7)

q(x) = 0 ∀x ∈B (8)

where L is the infinitesimal generator of the process and the adjoint of the Fokker-Planck operator. In the case considered here

of a stochastic differential equation, it is defined as:120

L=

d∑
i=1

ai(x)
∂

∂xi
(·)+

d∑
i,j=1

Dij(x)
∂

∂xi∂xj
(·), (9)

a being the drift of the system and D its diffusivity.

One can directly sample the committor function via a Monte-Carlo method. Suppose we have determined a trajectory X(t)

and we want to compute the committor for each point x ∈ Ω in this trajectory. Then, for each x, N trajectories starting from x

are simulated. If NA is the number of those where τA < τB , the committor is simply expressed as:125

q(x) =
NA

N
(10)

Such a Monte-Carlo computation, however, is extremely costly, even when fully optimized and parallelized. This method is

only used here to obtain a reliable “true” committor for comparison with their estimated equivalent.

2.4 Committor estimation: Analogue Methods (AMC)

The Analogue method was first proposed in Lorenz (1969a, b) as a way to predict future states in a trajectory by using past data.130

Much work has been done on this method (Yiou, 2014; Yiou and Déandréis, 2019; Lguensat et al., 2017; Platzer et al., 2021a, b)

and it has been used to generate new stochastic trajectories by re-using past data to emulate the dynamics of the system. This

method may also be interpreted as a Markov Chain that approximates the underlying dynamics. This interpretation allows to

5

store an effective dynamics in a simple transition matrix, that Lucente et al. (2022b) used to compute a committor function. We

give below a short summary of this method.135

Let {Xn}1≤n≤N be a discretized trajectory. Each state Xn corresponds to a simulated time tn = n∆t, ∆t being the time

resolution. The analogues of every state Xn are defined as its K nearest neighbours {X(k)
n }1≤k≤K in the trajectory, using

the Euclidean distance in the phase space. In practice, the analogues are obtained through a search in a KD-tree (Bentley,

1975) containing every point of {Xn}1≤n≤N . KD-trees are a type of binary space-partitioning trees: every node of the tree

corresponds to a k-dimensional data point and belongs to a hyperrectangle splitting the space along a certain axis. This type of140

tree is well suited to search for nearest neighbours efficiently.

This set of analogues is thus a subset of the original trajectory: {Xlk | lk ∈ [1,N − 1] \ {n},1≤ k ≤K}. It is then assumed

that there is a transition from Xn to the image of any of its K analogues with a probability 1/K. Hence, the end-point of the

trajectory XN is excluded from the set of analogues because it has no image. Xn has thus equal probability to transition to

any of the states {Xlk+1, lk ∈ [1,N−1]\{n},1≤ k ≤K}. A Markov chain can then be built that approximates the dynamical145

behavior of the original trajectory. The transition matrix G describing this Markov chain has elements

Gi,j =

1
K if Xj−1 is an analogue of Xi

0 otherwise
(11)

Suppose that transitions occur between two sets of the phase space, called A and B. Firstly, all states belonging to A in the

trajectory can be grouped together. The same is done for the states belonging to B. Then a new transition matrix G̃ can be

defined where all states in A and B are represented by a single index, respectively iA and iB . The elements of G̃ are then

G̃iA,iA = 1

G̃iB ,iB = 1

G̃iA,j = 0 if j ̸= iA

G̃iB ,j = 0 if j ̸= iB

G̃i,iA =
∑

k|Xk∈AGik if i ̸= iA, i ̸= iB

G̃i,iB =
∑

k|Xk∈BGik if i ̸= iA, i ̸= iB

G̃i,j =Gi,j otherwise

The committor function is now computed from this transition matrix (Lucente, 2021). Let q be the vector containing the

committor function q(x) on every point of the trajectory. It follows (Schütte et al., 1999; Prinz et al., 2011; Tantet et al., 2015;

Noé and Rosta, 2019; Lucente, 2021) that q obeys the following equation150

G̃q= q. (12)

Finding the committor function on the trajectory {Xn}1≤n≤N thus amounts to solving an eigenvector problem. It can be shown

that G̃ has an eigenvalue 1 with two leading eigenvectors v1 and v2 (Prinz et al., 2011). The committor function then reads:

q= αv1 +βv2 (13)

6

where α and β are derived from the conditions qiB = 0 and qiA = 1 (following the same convention as in Sect. 2.3).155

AMC thus returns an estimate of the committor on every point of the input trajectory. Since all the information only comes

from the transition matrix computed from that trajectory, AMC does not require any pre-training (in contrast to the machine

learning methods described below) and could in theory be applied directly to any trajectory computed in TAMS. However,

restarting the whole process from scratch for each of the hundreds of trajectories simulated during TAMS may be computa-

tionally expensive.160

In order to estimate the committor at any other point of the phase space (not belonging to the train trajectory), the AMC

method has to be combined with another method. As suggested in Lucente (2021), we use a K-nearest neighbours (KNN)

method (Altman, 1992). More precisely, we will use AMC to train the Markov Chain and KNN to apply the learnt Markov

Chain to test trajectories.

Suppose an estimate q of the committor is already known on a set of states {Xn}1≤n≤N . To compute the committor on165

another point Y of the phase space, its K-nearest neighbours {Xlk , lk ∈ [1,N],1≤ k ≤K} can be computed using again the

Euclidean distance in the phase space. The committor on Y is then calculated from

q(Y) =
1

K

K∑
k=1

q(Xlk) (14)

In practice, AMC will be applied beforehand on a very long training trajectory to create a pool of states for which the committor

is already estimated. Another KD-tree is then used to compute the K-nearest neighbours of Y among this pool of states. For170

simplicity, we use the same value of K for both the number of analogues used in AMC and the number of nearest neighbours

used in KNN.

When applying AMC, as explained in Lucente (2021), there are cases where the estimated committor takes values outside

of the interval [0,1]. Such cases can occur when the dataset is not large enough, thus causing a breakdown of ergodicity in the

Markov chain. In practice (Lucente, 2021), the pool of states created by AMC only consists of the points x where q(x) ∈ [0,1].175

2.5 Committor estimation: Neural Network methods

2.5.1 Feedforward Neural Network (FFNN)

FFNN’s are frequently used to perform a classification task: each data sample is labelled (often with a binary label) as belonging

to a class and the FFNN must learn the different classes. Here, however, to estimate a probability, an extra layer shall be added

at the end of the network. First, all data samples must be labelled in both the train and test set. Following the same convention180

as in Sect. 2.3, two classes are used: "leading to a state in A" and "leading to a state in B". Let X be a point belonging to a

given trajectory. Starting from X , if that trajectory then first reaches a state in A, X is labelled as "leading to a state in A" and

is assigned the label (0,1). Otherwise, if after going through X , the trajectory first reaches a state in B, X will be labelled as

"leading to a state in B" and will be assigned the label (1,0). Classes are here labelled using one-hot encoding as it will allow

to transform these labels into a probability. In this way, all data samples (in the train and test sets) are in the form: {X,Y }185

where X is a point in the phase space and Y is either (0,1) or (1,0).

7

The FFNN itself consists of several hidden layers of densely connected neurons, preceded by an input layer and followed

by an output layer. Our baseline architecture contains 3 hidden layers of respectively 64,128 and 256 neurons. The size of

the input layer is the number of variables given as input, between 2 and 4. The output layer always contains 2 neurons, so as

to predict one-hot-encoded labels. This kind of labels are used because they allow to apply a Softmax function on the output190

of the FFNN. This function transforms the output of the network into a couple of probabilities, that can be interpreted as:

("probability to reach a state in B first", "probability to reach a state in A first"). The second member of that couple is the

desired committor function.

The loss function used to train the FFNN is the cross-entropy loss. It is well suited to assess a distance between the true com-

mittor and the data-based estimation. Moreover, it is closely related to the measures we are using to evaluate the performance195

of the different methods (see Sect. 2.7.1).

Unlike the training of AMC, training a FFNN involves randomness (e.g., shuffling of the train dataset). To ensure robustness

of the results, we use k-fold cross-validation during the training process. It consists in randomly splitting the whole training

set into k subsets and then training the FFNN k times. Each time, validation is performed using a different subset and the

remaining k− 1 are used for training. This method allows to make statistics on the performance of the network for a given200

setup. Here, we arbitrarily choose k = 20.

The AMC method is easy to optimise as it involves a single hyperparameter. However, for the FFNN, there are many more

parameters that can be varied. We choose the following setup and hyperparameters:

– Each layer of the neural network is initialised according to the He et al. (2015) normal initialisation method.

– The optimisation algorithm is the Stochastic Gradient Descent method.205

– We use a learning rate scheduler, with the plateau algorithm: if the loss function is not improved for 5 consecutive epochs,

the learning rate is divided by 10; the initial learning rate λ= 10−4.

– Each learning lasts 30 epochs. At the end, we retain the state of the model at the epoch that resulted in the best validation

loss.

2.5.2 Reservoir Computing (RC)210

Reservoir Computing was first introduced by Jaeger (2001). It is a specific type of Recurrent Neural Networks (RNN). The

main difference between the latter and the FFNN’s presented in the former section is that the connection structure of RNN

contain cycles. In this way, they are able to preserve a dynamical memory of their internal state, making RNN a powerful tool

for dynamical system analysis. However, training traditional RNN with a gradient-descent algorithm suffers from a number

of drawbacks that make it inefficient (for more details, see the introduction of Lukoševičius and Jaeger (2009)). Reservoir215

Computing avoids those problems by using a structure that does not require gradient-descent.

A classical Reservoir Computer consists of three main elements: an input layer matrix Win, a random network (the reservoir)

with the reservoir state X and an output layer matrix Wout. The main feature of this method is that the weights of the input

8

layer and reservoir are fixed: only the output layer is trained, using a regularized linear least-squares method. In a nutshell, the

input time series is mapped onto the reservoir with a nonlinear function (usually tanh); the output layer then simply performs220

a linear regression of the feature vector X computed in the reservoir. It has recently been shown (Gonon and Ortega, 2020) that

a universal approximator can be realized with this approach. However, this classical approach has again several drawbacks, in

particular the use of random networks to represent the reservoir and the number of hyperparameters (there are 7) that have to

be optimized; both can greatly hinder the performance of the Reservoir Computer.

Recently, Gauthier et al. (2021) developed the so-called “Next-Generation” Reservoir Computing, which we abbreviate225

below with RC. The basic idea behind RC is that, instead of first applying a nonlinear function to the data followed by a linear

regression as in the classical approach ; first a linear function is applied to the data and then the output layer is a weighted sum

of nonlinear functions. By doing so, no more reservoir is needed. The details of the methodology are described in Gauthier

et al. (2021), and we only specify below the relevant ones for the committor estimation.

