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Abstract. The assimilation of data from Earth observation satellites into numerical models is considered as the path forward

to estimate snow cover distribution in mountain catchments, providing accurate information on the mountainous snow water

equivalent (SWE). The land surface temperature (LST) can be observed from space, but  its  potential to improve SWE

simulations remains underexplored. This is likely due to the insufficient temporal or spatial resolution offered by the current

thermal infrared (TIR) missions. However, three planned missions will provide global-scale TIR data at much higher spatio-

temporal resolution in the coming years.

To  investigate  the  value  of  TIR  data  to  improve  SWE  estimation,  we  developed  a  synthetic  data  assimilation  (DA)

experiment at five snow-dominated sites covering a latitudinal gradient in the northern hemisphere. We generated synthetic

true LST and SWE series by forcing an energy-balance snowpack model with the ERA5-Land reanalysis. We used this

synthetic  true LST  to  recover  the  synthetic  true SWE from a degraded version of  ERA5-Land.  We defined different

observation scenarios to emulate the revisiting times of Landsat 8 (16 days) and the Thermal infraRed Imaging Satellite for

High-resolution Natural resource Assessment (TRISHNA) (3 days), while accounting for cloud cover. We replicated the

experiments 100 times at each experimental site to assess the robustness of the assimilation process with respect to cloud

cover under both revisiting scenarios.. We performed the assimilation using two different approaches: a sequential scheme

(particle filter) and a smoother (particle batch smoother).

The results show that LST DA using the smoother reduced the normalized Root Mean Square Error (nRMSE) of the SWE

simulations from 61% (open loop) to 17% and 13% for 16 day revisit and 3 day revisit respectively, in the absence of clouds.

We found similar but higher nRMSE values by removing observations due to cloud cover but with a substantial increase of

the standard deviation of the nRMSE of the replicates, highlighting the importance of revisiting times in the stability of the

assimilation performance. The smoother largely outperformed the particle filter algorithm, suggesting that the capability of a

smoother to propagate the information along the season is key to exploit LST information for snow modeling. Finally, we

have compared the benefit of assimilating LST with synthetic observations of fractional snow cover area (FSCA). LST DA

performed better than FSCA DA in all the study sites, suggesting that the information provided by LST is not limited to the
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duration of the snow season. These results suggest that  the LST data assimilation has an underappreciated potential  to

improve snowpack simulations and highlight the value of upcoming TIR missions to advance snow hydrology.

1 Introduction

The seasonal snowpack plays a key role in many ecological and hydrological processes worldwide (Barnett et al., 2005).

Due to its high albedo and insulating capabilities, the extensive snow-covered area of the northern hemisphere influences the

Earth climate system (Henderson et al., 2018). In mountain regions, the seasonal snowpack is also an important source of

runoff during the summer when the water demand peaks. Hence, an accurate knowledge of the snowpack conditions has an

important economic value (Sturm et al., 2017). The snow cover is also a source of natural hazards such as floods caused by

rain-on-snow events  or  snow avalanches,  events  that  are expected to  increase  due  to  the  impacts  of  climate  warming

(Ballesteros-Cánovas et al., 2018; Musselman et al., 2018).

Despite its importance, monitoring the snowpack remains challenging for both scientists and water management agencies.

The variable nature of the snowpack makes it challenging to deploy and maintain maintain dense enough ground based

(Kinar & Pomeroy, 2015).  Therefore,  snow hydrologists have developed methods to take advantage of  satellite  remote

sensing (Fayad et al., 2017; Condom et al., 2020) since the beginning of the Landsat programme (Rango & Martinec, 1979).

Yet, the application of remote sensing in snow hydrology remains hindered by the lack of direct observations of the snow

water equivalent (SWE) in mountain regions (Dozier et al., 2016). 

