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Abstract. Sea surface temperature observations have shown that western boundary currents, such as the East Australian Current

(EAC), are warming faster than the global average. However, we know little about coastal temperature trends inshore of these

rapidly warming regions, particularly below the surface. In addition to this, warming rates are typically estimated linearly,

making it difficult to know how these rates have changed over time. Here we use long-term in situ temperature observations

through the water column at five coastal sites between approximately 27.3 - 42.6 ◦S to estimate warming trends between the5

ocean surface and the bottom. Using an advanced trend detection method, we find accelerating warming trends at multiple

depths in the EAC extension region at 34.1 and 42.6 ◦S. We see accelerating trends at the surface and bottom at 34.1 ◦S, but

similar trends at in the top 20 m at 42.6 ◦S. We compare several methods, estimate uncertainty, and place our results in the

context of previously reported trends, highlighting that magnitudes are depth-dependent, vary across latitude, and are sensitive

to the data time period chosen. The spatial and temporal variability in the long-term temperature trends highlight the important10

role of regional dynamics against a background of broad-scale ocean warming. Moreover, considering that recent studies

of ocean warming typically focus on surface data only, our results show the necessity of subsurface data for the improved

understanding of regional climate change impacts.

1 Introduction

Globally-averaged surface air temperatures have increased by approximately 1.3◦C since the start of the industrial revolution15

(Hartmann et al., 2013; Masson-Delmotte et al., 2021) and more than 90% of the excess heat has been absorbed by the oceans

since the 1950s (Levitus et al., 2012). Surface ocean temperatures in western boundary current regions have warmed two to

three times the global rate since the 1990s (Wu et al., 2012).

The East Australian Current (EAC), the western boundary current of the South Pacific subtropical gyre, transports heat

poleward (Archer et al., 2017). It typically separates at 30 to 32.5 ◦S (Cetina-Heredia et al., 2014) and extends eastward towards20

New Zealand (Godfrey et al., 1980; Oke et al., 2019) while at the same time produces mesoscale warm-core eddies (Nilsson

and Cresswell, 1980). The EAC has previously been reported as strengthening (Cai et al., 2005; Roemmich et al., 2007),
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and penetrating further south (Hill et al., 2008; Ridgway, 2007; Cetina-Heredia et al., 2014), but has also been suggested to

be poleward-shifting (Yang et al., 2016, 2020; Li et al., 2021, 2022a, b), resulting in a decrease in poleward transport from

28 to 32 ◦S and an increase in eddy activity (and poleward transport) downstream in the EAC southern extension (Li et al.,25

2021) driving stronger surface warming (Wu et al., 2012; Cetina-Heredia et al., 2014; Malan et al., 2021; Li et al., 2022a, b).

These effects, although not completely understood, have been linked to the South Pacific gyre ‘spinning-up’ through basin-

wide changes in wind-stress (Roemmich et al., 2007; Hill et al., 2008; Oliver and Holbrook, 2014; Yang et al., 2020; Li

et al., 2022b). Globally, cross-shore gradients in sea surface temperature trends between the near-coast and further offshore

(∼ 150 km) are common place, including along the east coast of Australia (Marin et al., 2021). However, the link between the30

large-scale dynamics of the EAC offshore and near-coastal temperature is not well understood.

Previous studies have estimated long-term temperature trends on the shelf adjacent to waters affected by the EAC (Thompson

et al., 2009; Kelly et al., 2015; Ridgway, 2007; Hill et al., 2008; Holbrook and Bindoff, 1997; Shears and Bowen, 2017).

Long-term temperature trends of 0.75 to 1.4 ◦ C century−1 and 1.5 to 2.3 ◦ C century−1 have been estimated at or close to

Port Hacking (near Sydney, 34.1 ◦S) and Maria island (Tasmania, 42.6 ◦S), respectively, using more than 50 years of (mostly35

surface) in situ data. More recently, using satellite sea surface temperature data since the 1990s, warming trends of between

1.6 ◦ C century−1 and 4.8 ◦ C century−1 have been estimated at sites off southeastern Australia between 27 ◦S and 42.6 ◦S

(Malan et al., 2021). However, to date all temperature trends in the EAC System have either been estimated at or near to the

surface, or using vertically-averaged temperatures, and at present little is known of temperature trends below the surface.