Consider a trajectory U ∈ RM×T in dimension M and consisting of T time steps. From this trajectory a feature vector230

X ∈ RN×(T−ks) is extracted. N,k and s are detailed in Appendix C. The output layer then simply maps this feature vector X

onto the desired output. The output layer is represented by a matrix Wout ∈ RD×N where D is the dimension of the desired

output. In our case, M is the number of variables in the model where we aim to estimate the committor and D = 1 (dimension

of the committor). The RC method returns the committor via

q =WoutX (15)235

Suppose we have computed the full time series of feature vectors X . Then, if we know the committor qtrain of the training

set, W out is given by

Wout = qtrainX
T(XXT +αI)−1 (16)

where I is the identity matrix and α is the Tikhonov regularization parameter.

Appendix C explains how the feature vector X is determined from values of U at k time steps with stride s. This RC method240

only depends on four hyperparameters, which are α, k and s the degree p of the monomials in the nonlinear part of X (see

Appendix C). These are very convenient to optimize because k, s and p are integers, which must all remain small to keep

tractable computation times. The values of all hyperparameters are empirically determined, model-dependent and are listed in

Table C1 in Appendix C.

2.6 Dynamical Galerkin Approximation (DGA)245

The Dynamical Galerkin Approximation (DGA) method as implemented here is based on Thiede et al. (2019) and Finkel et al.

(2021). The main idea is to project the Dirichlet problem (Eq. 6) onto a set of basis functions estimated from data. The original

problem is thus reduced to a simple matrix equation that gives access to the projection of the committor function onto this

basis.

9

The first step is to homogenise the boundary conditions in Eq. (6). To do so, this system is rewritten in terms of a function250

g(x) = q(x)−1B(x), where 1B(x) is the indicator function of the set B, i.e.

1B(x) =

1 if x ∈B

0 otherwise
(17)

The original Dirichlet problem now reads:

Lg(x) =−L1B(x) ∀x ∈ (A∪B)c (18)

g(x) = 0 ∀x ∈ (A∪B) (19)255

Next, a set of basis functions {ϕi, i ∈ [1,M]} is defined within the Hilbert space on which Eq. (18-19) are defined. The key

constraint is that each basis function should obey the homogeneous boundary conditions. It ensures that the projection of g

onto this subspace also obeys the boundary conditions. Calling L the projection of L onto this subspace and ḡ that of g, each

basis function must then obey:

⟨ϕi,Lḡ⟩=−⟨ϕi,L1B⟩ (20)260

Furthermore, let two function u and v from the state-space to R. Following Thiede et al. (2019), given a sampling measure

µ, the inner product of the Hilbert space can be defined as:

⟨u,Lv⟩=
∫

u(x)v(x)µ(dx) (21)

If we now have a dataset (e.g., a trajectory) {Xn,n ∈ [1,N]}, this product can be approximated by the sum:

⟨u,v⟩= 1

N

N−1∑
i=1

u(Xn)v(Xn) (22)265

Given a timestep ∆t, the definition of the generator L yields:

⟨u,Lv⟩= 1

N

N−1∑
n=1

u(Xn)
v(Xn+1)− v(Xn)

∆t
(23)

By construction, there is a unique set of scalars aj such that:

ḡ(x) =

M∑
j=1

ajϕj(x) (24)

By writing Lij = ⟨ϕi,Lϕj⟩ and ri = ⟨ϕi,L1B⟩, all that remains is the matrix equation:270

M∑
j=1

Lijaj =−ri (25)

The main difficulty with this approach is to find a good set of basis functions but Thiede et al. (2019) also provides a method

to find these functions (see Appendix D).

In practice, the modes are computed from a training set. Then, they are extended on the trajectories where the committor is

to be estimated using an approximation formula provided by Thiede et al. (2019) (see Appendix D).275

10

2.7 Performance evaluation

We are not only looking for a method that best estimates the committor function, but also for one that is most time efficient.

We will therefore use several measures to compare them: the logarithm score, the difference score and the computation time.

In this section, we give more details about the first two.

2.7.1 Logarithm score280

Let {xk}k∈[1,N] be a trajectory of length N and {qk}k∈[1,N] an estimate of the corresponding committor. To every state xk,

a label zk ∈ {0,1} can be attached such that zk = 1 if xk leads (in the trajectory) to an off-state and zk = 0 if xk leads to an

on-state. If xk itself is an on-state or an off-state, it is naturally labelled 0 or 1 respectively. If Nl is the index of the last state in

the trajectory belonging to either the on-zone or the off-zone, then the last N −Nl states in the trajectory cannot be labelled.

Hence, these are not included in the computation of the logarithm score.285

The logarithm score is defined (Benedetti, 2010) as:

L=
1

Nl

Nl∑
k=1

(zk ln(qk)+ (1− zk) ln(1− qk)) (26)

This score has values between −∞ and 0, where L= 0 corresponds to a perfect agreement between the theory and the estima-

tion, while L=−∞ corresponds to the “opposite match”.

Let X be a state in the phase space. If X is not an on-state nor an off-state, its committor value is 0< q(X)< 1 in the290

general case. This is the probability that a trajectory starting on X reaches an off-state before an on-state. However, all we

have access to is a realization of this event. If we look at the available data, X either leads to an off-state or does not. As a

result, from the logarithm score’s viewpoint, the committor function is always either 0 or 1. The true committor obtained by

Monte-Carlo sampling has thus a “real score” LMC < 0. LMC is the value we should aim for when estimating the committor.

In other words, a perfect estimate of the committor will have a logarithm score LMC . However, it is not guaranteed that an295

estimate of the committor with a score LMC is the perfect estimate.

For better interpretability, (Benedetti, 2010) also defines the normalized logarithm score, as:

S = 1+
1

CS

1

Nl

Nl∑
k=1

(zk ln(qk)+ (1− zk) ln(1− qk)) (27)

where CS is a reference term, the climatology. The climatology is defined here as the score we obtain if we predict every-

where the average of a reference committor. For a meaningful comparison, the on and off-states of the reference committor300

are excluded from the average. Calling ⟨q⟩ the average reference committor over the transition states, CS =−⟨q⟩ ln(⟨q⟩). A

normalized logarithm score of S = 0 is equivalent to predicting everywhere the climatology. The theoretical “perfect match”

corresponds this time to a normalized score of S = 1. This normalized score is still not bounded below 0 (so the “opposite

match” still corresponds to S =−∞).

11

2.7.2 Difference score305

The difference score is simply the squared difference between the estimated committor (called E) and the true one (called T).

Moreover, we use F as the “furthest estimate” of the true committor. It consists in rounding every value of the committor to

the furthest integer, either 0 or 1, so as to maximize the quantity ||T −F ||2. The difference score D is then defined as:

D = 1− ||T −E||2

||T −F ||2
(28)

This score has two big advantages. Firstly, it is very easy to interpret. A score D = 1 corresponds to predicting exactly310

the true committor while a score D = 0 corresponds to the worst possible estimate. Since the climatology here corresponds

to the mean committor of a reference committor, D = 0.5 roughly corresponds to predicting the climatology. So, unlike the

normalized logarithm score, a difference score closer to 1 is always a better estimate of the committor.

The major drawback of using the difference score is that it is in general not computable. Indeed, in the general case, we do

not know the true committor. In this paper, however, thanks to the low-dimensionality of our example models, we can determine315

the true committor with a Monte-Carlo method. We can use this score here in the comparison of the different methods but in

more complex settings we will have to rely entirely on the normalized logarithm score.

3 Results

We will now compare the different methods used to estimate the committor on both ocean models. Assessing the measures of

the committor estimate and the computation time for each method enables us to assess which one is the best and seems the most320

promising for future applications, on high-dimensional models in particular. All results presented below were computed on a

Mac M1 CPU using Python 3.9.7, NumPy 1.22.3 and PyTorch 1.10.2 (the latter only for the FeedForward Neural Network).

Computation times are simply the elapsed time during the training/testing process.

3.1 AMOC model

3.1.1 Phase space analysis325

As detailed in Castellana et al. (2019), the AMOC model exhibits a bistability regime for Ea ∈ [0.06,0.35]. Its two stable steady

states are defined by qn > qs > qu and by qn = 0 & qs < 0. The former corresponds to a strong downwelling in the northern

Atlantic, and thus to the present-day circulation of the AMOC. The latter corresponds to the fully collapsed state of the AMOC,

with a shut down of the downwelling in the northern Atlantic and a reversal of the southern circulation. These definitions are

actually more general than the fixed points of the system: they define entire sets of the phase space, to which the fixed points330

respectively belong. So, here, what we call an “on” state of the AMOC is any point such that qn > qs > qu, not only a fixed

point of the system. When noise is added to the system (fσ > 0), a second type of collapse is observed: qn = 0 & qs > 0. In

this case, fast variations in the freshwater inputs may shut down the northern downwelling without disturbing the deep layers

of the ocean. This shut-down is always a transient state of the AMOC and happens on much shorter time scales than a full

12

(a) (b)

Figure 2. (a) An example of a long trajectory in the reduced phase space (Sn −Sts,D), for (Ēa,fσ) = (0.234,0.4). The phase space

contains 4 zones: on-states (yellow), off-states (brown), fully-collapsed states (grey) and a transition zone (white). The fuchsia points are

the steady states. The red curves show the separation between each zone. (b) The corresponding committor function. The off-states are

highlighted in brown and the on-states are highlighted in yellow.

AMOC collapse with an adjustment of the deep ocean circulation (qs < 0). With the values of Ēa and fσ considered here, a335

‘temporary’ shut-down occurs after a few decades to a century, while the transition to the fully collapsed state takes about 1000

years. Here, we are interested in short-term transition probabilities of the AMOC, hence we focus on the transient collapse,

which we call an “off” state of the AMOC. Hence, we will study transitions between “on” and “off” states.

The expressions of qs and qu only depend on D, while qn is entirely defined by Sn −Sts and D. Consequently, we can

summarise the behaviour of the system in the reduced phase space (Sn−Sts,D), shown in Fig. 2a for fσ = 0.4 and Ēa = 0.234.340

In this figure, the different zones of interest in the phase space are highlighted: yellow for the set containing all “on” states,

brown for the set containing all “off” states and black for the set containing all fully-collapsed states. The purple dots represent

the steady states. We also plot a long trajectory starting close to the steady on-state. We clearly see the transitions between

on-states and off-states, or F-transitions (fast transitions) (Castellana et al., 2019), through a transition zone. In this example,

the simulated trajectory is too short for the system to reach the fully collapsed zone, or to undergo a so-called S-transition (slow345

transition) (Castellana et al., 2019).