Numerical  models  allow  simulating  many  snowpack  state  variables,  including  the  SWE.  However,  their  accuracy  is

primarily constrained by the large uncertainty of the meteorological forcing (Raleigh et al., 2015). Recent studies suggest

that data assimilation (DA) of remotely sensed products is the path forward to estimate the spatial distribution of relevant

snowpack characteristics (Aalstad et al., 2018; Charrois et al., 2016; Cortés & Margulis, 2017; Margulis et al., 2016; Smyth

et al., 2020; Stigter et al., 2017). Using DA techniques it is possible to fuse model simulations and multiple remote sensing

datasets to improve the snowpack simulations. In particular, the snow cover area was assimilated in many case studies due to

its widespread availability (e.g. Baba et al., 2018, Alonso-González et al., 2021). Yet, the extent of the snow cover provides

no direct information on the internal state of the snowpack and is blind to snowpack changes when the pixel is fully snow

covered (De Lannoy et al., 2012). 

The ice-surface temperature (IST), is a key state variable for simulating the snowpack evolution. Physically-based snowpack

models solve the energy balance equation iteratively along the time dimension, estimating the IST at each timestep of the

model (Essery, 2015; Liston & Elder, 2006). Also it is a key parameter to estimate the emitted energy as outgoing longwave

radiation. The estimation of the IST allows detecting the occurrence of surface melting events, as when the IST reaches 0°C

all the added energy is converted to melt. Thus, assimilating IST may provide key information about the timing of the

melting events.  Also,  the assimilation of  the land surface temperature  (LST) (i.e.  the temperature of  the  earth surface

independently if it is snow covered) may improve the snowpack simulations by different mechanisms. The IST is physically
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bound to the melting point temperature, since once the snow melts, the LST can exceed 0°C. Thus the assimilation of the

LST may indirectly provide information about the snow cover area too. Also, it should be possible to improve the snow

simulations by retrieving thermal information when there is no sunlight, like during the night time or during the polar night

at high latitudes. A previous study showed that IST DA could potentially improve the surface ice mass balance simulations

of the Greenland ice sheet (Navari et al., 2016), fusing synthetic IST estimations with the CROCUS snow model. On the

other hand, previous research suggested little improvements in the mass simulations after assimilating LST simulations

retrieved from the Meteosat Second Generation (MSG) (~6km spatial resolution) in the Alps (Piazzi et al. 2019). Also, the

rapid variation of LST at hourly timescales can make it difficult to assimilate this variable using particle filters (Piazzi et al.

2018).  However,  the coarse resolution of the LST products of MSG prevents its  use in complex terrain, and the rapid

variations in the LST could be addressed using different algorithms. Thus, more research is needed to assess the potential of

high resolution LST DA.

The thermal imagery already available only offers coarse resolution for the snow applications over complex terrain (MODIS,

Sentinel-3) or long revisiting times (Landsat). This has probably prevented the study of the impact of LST DA, although

recent research suggests that LST can provide useful information to retrieve internal snowpack properties (Colombo et al.,

2019), a capability that can be exploited from satellites (Colombo et al.,  2023). The availability of high spatiotemporal

resolution LST products will be improved in the short term with the appearance of new satellites, such as the French-Indian

mission Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA) (Lagouarde et al.,

2018). TRISHNA is expected to provide surface temperature measurements at 60 m spatial resolutions every 3 days at the

equator, with an increasing revisiting time towards the poles. Also, given the agenda of the space agencies high resolution

thermal infrared retrievals will be readily accessible in the near future. For instance the LSTM (Copernicus Land Surface

Temperature  Monitoring)  (Koetz  et  al.,  2018)  which  will  offer  similar  observations  as  TRISHNA  but  with  improved

spectral, spatial and temporal resolutions and the SBG satellite (Surface Biology and Geology)(Cawse-Nicholson et  al.,

2021) from NASA which will provide similar high resolution TIR images of the surface of the earth. The combination of

these  three  missions  may  eventually  provide  close  to  bi-daily  (day  and  night  time)  high  resolution  thermal  infrared

observations of the earth surface. In this context the objectives of this work are; i) to test the potential of the LST to improve

the snowpack simulations and ii) explore the effect of increasing the temporal resolution of the observations.

