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Abstract. The assimilation of data from Earth observation satellites into numerical models is considered as the path forward

to estimate SWE distribution in mountain catchments. The land surface temperature (LST) can be observed from space, but

its potential to improve SWE simulations remains underexplored. This is likely due to the insufficient temporal or spatial

resolution offered by the current thermal infrared (TIR) missions. However, three planned missions will provide global-scale

TIR data at much higher spatio-temporal resolution in the coming years.

To investigate the value of TIR data to improve SWE estimation, we developed a synthetic data assimilation experiment at

five snow-dominated sites covering a latitudinal gradient in the northern hemisphere. We generated synthetic true LST and

SWE series by forcing an energy-balance snowpack model with the ERA5-Land reanalysis. We used this synthetic true LST

to recover the synthetic true SWE from a degraded version of ERA5-Land. We defined different observation scenarios to

emulate the revisiting times of Landsat 8 (16 days) and the Thermal infraRed Imaging Satellite for High-resolution Natural

resource Assessment (TRISHNA) (3 days), while accounting for cloud cover. We replicated the experiments 100 times at

each  experimental  site  to  assess  the  robustness  of  the  assimilation  process.  We performed the  assimilation  using  two

different approaches: a sequential scheme (particle filter) and a smoother (particle batch smoother).

The results show that LST data assimilation using the smoother reduced the normalized Root Mean Square Error (nRMSE)

of the simulations from 57% (open loop) to 7% and 3% for 16 day revisit and 3 day revisit respectively, in the absence of

clouds. We found similar but higher nRMSE values by removing observations due to cloud cover but with a substantial

increase of the standard deviation of the nRMSE of the replicates, highlighting the importance of revisiting times in the

stability of the assimilation output.  The smoother  largely outperformed the particle  filter algorithm, suggesting that the

capability of a smoother to propagate the information along the season is key to exploit LST information for snow modeling.

These results suggest that the LST data assimilation has an underappreciated potential to improve snowpack simulations and

highlight the value of upcoming TIR missions to advance snow hydrology.
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SWE can be replaced by ' snow cover' for the sake of clarity/accessibility, and this acronym should be introduced.


biased? lower resolution? please be more specific


with respect to cloud cover. Arguably many other aspects of DA algorithm robustness are not explored here (e.g. snow model or observation biases, snow model errors)


nRMSE on which variable?


performance?


backward in time? (to be more accurate)



1 Introduction

The seasonal snowpack plays a key role in many ecological and hydrological processes worldwide (Barnett et al., 2005).

Due to its high albedo and insulating capabilities, the extensive snow-covered area of the northern hemisphere influences the

Earth climate system (Henderson et al., 2018). In mountain regions, the seasonal snowpack is also an important source of

runoff during the summer when the water demand peaks. Hence, an accurate knowledge of the snowpack conditions has an

important economic value (Sturm et al., 2017). The snow cover is also a source of natural hazards such as floods caused by

rain-on-snow events  or  snow avalanches,  events  that  are expected to  increase  due  to  the  impacts  of  climate  warming

(Ballesteros-Cánovas et al., 2018; Musselman et al., 2018).

Despite its importance, monitoring the snowpack remains challenging for both scientists and water management agencies.

The variable nature of the snowpack makes it difficult to deploy and maintain ground based snow monitoring networks

(Kinar & Pomeroy, 2015).  Therefore,  snow hydrologists have developed methods to take advantage of  satellite  remote

sensing since the beginning of the Landsat programme (Rango & Martinec, 1979). Yet, the application of remote sensing in

snow hydrology remains hindered by the lack of  direct observations of the snow water  equivalent (SWE) in mountain

regions (Dozier et al., 2016). 

Numerical  models  allow  simulating  many  snowpack  state  variables,  including  the  SWE.  However,  their  accuracy  is

constrained by the large uncertainty of the meteorological forcing (Raleigh et al., 2015). Recent studies suggest that data

assimilation (DA) of remotely sensed products is the path forward to estimate the spatial distribution of relevant snowpack

characteristics (Aalstad et al., 2018; Charrois et al., 2016; Cortés & Margulis, 2017; Margulis et al., 2016; Smyth et al.,

2020; Stigter et al., 2017). Using DA techniques it is possible to fuse model simulations and multiple remote sensing datasets

to improve the snowpack simulations. In particular, the snow cover area was assimilated in many case studies due to its

widespread availability (e.g. Baba et al., 2018, Alonso-González et al., 2021). Yet, the extent of the snow cover provides no

direct information on the internal state of the snowpack and is blind to snowpack changes when the pixel is fully snow

covered. 