We are interested in the probability that the AMOC collapses, so the committor function is here defined as the probability

that a trajectory reaches the off-states zone before the on-states zone. Here, the subspace A is the set of all on-states of the

AMOC (yellow zone on Fig. 2a) and the subspace B is the set of all off states of the AMOC (brown zone on Fig. 2a). So, here,

all on-states will correspond to a value of the committor q(x) = 0 and all off-states will correspond to a value of the committor350

q(x) = 1. In such a setting with fixed forcing, fixed noise and a time-independent phase space, there is a one-to-one mapping

between any trajectory in the phase space and its corresponding committor function. We can thus plot in Fig. 2b the committor

along the simulated trajectory of Fig. 2a. The committor function is plotted in blue. The on-states, with a committor value of 0,

13

are highlighted in yellow while the off-states, with a committor value of 1, are highlighted in brown. The committor function

switches between both kinds of states, which corresponds to the noise-induced transitions in the original trajectory.355

In the following study of this model, all trajectories will be computed with (Ēa,fσ) = (0.234,0.4).

3.1.2 Train and test dataset

To be able to compare different methods for the committor estimation, we need to train them and to test them with different

trajectories. We thus need to create a training and a test dataset. For simplicity and consistency, we set a standard length for

all test trajectories of both models: 5000 time steps (corresponding to 500 years of simulation, similar to the trajectory and its360

associated committor function plotted in Fig. 2). The total test set consists of 100 independent such trajectories. The logarithm

and difference scores are averaged over these trajectories.

When it comes to training methods for the committor estimation problem, what really matters is to have reactive trajectories,

that is, trajectories going through both on and off-states. Consequently, it makes sense to count the length of trajectories in

terms of the number of transitions NT . What we call a transition is a set of consecutive points starting in the on-zone (resp.365

off-zone) and ending in the off-zone (resp.on-zone).

One of our goals is to estimate the committor function using as little data as possible. It is thus interesting to study how

the performance of each method scales with the amount of training data. To do so, we generate several training sets, having

an increasing number of transitions NT that spans a large interval: NT = 10,20,30,50,75,100,150,200,300,400,500. In

practice, to ensure meaningful comparison between these training sets, we only generate the longest one, with NT = 500. The370

shorter ones simply consist of the NT first transitions of this very long trajectory.

In the case of the AMOC model, generating a trajectory with 500 transitions is not possible without S-transitions to occur,

which we want to avoid. Instead, we concatenate as many 5000 timestep long trajectories as needed, all starting close to the

steady on-state.

3.1.3 Application of the different methods375

The performance of each method when applied to the AMOC model will be presented in the next two sections but first, we

specify some implementation details.

The training of AMC, DGA and RC does not involve randomness, hence we perform it once only on the entire training

set containing NT transitions. As for FFNN, since the initialization of its weights and the gradient descent algorithm involve

randomness, we perform a 20-fold cross validation on the same training set with NT transitions. The latter is thus split into 20380

subsets and only 19 are used for training every time. In the end, we average the performance obtained from the resulting 20

optimized FFNN.

In the case of RC, the parameters k, s, p and α (see Appendix C) were optimized by hand and their values are in Table C1.

In the case of DGA, the number of modes, the values of d, ϵ0 and ϵ (see Appendix D) were also optimized empirically (see

Table D1).385

14

For optimal results, the different methods are also applied to different sets of variables , which shows that the methods

capture different features of the phase space:

– AMC and DGA : Sn −Sts,Sn and Ss

– FFNN: Sn −Sts and D

– RC: Sn −Sts,Sn,Ss and D390

3.1.4 Skill

The normalized logarithm score for each method is presented in Fig. 3a. Firstly, AMC (blue curve) and DGA (green curve)

both show a great performance, since they are the two best-performing methods up to NT = 100. The lowest score of AMC,

for NT = 10, is 0.660. Its best normalized logarithm score is attained for NT = 500, where the score is 0.718. The gap between

its 5th and 95th percentile does not decrease in the same time and remains between 0.299 and 0.331 (slightly higher than the395

width of the distribution of the true score, equal to 0.270). Moreover, AMC’s mean normalized logarithm score only increases

by 9% when NT is multiplied by 50. It means that this is a very efficient method, thanks to the large-scale structures in the

phase space of the AMOC model (see Fig. 2a): the committor on neighbouring points is consistent and thus averaging it is a

reliable method.

AMC is fairly easy to optimise since it relies on a single parameter: the number of analogues K. We tested different values400

of K, ranging from K = 5 to K = 250, but we retained only the results for K = 25, because they gave the best results, both in

terms of logarithm and difference score. For the largest training dataset, we find a mean normalized logarithm score of 0.708

for K = 250 up to 0.718 for K = 25.

DGA has an even better score than AMC for NT ≤ 50, although the relative difference of both scores, of less than 9%

is largely within both errorbars. The gap between the 5th and 95th percentile of DGA is also slightly larger than for AMC405

(respectively 0.337 against 0.331), because it is more skewed towards larger scores. It shows that DGA may tend to produce

sharper transitions in the committor between the on-states and off-states. The similarity between the scores of AMC and DGA

may be explained if we consider that they both use a sampling of the phase space to estimate the committor. The scores are not

shown for NT > 150 because they could not be computed due to the too large computation time (see Sect. 3.1.5).

However, the most important feature of the normalized logarithm score of DGA is that it decreases as NT increases. It410

means that the DGA method becomes less and less efficient as its training set grows larger. We have not found any satisfying

explanation for this seemingly paradoxical behaviour. However, the normalized logarithm score of DGA for NT = 10 is the

second-best score of all, just behind the score of FFNN for NT = 500 (0.722 for DGA against 0.729 for FFNN).

The performance of the FFNN (orange) is exactly the expected one as it is well known that machine learning poorly performs

when trained with too little data. Here, FFNN yields a normalized logarithm score of 0.026 when trained with the smallest415

dataset, which is equivalent to predicting the climatology everywhere. Moreover, the committor estimates are very inconsistent,

heavily depending on the trajectory: the 5th percentile is −0.862 and the 95th percentile is 0.516. But as the size of the training

set increases, the FFNN can extract more complex features from the data. As a result, the score increases fast and the errorbars

15

Figure 3. Comparison of the performance and computation time of all four methods on the AMOC box model.

(a) The normalized logarithm scores of each method.

(b) The difference scores of each method.

(c) The training times of each method.

(d) The testing times of each method.

In (a), (b) and (d), each curve is the average over the score of the 100 test trajectories. The shaded areas around each curve are their 90%

most probable values, between the 5th and 95th percentiles. In (c), the shaded area is only provided for FFNN, since all other methods are

only trained once (the confidence interval is here very narrow: the difference between the 5th and 95th percentiles is less than 8.5% of the

average training time for NT ≤ 30 and less than 3.7% of the average training time for NT ≥ 50.)

shrink. For NT ≥ 200, FFNN performs at least as well as AMC and keeps improving although this difference is negligible

compared to errorbars. For instance, for NT = 500, the respective scores of AMC and FFNN are 0.718 and 0.730. Their 95th420

percentiles of score are similar (respectively 0.871 and 0.866) but the distribution of scores of FFNN is overall narrower than

that of AMC, with a 5th percentile of 0.600 against 0.551 for AMC.

16

The other machine learning technique, RC (purple), also has a low score when trained with insufficient data and it increases

with the size of the training set. However, for NT = 10, its normalized logarithm score is already 0.531, much better in average

than FFNN (above the 95th percentile of its scores). Then for NT ≥ 30, the evolution of the average normalized logarithm425

score of RC exactly follows that of FFNN, only differing by 0.8% (NT = 50) to 3% (NT = 500), however remaining lower

than the score of FFNN for NT ≤ 100. RC also exhibits a narrower gap than FFNN between the 5th and 95th percentiles of its

score, by more than 20% for 30≤NT ≤ 150 and by 7% or less for larger NT . For NT ≥ 200, the skill of RC reaches a plateau

at 0.707 and stops improving. This may be due to the limited learning capacity of the vector containing the nonlinear features

(see Appendix C).430

The difference score for these methods is shown on Fig. 3b. The scores of the machine learning methods (FFNN and RC)

increase overall as the size of training set increases: from 0.767 (NT = 10) to 0.964 (NT = 500) for FFNN and from 0.758

(NT = 10) to 0.954 (NT = 400) for RC. As was already the case with the normalized logarithm score, the machine learning

methods are by far the poorest-performing ones when not trained with enough data. But as NT increases, FFNN becomes better

than the phase-space-sampling-based methods. The score of RC strongly decreases from NT = 10 to NT = 20, from 0.758 to435

0.506, due to the drop in its 5th percentile from 0.634 to 0.201. But for NT ≥ 50, the average score differs between FFNN and

RC by only 2%, a smaller gap than FFNN’s errorbars. As was already observed in the normalized logarithm score, RC skill

seems to reach a plateau after NT = 200, around a score of 0.953.

AMC performs clearly better in average than FFNN and RC for NT ≤ 50, with a difference score of 0.895 to 0.931. Its

errorbars, however, overlap those of both machine learning methods. The score of AMC then keeps on steadily increasing with440

NT but slower, reaching 0.948 for NT = 200 to 0.950 for NT = 500.

Finally, once again, the score of DGA decreases as NT increases, from 0.914 for NT = 10 down to 0.904 for NT = 100. It is

thus the best method for NT ≤ 20 and the poorest-performing method in average for NT ≤ 50. Its average score for NT = 100

is even below the 5th percentile of both AMC and FFNN.

However, the scores ranking between AMC, FFNN and RC might not be so meaningful since the largest difference between445

their average scores is not as large as the errorbars of FFNN, the narrowest of all.

3.1.5 Computation time

Figure 3c shows the training times of each method and Fig. 3d presents the testing times. In practice, both are complementary

and equally important. As expected, all methods have a training time scaling with the size of the training set. This is expected

because the methods need to process an increasing amount of data when the size of the training set increases.450

We provide below an evaluation of the scaling of the training time of our implementation of each method. We call N the

size of the training set (i.e., the number of samples):

– For AMC, building the Kd-tree is at worst O(N logN) while querying it is about O(N) and the eigenvector search is

O(N2). Thus when N grows large, the training time of AMC mainly depends on the eigenvector search in G̃, although

we are using the Implicitly Restarted Arnoldi Method, which already takes advantage of the sparsity of G̃.455

17

– Training DGA consists in two steps: computing a diffusion map kernel matrix (O(N2)) and computing the modes as

eigenvectors (O(N3)).