A convenient approach to emulate future remote sensing observations is to use an Observing System Simulation Experiment

(OSSE). For example, Navari et al. (2016) assessed the feasibility to integrate ice surface temperatures in a regional climate

model estimate of Greenland ice sheet surface mass balance through an OSSE. Synthetic experiments were also used to

explore the potential of data assimilation techniques in improving the snowpack simulations (Clark et al., 2006; Revuelto et

al., 2021; Smyth et al., 2019). 

Here,  we designed  an OSSE to  evaluate  the  benefit  of  future  remote  sensing LST to  simulate  seasonal  SWE.  In  this

experiment, synthetic LST and SWE data were generated in several climatic regions. Synthetic LST data were assimilated
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into a snowpack model under different cloud cover scenarios and satellite revisit times. The benefit of assimilating LST was

studied by comparing the posterior (after assimilation) SWE to the synthetic SWE.

2 Data and methods 

We selected five sites in snow-dominated regions of Europe, spanning 40° of latitude from the Pyrenees mountains to the

Svalbard archipelago. The sites were chosen every 10° of latitude approximately to sample different climatic influences. The

southern sites (Gerlachovský štít, Bigorre) are located in mountain regions (Tatra, Pyrenees ), Finse is located on a  elevated

plateau (Hardangervidda),  whereas Tromsø and Ny-Ålesund are in the polar  circle.  Gerlachovský štít  is  in the Eastern

Europe  and  its  climate  is  influenced  by  its  continental  characteristics,  Tromsø  and Ny-Ålesund exhibit  obvious  polar

climates and Bigorre shows a montane climate with Mediterranean influences.

Table 1: Geographical coordinates and elevation (m a.s.l.) of the ERA5-Land centroids used in the study

Centroid Longitude Latitude Elevation

Ny-Ålesund (Norway) 12.0° 78.9° 124

Tromsø (Norway) 19.8° 69.5° 647

Finse (Norway) 07.5° 60.6° 147

Gerlachovský štít (Slovakia) 20.2° 49.2° 1479

Bigorre (France) 00.1° 42.9° 1843

We used ERA5-land surface reanalysis data (~9km spatial resolution) (Muñoz-Sabater et al., 2021) to force the Flexible

Snow Model (FSM2) (Essery, 2015) over four consecutive hydrological years from 01/Sep/2017 to 31/Aug/2021. From this

simulation, we retrieved the SWE and LST time series, which were used as the synthetic truth. The LST was exported at

13:00 local time, corresponding to foreseen TRISHNA overpass time. To mimic observational noise, we added to the LST

time series a Gaussian noise with a zero mean and a standard deviation of 1.5 K. This standard deviation was chosen as an

intermediate value between the reported RMSE of errors obtained by the comparison of Landsat 8 with in situ measurements

of the snow surface temperature (RMSE = 2.0 °K) (Robledano et al., 2022) and the expected performance of LST products

delivered by the TRISHNA mission.

The synthetic true LST time series were downsampled with a period of 16 and 3 days, to emulate revisit times of Landsat 8

and TRISHNA respectively. We simulated the impact of cloud cover on data availability by further removing values in the
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synthetic LST time series at random dates selected from an uniform distribution. We defined four different cloud cover

scenarios with probabilities of 0%, 25%, 50% and 75%.

For each site, we created a new degraded meteorological forcing to run FSM2. First we averaged the ERA5-Land data from

the  nearest  9  cells  (i.e.  resampling  the  spatial  resolution  from  10  km  to  30  km  approximately).  Then,  we  added

autocorrelated Brownian noise in 12h time windows (the data assimilation window of ERA5) using the standard deviation of

the variable itself (Supplementary Figure 1).  We further perturbed the precipitation field after aggregation dividing the

precipitation by 2. This strong perturbation was chosen to emulate precipitation biases that are typically found in global

reanalyses and large scale precipitation products (Beck et al., 2019) potentially leading to large underestimation of SWE in

mountain regions (Wrzesien et al., 2019). A similar value was already used in previous snow data assimilation experiment

(Deschamps-Berger et al., 2022). 