It is common to estimate trends in environmental data using linear methods, for example using a least-squares fit (Thompson40

et al., 2009), a combination of the Mann-Kendall test and Theil-Sen Slope Estimator (Theil, 1950; Kendall, 1975; Yue et al.,

2002), or other statistical methods such as epoch differences (Barnes and Barnes, 2015) or one-way ANOVAs (Kelly et al.,

2015). At the two long-term coastal stations influenced by the EAC, Port Hacking and Maria Island, surface temperature change

has previously been quantified using linear trends (e.g. Thompson et al. (2009), Shears and Bowen (2017)). Such methods rely

on assumptions, for example that the trend is linear, or data points are stationary and independent. However, ocean temperature45

time series are unlikely to have trends that can be approximated well using a straight line over decades (Seidel and Lanzante,

2004; Wu et al., 2007; Cheng et al., 2022), and are often nonstationary (Barbosa, 2011). Recently, Cheng et al. (2022) explored

non-linear methods for quantifying the rate of global ocean heat content change. They found piecewise linear fits and locally-

weighted scatterplot smoothing worked best when adequate span widths are chosen for estimating multi-decadal trends. Ideally,

ocean temperature trends should be estimated without any prior assumptions regarding stationarity and linearity, and without50

using a predetermined functional form.

This study presents estimates of coastal ocean temperature trends at five sites off southeastern Australia spanning a coastline

of approximately 2,000 km. We use in situ data between the surface and the seafloor over multiple decades. Three sites are

situated in the EAC southern extension region, with two of these sites having data extending back more than 7 decades. The

remaining two sites are situated upstream of the EAC separation zone inshore of the EAC jet. The impact of the EAC on surface55

temperature trends varies along the southeastern Australian shelf due to the varying dynamics (Malan et al., 2021), but we know
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little about temperature trends below the surface, if they are consistent with surface warming, and how the temperature trends

may have varied over time.

We estimate temperature trends using the Ensemble Empirical Mode Decomposition (EEMD) method, which is an adaptive

and local analysis technique, to derive trends from a time series without the use of predetermined functional forms. In addition,60

the Theil-Sen Slope Estimator (TSSE) and Mann-Kendall tests (Theil, 1950; Kendall, 1975; Yue et al., 2002) are used to

provide trends for comparison, and the Innovative Trend Analysis (ITA) method (Şen, 2012) is used as a visual tool to explore

how temperature distributions have changed over time, highlighting the presence of trends in minima, middle, and maxima

temperatures. We explore temperature trends through the water column highlighting the complex spatial and vertical structure

of ocean warming.65

In Section 2, we describe the oceanographic sites, their observational data sets and data processing, and briefly the methods

of estimating trends. In Section 3, we describe the temperature trends in space and time at sites with both short- and long-term

records. In Section 4, our results are discussed in the context of the local and broad-scale dynamics, the pros and cons of the

methodologies are explored, and a comparison is made between our results and previous studies. We conclude our study in

Section 5.70

2 Data and Methods

2.1 Oceanographic Sites and Their Data Sets

We use temperatures at two long-term oceanographic sites (Fig. 1) starting in the 1940/50s. One site is located just south of

Sydney at Port Hacking (∼ 34.1 ◦S) in 110m of water, downstream of the typical EAC separation point (30 to 32.5 ◦S). The

other site is off eastern Tasmania at Maria Island (∼ 42.6 ◦S) in 90m of water at the southern end of the EAC extension region.75

In 2009, these sites were incorporated into the Integrated Marine Observing System (IMOS) National Reference Station (NRS)

network (Lynch et al., 2014) and have been referred to as NRSPHB and NRSMAI, respectively. The records contain data

collected weekly to monthly via in situ boat-based sampling and 5 min to hourly electronic sensor data. At Port Hacking,

mooring measurements from a nearby site, PH100, are used. Sampling is at multiple depths between the near-surface (0 - 1 m)

and the near bottom (100 m). Here we use nearly all available temperature data at both sites from surface to bottom since the80

records commenced as shown in Fig. 2. The long-term temperature data from these sites have been packaged into validated

and tested NRS data products as described by Roughan et al. (2022), which we use here updated to the end of 2022.