– The training time of FFNN mostly depends on the architecture of the neural network. The only dependence on N comes

from the sequential use of the training samples. So, the training time only scales as O(N).

– For RC, the training time heavily depends on the size of the reservoir, which doesn’t depend on N and the training460

samples are seen sequentially. If we call R the dimension of the features vector, then the training time scales as O(NR+

R2)+O(R3) (linear regression + computation of the pseudo-inverse). R depends on the dimension of the system and

this contribution may outweigh that of the size of the training set.

As for the testing times, if we call M the number of samples in the test dataset, for each method they scale as:

– To test AMC, we need to build a Kd-tree using the training set, which is about O(N logN). Then, it amounts to a search465

in this tree in O(M).

– For the testing of DGA, we need to extend the trained modes is (O(MN)), update the Galerkin approximation is (O(M))

and finally compute the committor (O(M)).

– Once again for the FFNN, the testing time only depends on the network’s architecture and the test samples are given

in sequential order, hence a testing time that scales as O(M). This testing time might scale quite differently from the470

training time, though, because during the training, the back-propagation scales as O(N) but can be very slow if the

architecture is too large.

– Testing the RC scales as O(RM) (where R is the number of nodes in the reservoir) because the test samples are once

again seen sequentially.

FFNN is about 98 times slower than AMC for the smallest training set. The training in this case takes about 2.44 seconds475

instead of 0.025 seconds for AMC. However, for the largest training set, this difference has shrunk to 5 times only. When

NT = 500, FFNN takes about 125 seconds to be trained instead of 25 seconds for AMC. This is because the training time for

AMC increases fast for NT > 50, since this method implies computing the largest eigenvectors and eigenvalues of the matrix

G̃ (see Sect. 2.4), which size depends on NT .

For each value of NT , FFNN has been trained 20 times independently because its training process involves randomness due480

to the gradient-descent algorithm. However, the 5th and 95th percentiles cannot be seen on the plot because their gap is very

small: for NT ≥ 50, it is always less than 3.7% of the average score.

As for RC (purple) it is interesting to see how fast the training of this machine learning method is. The training time is the

main fallback of the FFNN because of the weights-updating algorithm run after each batch and the large number of weights.

In the case of RC, the training mostly amounts to computing the nonlinear features that are extracted from the data at every485

time step. This can be achieved in a single NumPy operation for the whole training set, which is thus very well optimized.

18

As a result, RC scales much better with an increasing NT than FFNN: training RC is 47 times faster than training FFNN for

NT = 10 but it is up to 240 times faster for NT = 500.

DGA is the method which training time has the worst scaling with NT : it increases from 0.30 seconds for NT = 10 to 119

seconds for NT = 150, hence a multiplication by almost 400. It becomes the longest training time for NT ≤ 100 and quickly490

blows up, due to the large matrix operations that this method implies (see Appendix D). On top of that, if we also want the

method to optimize d,ϵ0 and ϵ (see Appendix D) by itself, then the training time surges to 24.5 seconds for NT = 75, making

it the slowest method of all.

The different methods can be separated into two groups when looking at their testing times (Fig. 3d). DGA has a much larger

testing time than AMC, FFNN and RC.495

Once again, the testing time of DGA scales with the size of the training set and quickly blows up as well. Indeed, the modes

used during the test phase are of the size of the training set, which makes the testing phase increasingly time-expensive. For

NT = 10, this testing time is 0.36 seconds, up to 6.54 seconds for NT = 150. For NT = 10, it is already 27 times as long as

the testing time of FFNN, yet the second-longest.

In the second group, for NT ≤ 200, FFNN has the largest testing time, with an average of 0.01 seconds. Once again, its500

errorbars are extremely narrow, showing how consistent this method is, the gap between its 5th and 95th percentile being only

2.3% of the average score. For NT > 200, it is AMC that has the largest testing time of this group because it scales with the

size of the training set (the size of the KD-tree used during the testing phase increases with the size of the training set). Indeed,

for NT = 10, the testing time of AMC is 3 times lower than that of FFNN, but up to 1.7 times longer for NT = 500. The testing

time of RC is overall the lowest of this group, consistently between 5.1×10−3 seconds and 5.2×10−3 seconds, only contained505

within the errorbars of AMC (yet below its average) for NT ≤ 50.

3.2 Double-gyre model

3.2.1 Phase space analysis

For σ ∈ [0.3,0.48], the double-gyre model is in a bistable regime with two fixed points which we refer to as an “up” state and a

“down” state. They are respectively defined by (Aup
1 ,Aup

2 ,Aup
3 ,Aup

4) and (Adown
1 ,Adown

2 ,Adown
3 ,Adown

4). These states result510

in two steady states of the system’s stream function, which shows “up” and “down” jet states (see Fig. 4a). As we add white

noise, the system will undergo transitions between these two states. If we define “up” to be an “on-state” and “down” to be

an “off-state”, we have a similar terminology as in the AMOC model. The committor function here is similarly defined as the

probability to reach the “off-state” before the “on-state”.

Although of lower dimension than the AMOC model, the double-gyre model exhibits a phase space with a more complex515

structure. Figure 4b displays a snapshot of it for σ = 0.3 and γ = 0. The phase space is partitioned into two zones: one where

all initial conditions will lead to the on-state and the other where all initial conditions will lead to the off-state. To compute

these zones, we choose a fixed value of A3 = 0.069 and sample 104 random values of (A1,A2,A4) from a uniform distribution

on the intervals [Aup
1 −1,Aup

1 +1], [Aup
2 −1,Aup

2 +1] and [Aup
4 −1,Aup

4 +1]. Figure 4b is a projection on the plane (A1,A2). In

19

(a) (b)

Figure 4. (a) Stream functions of the jet-up and jet-down steady states of the double-gyre model, for σ = 0.45.

(b) Phase space of the double-gyre model (σ = 0.3,γ = 0) in the plane (A1,A2) for a fixed value of A3. Black dots correspond to both

steady states. The yellow dots are the initial conditions leading to the on-state. The brown dots show the initial conditions leading to the

off-state.

this figure, the black dots represent both steady states, the yellow dots represent the initial conditions leading to the on-state and520

the brown dots the initial conditions leading to the off-state. If we imagine that the structure displayed in this figure evolves

along the A3-axis, we see how much more complex this structure is compared to the AMOC model. Overlap between the

yellow and brown dots originates from the projection of the different values of A4 on the (A1,A2) plane.

In the following study of this model, all trajectories will be computed with (σ,γ) = (0.45,0.198).

3.2.2 Train and test datasets525

The generation procedure of the train and test datasets used for studying the double-gyre model is similar to that used for the

AMOC model. The standard length of all trajectories is 5000 time steps and the test set also consists of 100 such independent

trajectories. The logarithm and difference scores are averaged over these trajectories.

In the case of the double-gyre model, generating the training sets is simpler than for the AMOC model as we do not need to

pay attention to different collapsed states. We can just simulate a single very long trajectory containing 500 transitions. All other530

training sets, containing NT = 10,20,30,50,75,100,150,200,300,400 transitions simply consist of the first NT transitions of

that very long trajectory.

20

3.2.3 Application of the different methods

Once again, we will compare in the following sections the performance of each method against the size of the training set.

AMC, DGA and RC were applied on the full training sets. We performed 20-cross validation for the training of FFNN. The535

parameters of RC and DGA are also optimized by hand and can be found respectively in Table C1 and Table D1.

However, for this model, the implementation of AMC is slightly different than for the AMOC model. As is done in Lucente

(2021), the distance used to compute the analogues of every state is normalized by the variance of the distribution of each

variable. The choice for this normalization simply comes from the observation that, in this case, unlike the AMOC model,

doing so improves the skill of this method.540

For the double-gyre model, all methods are applied on the full set of variables: A1,A2,A3 and A4.

3.2.4 Skill

First of all, we can see that the curves of AMC in all plots of Fig. 5 (blue curves) stop after NT = 200. This is due to the too

long computation time of the eigenvalues and eigenvectors of the matrix G̃ (cf. Sect. 2.4) when training this method. Indeed,

we observe in the double-gyre model that trajectories spend less time in the on/off-states compared to the AMOC model.545

As a result, the trajectories of the double-gyre model contain more transition states and G̃ is larger than its equivalent in the

AMOC model. For instance, in the latter model, for NT = 500, G̃ is a square matrix of size 13988×13988. In the double-gyre

model, however, for NT = 200, G̃ is already of size 25359× 25359. When considering the normalized logarithm scores for

the double-gyre model, shown in Fig. 5a, we see that AMC is no longer one of the best-performing methods. It is even the

worst-performing method in average for NT > 100. For NT ≤ 100, its score increases from −0.430 up to 0.032. It is thus550

only for NT ≥ 100 that AMC can perform at least as well as the climatology. Moreover, its maximum normalized logarithm

score is only 0.167 for NT = 200. Furthermore, the distribution of scores of AMC exhibits a huge spread: the difference

between its 95th percentile and its 5th percentile is 1.702 for NT = 20, down to 0.746 for NT = 200. For such a large dataset,

it corresponds to the largest spread of all methods. Moreover, the optimal value of K here is K = 15, instead of K = 25 for

the AMOC model. When increasing the value of K, the normalized logarithm score dramatically decreases: it is in average555

−0.012 for K = 20, −0.083 for K = 25 and keeps decreasing. In other words, for K ≥ 20, AMC performs worse than the

climatology. This may be explained by the more complex structure of the phase space of the double-gyre model (see Fig. 4b).

Here, FFNN performs even more poorly as in the AMOC model when trained with too little data (score of −0.690 for

NT = 10). FFNN is even the poorest-performing method up to NT = 100 and only manages to give a better estimate of the

committor than AMC for NT ≥ 150. Its maximum score, for NT = 500, is 0.360. Moreover, the gap between the 5th and 95th560

percentiles of this score is huge for NT ≤ 75 (more than 1.89, systematically larger than that of AMC) but fastly shrinks down

to 0.6 in average for NT ≥ 150. From NT = 75 to NT = 150, the average normalized logarithm score of FFNN also increases

from −0.218 to 0.297, and becomes the second-best method (while it is the worst for NT ≤ 75), this value of NT acting as a

sort of threshold above which the FFNN is much more efficient.

21

Figure 5. Comparison of the performance and computation time of all four methods on the double-gyre model.

(a) The normalized logarithm scores of each method.

(b) The difference scores of each method.