The degraded meteorological forcing and synthetic LST were used to feed the Multiple Snow data Assimilation system

(MuSA).  MuSA is  an  open  source  ensemble  based  data  assimilation  toolbox  built  around  the  FSM2 model  (Alonso-

González et al., 2022). We used the same initial conditions to run FSM2 within MuSA (soil temperature profile, initial LST

and absence of snow), therefore we did not perform a spin-up. To emulate the differences between the reality and modeling

pipeline, we used a simplified parameterization scheme of FSM2 in MuSA (Table 2). The assimilation experiments were

done using the Particle Batch Smoother (PBS) (Margulis et al., 2015) and a particle filter. Smoother algorithms are typically

used  to  develop  reanalyses  as  the  whole  time  series  of  information  are  available,  whereas  filtering  is  rather  used  for

operational forecasting where future observations respective to the analysis step are not available (Largeron et al., 2020). A

description of these algorithms and the MuSA toolbox can be found in Alonso-González et al., (2022).

We performed a final experiment in which we assimilated fractional snow cover area (FSCA), using a PBS. This experiment

has been performed using exactly the same set up as for the assimilation of LST. This includes running the simulations over

the  same  geographical  areas,  using  the  same  forcing  and  cloud  cover  scenarios,  as  well  as  using  a  different  FSM2

parameterisation to  generate  the  synthetic  truth and MuSA. Using exactly  the  same setup allows a  simple comparison

between the performance of assimilating LST and FSCA. The synthetic FSCA observations where degraded by adding

random Gaussian noise with mean 0 and a standard deviation defined by the error reported in previous works (RMSE = 0.17)

(Aalstad et al. 2020).

Table  2: FSM2 configuration chosen (and configuration number) to generate the synthetic truth and

simulations.

Process Syntetic true FSM2 MuSA FSM2

Snow albedo [2] Diagnosed from snow age [1] Diagnosed from LST

Snow thermal conductivity [1] Estimated from density [0] Constant thermal conductivity

Snow density [2] Viscous compaction [0] Constant density
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Turbulent exchange [1] Stability from Richardson number [0] Neutral stability

Snow hydraulics [2] Gravitational drainage [1] Bucket storage

 Snow cover fraction [2] Asymptotic function [1] Linear function

The  prior  ensemble  of  FSM2  simulations  was  composed  of  300  particles  that  were  generated  by  perturbing  the  air

temperature (additive perturbation) and the precipitation (multiplicative perturbation). The perturbations were time-invariant

and randomly drawn from a normal distribution of mean μ = 0 and standard deviation σ = 2 (temperature) and a log-normal

distribution with mean μ = 0.45 and standard deviation σ = 0.8 of the underlying normal distribution (precipitation). These

parameters were chosen to cover the expected differences between the “truth” forcing and the degraded forcing and were

obtained by preliminary trial and error tests. Both FP and PBS are very prone to collapse. Although there are uncertainties in

other variables, keeping a limited number of dimensions helps to prevent the collapse of the ensembles. In addition, not

correcting for  the other  variables  introduces errors in  the simulations,  which also helps  to  prevent  the collapse of  the

ensembles.

While the PF performs the analysis sequentially,  i.e.  each time an observation occurs,  the PBS is a smoother,  hence it

assimilates all the available observations in a single time window, propagating information from the observations forward

and backward in time. Here the assimilation time window was defined as a hydrological year (i.e. one snow season). In both

the PF and PBS, prior weights of ensemble members (particles) are updated based on the likelihood, i.e. a measure of the

distance between the predictions of each particle and the observations. The posterior weights are then used to estimate

posterior statistics from the ensemble, typically its weighted mean and weighted standard deviation. In the case of the PF, we

used the bootstrap resampling algorithm to eliminate particles with low weights and replicate particles with high weights by

sampling with replacement randomly from the probability distribution of the updated weights. To prevent the filter from

collapsing (all the weight is shared by few and eventually just one particle), new perturbation parameters were drawn from a

normal approximation of the posterior from the previous analysis step at each new analysis step, instead of resampling both

the  states  of  the  model  and  the  parameters.  A  rigorous  description  of  the  algorithms,  the  underlying  theory  and

implementation details can be found in Alonso-González et al., (2022).