The ice-surface temperature (IST), is a key state variable for simulating the snowpack evolution. Physically-based snowpack

models solve the energy balance equation iteratively along the time dimension, estimating the IST at each timestep of the

model (Essery, 2015; Liston & Elder, 2006). Also it is a key parameter to estimate the emitted energy as outgoing longwave

radiation .The estimation of the IST allows forecasting the occurrence of the melting events, as when the IST reaches 0°C all

the added energy is converted to melt. Thus, assimilating IST may provide key information about the timing of the melting

events. Also, the assimilation of the land surface temperature (LST) (i.e. the temperature of the earth surface independently if

it is snow covered) may improve the snowpack simulations by different mechanisms. The IST is physically bound to the

melting point temperature, while once the snow melts, the LST can exceed 0°C. Thus the assimilation of the LST may

indirectly provide information of the snow cover area too. Also, it should be possible to improve the snow simulations by

retrieving thermal information when there is no sunlight, like during the night time or during the polar night at high latitudes.
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monitoring? (or see following comment)


I would suggest: the current snowpack conditions...


Awkward sentence logic. Consider replacing 'difficult' by 'challenging' and reformulating into 'maintain dense enough ground based...'


References are needed here.


'primarily constrained', or mention also snowpack modelling uncertainties themselves, which are less prominent, but not negligible (see Fig 9. of the cited paper). Also that paper is mostly talking about integrated variables such as the SWE, whereas variables such as the Snow Surface Temperature surface temperature may arguably be more sensitive to model parameterization (surface albedo, density and turbulent fluxes).


A citation to De Lannoy et al., 2012 (doi:10.1029/2011WR010588) is needed here and in the previous sentence


Evidence on this would be appreciated. I'm not saying that this is wrong, but to my knowledge there is little evidence in the literature that getting an accurate surface temperature is a prerequisite for a good energy-mass balance of the snowpack. The thing is that the vertical temperature gradient is usually pretty strong close to the surface (and the snow be light): a model can be several kelvins off in terms of surface temperature and still get the total energy budget within a few percents.


detecting


Surface melting event, as opposed to 'total melt' or ablation which is arguably more essential hydrologically. When working with real observations, liquid water routing and refreezing will become critical to replicate SWE observations.


True, however in real-case situations, assimilation of LST in snow-free or patchy snow conditions may become arduous. Snowpack models such as FSM are not designed to  accurately model the LST (bad vertical discretization in particular), and therefore may exhibit errors or biases that might lead the DA to degrade the performance. Such a phenomenon can not be evidenced in this OSSE approach, since the synthetic truth is the model itself.



A previous study showed that IST DA improved the surface ice mass balance simulations of the Greenland ice sheet (Navari

et al., 2016), fusing IST stimations with the CROCUS snow model. On the other hand, previous research suggested little

improvements in the mass simulations after assimilating LST simulations retrieved from the Meteosat Second Generation

(MSG) (~6km spatial resolution) in the Alps. However, the coarse resolution of the LST products of MSG prevents use in

complex terrain, and more research is needed to assess the potential of high resolution LST DA.

The thermal imagery already available only offers coarse resolution for the snow applications over complex terrain (MODIS,

Sentinel-3) or long revisiting times (Landsat). This has probably prevented the study of the impact of LST DA, although

recent research suggests that LST can provide useful information to retrieve internal snowpack properties (Colombo et al.,

2019), a capability that can be exploited from satellites (Colombo et al.,  2023). The availability of high spatiotemporal

resolution LST products will be improved in the short term with the appearance of new satellites, such as the French-Indian

mission Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA) (Lagouarde et al.,

2018). TRISHNA is expected to provide surface temperature measurements at 60 m spatial resolutions every 3 days. Also,

given the agenda of the space agencies high resolution thermal infrared retrievals will be readily accessible in the near future.