(c) The training times of each method.

(d) The testing times of each method.

In (a), (b) and (d), each curve is the average over the score of the 100 test trajectories. The shaded areas around each curve are their 90%

most probable values, between the 5th and 95th percentiles. In (c), the shaded area is only provided for FFNN, since all other methods are

only trained once.

Once again, the curve of DGA (shown in green) stops at NT = 100 due to the too large matrix computation. Once again, its565

normalized logarithm score decreases as NT increases, from 0.378 for NT = 10 down to 0.142 for NT = 100. However, on

that interval, DGA remains the second-best method after RC.

RC also has a decreasing normalized logarithm score as NT increases, from 0.495 for NT = 10 down to 0.288 for NT = 500,

but its difference score increases in the meantime, which we explain at the end of this section. For NT = 10 to NT = 500, the

gap between its 5th and 95th percentile also increases from 0.283 to 0.416. This method thus shows the opposite behaviour570

22

compared to the other methods involving training. We will provide an interpretation of this phenomenon when looking at the

difference score of that method.

The difference score of each method (Fig. 5b) is further away from the perfect estimate than their equivalent in the AMOC

model, once again showing that the committor estimation task in this model is more difficult.

DGA is only the best-performing method for NT ≤ 30, although its difference score drops from 0.823 to 0.789. The dif-575

ference score of AMC only increases from 0.756 in average to 0.802 between NT = 10 and NT = 200, making it the worst-

performing method for NT ≥ 150. For NT ≥ 50, FFNN is on average the best-performing method, with a score of only 0.875

at its maximum, for NT = 500. This maximum score is much further away from the score of the perfect estimate (1.0) than in

the AMOC model (maximum score of 0.964), showing once again that computing the committor function in a more complex

phase space is a much more difficult task. However, FFNN is clearly the best-performing method when trained with a large580

training set (NT ≥ 400) since there is barely any overlap between its errorbar and that of RC, the second-best performing

method.

For NT ≤ 30, RC is the worst-performing method with a score of less than 0.774 but it closely follows the difference score

of FFNN until NT = 100. RC then reaches a performance plateau at 0.820 with the narrowest errorbars of all methods for

NT ≥ 150 (having a width between 0.05 and 0.06). So, as NT increases, the difference score of RC increases and its errorbars585

shrink but its normalized logarithm score decreases. This example is interesting to explain the difference between both scores

and why the trend of the logarithm score may sometimes be misleading when comparing two committor estimates.

In this model, the fixed amplitude of the noise has a stronger effect on the trajectories than the noise amplitude used in the

AMOC box model. As a consequence, trajectories will spend a longer time in the transition zone and explore larger areas of the

phase space before reaching an on or off-state. The committor along this trajectory will oscillate accordingly, as the trajectory590

moves closer to the on-state or off-state. This causes the average logarithm score of the Monte-Carlo estimate of the committor

to decrease in this model, as observed in Fig. 5a compare to Fig. 3a. It also explains the behaviour of RC: as NT increases,

the committor estimate of the RC method reflects better this behaviour due to noise, which is penalized by the normalized

logarithm score, although it better matches the true committor.

3.2.5 Computation time595

The computation times for the double-gyre model are shown in Fig. 5c and Fig. 5d. The scaling of these methods do not change

compared to the AMOC model. They are all slower, though, because the training sets are larger, the number of modes for DGA

has been increased and the reservoir of RC is also larger.

As was already the case for the AMOC model, the training time of RC scales better with the size of the training set than that

of FFNN (Fig. 5c): FFNN takes 2.7 times longer to be trained for NT = 10 and is over 16 times slower than RC for NT = 500.600

RC only takes 1.82 seconds to be trained for NT = 10, up to 14.42 seconds for NT = 500.

During the training of AMC, due to the fast growing size of the matrix G̃ as NT increases, this method has again a worse

scaling with the size of the training set than FFNN. Its training time is multiplied by 242 from NT = 10 (0.22 seconds) to

NT = 200 (52.26 seconds). For NT = 200, the number of samples N in the dataset is twice as large for the AMOC model

23

with NT = 500. Due to the O(N2) time complexity of the iterative eigensolver, it becomes difficult to train this method in a605

reasonable time.

As a comparison, between NT = 10 and NT = 200, the training time of FFNN is only multiplied by 38 and that of RC by 8.

For NT ≤ 20, DGA is faster to train than FFNN, with a training time of less than 10 s. However, for NT ≥ 30, it becomes

the slowest method of all by far, its training time ranging from 23 seconds to 627 seconds for NT = 100. Between NT = 10

and NT = 100, this training time is multiplied by 263 so its scaling with the amount of data is even worse than for AMC, due610

to the complexity in O(N3) of the modes computation.

The testing times are shown in Fig. 5d. The testing time of RC is 0.136 seconds in average, which is a significant increase

(26 times larger) compared to the AMOC model. It is largely due to the increase in dimension of the features vector (from 330

to 1716 coefficients). The testing time of AMC is less affected by this change of model, since it only consists in a search in a

KD-Tree. For NT ≤ 50, AMC has the shortest testing time, from 0.006 seconds for NT = 10 up to 0.009 seconds for NT = 50.615

As was already the case in the AMOC model, FFNN also has a very short testing time of about 0.008 seconds. The testing has

even decreased by 38% compared to the AMOC model, making FFNN the method with the shortest testing time for NT ≥ 75.

Finally, the testing time of DGA ranges from 0.72 seconds for NT = 10 to 8.64 seconds for NT = 100, blowing up again

afterwards. This is 5 to 64 times longer than the RC, which is the second longest. Its maximum testing time is only 2.1 seconds

longer than for the AMOC model (thus increasing by 32%), although the number of modes involved has been multiplied by620

20. It shows that the number of modes only has a limited impact on the computation time, which mainly depends on the size

of the training set.

4 Summary and Discussion

The present work intends to evaluate and compare several existing methods to estimate the committor function from trajectory

data. Having a good estimate of the committor function is crucial in order to ensure maximum efficiency and accuracy of a rare-625

event algorithm such as TAMS. Using these kind of algorithms is a very promising solution to the computation of probabilities

of rare transitions in complex dynamical systems, such as a potential collapse of the AMOC in high-dimensional ocean-climate

models. We compared the Analogue method (AMC) with a simple feedforward neural network (FFNN), a Reservoir Computing

(RC) method and a Dynamical Galerkin Approximation (DGA) scheme. Two models, an AMOC box model and a double-gyre

model were used for their evaluation, where the phase space dynamics of the double-gyre model is more complex than that of630

the AMOC model.

Although efficient in the AMOC model, AMC is very slow and not so robust in more complex settings such as the double-

gyre model. The sampling of the phase space indeed becomes difficult when it displays complex structures. This result may be

related to what Lucente et al. (2022a) observed in the Jin-Timmermann model: there are certain zones of the phase space where

the committor function displays a complex, fine scale structure, which we cannot expect AMC to predict accurately due to its635

analogues approximation. Even the testing phase, that uses a search through a KD-tree quickly becomes very computationally

expensive with dimensionality and requires a lot of training data.

24

FFNN proves a very robust method, that can adapt to complex phase spaces. Its main drawback is the time it takes to be

trained and the amount of data needed to obtain an adequate estimate of the committor. However, once trained, it is a very fast

method, that also provides the best estimate of the committor. The RC method is the most naive of all, extracting nonlinear640

features from a trajectory and performing a linear regression on them. This method is strikingly efficient, considering how

simple it is. When well optimized, its results may compete with those of the FFNN but it is much faster to train. However, it

has a limited learning capacity and reaches a performance plateau which makes a difference with FFNN when trained with a

lot of data.

The DGA method shows a strange behaviour that we could not explain: its performance decreases as the size of the training645

set increases. However, for the lowest value of NT tested, DGA is one of the best-performing methods, competing with the

machine learning methods trained with NT = 500. This method is thus efficient in terms of number of transitions: it requires a

limited amount of data to compete with the best-performing methods. Its main limit is its computing time and that its parameters

need to be tweaked by hand to be fully optimized.

We compared these methods using two scores: the normalized logarithm score and the difference score. Although the latter650

is easier to interpret, it will in general never be computable because it requires to know the true committor. For more complex

models, we will thus have to rely on the normalized logarithm score. We found that they do not provide the exact same

information: in particular, they rank differently the methods. However, in general, the improvement in the skill of most methods

can be read accordingly in both scores. We only found one exception: RC in the case of the double-gyre model, where the

normalized logarithm score wrongly indicates a loss in performance as NT increases.655

By applying rare event algorithms to more sophisticated, high-dimensional models, it is likely that long (and expensive)

simulations contain few, or even no transitions. This is a major problem because AMC, FFNN and DGA all rely on reactive

trajectories to be trained and then estimate the committor. If there are no transitions in the data, the neural network only sees

one class of events so it can never predict a transition. In addition, it can be easily demonstrated that AMC and DGA fail as

well. So, we may need extra-long costly simulations to be able to apply these methods, all the more so as AMC and FFNN660

require a sufficient number of transitions to be trained properly.

In this setting, DGA and RC are promising. Indeed, although DGA needs transitions to be trained, we showed that much

less data is required than for any other method in order to obtain good results. Moreover, we do not necessarily need to

see complete transitions in the trajectories. Only certain relevant areas in the phase space need to be explored and sampled

(although determining which ones precisely is not obvious in general), which can be done by stacking shorter trajectories that665

do not necessarily transition from one state to another. This approach is the one developed in Finkel et al. (2021). It consists in

first simulating a very long control trajectory and then drawing N samples from it. These samples will serve as initial conditions

for short trajectories on which DGA is then applied. Finkel et al. (2021) show very good agreement between this approach and

a Monte-Carlo approach, all the more so as their approach allows estimating the committor on many states at the same time and

can be parallelized. RC may also be interesting because at its core lies a simple linear regression. It is thus the only method that670

makes no assumption on transitions: the training committor will be fitted whatever the value of the probabilities. The problem,

on the other hand, is that we need to compute the committor for training, which is what we are trying to avoid because of its

25

cost. It might then be interesting to use a combined approach: for instance, compute a first estimate of the committor using

DGA and use it to train RC.

Another important question that arises is how the computation time of these methods scale with an increasing number675

of dimensions. This problem is equally important as the scaling of the computation time with the size of the dataset in the

(realistic) case where we have a model with very high dimension, because it often implies we cannot compute long trajectories.