For each site and each cloud cover scenario, we ran MuSA and generated a posterior SWE. However, the output of MuSA is

stochastic due to the random generation of the forcing perturbation parameters. Also the position of the gaps in the different

cloud cover scenarios and the Gaussian and Brownian noise are random. Therefore, to increase the statistical robustness of

our results, we repeated each assimilation experiment 100 times, drawing new gaps and  noise for each replicate of the

experiment. This created an ensemble of posterior SWE which was compared to the synthetic true SWE.
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In total, for a given site, MuSA was run 2400 times (100 replicates x 4 cloud cover scenarios x 2 revisit times x 3 DA

experiments). This corresponds to 720,000 FSM2 runs (300 particles by MuSA run), summing up to 3,600,000 FSM2 runs

considering the 5 study areas, which is equivalent to simulating the snowpack over a period of 14,400,000 years.

3 Results

As  expected,  the  degradation  of  the  ERA5-Land  meteorological  forcing  had  a  large  impact  on  the  open  loop  SWE

simulations  (Fig.  2  and  supplementary  figures  2,  3  and  4).  In  comparison  with  the  synthetic  true  SWE,  the  average

normalized RMSE (nRMSE) was 61% (after removing the summer time months of July and August). The degradation of the

ERA5-Land data caused an overall reduction in the simulated SWE, leading to a shorter snow seasons at all sites (Fig. 2).

However, the LST assimilation with the PBS substantially improved the SWE simulations (Fig. 2). This improvement was

evident at both revisit times, although the 3 day revisit scenario (nRMSE = 13%) outperformed the 16 day revisit scenario

(nRMSE = 17%). 

The posterior SWE series in Figure 2 were averaged from an ensemble of 100 replicates (see Sect. 2. Data and methods).

Figure 3 shows every posterior SWE realization in the case of the Tromsø site under different cloud cover scenarios when

assimilating LST at 3-day resolution. This Figure shows that the spread of the posterior ensemble increased with the cloud

cover probability. The standard deviation of the obtained nRMSE values over each cloud cover scenario ranged from 4% to

10% in this particular case. 

Figure 4 summarizes the results of the PBS from all experiments under every cloud cover and revisit scenarios. In all cases,

the data assimilation significantly reduces the nRMSE in comparison with the open loop simulations.  In most situations the

nRMSE is always higher for the 16-day revisit compared to the 3-day revisit, but the difference was more pronounced under

the 50% and 75% cloud cover scenarios. In addition, the standard deviation of the nRMSE of the 100 replicates is higher for

the 16-day compared to the 3-day revisit scenarios. Both the averaged nRMSE and standard deviations increase with the

cloud cover with an average nRMSE for  all  the sites  ranging between 13% and 16% in the  case of  the 3-day revisit

experiments and 17% and 28% for the 16-day revisit experiments. The results indicate a comparatively lower reduction in

SWE nRMSE when FSCA is assimilated compared to LST assimilation ranging between 27% and 39% in the case of the 3-

day revisit experiments and 41% and 45% for the 16-day revisit experiments  (Figure 5), Furthermore, the greater dispersion

of nRMSE values suggests an  increased sensitivity to cloud distribution in the case of FSCA compared to LST.