For instance the LSTM (Copernicus Land Surface Temperature Monitoring) (Koetz et al., 2018) which will offer similar

observations as TRISHNA but with improved spectral,  spatial  and temporal  resolutions and the SBG satellite  (Surface

Biology and Geology)(Cawse-Nicholson et al., 2021) from NASA which will provide similar high resolution TIR images of

the surface of the earth. The combination of these three missions may eventually provide close to bi-daily (day and night

time) high resolution thermal infrared observations of the earth surface. In this context the objectives of this work are; i) to

test the potential of the LST to improve the snowpack simulations and ii) explore the effect of increasing the temporal

observations.

A convenient approach to emulate future remote sensing observations is to use an Observing System Simulation Experiment

(OSSE). For example, Navari et al. (2016) assessed the feasibility to integrate ice surface temperatures in a regional climate

model estimate of Greenland ice sheet surface mass balance through an OSSE. Synthetic experiments were also used to

explore the potential of data assimilation techniques in improving the snowpack simulations (Clark et al., 2006; Revuelto et

al., 2021; Smyth et al., 2019, Deschamps-Berger et al., 2022). 

Here,  we designed  an OSSE to  evaluate  the  benefit  of  future  remote  sensing LST to  simulate  seasonal  SWE.  In  this

experiment, synthetic LST and SWE data were generated in several climatic regions. Synthetic LST data were assimilated

into a snowpack model under different cloud cover scenarios and satellite revisit times. The benefit of assimilating LST was

studied by comparing the posterior SWE to the synthetic SWE.

2 Data and methods 

We selected five sites in snow-dominated regions of Europe, spanning 40° of latitude from the Pyrenees mountains to the

Svalbard archipelago. The sites were chosen every 10° of latitude approximately to sample different climatic influences .
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No! This was also an OSSE, not an actual proof with real data. 'Could potentially improve' is a much more appropriate statement.


synthetic IST


typo


references?


This is somewhat contradictory with the good performance that you obtain with the 16-day revisit time (Fig. 2).


worldwide? At which latitude?


temporal frequency of observations


No, this paper was assimilating real data, not synthetic ones.


people might not be familiar with this jargon, which is worth introducing



The southern sites (Gerlachovský štít, Bigorre) are located in high mountain regions (Pyrenees, Tatra), Finse is located on a

high elevation plateau (Hardangervidda), whereas Tromsø and Ny-Ålesund are near sea level. Gerlachovský štít is in the

Eastern Europe and its climate is influenced by its continental characteristics, Tromsø and Ny-Ålesund exhibit obvious polar

climates and Bigorre shows a montane climate with Mediterranean influences.

Table 1: Geographical coordinates and elevation (m a.s.l.) of the ERA5-Land centroids used in the study

Centroid Longitude Latitude Elevation

Ny-Ålesund 12.0° 78.9° 124

Tromsø 19.8° 69.5° 647

Finse 07.5° 60.6° 147

Gerlachovský štít 20.2° 49.2° 1479

Bigorre 00.1° 42.9° 1843

We used ERA5-land surface reanalysis data (Muñoz-Sabater et al., 2021) to force the Flexible Snow Model (FSM2) (Essery,

2015) over four consecutive hydrological years from 01/Sep/2017 to 31/Aug/2021. From this simulation, we retrieved the

SWE and LST time series,  which were considered as  the  synthetic  truth.  The LST was exported at  13:00 local  time,

corresponding to  foreseen TRISHNA overpass time.  To mimic instrumental  noise,  we added to the LST time series a

Gaussian noise with a zero mean and a standard deviation of 1.5 K. This standard deviation was chosen as an intermediate

value between the reported RMSE of errors obtained by the comparison of Landsat 8 with in situ measurements of the snow

surface temperature (RMSE = 2.0 °K) (Robledano et al., 2022) and the expected performance of LST products delivered by

the TRISHNA mission (Lagouarde et al., 2018).

The synthetic LST time series were downsampled with a period of 16 and 3 days, to emulate revisit times of Landsat 8 and

TRISHNA respectively. We simulated the impact of cloud cover by further removing values in the synthetic LST time series

at random dates selected from an uniform distribution. We defined four different cloud cover scenarios with probabilities of

0%, 25%, 50% and 75%.