In addition, we use temperature records from the more recently occupied sites, including the NRS North Stradbroke Island

63 m depth mooring (NRSNSI, ∼ 27.3 ◦S), the Coffs Harbour 100 m depth mooring (CH100, ∼ 30.25 ◦S), and the Batemans

Marine Park 120 m depth mooring (BMP120, ∼ 36.2 ◦S) (Fig. 1). Each site has approximately a decade of temperature data85

(Fig. 2), with the longest record available at CH100 (late 2009 to present) (Roughan et al., 2013). The temporal sampling of the

moored sensors ranges from 5 min to hourly, with sensors located at multiple depths between the shallowest depth, typically at

8 to 20 m, and the bottom.
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At these newer short-term sites we use the mooring aggregated Long Time Series Products developed by the Australian

National Mooring Network (ANMN) and the Australian Ocean Data Network (AODN) (IMOS, 2021c, b, a), that combine90

multiple-deployment temperature files into one aggregated file per site. Additionally, as Roughan et al. (2022) determined that

satellite data can be used to augment the existing mooring data after 2012, we combine surface satellite data with the subsurface

Long Time Series Products at these three sites, as well as at the two long-term sites Port Hacking and Maria Island, similarly

to the method described by Roughan et al. (2022).

Before 2009, the long-term data sets include temperature measured with reversing thermometers. These temperatures have95

an estimated accuracy of better than ±0.02 ◦ C. The long-term data sets also include electronic CTD profiles since 1997 and

2009 at Port Hacking and Maria Island, respectively. Typically SeaBird Electronics sensors (SBE25, SBE17+, SBE19+) have

been used for CTD profiles. The SBE19+ sensors have an initial accuracy of better than ± 0.005 ◦ C.

Mooring data used for both the long-term (Port Hacking and Maria Island) and short-term (NRSNSI, CH100, and BMP120)

data sets consist of temperatures measured by various electronic sensors (e.g. Aquatech AQUAloggers 520T/520TP, Wet-100

labs water quality meters, SBE37). The initial accuracy for most moored sensors is ± 0.002 ◦ C, but for Aquatech loggers is

± 0.05 ◦ C. The temperature sensors used for electronic CTD profiles and for the moorings have been calibrated annually at a

CSIRO calibration facility in Hobart since 2009.

2.2 Gap-filling and averaging

It is important to consider the data gaps in the temperature time series prior to estimating trends. For our analysis, monthly-105

binned temperatures were used at all sites (Fig. 2) which were calculated from the data sets described above. For investigating

trends using the TSSE and ITA methods (see the following section), the monthly-binned temperatures were de-seasonalised by

subtracting the monthly temperature climatology. An example of what the de-seasonalised temperature data look like alongside

estimated trends is provided in Fig. A1.

The time series used here had some gaps of days to years, as identified by Roughan et al. (2022) (see their Figure 2 for110

Port Hacking and Maria Island), depending on site location, depth, and retrieval method. To limit the effect of data gaps on the

trend estimates, gaps were filled prior to using trend methodologies. We used a synthetic temperature time series created from a

combination of the mean climatology, a long-term signal based on de-seasonalised temperature, and simulated red noise. More

information relating to the gap-filling method can be found in Appendix Sect. A, and examples of gap-filled monthly data are

shown in Fig 2.115

2.3 Detecting Trends

For an ocean temperature time series, the underlying variability and trend is likely to be non-linear and non-stationary (Barbosa,

2011). For that reason, we use the Ensemble Empirical Mode Decomposition (EEMD) method to determine trends without

relying on prior assumptions (Wu and Huang, 2009; Huang et al., 1998). The EEMD method has been used in numerous

environmental studies (e.g. Wu et al. (2007); Chen et al. (2017); Ji et al. (2014); Molla et al. (2006)) and is described in detail120

in Appendix Sect. B.
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Figure 1. The locations of the five oceanographic sites off southeastern Australia, from north to south: NRSNSI (North Stradbroke Island),

CH100 (Coffs Harbour), NRSPHB (Port Hacking), BMP120 (Batemans Marine Park), and NRSMAI (Maria Island). The decadal surface

temperature trends from the SST Atlas of Australian Regional Seas (SSTAARS) using data between 1992 and 2016 (Wijffels et al., 2018)

are plotted, with broad-scale circulation patterns including the East Australia Current (EAC) and its associated downstream eddy field

superimposed on top. Satellite and map information sourced from © Google Maps 2022 .
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Figure 2. Multi-decadal gap-filled temperature time series at multiple depths at (a) Port Hacking (NRSPHB) incorporating PH100 mooring

data and (b) Maria Island (NRSMAI), the same data between 2012 and 2021 at (e) NRSPHB, and (g) NRSMAI, and the shorter gap-filled

time series at (c) North Stradbroke Island (NRSNSI), (d) Coffs Harbour (CH100), and (f) Batemans Marine Park (BMP120) between 2012

and 2020. Data points are coloured by depth, and surrounded by a red edge if gap-filled. Also note the different y-axis limits varying by site.