Figure 6 shows the distribution of the mean of the posterior precipitation perturbation parameters obtained from the 100 data

assimilation runs using the PBS. It demonstrates that the assimilation of LST reduces the error on the precipitation forcing,

since the posterior parameter distributions approximates the actual multiplicative perturbation factor of 2 to compensate the

0.5 scaling factor used to degrade the input precipitation. However, the difference between the true precipitation and the

degraded precipitation should not be exactly equal to the scaling factor of 2 due to the perturbation strategy used, the fact

that  we do not correct  all  forcing variables,  and the differences between the FSM2 configurations (Sect.  2),  and other
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components of the forcing where also degraded and not included in the simulation to induce errors in the FSM2 model. As

observed above in Figure 4, the standard deviation of the posterior perturbation parameters of the replicates increases when

comparing the 3-day with the 16-day revisit scenarios, as well as with the cloud cover probability.

Whereas the above results show that the PBS algorithm clearly improved the SWE simulation, it was not the case with the

PF. Figure 7 summarizes the results of the same experiments shown in Figure 4, but using the PF instead of the PBS. In this

case the improvement in the average nRMSE of the posterior simulations is not as obvious with respect to the open loop as

in the PBS experiments. Although, in the medium latitude cases the nRMSE shows a moderate improvement compared with

the open loop on average, several runs among the 100 replicates had a higher nRMSE than the open loop run. The revisit or

cloud cover scenarios had no clear effect on the nRMSE. The results in the high latitude areas  yielded a higher nRMSE

standard deviation than for the medium latitude regions. This is a consequence of the very cold conditions in this high

latitude areas, causing that some particles became “glaciers” due to the perturbed forcing (non zero SWE at the end of the

hydrological year).

4 Discussion

Navari et al. (2016) showed the potential of IST data assimilation to improve the surface mass balance of the Greenland ice

sheet in a regional climate simulation with an Ensemble batch smoother. Our study also suggests that the assimilation of LST

can improve  seasonal  snow simulations  in  sites  with  different  climate  contexts.  With  the  PBS,  the  improvement  was

substantial independently of the site, i.e. the climatic context did not exhibit an obvious influence on the results. However,

our results with the PF also supports the conclusions of Piazzi et al. (2019), who did not obtain obvious improvements in the

posterior  SWE simulations  after  assimilating  LST using  an  Ensemble  Kalman Filter.  Therefore,  our  study provide  an

explanation of the contrasting performances found by Navari et al. (2016) and Piazzi et al. (2019). While Navari et al. (2016)

used smoothers, Piazzi et al. (2019) used a filter. A filter updates the simulations sequentially while smoothers update the

whole season in batch. This in-batch assimilation allows the propagation of the information of the observations backwards in

the simulation time. Also, the performance of the LST data assimilation reported by Piazzi et al. (2019) was probably

hampered by the coarse resolution of the MSG LST products that were used to update snowpack simulations at the point

scale. In the specific case of the LST, considering the observations of the whole snow season in a batch may be key to have a

positive impact on the posterior SWE. The trajectory of the LST in seasonal snow dominated regions exhibits a characteristic

pattern as the physical bounds of the IST are different from the LST. Once the snow melts, the LST can rise above the water

melting point and therefore the trajectory of the LST may be a good indicator of the length of the snow season. However,

this should not be the only reason, as Navari et al. (2016) experiments were developed over the Greenland ice sheet where

there is a permanent ice cover. During the melting season the IST is fixed to the melting point temperature, providing

information on the duration of the melting period. Also the occurrence of wintertime melt events should be visible in the TIR

domain. The average performance of the LST assimilation was superior in all study areas in our experiments. This also
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suggests that LST may provide more information than FSCA. In addition, the lower dispersion of nRMSE values suggests

that LST may be more resilient to cloud cover distribution than FSCA.The information of the whole seasonal trajectory of

the LST is propagated to the posterior by using a smoother, but not by using a filter. This is highlighted at the high latitude

study areas, where the polar conditions made snowmelt impossible at the end of the hydrological year for some of the

replicates leading to very high nRMSE using the PF (Figure 7). These results suggest that the LST may be less beneficial to

snowmelt forecasting applications where the use of filters is more extended to update the model as new observations arise,

but it should be valuable information to improve snow reanalyses which aim to reconstruct snow cover climatologies.