For each site, we created a new, degraded meteorological forcing to run FSM2 by averaging ERA5-Land data from the

nearest  9  cells  (i.e.  resampling  the  spatial  resolution from 10 km to 30  km approximately).  We further  perturbed the

precipitation field after aggregation using a multiplicative factor of 0.5. This strong perturbation was chosen to emulate

precipitation biases that are typically found in global reanalyses and large scale precipitation products (Beck et al., 2019)

potentially leading to large underestimation of SWE in mountain regions (Wrzesien et  al.,  2019).  A similar value was

already used in previous synthetic snow data assimilation experiment (Deschamps-Berger et al., 2022). 
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swap these terms. Indications about the countries might help


near sea level?


high elevation?


resolution?


used


This formulation is way too simplistic. Instrumental noise is only a fraction of the whole 'error budget' of the observation. Retrieval errors, assumptions on snow emissivity, snow surface properties, and amospheric properties, cloud classification, all of these contribute to observation error and should be acknowledged


I would recommend to include more scenarios of observation error (bias and noise values) in this study, as the expected LST error is quite loosely constrained and may vary in time/space: this would allow the authors to conclude on 'acceptable' retrieval error levels for the data assimilation to work well, which would be very insightful.


I could not find any estimation of the LST products expected performance for Trishna in this reference.


... on data availability. Cloud cover will also induce additional errors due to difficult snow/cloud discrimination. Specially, if I nderstand Lagouarde et al., since clouds will be discrininated using bands at coarser resolution than the TIR bands.


It is hard to assess how much this step actually 'degrades' the forcing. Plotting some statistics, or timeseries of key meteorologic variables would help grasping how much this is the case.


remove this word in that case


OSSE is when model outputs are used as a fake truth, in this paper they were assimilating real (Pl'eiades data)



The degraded meteorological forcing and synthetic LST were used to feed the Multiple Snow data Assimilation system

(MuSA).  MuSA is  an  open  source  ensemble  based  data  assimilation  toolbox  built  around  the  FSM2 model  (Alonso-

González et al., 2022). We used the same initial conditions to run FSM2 within MuSA (soil temperature profile, initial LST

and absence of snow), therefore we did not perform a spin-up. The assimilation experiments were done using the Particle

Batch Smoother (PBS) (Margulis et al., 2015). Smoother algorithms are typically used to develop reanalyses as the whole

time series of information are available, whereas filtering is rather used for operational forecasting where future observations

respective to the analysis step are not available (Largeron et al., 2020). A description of these algorithms and the MuSA

toolbox can be found in Alonso-González et al., (2022).

The  prior  ensemble  of  FSM2  simulations  was  composed  of  300  particles  that  were  generated  by  perturbing  the  air

temperature (additive perturbation) and the precipitation (multiplicative perturbation). The perturbations were time-invariant

and randomly drawn from a normal distribution of mean μ = 0 and standard deviation σ = 2 (temperature) and a log-normal

distribution with mean μ = 0.45 and standard deviation σ = 0.8 of the underlying normal distribution (precipitation). These

parameters were chosen to cover the expected differences between the “truth” forcing and the degraded forcing and were

obtained by preliminary trial and error tests. 

While the PF performs the analysis sequentially,  i.e.  each time an observation occurs,  the PBS is a smoother,  hence it

assimilates all the available observations in a single time window, propagating information from the observations forward

and backward in time. Here the assimilation time window was defined as a hydrological year (i.e. one snow season). In both

the PF and PBS, prior weights of ensemble members (particles) are updated based on the likelihood, i.e. a measure of the

distance between the predictions of each particle and the observations. The posterior weights are then used to estimate

posterior statistics from the ensemble, typically its weighted mean and weighted standard deviation. In the case of the PF, we

used the bootstrap resampling algorithm to eliminate particles with low weights and replicate particles with high weights by

sampling with replacement randomly from the probability distribution of the updated weights. To prevent the filter from

collapsing (all the weight is shared by few and eventually just one particle), new perturbation parameters were drawn from a

normal approximation of the posterior from the previous analysis step at each new analysis step, instead of resampling both

the  states  of  the  model  and  the  parameters.  A  rigorous  description  of  the  algorithms,  the  underlying  theory  and

implementation details can be found in Alonso-González et al., (2022).

For each site and each cloud cover scenario, we ran MuSA and generated a posterior SWE. However, the output of MuSA is

stochastic due to the random generation of the forcing perturbation parameters. Also the position of the gaps in the different

cloud cover scenarios and the gaussian noise are random. Therefore, to increase the statistical robustness of our results, we

repeated each assimilation experiment 100 times, drawing new gaps and gaussian noise for each replicate of the experiment.