The dashed boxes in (a) and (b) indicate the data shown in panels (c) and (d).
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The Mann-Kendall trend test was used alongside the TSSE method to estimate linear trends for comparison with the non-

linear EEMD trends. The Mann-Kendall trend test detects the presence of a significant trend in a time series using rank (Mann,

1945; Kendall, 1975), and has been used in numerous environmental studies (Dawood et al., 2017; Praveen et al., 2020;

Douglas et al., 2000). The Mann-Kendall test requires independent data, although in reality most time series are autocorrelated125

(Hamed and Rao, 1998), and as described by Von Storch and Navarra (2013), the presence of positive serial correlation in a

stochastic time series can increase the probability of detecting a false-positive trend. To account for serial correlation, we used

the trend-free pre-whitened version of the Mann-Kendall trend test (Yue and Wang, 2002; Yue et al., 2002). From here on we

will refer to the combined Mann-Kendall TSSE trend method as ‘TSSE’.

The Innovative Trend Analysis (ITA) method (Şen, 2012) is useful for highlighting changes over time in minima, middle,130

and maxima temperatures between two distributions and has been used in environmental science (e.g. Sanikhani et al. (2018)

and Mohorji et al. (2017)). A time series x(t), which in our case is a monthly gap-filled temperature (de-seasonalised, Fig. A1)

anomaly time series, is first split into two equal segments representing the same time period length, and the first (xi) and last

(yi) segments are sorted into ascending order. Segments xi and yi are then plotted against each other alongside a 1:1 line, with

xi typically on the x-axis. If there is no trend, the data points will appear close to the 1:1 line, whereas if there is a positive or135

negative trend, the data points will appear above or below the 1:1 line, respectively. A constant trend across the temperature

distribution will appear parallel to the 1:1 line, whereas varying trends will not.

We compare the non-linear temperature trends estimated using the EEMD method with those estimated using the TSSE

method. We make this comparison for three reasons: (1) the TSSE method is a linear method which is more commonly-used

than the non-linear EEMD method, (2) we can therefore easily compare our TSSE trends with linear trends estimated in140

previous studies, and (3) when considering most of the sites, these are the first trend estimates below the surface. Therefore,

we can provide estimates at the sites using the different methods for easier comparison in the future and can also highlight the

effect of methodology choice and their assumptions in estimating trends.

Additionally, to highlight how the temperature trends have evolved over time at the long-term sites, and to allow temporal

contextualisation for other shorter studies, we show the EEMD trends for each decade on record. We take the mean of the145

first order temporal monthly derivative of the EEMD temperature trend for each decade multiplied by 120 to reveal the mean

decadal trends.

Although data are available since 1944 at Maria Island, we estimate long-term temperature trends at this site between 1953

and 2022 for consistency with Port Hacking, as we expect trends to be sensitive to the time period choice. Further, we use

temperature data from 2012 onward at sites with short-term temperature records for consistency over depth as the satellite150

surface data that we use starts in 2012.
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Figure 3. The temperature Ensemble Empirical Mode Decomposition (EEMD) trends at each of the five sites: (a) Port Hacking (NRSPHB),

(b) Maria Island (NRSMAI), (c) North Stradbroke Island (NRSNSI), (d) Coffs Harbour (CH100), and (e) Batemans Marine Park (BMP120).

Each colored line represents a depth level (metres) at each of the sites, as indicated in the corresponding legends. The uncertainty for each

depth level estimated using the downsampling method is represented by the shaded area with the color corresponding to the lines. Insignificant

trend periods are indicated by a white dashed line. Note the difference in y- and x-axis limits between panels (a-b) and (c-e).

3 Results

3.1 Multi-decadal trends

The temperature trends between 1953 and 2022 are estimated at Port Hacking and Maria Island revealing considerable differ-

ences between the two sites (Fig. 3, 4). Overall, warming at Port Hacking is surface- and bottom-intensified, while further155

south at Maria Island, warming is more consistent over depth. Trends are accelerating over decades at both Port Hacking and

Maria Island, particularly at the surface.