Our results also suggest that even the currently available thermal infrared estimations of the LST from Landsat missions

have the potential to significantly improve SWE simulations despite a revisit time of 16 days. The emulated revisiting times

of both Landsat and TRISHNA are the expected values at the equator, and can be lower in other latitudes. Here we did not

study the effect of the spatial resolution but hypothesized that high resolution (i.e. Landsat-like) is needed for snow cover

simulations in the studied regions. Landsat TIR images have a 100 m resolution which makes them suitable to sample the

slope scale in mountain terrain, hence homogeneous conditions in the energy balance budget (Baba et al., 2019). Despite the

low revisiting times of the Landsat mission, Landsat TIR imagery may be useful to improve SWE simulations using a

smoother data assimilation algorithm, an approach that to our knowledge has not been explored yet. More research should be

carried  out  on  this  topic,  especially  in  the  context  of  joint  assimilation  experiments  where  more  than  one  variable  is

assimilated. 

Nevertheless,  the  change  in  revisit  from 3  to  16  days  in  our  experiments  translated  into  a  higher  posterior  nRMSE.

Therefore,  we expect significant progress with TRISHNA observations,  not  to  mention the enhanced spatial  resolution

(approximately 60 m). The benefit of the 3 day revisit was particularly evident under 50% to 75% cloud cover. This should

be considered, as previous global estimates of the cloud cover suggest values closer to our highest cloud cover scenario

(Wylie et al., 2005). For instance, cloud cover probability in MODIS products reached 60% in the Alps and 50% in the

Pyrenees (Gascoin et al., 2015; Parajka & Blöschl, 2008). 

In any case, under both revisit scenarios, the cloud cover decreased the precision of the replicates of the posterior SWE, i.e.

the variability between repeated experiments, but the average was only marginally affected. In other words, the cloud cover

reduced the robustness of the data assimilation, but even regions with a persistent cloud cover could benefit from LST

assimilation. The different replicates of each experiment exhibited different results, with a variance that increased with the

number of gaps introduced in the synthetic LST observations, suggesting that not all the combinations of observations are

equally informative. This was also obvious regarding the posterior precipitation perturbation parameters, as the standard

deviation of the different replicates increased with the percentage of cloud cover.

Despite the promising potential of the LST to improve SWE simulation, some limitations of the current study inherent to the

synthetic nature of the OSSE should be taken into consideration. The synthetic nature of the experiment could lead to an

overestimation of the value of LST assimilation. This effect is mitigated in our experiment by (I) the degradation of all
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forcing variables, while only temperature and precipitation were corrected and (ii) the different FSM2 parameterisations used

to create the synthetic truth. The simulation of the cloud cover scenarios was generated by selecting random dates from an

uniform distribution. However, in some regions the cloud cover exhibits marked seasonal patterns (Sudmanns et al., 2020),

that may challenge to update the snowpack simulations even with smoothers if cloud cover is more frequent during key

periods in the snow season. Also, the surface temperature observation in complex terrain may differ from the simulated

temperature, due to intra-pixel variability. But this issue to be greatly limited by the expected increase in resolution. In light

of the results of this work, the next step is to conduct experiments using real remote sensing observations, although the

general lack of data may complicate the interpretation of the results.

5 Conclusions

The motivation of this study on LST data assimilation is the upcoming launch of high resolution thermal infrared spatial

missions with improved revisit time and resolution in the next few years. We implemented a synthetic data assimilation

experiment to study the potential of the LST in improving SWE simulations along a latitudinal gradient in the northern

hemisphere. The methodology was based on the generation of synthetic LST estimations and SWE true estimates, and a prior

ensemble of SWE simulations generated by forcing the FSM2 model with degraded meteorological fields. The MuSA snow

data assimilation software was used to generate SWE posterior time series using the particle batch smoother and particle

filter algorithms to be compared with synthetic true SWE.