This created an ensemble of posterior SWE which was compared to the synthetic true SWE.

In total, for a given site, MuSA was run 1600 times (100 replicates x 4 cloud cover scenarios x 2 revisit times x 2 DA

algorithms). This corresponds to 480,000 FSM2 runs (300 particles by MuSA run), summing up to 2,400,000 FSM2 runs

considering the 5 study areas.
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earlier on you also mentioned using the PF


Why only temperature and precipitation? Snowpack modelling errors are also due to SW/LW errors, not to mention Wind speed and snow model parameters themselves



3 Results

As  expected,  the  degradation  of  the  ERA5-Land  meteorological  forcing  had  a  large  impact  on  the  open  loop  SWE

simulations (Fig. 2). In comparison with the true SWE, the average normalized RMSE (nRMSE) was 57% (after removing

the summer time months of July and August). The aggregation of the data from neighboring ERA5-Land cells and the

scaling of the precipitation caused an overall reduction in the simulated SWE, leading to a shorter snow seasons at all sites

(Fig.  2).  However,  the  LST  assimilation  with  the  PBS  substantially  improved  the  SWE  simulations  (Fig.  2).  This

improvement was evident at both revisit times, although the 3 day revisit scenario (nRMSE = 3%) outperformed the 16 day

revisit scenario (nRMSE = 7%). 

The posterior SWE series in Figure 2 were averaged from an ensemble of 100 replicates (see Sect. 2. Data and methods).

Figure 3 shows every posterior SWE realization in the case of the Tromsø site under different cloud cover scenarios when

assimilating LST at 3-day resolution. This Figure shows that the spread of the posterior ensemble increased with the cloud

cover probability. The standard deviation of the obtained nRMSE values over each cloud cover scenario ranged from 1% to

7% in this particular case. 

Figure 4 summarizes the results of the PBS from all experiments under every cloud cover and revisit scenarios. In all cases,

the data assimilation significantly reduced the nRMSE in comparison with the open loop simulations. The nRMSE was

always higher for the 16-day revisit compared to the 3-day revisit, but the difference was more pronounced under the 50%

and 75% cloud cover scenarios. In addition, the standard deviation of the nRMSE of the 100 replicates was higher for the 16-

day compared to the 3-day revisit scenarios. Both the averaged nRMSE and standard deviations increased with the cloud

cover with an average nRMSE for all the sites ranging between 3% and 8% in the case of the 3-day revisit experiments and

7% and 22% for the 16-day revisit experiments. 

Figure 5 shows the distribution of the mean of the posterior precipitation perturbation parameters obtained from the 100 data

assimilation runs using the PBS. It demonstrates that the assimilation of LST reduced the error on the precipitation forcing,

since the posterior parameter distributions intersect the actual perturbation factor of 2 that was used to degrade the input

precipitation. However, the difference between the true precipitation and the degraded precipitation may not exactly equal to

the scaling factor of 2 since the precipitation forcing was also perturbed by aggregating precipitation from the surrounding

ERA5-Land cells (Sect. 2). As observed above in Figure 4, the standard deviation of the posterior perturbation parameters of

the replicates  increased when comparing  the  3-day  with the 16-day revisit  scenarios,  as  well  as  with  the  cloud cover

probability.

Whereas the above results show that the PBS algorithm clearly improved the SWE simulation, it was not the case with the

PF. Figure 6 summarizes the results of the same experiments shown in Figure 4, but using the PF instead of the PBS. In this

case the improvement in the average nRMSE of the posterior simulations was not as obvious with respect to the open loop as
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yes, but it would be important to tell whether the pixel averaging or the precip scaling has the biggest influence


consider reminding that this is a synthetic true (for the sake of clarity at the beginning of the results)


0.5



in the PBS experiments. Although, in most cases the nRMSE showed a moderate improvement compared with the open loop

on average, several runs among the 100 replicates had a higher nRMSE than the open loop run. The revisit or cloud cover

scenarios had no clear effect on the nRMSE. As in the PBS case, there was no significant difference between the different

locations, except for Ny-Ålesund which yielded a higher nRMSE standard deviation than for the other locations. This is a

consequence of the very cold conditions in this polar region, as some particles became “glaciers” due to the perturbed

forcing (non zero SWE at the end of the hydrological year).