The EEMD temperature trends at Port Hacking are estimated at depths of 2, 22, 50, 77 and 99 m. Results show that at

the surface and bottom the EEMD trends are statistically significant and accelerating from the late 1990s (Fig. 3a, Fig. 4a),

relative to earlier decades. At most depths acceleration is detected from the 1970s, although not statistically significant until the160

1990s. Warming rates are highest at the surface off Port Hacking with rates ≥ 0.2 ◦ C decade−1 over the last 3 decades, while

the EEMD trends at mid-depths are lower and are not statistically significant. Surprisingly over the last two decades at 99 m

depth, waters have warmed ≥ 0.12 ◦ C decade−1 , and during the 2010s at a depth of 77 m, waters have significantly warmed

0.18 ◦ C decade−1 .

The Maria Island EEMD trends at depths of 2 and 20 m are statistically significant since the mid 2000s (Fig. 3b, Fig. 4b).165

The results show that the Maria Island coastal waters have warmed consistently since the 1950s in the top 20 m of the water
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column relative to Port Hacking, with similar time period average EEMD trends (0.16-0.19 ◦ C decade−1, Fig. 4b) estimated

at the site at 2 m and 20 m depth. The Maria Island 2 m and 20 m depth trends have accelerated, similarly to surface and

bottom trends at Port Hacking. In contrast, the 50 m trend accelerated between the 1950s and 1990s, but decelerated between

the 1990s and 2010s.170

The uncertainty is high for EEMD trends at both Port Hacking and Maria Island. The uncertainty is approximately 0.5 ◦ C decade−1

close to the time period edges (1953 and 2022), and approximately 0.25 ◦ C decade−1 between the 1980s and 2000s.

Trends estimated using both the EEMD and TSSE methods are compared at Port Hacking and Maria Island (columns labelled

‘Ave.’ and ‘TSSE’ for the EEMD and TSSE methods, respectively, in Fig. 4). The high Port Hacking trends at the top and at the

bottom of the water column, and the depth-consistent warming at Maria Island relative to Port Hacking, are generally reflected175

in both the EEMD and TSSE trends, and the TSSE trends are statistically significant at all depths.

The ITA analysis (Fig. 5) confirms the EEMD and TSSE trend results, that temperatures are generally increasing at both sites.

However, the two long-term sites also show some differences. The trends vary for minima, middle, and maxima temperature

anomalies. At Port Hacking, the warmest temperature anomalies have increased more over time than the lowest temperature

anomalies, clearest at the surface and at the bottom. Trends also vary over depth at this site, with a decreasing trend observed180

for minima temperatures at 22 m depth. At Maria Island, there is consistent warming for all temperature anomalies at all

three depths relative to Port Hacking. Some maxima and lower middle temperature anomalies have warmed more than other

temperature anomalies across the distribution.

3.2 Short-Term Trends

To provide spatial context to the long-term trends at Port Hacking and Maria Island, we estimate temperature trends at 3 sites185

between 2012 and 2022 (NRSNSI, CH100, and BMP120) positioned along the coastline adjacent to the EAC (Fig 1). We do

not consider these trends representative of longer periods (e.g. 30 years or more), as interdecadal variability will likely play a

role. Rather we include these trends as preliminary summaries of temperature change over the period in which we have data,

and we expect that these trend estimates will strengthen over time and become statistically significant as we collect more data

at these sites. Not surprisingly, we find that the majority of the trends in the shorter time series are not statistically significant190

and have higher uncertainty than the long-term trends (Fig. 3c-e, Fig. A2). In the northern EAC jet region at sites NRSNSI

and CH100 (Fig. 3c,d), there is a mixture of depth-dependent warming or cooling trends. NRSNSI shows slight warming at

22 m and cooling elsewhere, whilst CH100 shows low rates of warming closer to the surface, alongside cooling subsurface

waters. Further south downstream of Port Hacking at site BMP120 (Fig. 3e) in the EAC extension region we see insignificant

EEMD warming trends, but some significant TSSE warming trends (Fig. A2), that vary in intensity between the surface and195

the bottom. However, the trends at BMP120 can be considered relatively consistent over depth when compared with the other

short-term sites.
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Figure 4. Temperature trends for multiple depths at (a) Port Hacking (NRSPHB) and (b) Maria Island (NRSMAI). Statistically significant

(black bold text) and non-statistically significant (gray text) average EEMD trend rates per decade ( ◦ C decade−1), and the total time-average

over all decades (‘Ave.’, black text) are shown. The statistically significant Theil-Sen Slope Estimator (TSSE) trend estimates ( ◦ C decade−1)

using data over the whole time period are also shown for each site. The locations of the sites are shown in the left panel. The total time-

averaged EEMD estimates use both statistically significant and insignificant trend rates over the whole time period, and thus are taken as

insignificant estimates. Decade trends are considered significant if 75 % or more of the trend during the selected decade are outside the 95 %

confidence bounds.