The results suggest that the assimilation of LST has a great potential to improve seasonal snowpack simulations across all

the tested sites. Gap-free LST series, improved the average nRMSE of the open loop simulations from 61% to 17% and 13%

for the 16 days and 3 day revisiting times respectively. However, a lower revisit frequency caused an increase in the variance

of the nRMSE when the runs are replicated 100 times, meaning that the assimilation becomes less robust. This conclusion

was more evident with high cloud cover scenarios, highlighting the importance of the revisit time in thermal infrared remote

sensing to reduce the uncertainty on the updated SWE. 

The type of data assimilation was also key to explain the role of LST in improving SWE simulations. The particle batch

smoother strongly improved the simulations, whereas the particle filter was much less performant and could even cause a

degradation of the simulations. This effect could be interpreted as a consequence of the strong seasonal signal of the LST,

which reflects the duration of the snow season. But the lower performance shown by the FSCA assimilation suggests that the

LST assimilation provides more than just information on snow duration.

Overall, our results encourage a more systematic use of the current LST products within snow data assimilation studies,

especially if the objective is to perform a snow reanalysis which can benefit from observations acquired over an entire snow

season.
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Figure 1: Main workflow of the OSSE.
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Figure 2: Comparison of hourly time series of synthetic true SWE with the open loop simulations and

the posterior SWE after assimilating LST with a revisit time of 16 days or 3 days (0% cloud cover

scenario) using the PBS. Here, the posterior SWE is the average of the 100 replicates and the shaded

areas represent the 95 to 5th quantile range.
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Figure 3: Comparison of hourly time series of synthetic true SWE with the open loop simulation, and

the 100 replicates of posterior SWE after assimilating LST with a revisit time of 3 days and varying

cloud cover scenarios and the average of the experiments in Tromsø.
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Figure  4: Normalized root mean square error (nRMSE) of the posterior

SWE after assimilating LST using the PBS compared with the synthetic true

SWE for each experiment. The bars indicate the mean nRMSE while the

error bars indicate the standard deviation in the 100 replicates.
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Figure  5:  Normalized  root  mean  square  error  (nRMSE)  of  the

posterior SWE after assimilating FSCA using the PBS compared with

the  synthetic  true  SWE for  each  experiment.  The  bars  indicate  the

mean nRMSE while the error bars indicate the standard deviation in

the 100 replicates.
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Figure  6: Boxplots showing the distribution of the posterior precipitation

perturbation  parameter  for  each  experiment  estimated  by  the  PBS.  The

dashed line indicates the true perturbation that was applied to the forcing.
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Figure  7: Normalized root mean square error (nRMSE) of the posterior

SWE after assimilating LST from the PF compared with the synthetic true

SWE for each experiment. The bars indicate the mean nRMSE while the

error bars indicate the standard deviation in the 100 replicates.
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Supplementary 1: Example of the forcing degradation covering 10 days at hourlly timesteps
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Supplementary  2:  Comparison  of  hourly  time  series  of  synthetic  true  SWE  with  the  open  loop

simulations and the posterior SWE after assimilating LST with a revisit time of 16 days or 3 days (25%

cloud cover scenario) using the PBS. Here, the posterior SWE is the average of the 100 replicates and

the shaded areas represent the 95 to 5th quantile range
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Supplementary  3:  Comparison  of  hourly  time  series  of  synthetic  true  SWE  with  the  open  loop

simulations and the posterior SWE after assimilating LST with a revisit time of 16 days or 3 days (50%

cloud cover scenario) using the PBS. Here, the posterior SWE is the average of the 100 replicates and

the shaded areas represent the 95 to 5th quantile range.
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Supplementary  4:  Comparison  of  hourly  time  series  of  synthetic  true  SWE  with  the  open  loop

simulations and the posterior SWE after assimilating LST with a revisit time of 16 days or 3 days (75%

cloud cover scenario) using the PBS. Here, the posterior SWE is the average of the 100 replicates and

the shaded areas represent the 95 to 5th quantile range.
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