4 Discussion

Navari et al. (2016) showed the potential of IST data assimilation to improve the surface mass balance of the Greenland ice

sheet in a regional climate simulation with an Ensemble batch smoother. Our study also suggests that the assimilation of LST

can improve  seasonal  snow simulations  in  sites  with  different  climate  contexts.  With  the  PBS,  the  improvement  was

substantial independently of the site, i.e. the climatic context did not exhibit an obvious influence on the results. However,

our results with the PF also supports the conclusions of Piazzi et al. (2019), who did not obtain obvious improvements in the

posterior  SWE simulations  after  assimilating  LST  using  an  Ensemble  Kalman  Filter.Therefore,  our  study  provide  an

explanation of the contrasting performances found by Navari et al. (2016) and Piazzi et al. (2019).While Navari et al. (2016)

used smoothers, Piazzi et al. (2019) used a filter. A filter updates the simulations sequentially while smoothers update the

whole season in batch. This in-batch assimilation allows the propagation of the information of the observations backwards in

the simulation. The saw tooth pattern reported by Piazzi et al. (2019) is reminiscent of dynamical inconsistencies associated

with filters (Dunne & Entekhabi, 2005). Also, the performance of the LST data assimilation reported by Piazzi et al. (2019)

was probably hampered by the coarse resolution of the MSG LST products that were used to update snowpack simulations at

the point scale. In the specific case of the LST, considering the observations of the whole snow season in a batch may be key

to have a positive impact on the posterior SWE. The trajectory of the LST in seasonal snow dominated regions exhibits a

characteristic pattern as the physical bounds of the IST are different from the LST. Once the snow melts, the LST can rise

above the water melting point and therefore the trajectory of the LST may be a good indicator of the length of the snow

season. However, this should not be the only reason, as Navari et al. (2016) experiments were developed over the Greenland

ice sheet where there is a permanent ice cover. During the melting season the IST is fixed to the melting point temperature,

providing information on the duration of the melting period. Also the occurrence of winter time melt events should be visible

in the TIR domain. The information of the whole seasonal trajectory of the LST is propagated to the posterior by using a

soother, but not by using a filter. This is highlighted at the Ny-Ålesund site, where the polar conditions made snowmelt

impossible at the end of the hydrological year for some of the replicates leading to very high nRMSE using the PF. These

results suggest that the LST may be less beneficial to snowmelt forecasting applications where the use of filters is more

extended to update the model as new observations arise, but it should be valuable information to improve snow reanalyses

which aim to reconstruct snow cover climatologies.
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time


not necessarily. A systematic bias in modelled  IST, would cause saw-tooth patterns too. Do you evidence this yourself? Is this a statement from Piazzi? More details would be interesting here.


wintertime


smoother


Which figure?



Our results also suggest that even the currently available thermal infrared estimations of the LST from Landsat missions

have the potential to significantly improve SWE simulations despite a revisit time of 16 days. The emulated revisiting times

of both Landsat and TRISHNA are the expected values at the equator, and can be lower in other latitudes. Here we did not

study the effect of the spatial resolution but hypothesized that high resolution (i.e. Landsat-like) is needed for snow cover

simulations in the studied regions. Landsat TIR images have a 100 m resolution which makes them suitable to sample the

slope scale in mountain terrain, hence homogeneous conditions in the energy balance budget (Baba et al., 2019). Despite the

low revisiting times of the Landsat mission, Landsat TIR imagery may be useful to improve SWE simulations using a

smoother data assimilation algorithm, an approach that to our knowledge has not been explored yet. More research should be

carried  out  on  this  topic,  especially  in  the  context  of  joint  assimilation  experiments  where  more  than  one  variable  is

assimilated. 

Nevertheless, the change in revisit from 3 to 16 days in our experiments translated into an approximate doubling of the

posterior nRMSE. Therefore, we expect significant progress with TRISHNA observations, not to mention the enhanced

spatial resolution (approximately 60 m). The benefit of the 3 day revisit was particularly evident under 50% to 75% cloud

cover. This should be considered, as previous global estimates of the cloud cover suggest values closer to our highest cloud

cover scenario (Wylie et al., 2005). For instance, cloud cover probability in MODIS products reached 60% in the Alps and

50% in the Pyrenees (Gascoin et al., 2015; Parajka & Blöschl, 2008). 