4 Discussion

4.1 The Influence of Large-scale Processes on Temperature Trends

Here we discuss the long-term trends observed at Port Hacking (34.1 ◦S) and Maria Island (42.6 ◦S) in the context of local200

and remote forcing. It is known that continental shelf ocean temperatures in the EAC System are affected by variability in the

strength and position of the EAC jet (Archer et al., 2017) and its eddies (Li et al., 2022a), current- and wind-driven upwelling

(Roughan and Middleton, 2002, 2004; Schaeffer et al., 2013), vertical and horizontal mixing, and air-sea heat fluxes (Oliver

et al., 2021). Further, the EAC appears to be shifting poleward (Yang et al., 2016, 2020; Li et al., 2021, 2022a) as a response to

basin-wide changes in wind stress (Roemmich et al., 2007; Hill et al., 2008; Oliver and Holbrook, 2014; Yang et al., 2016, 2020;205

Li et al., 2022b). The South Pacific Ocean Gyre appears to have shifted poleward approximately 418 km between 1993 and

2020, associated with a poleward shift of mid-latitude easterly winds (Li et al., 2022b). The EAC jet now penetrates further
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Figure 5. Innovative Trend Analysis (ITA) plots for temperatures with the seasonal cycle removed from top to bottom (depth [m], colored

scatter points) at (a) Port Hacking (NRSPHB) and (d) Maria Island (NRSMAI). If scattered temperature anomalies are in the top or bottom

triangle, there is either an increasing or decreasing trend, respectively, as labelled.

south, and its extension region has become increasingly eddy-active (Cetina-Heredia et al., 2014; Malan et al., 2021; Li et al.,

2021, 2022b).

Near-surface ocean temperature at Port Hacking and Maria Island has warmed at a faster rate than the global average. Mean210

near-surface temperature estimated using the EEMD method is now approximately 1.2 ◦ C warmer at Port Hacking and Maria

Island than it was in 1953, approximately 0.2 ◦ C more than the total global surface (land and ocean) average temperature

change since 1953 (Rohde and Hausfather, 2020).

Waters have warmed the most near to the surface at both Port Hacking and Maria Island. The warming rate at 2 m depth has

accelerated over time, albeit with high uncertainty. We suspect that near-surface temperatures at Port Hacking are predomi-215

nantly driven by the increased poleward penetration of the EAC (and its eddies), as well as atmospheric changes. As described

above, it is thought that the increased poleward-penetration of the EAC is associated with a poleward shift of the subtropical

gyre, driven by changes in wind stress curl over the south Pacific Ocean (spanning approximately 20-40 ◦S) (Li et al., 2022b).

Increased poleward-penetration of western boundary currents, such as the EAC, is driving a redistribution of heat, bringing

more warm water to southern latitudes (Hu et al., 2015; Li et al., 2022b).220
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We can consider both local and remote forcing effects on coastal temperatures at the sites. For example, local atmospheric

effects would take place via changes to the air-sea flux, or changes to wind-driven coastal upwelling / downwelling. While

we can also consider remote changes such as the advection of warmer water masses to the coastal sites. As model results

show that the shelf warming in the EAC southern extension is almost solely advection-driven (Malan et al., 2021), changes in

remote forcing effects seem more likely to be the main drivers of the trends that we see at Port Hacking and Maria Island. The225

accelerating warming at Maria Island, particularly since the 1980s, is also consistent with Kelly et al. (2015) who showed that

the amount of EAC extension water at this site rapidly increased over the same time period.