AMC involves the model dimension during the computation of the analogues (for the train and test phase). Then the using a

Kd-tree does not show significant improvement over a brute force search. But after this step, AMC only deals with the number

assigned to every analog, and thus only depends on the size of the dataset. DGA only consists of multiplying that contain680

the modes, which take their values in R, hence its complexity only depends on the size of the dataset. However, the model

dimension plays an important role when it comes to computing the modes. Indeed, the method provided by Thiede et al. (2019)

implies computing the distance between every sample, which is increasingly expensive as the dimension of the state-space

grows larger. For both FFNN and RC, the model dimension is an important bottleneck. Indeed, the first layer of a FFNN

contains as many neurons as input variables. In a high-dimensional space, the weight matrices may then become very large,685

thus impacting the cost of their numerous multiplications and of the gradient back-propagation. However, if we are to work

with complex climate models, an obvious way to dramatically decrease the number of weights of the network while improving

its accuracy is to use Convolutional Neural Networks. Since they are designed to work with 2D data and to extract spatial

patterns, they are much better suited to this kind of problems. This dimensional bottleneck is even worse for RC. Indeed, the

size of the reservoir involves a binomial coefficient that depends on the model dimension and thus grows very fast (see Section690

3.1.5 for the scaling of RC’s training and testing times with the size of the reservoir). In practice, RC would probably be very

difficult to use with high-dimensional models.

The next step of this work would be to combine these data-driven estimates of the committor function with TAMS to

actually compute rare-event probabilities. However, it requires some extension of the present study. We already mentioned the

problem of regimes where long trajectories contain only few to no transitions. Moreover, we may want to compute transition695

probabilities for different parameters of the model, as is done by Castellana et al. (2019) for the AMOC box model or by

Baars et al. (2021) with the model from den Toom et al. (2011). In this case, the dynamics of the model change with each set

of parameters and we have to take it into account during the training of the method we will be using. Such an adaptation to

changing dynamics has recently been implemented for RC by Kong et al. (2021) but we can also think of other approaches.

For instance, FFNN can be combined with transfer learning: it consists in first training it in a regime where we have a lot of700

data and the estimation is easy. Then, we use that learnt knowledge to (warm) start the training in a regime where transitions

are much less probable. Jacques-Dumas et al. (2022) have shown that this method at least reduces the computation time for the

prediction of extreme events.

A related approach consists in building a feedback loop between a rare-event algorithm and a data-driven committor function

estimation method. The estimate of the committor yielded by the latter is used by the former to generate more data in order705

to improve the committor estimate. This idea has already been implemented by Nemoto et al. (2016) and more recently by

Lucente et al. (2022b). The latter in particular have coupled AMC with AMS, testing for the first time this approach in a

26

model with complex dynamics. Another interesting work is that of Du (2020), where AMS was coupled to Mondrian Forests, a

relatively new type of random forests method (Lakshminarayanan et al., 2014) that can also be used to estimate the committor

function. The advantage of Mondrian Forests is that this allows to apply online learning: new data samples can be provided710

one after the other to incrementally improve the estimation of the committor and the order in which they are provided does not

matter. The power of this property is clear when it comes to coupling with TAMS: the committor estimation can be improved

every time a new clone trajectory is simulated. However, all these coupling approaches have until now only been applied to

low-dimensional systems and might prove computationally expensive in the case of high-dimensional models.

Another extension of this work would be to consider non-autonomous dynamics. Once again, this extension can be achieved715

from several viewpoints. Firstly, if the objective is to compute the probability that the AMOC collapses within a certain time

frame, Lucente (2021) proposes to add a time dimension to the system’s phase space. Suppose the goal is to compute the

probability to reach a set A of the phase space before another set B and before a time Tmax. Either a time-independent

committor can be used in combination with TAMS or the problem can be reformulated as: the probability to reach a set A

of the newly-expanded phase space before another set B̃ =B ∪{t | t≥ Tmax}. This new formulation overrides of course the720

use of TAMS but may pose additional issues concerning the training data. The second viewpoint is more general: it consists

in studying the committor in a non-autonomous system where either the equations explicitly depend on time or the sets A and

B themselves depend on time. Helfmann et al. (2020) and Sikorski et al. (2021) propose frameworks to work with such time-

dependent committor functions. Such a generalization is especially of interest when working on climate problems involving

global warming.725

The long-term objective of such a study and extensions would be to apply TAMS and committor function estimation to much

more complex models, such as Earth system Models of Intermediate Complexity (EMIC) or even General Circulation Models

(GCM). Their complexity are nowhere comparable to the models featured in this work, with a dimensionality of the order

of at least 106. By looking at partial differential equations, or even intermediate complexity climate models, Bouchet et al.

(2019) and Ragone et al. (2018) have already applied TAMS on such high-dimensional systems. However, thanks to a simpler730

phenomenology, they could design suitable score functions and TAMS has never been used in combination with committor

functions in these cases. Extending the methods presented here will be a real challenge, regarding for instance optimization and

the limited amount of data available. It is, however, an interesting scientific perspective to gain more insight into these models’

dynamics through the probability of occurrence of rare events.

Appendix A: AMOC box model735

The equations of the AMOC model are:

27

d(VtSt)

dt
= qs(θ(qs)Sts + θ(−qs)St)+ quSd

− θ(qn)qnSt + rs(Sts −St)

+ rn(Sn −St)+ 2EsS0 (A1)

d(VtsSts)

dt
= qEkSs − qeSts − qs(θ(qs)Sts + θ(−qs)St)

+ rs(St −Sts) (A2)

740

d(VnSn)

dt
= θ(qn)qn(St −Sn)+ rn(St −Sn)

− (Es +Ea)S0 (A3)

d(VsSs)

dt
= qs(θ(qs)Sd + θ(−qs)Ss)+ qeSts

− qEkSs − (Es −Ea)S0 (A4)

(A+
LxA

Ly

2
)
dD

dt
= qu + qEk − qe − θ(qn)qn (A5)745

S0V0 = VnSn +VdSd +VtSt +VtsSts +VsSs (A6)

The function θ(x) is here defined as the Heaviside function, equal to 1 if x > 0 and 0 otherwise. The flows between the

boxes are defined as:

qEk =
τLxS

ρ0|fS |
(A7)750

qe =AGM
LxA

Ly
D (A8)

qs = qEk − qe (A9)

qn = η
ρn − ρts

ρ0
D2 (A10)

qu =
κA

D
(A11)

28

Table A1. Reference constants and parameters of the AMOC model.

Parameters used in the model

V0 3× 1017 m3 Total volume of the basin

Vn 3× 1015 m3 Volume of the Northern box

Vs 9× 1015 m3 Volume of the Southern box

A 1× 1014 m2 Horizontal area of the Atlantic pycnocline

LxA 1× 107 m Zonal extent of the Atlantic Ocean at its Southern end

Ly 1× 106 m Meridional extent of the frontal region of the Southern Ocean

LxS 3× 107 m Zonal extent of the Southern Ocean

τ 0.1 N m−2 Average zonal wind stress amplitude

AGM 1700 m2 s−1 Eddy diffusivity

fS −10−4 s−1 Coriolis parameter

ρ0 1027.5 kg m−3 Reference density

κ 10−5 m2 s−1 Vertical diffusivity

S0 35 psu Reference salinity

T0 5 K Reference temperature

Tn 5 K Temperature of the Northern box

Tts 10 K Temperature of the box ts

η 3× 104 m s−1 Hydraulic constant

α 2× 10−4 K−1 Thermal expansion coefficient

β 8× 10−4 psu−1 Haline contraction coefficient

rs 1× 107 m3 s−1 Transport by the Southern subtropical gyre

rn 5× 106 m3 s−1 Transport by the Northern subtropical gyre

Es 0.17× 106 m3 s−1 Symmetric freshwater flux

where the density of the box i is defined as:755

ρi = ρ0(1−α(Ti −T0)+β(Si −S0)) (A12)

The volumes of the boxes t, ts and d are defined as:

Vt =AD (A13)

Vts =
LxALy

D
(A14)

Vd = V0 −Vt −Vts −Vn −Vs (A15)760

Finally, we present in Table A1 the constants and values of the parameters used here.

29

Table B1. Fixed parameters of the double-gyre model.

c1 c2 c3 c4 c5 c6 c7

0.020736 0.018337 0.015617 0.031977 0.036673 0.314802 0.046850

µ1 µ2 µ3 µ4

0.0128616 0.0211107 0.0318615 0.0427787

Appendix B: Double-gyre model

The stream function of the double-gyre is written as

Ψ(x,y, t) =

4∑
k=1

Ak(t)Φk(x,y) (B1)

where the coefficients Ak(t) are computed from765

π∫
0

π∫
0

[Eq. (2)]Φkdxdy (B2)

As a result, the mode amplitudes Ak obey the following set of ODEs:

dA1

dt
= c1A1A2 + c2A2A3 + c3A3A4 −µ1A1 (B3)

dA2

dt
= c4A2A4 + c5A1A3 − c1A

2
1 −µ2A2 + c6σ(1+ γζ) (B4)

dA3

dt
= c7A1A4 − (c2 + c5)A1A2 −µ3A3 (B5)770

dA4

dt
=−c4A

2
2 − (c3 + c7)A1A3 −µ4A4 (B6)

where white noise ζ(t) is added and the fixed parameters are shown in Table B1.

Appendix C: Nonlinear feature vector in RC

In this appendix, we explain how Gauthier et al. (2021) compute the feature vector X in the RC approach. X consists in three

parts: c is a constant always taken to 1, X lin is the linear part of the feature vector and Xnonlin is its nonlinear part. They are775

concatenated (
⊕

operation) so that:

X = c
⊕

X lin

⊕
Xnonlin (C1)

Firstly, X lin is a concatenation of the current time step and k previous time steps, with a stride of s. Let the input trajectory

U at the time step t be of the form U t = [ui ∀i ∈ {1, ...,M}]. X lin at the time step t is then defined by:

X lin,t =U t

⊕
U t−1×s

⊕
...
⊕

U t−(k−1)×s (C2)780

30

Table C1. Parameters of the New-Generation Reservoir Network for both models.

Model k s p α

AMOC 2 1 4 10−9

Double-gyre 2 1 6 10−6

Since U ∈ RM×T , then X lin ∈ RMk×(T−ks). The first ks timesteps of the trajectory are the warm-up period, needed to create

the first point of X lin.

Secondly, Xnonlin is defined as a nonlinear function of X lin. Gauthier et al. (2021), set Xnonlin to contain all unique

monomials that can be obtained from the outer product X lin

⊗
X lin. For instance, if X lin,t = [x,y,z], then Xnonlin,t =

[x2,xy,xz,y2,yz,z2].785

Gauthier et al. (2021) then generalize this definition of Xnonlin,t. A new parameter, p, is introduced, corresponding to the

maximum degree of the monomials in the nonlinear vector. Xnonlin is now defined as:

Xnonlin =X lin

⊗
X lin

⊗
...
⊗

X lin (C3)

where X lin appears p times.