In any case, under both revisit scenarios, the cloud cover decreased the precision of the replicates of the posterior SWE, i.e.

the variability between repeated experiments, but the average was only marginally affected. In other words, the cloud cover

reduced the robustness of the data assimilation, but even regions with a persistent cloud cover could benefit from LST

assimilation. The different replicates of each experiment exhibited different results, with a variance that increased with the

number of gaps introduced in the synthetic LST observations, suggesting that not all the combinations of observations are

equally informative. This was also obvious regarding the posterior precipitation perturbation parameters, as the standard

deviation of the different replicates increased with the percentage of cloud cover.

Despite the promising potential of the LST to improve SWE simulation, some limitations of the current study inherent to the

synthetic nature of the OSSE should be taken into consideration. The use of the same model to generate the real synthetic

SWE and for the assimilation processes avoids the uncertainty as a consequence of  the model internal  parameters and

structural uncertainty. This simplifies the interpretation of the results of our work, but needs to be taken into account in real-

world scenarios. The simulation of the cloud cover scenarios was generated by selecting random dates from an uniform

distribution. However, in some regions the cloud cover exhibits marked seasonal patterns (Sudmanns et al., 2020), that may

challenge to update the snowpack simulations even with smoothers if cloud cover is more frequent during key periods in the

snow season.
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5 Conclusions

The motivation of this study on LST data assimilation is the upcoming launch of high resolution thermal infrared spatial

missions with improved revisit time in the next few years. We implemented a synthetic data assimilation experiment to study

the  potential  of  the  LST in  improving  SWE simulations  along a  latitudinal  gradient  in  the  northern  hemisphere.  The

methodology was based on the generation of synthetic LST estimations and SWE true estimates, and a prior ensemble of

SWE simulations  generated  by  forcing  the  FSM2 model  with  degraded  meteorological  fields.  The  MuSA  snow  data

assimilation software was used to generate SWE posterior time series using the particle batch smoother and particle filter

algorithms to be compared with synthetic true SWE.

The results suggest that the assimilation of LST has a great potential to improve seasonal snowpack simulations across all

the tested sites. Gap-free LST series, improved the average nRMSE of the open loop simulations from 57% to 7% and 3%

for the 16 days and 3 day revisiting times respectively. However, a lower revisit frequency caused an increase in the variance

of the nRMSE when the runs are replicated 100 times, meaning that the assimilation becomes less robust. This conclusion

was more evident with high cloud cover scenarios, highlighting the importance of the revisit time in thermal infrared remote

sensing to reduce the uncertainty on the updated SWE. 

The type of data assimilation was also key to explain the role of LST in improving SWE simulations. The particle batch

smoother strongly improved the simulations, whereas the particle filter was much less performant and could even cause a

degradation of the simulations at a cold polar site.

Overall, our results encourage a more systematic use of the current LST products within snow data assimilation studies,

especially if the objective is to perform a snow reanalysis which can benefit from observations acquired over an entire snow

season.
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Figure 1: Main workflow of the OSSE.
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Figure 2: Comparison of hourly time series of synthetic true SWE with

the open loop simulations (degraded forcing) and the posterior SWE

after assimilating LST with a revisit  time of 16 days or 3 days (0%

cloud cover scenario) using the PBS. Here, the posterior SWE is the

average of the 100 replicates.
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Figure  3:  Comparison  of  hourly  time  series  of  synthetic  true  SWE  (green)  with  the  open  loop

simulations (degraded forcing, in black), and the 100 replicates of posterior SWE after assimilating

LST  with  a  revisit  time  of  3  days  and  varying  cloud  cover  scenarios  and  the   averrage  of  the

experiments (blue and dark blue respectivelly).
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Figure  4: Normalized root mean square error (nRMSE) of the posterior SWE

from the PBS compared with the synthetic true SWE for each experiment. The

bars  indicate  the  mean  nRMSE  while  the  error  bars  indicate  the  standard

deviation in the 100 replicates. 
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Figure  5:  Boxplots  showing  the  distribution  of  the  posterior

precipitation perturbation parameter for each experiment estimated

by the PBS. The dashed line indicates the true perturbation that was

applied to the forcing.
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Figure 6: Boxplots showing the distribution of the posterior precipitation

perturbation  parameter  for  each  experiment  estimated  by  the  PF.  The

dashed line indicates the true perturbation that was applied to the forcing.
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