In the general case, the shape of Xnonlin is thus given by the binomial factor B =
(
Mk+p−1

p

)
. As a result, Xnonlin ∈790

RB×(T−ks) and then X ∈ R(1+Mk+B)×(T−ks).

Appendix D: Basis functions in the DGA

The basis functions are computed from a transition matrix, itself computed from a reactive trajectory:

Pmn =
Kϵ(xm,xn)∑
nKϵ(xm,xn)

(D1)

where Kϵ is a kernel exponentially decreasing as xm and xn move further away at a rate depending on ϵ. The submatrix of P795

where xm and xn belong to (A∪B)c is then extracted and its M eigenvectors φi with the largest eigenvalue are computed.

The basis functions ϕi(x), i ∈ [1,M] are then defined as:

ϕi(x) =

φi(x) for x ∈ (A∪B)c

0 otherwise
(D2)

Thiede et al. (2019) also provides a method to compute the kernel Kϵ(xm,xn). We will simply show the equations ; more

details can be found in (Berry and Harlim, 2014; Berry et al., 2015; Thiede et al., 2019). The kernel itself is defined by:800

Kϵ(xm,xn) = exp

(
−||xm −xn||2

ϵk(xm)−1/dk(xn)−1/d

)
(D3)

31

Table D1. Parameters of the Dynamical Galerkin Approximation for both models.

Model N d ϵ0 ϵ

Cimatoribus 10 0.45 215 2−15

Double-gyre 200 0.75 25 2−5

where

k(xm) =
(2πϵ0)

−d/2

Nζ0(xm)d

N∑
n=1

K0(xm,xm, ϵ0) (D4)

K0(xm,xn, ϵ0) = exp

(
−||xm −xn||2

2ϵ0ζ0(xm)ζ0(xn)

)
(D5)

ζ0(xm) =
1

k0

k0∑
l=1

||xm −xI(m,l)||2 (D6)805

d,ϵ0 and ϵ are parameters that we optimized by hand (see Table D1) and xI(m,l) refers to the l-th nearest neighbour of xm.

Following (Berry and Harlim, 2014; Thiede et al., 2019), we also found k0 = 7 to be a suitable value.

Finally, Thiede et al. (2019) provides a fast method to extend the modes computed on a training set. Suppose the kernel

Kϵ(xm,xn) has been computed for every point xm,xn of the training set. It allowed to compute as well every mode ϕi

(associated to an eigenvalue λi) on each of these points. To extend the mode i on a new point y of the phase space, the810

following formula can be used:

ϕi(y) =
1

λi

∑
mKϵ(xm,y)ϕi(xm)∑

mKϵ(xm,y)
(D7)

Code availability. The Python implementation of both models, all methods and the code producing the result plots can be found at the

following adress: https://doi.org/10.5281/zenodo.7380724

Author contributions. All authors conceived the study. VJD carried out the computations, generated all figures, and wrote the first draft of815

the paper. All authors contributed to the final paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under

the Marie Sklodowska-Curie Grant Agreement No. 956170. The work of F. Bouchet was supported by the ANR grant SAMPRACE, project

ANR-20-CE01-0008-01.820

32

References

Altman, N. S.: An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression, The American Statistician, 46, 175–185,

https://doi.org/10.1080/00031305.1992.10475879, 1992.

Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and

Lenton, T. M.: Exceeding 1.5◦C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, 2022.825

Baars, S., Castellana, D., Wubs, F., and Dijkstra, H.: Application of adaptive multilevel splitting to high-dimensional dynamical systems,

Journal of Computational Physics, 424, 109 876, https://doi.org/https://doi.org/10.1016/j.jcp.2020.109876, 2021.

Benedetti, R.: Scoring Rules for Forecast Verification, Monthly Weather Review - MON WEATHER REV, 138,

https://doi.org/10.1175/2009MWR2945.1, 2010.

Bentley, J. L.: Multidimensional Binary Search Trees Used for Associative Searching, Commun. ACM, 18, 509–517,830

https://doi.org/10.1145/361002.361007, 1975.

Berry, T. and Harlim, J.: Variable Bandwidth Diffusion Kernels, https://doi.org/10.48550/ARXIV.1406.5064, 2014.

Berry, T., Giannakis, D., and Harlim, J.: Nonparametric forecasting of low-dimensional dynamical systems, Physical Review E, 91,

https://doi.org/10.1103/physreve.91.032915, 2015.

Bouchet, F., Rolland, J., and Simonnet, E.: Rare event algorithm links transitions in turbulent flows with activated nucleations, Physical835

review letters, 122, 074 502, 2019.

Bryden, H. L., King, B. A., and McCarthy, G. D.: South Atlantic overturning circulation at 24?S, Journal of Marine Research, 69, 38–56,

https://eprints.soton.ac.uk/205557/, 2011.

Castellana, D., Baars, S., Wubs, F. W., and Dijkstra, H. A.: Transition Probabilities of Noise-induced Transitions of the Atlantic Ocean

Circulation, Scientific Reports, 9, 20284, https://doi.org/10.1038/s41598-019-56435-6, 2019.840

Cérou, F., Delyon, B., Guyader, A., and Rousset, M.: On the Asymptotic Normality of Adaptive Multilevel Splitting, SIAM/ASA Journal on

Uncertainty Quantification, 7, 1–30, https://doi.org/10.1137/18M1187477, 2019.

Chen, Y., Hoskins, J., Khoo, Y., and Lindsey, M.: Committor functions via tensor networks, Journal of Computational Physics, 472, 111 646,

https://doi.org/https://doi.org/10.1016/j.jcp.2022.111646, 2023.

Cimatoribus, A. A., Drijfhout, S. S., and Dijkstra, H. A.: Meridional overturning circulation: stability and ocean feedbacks in a box model,845

Climate Dynamics, 42, 311–328, https://doi.org/10.1007/s00382-012-1576-9, 2014.

Cérou, F. and Guyader, A.: Adaptive Multilevel Splitting for Rare Event Analysis, Stochastic Analysis and Applications, 25, 417–443,

https://doi.org/10.1080/07362990601139628, 2007.

de Vries, P. and Weber, S. L.: The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional

overturning circulation, Geophysical Research Letters, 32, https://doi.org/https://doi.org/10.1029/2004GL021450, 2005.850

den Toom, M., Dijkstra, H. A., and Wubs, F. W.: Spurious multiple equilibria introduced by convective adjustment, Ocean Modelling, 38,

126–137, https://doi.org/10.1016/j.ocemod.2011.02.009, 2011.

Dijkstra, H. A.: Characterization of the multiple equilibria regime in a global ocean model, Tellus, 59A, 695–705, 2007.

Du, Q.: Sequential Monte Carlo and Applications in Molecular Dynamics, Theses, Sorbonne Université, https://tel.archives-ouvertes.fr/

tel-02969115, 2020.855

Elber, R., Bello-Rivas, J. M., Ma, P., Cardenas, A. E., and Fathizadeh, A.: Calculating Iso-Committor Surfaces as Optimal Reaction Coordi-

nates with Milestoning, Entropy (Basel, Switzerland), 19, 219, https://doi.org/10.3390/e19050219, 2017.

33

https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109876
https://doi.org/10.1175/2009MWR2945.1
https://doi.org/10.1145/361002.361007
https://doi.org/10.48550/ARXIV.1406.5064
https://doi.org/10.1103/physreve.91.032915
https://eprints.soton.ac.uk/205557/
https://doi.org/10.1038/s41598-019-56435-6
https://doi.org/10.1137/18M1187477
https://doi.org/https://doi.org/10.1016/j.jcp.2022.111646
https://doi.org/10.1007/s00382-012-1576-9
https://doi.org/10.1080/07362990601139628
https://doi.org/https://doi.org/10.1029/2004GL021450
https://doi.org/10.1016/j.ocemod.2011.02.009
https://tel.archives-ouvertes.fr/tel-02969115
https://tel.archives-ouvertes.fr/tel-02969115
https://tel.archives-ouvertes.fr/tel-02969115
https://doi.org/10.3390/e19050219

Finkel, J., Webber, R. J., Gerber, E. P., Abbot, D. S., and Weare, J.: Learning Forecasts of Rare Stratospheric Transitions from Short Simula-

tions, Monthly Weather Review, 149, 3647 – 3669, https://doi.org/10.1175/MWR-D-21-0024.1, 2021.

Freidlin, M. I. and Wentzell, A. D.: Random Perturbations, pp. 15–43, Springer New York, New York, NY, https://doi.org/10.1007/978-1-860

4612-0611-8_2, 1998.

Garzoli, S., Baringer, M., Dong, S., Perez, R., and Yao, Q.: South Atlantic meridional fluxes, Deep Sea Research Part I: Oceanographic

Research Papers, 71, 21–32, https://doi.org/10.1016/j.dsr.2012.09.003, 2013.

Gauthier, D. J., Bollt, E., Griffith, A., and Barbosa, W. A. S.: Next generation reservoir computing, Nature Communications, 12, 5564,

https://doi.org/10.1038/s41467-021-25801-2, 2021.865

Gonon, L. and Ortega, J.-P.: Reservoir Computing Universality With Stochastic Inputs, IEEE Transactions on Neural Networks and Learning

Systems, 31, 100–112, https://doi.org/10.1109/TNNLS.2019.2899649, 2020.

He, K., Zhang, X., Ren, S., and Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, in:

2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034, https://doi.org/10.1109/ICCV.2015.123, 2015.

Helfmann, L., Borrell, E. R., Schütte, C., and Koltai, P.: Extending Transition Path Theory: Periodically Driven and Finite-Time Dynamics,870

Journal of Nonlinear Science, 30, 3321–3366, https://doi.org/10.1007/s00332-020-09652-7, 2020.

Jacques-Dumas, V., Ragone, F., Borgnat, P., Abry, P., and Bouchet, F.: Deep Learning-Based Extreme Heatwave Forecast, Frontiers in

Climate, 4, https://doi.org/10.3389/fclim.2022.789641, 2022.

Jaeger, H.: The" echo state" approach to analysing and training recurrent neural networks-with an erratum note’, Bonn, Germany: German

National Research Center for Information Technology GMD Technical Report, 148, 2001.875

Jiang, S., Jin, F.-F., and Ghil, M.: Multiple Equilibria, Periodic, and Aperiodic Solutions in a Wind-Driven, Double-Gyre,

Shallow-Water Model, Journal of Physical Oceanography - J PHYS OCEANOGR, 25, 764–786, https://doi.org/10.1175/1520-

0485(1995)025<0764:MEPAAS>2.0.CO;2, 1995.

Khoo, Y., Lu, J., and Ying, L.: Solving for high dimensional committor functions using artificial neural networks,

https://doi.org/10.48550/ARXIV.1802.10275, 2018.880

Kong, L.-W., Fan, H.-W., Grebogi, C., and Lai, Y.-C.: Machine learning prediction of critical transition and system collapse, Phys. Rev.

Research, 3, 013 090, https://doi.org/10.1103/PhysRevResearch.3.013090, 2021.

Lakshminarayanan, B., Roy, D. M., and Teh, Y. W.: Mondrian Forests: Efficient Online Random Forests,

https://doi.org/10.48550/ARXIV.1406.2673, 2014.

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth’s climate885

system, Proceedings of the National Academy of Sciences, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.

Lestang, T., Ragone, F., Bréhier, C.-E., Herbert, C., and Bouchet, F.: Computing return times or return periods with rare event algorithms,

Journal of Statistical Mechanics: Theory and Experiment, 2018, 043 213, https://doi.org/10.1088/1742-5468/aab856, 2018.

Lguensat, R., Tandeo, P., Ailliot, P., Pulido, M., and Fablet, R.: The Analog Data Assimilation, Monthly Weather Review, 145, 4093–4107,

https://doi.org/10.1175/MWR-D-16-0441.1, 2017.890

Li, Q., Lin, B., and Ren, W.: Computing committor functions for the study of rare events using deep learning, The Journal of Chemical

Physics, 151, 054 112, https://doi.org/10.1063/1.5110439, 2019.

Lorenz, E. N.: Atmospheric Predictability as Revealed by Naturally Occurring Analogues, Journal of Atmospheric Sciences, 26, 636 – 646,

https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2, 1969a.

Lorenz, E. N.: Three approaches to atmospheric predictability, Bull. Amer. Meteor. Soc, 50, 349, 1969b.895

34

https://doi.org/10.1175/MWR-D-21-0024.1
https://doi.org/10.1007/978-1-4612-0611-8_2
https://doi.org/10.1007/978-1-4612-0611-8_2
https://doi.org/10.1007/978-1-4612-0611-8_2
https://doi.org/10.1016/j.dsr.2012.09.003
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1109/TNNLS.2019.2899649
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1007/s00332-020-09652-7
https://doi.org/10.3389/fclim.2022.789641
https://doi.org/10.1175/1520-0485(1995)025%3C0764:MEPAAS%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025%3C0764:MEPAAS%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025%3C0764:MEPAAS%3E2.0.CO;2
https://doi.org/10.48550/ARXIV.1802.10275
https://doi.org/10.1103/PhysRevResearch.3.013090
https://doi.org/10.48550/ARXIV.1406.2673
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1088/1742-5468/aab856
https://doi.org/10.1175/MWR-D-16-0441.1
https://doi.org/10.1063/1.5110439
https://doi.org/10.1175/1520-0469(1969)26%3C636:APARBN%3E2.0.CO;2

Lucente, D.: Predicting probabilities of climate extremes from observations and dynamics, Ph.D. thesis, ENS de Lyon, 2021.

Lucente, D., Duffner, S., Herbert, C., Rolland, J., and Bouchet, F.: MACHINE LEARNING OF COMMITTOR FUNCTIONS FOR PRE-

DICTING HIGH IMPACT CLIMATE EVENTS, in: Climate Informatics, Paris, France, https://hal.archives-ouvertes.fr/hal-02322370,

2019.

Lucente, D., Herbert, C., and Bouchet, F.: Committor Functions for Climate Phenomena at the Predictability Margin: The Example of El900

Niño–Southern Oscillation in the Jin and Timmermann Model, Journal of the Atmospheric Sciences, 79, 2387–2400, 2022a.

Lucente, D., Rolland, J., Herbert, C., and Bouchet, F.: Coupling rare event algorithms with data-based learned committor functions us-

ing the analogue Markov chain, Journal of Statistical Mechanics: Theory and Experiment, 2022, 083 201, https://doi.org/10.1088/1742-

5468/ac7aa7, 2022b.

Lukoševičius, M. and Jaeger, H.: Reservoir computing approaches to recurrent neural network training, Computer Science Review, 3, 127–905

149, https://doi.org/https://doi.org/10.1016/j.cosrev.2009.03.005, 2009.

Miloshevich, G., Cozian, B., Abry, P., Borgnat, P., and Bouchet, F.: Probabilistic forecasts of extreme heatwaves using convolutional neural

networks in a regime of lack of data, https://doi.org/10.48550/ARXIV.2208.00971, 2022.

Nemoto, T., Bouchet, F., Jack, R. L., and Lecomte, V.: Population-dynamics method with a multicanonical feedback control, Physical Review

E, 93, https://doi.org/10.1103/physreve.93.062123, 2016.910

Noé, F. and Rosta, E.: Markov Models of Molecular Kinetics, The Journal of Chemical Physics, 151, 190 401,

https://doi.org/10.1063/1.5134029, 2019.

Platzer, P., Yiou, P., Naveau, P., Filipot, J.-F., Thiébaut, M., and Tandeo, P.: Probability Distributions for Analog-To-Target Distances, Journal

of the Atmospheric Sciences, 78, 3317–3335, https://doi.org/10.1175/jas-d-20-0382.1, 2021a.

Platzer, P., Yiou, P., Naveau, P., Tandeo, P., Zhen, Y., Ailliot, P., and Filipot, J.-F.: Using local dynamics to explain analog forecasting of915

chaotic systems, Journal of the Atmospheric Sciences, https://doi.org/10.1175/jas-d-20-0204.1, 2021b.

Prinz, J.-H., Held, M., Smith, J. C., and Noé, F.: Efficient Computation, Sensitivity, and Error Analysis of Committor Probabilities for

Complex Dynamical Processes, Multiscale Modeling & Simulation, 9, 545–567, https://doi.org/10.1137/100789191, 2011.

Ragone, F., Wouters, J., and Bouchet, F.: Computation of extreme heat waves in climate models using a large deviation algorithm, Proceedings

of the National Academy of Sciences, 115, 24–29, https://doi.org/10.1073/pnas.1712645115, 2018.920

Rahmstorf, S.: On the freshwater forcing and transport of the Atlantic thermohaline circulation, Climate Dynamics, 12, 799–811,

https://doi.org/10.1007/s003820050144, 1996.

Rolland, J., Bouchet, F., and Simonnet, E.: Computing Transition Rates for the 1-D Stochastic Ginzburg–Landau–Allen–Cahn Equation for

Finite-Amplitude Noise with a Rare Event Algorithm, Journal of Statistical Physics, 162, 277–311, https://doi.org/10.1007/s10955-015-

1417-4, 2015.925

Schütte, C., Fischer, A., Huisinga, W., and Deuflhard, P.: A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo,

Journal of Computational Physics, 151, 146–168, https://doi.org/https://doi.org/10.1006/jcph.1999.6231, 1999.

Sikorski, A., Weber, M., and Schütte, C.: The Augmented Jump Chain, Advanced Theory and Simulations, 4, 2000 274,

https://doi.org/https://doi.org/10.1002/adts.202000274, 2021.

Simonnet, E., Ghil, M., and Dijkstra, H.: Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation, Journal of Marine Re-930

search, 63, https://doi.org/10.1357/002224005774464210, 2005.

Simonnet, E., Rolland, J., and Bouchet, F.: Multistability and rare spontaneous transitions in barotropic β-plane turbulence, Journal of the

Atmospheric Sciences, https://doi.org/10.1175/jas-d-20-0279.1, 2021.

35

https://hal.archives-ouvertes.fr/hal-02322370
https://doi.org/10.1088/1742-5468/ac7aa7
https://doi.org/10.1088/1742-5468/ac7aa7
https://doi.org/10.1088/1742-5468/ac7aa7
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.48550/ARXIV.2208.00971
https://doi.org/10.1103/physreve.93.062123
https://doi.org/10.1063/1.5134029
https://doi.org/10.1175/jas-d-20-0382.1
https://doi.org/10.1175/jas-d-20-0204.1
https://doi.org/10.1137/100789191
https://doi.org/10.1073/pnas.1712645115
https://doi.org/10.1007/s003820050144
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/https://doi.org/10.1006/jcph.1999.6231
https://doi.org/https://doi.org/10.1002/adts.202000274
https://doi.org/10.1357/002224005774464210
https://doi.org/10.1175/jas-d-20-0279.1

Stommel, H.: Thermohaline Convection with Two Stable Regimes of Flow, Tellus, 13, 224–230,

https://doi.org/https://doi.org/10.1111/j.2153-3490.1961.tb00079.x, 1961.935

Strahan, J., Antoszewski, A., Lorpaiboon, C., Vani, B. P., Weare, J., and Dinner, A. R.: Long-Time-Scale Predictions from Short-

Trajectory Data: A Benchmark Analysis of the Trp-Cage Miniprotein, Journal of Chemical Theory and Computation, 17, 2948–2963,

https://doi.org/10.1021/acs.jctc.0c00933, pMID: 33908762, 2021.

Tantet, A., van der Burgt, F. R., and Dijkstra, H. A.: An early warning indicator for atmospheric blocking events using transfer operators,

Chaos: An Interdisciplinary Journal of Nonlinear Science, 25, 036 406, https://doi.org/10.1063/1.4908174, 2015.940

Thiede, E. H., Giannakis, D., Dinner, A. R., and Weare, J.: Galerkin approximation of dynamical quantities using trajectory data, The Journal

of Chemical Physics, 150, 244 111, https://doi.org/10.1063/1.5063730, 2019.

Yiou, P.: AnaWEGE: a weather generator based on analogues of atmospheric circulation, Geoscientific Model Development, 7, 531–543,

https://doi.org/10.5194/gmd-7-531-2014, 2014.

Yiou, P. and Déandréis, C.: Stochastic ensemble climate forecast with an analogue model, Geoscientific Model Development, 12, 723–734,945

https://doi.org/10.5194/gmd-12-723-2019, 2019.

36

https://doi.org/https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://doi.org/10.1021/acs.jctc.0c00933
https://doi.org/10.1063/1.4908174
https://doi.org/10.1063/1.5063730
https://doi.org/10.5194/gmd-7-531-2014
https://doi.org/10.5194/gmd-12-723-2019