At Maria Island, waters have warmed consistently over the upper 20 m of the water column, relative to Port Hacking. This is

likely because the site itself is far less stratified than port Hacking with less seasonal temperature amplitude (Thompson et al.,

2009; Roughan et al., 2022).230

The Port Hacking warming at depth is also noteworthy, commencing in the 1970s. The bottom warming is unlikely to be

the result of increased wind-driven vertical mixing as mid-waters have warmed at slower rates than the surface and bottom

on average over the entire time period. Instead, we suspect that bottom waters may have warmed through modifications to

upwelling (which drives the coldest bottom temperatures during the summer season (Wood et al., 2013; Roughan et al., 2022)),

with additional circulation influences as the EAC becomes more eddying (Malan et al., 2021; Li et al., 2022a). Li et al.235

(2022b) show (in their figure 5b) an increasing easterly (westward) trend in southern hemisphere 10 m zonal mean ocean

surface winds at 34 ◦S between 1993 and 2020. They also show that zonal mean winds at this latitude are westerly (eastward),

which points towards a suppression of upwelling-favourable winds. Contrastingly, a decrease in upwelling would mean lower

nutrient concentrations at the bottom (Roughan and Middleton, 2002). Thompson et al. (2009) showed an increasing surface

nitrate trend at Port Hacking between 1953 and 2005 which might instead suggest an increase in upwelling (noting their study240

period ended in 2005). Alternatively, the increased bottom temperatures could be a consequence of offshore warming, where

the source of the upwelled water is warming at a faster rate than waters above.

The accelerating 2 m depth temperature trend at Port Hacking and Maria Island is consistent with previously-reported surface

trends. For example, Thompson et al. (2009) estimate a trend of 0.07 and 0.20 ◦ C decade−1 at Port Hacking and Maria Island,

respectively, using data between 1953 and 2005. While Kelly et al. (2015) estimate higher trends of 0.14 and 0.21 ◦ C decade−1245

when using similar data sets extended from 1953 to 2012, and 1950 to 2012 at Port Hacking and Maria Island, respectively.

Shears and Bowen (2017) further emphasise acceleration at Maria Island providing temperature trends of 0.2 ◦ C decade−1

from 1946 to 2016, and 0.32 ◦ C decade−1 from 1982 to 2016, respectively. This local acceleration is consistent with a global

acceleration in ocean heat content since the 1980s (Cheng et al., 2022), in line with dominant anthropogenic greenhouse gas

forcing, negligible volcanic aerosol forcing, and increased radiative forcing (Bagnell and DeVries, 2021). The temperature250

response in the EAC system is non-linear though, hence a direct comparison between global and local trends is not straight-

forward.
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4.2 Pros and Cons of EEMD and TSSE Methodologies

The EEMD method is useful as it shows rates of warming over time. However, it suffers from edge effects, hence we observe

higher uncertainty in trend estimates close to the time series start and end points (Fig 3). We explored the extension algorithm255

provided by Stallone et al. (2020) for reducing edge effects, but sensitivity tests indicated that in our case it was better to use

the original non-extended time series.

The selected time period also has a considerable effect on temperature trends. It is known that linear trends are sensitive to

time period choice, as we demonstrate in Sect. 4.3. However, we find EEMD trends are also sensitive to time period choice.

For example, if we estimate 2 m depth EEMD trends at Port Hacking using temperatures between 1953 and 2019 instead260

of between 1953 and 2022, we derive a total trend change of 1.5 ◦ C decade−1 instead of the 1.2 ◦ C decade−1 shown here.

Keeping in mind that this difference of 0.3 ◦ C decade−1 is within the uncertainty of the EEMD trend estimate (approximately

0.5 ◦ C decade−1).

For our data sets, we find that the TSSE method is suitable for approximating the overall trends as they compare well with the

time-averaged EEMD trends (assuming that these are closest to reality). The TSSE method is also simpler, hence this method265

will be faster and less resource-intensive relative to the EEMD method. However, the TSSE trends are not useful for deriving

varying warming rates over long periods, and hence if this is an an objective, the EEMD method should instead be considered.

4.3 Comparison With Trends From Other Studies

In order to provide a comprehensive record of temperature trends in our region, we compare our results with previous studies

that have investigated some aspect of temperature trends at or close to the sites used in this study (Wijffels et al., 2018; Malan270

et al., 2021; Thompson et al., 2009; Ridgway, 2007; Hill et al., 2008; Shears and Bowen, 2017; Holbrook and Bindoff, 1997;

Kelly et al., 2015; Foster et al., 2014). Each of these studies have used linear methods to estimate the trends, and most studies

have used surface data only. While our study has explored non-linear trends between the surface and the bottom.

A comparison with previously published temperature trends (Fig. 6, Table 1) supports our findings that trend magnitudes

are depth-dependent and vary across latitude, and further highlight that trends are sensitive to the time period chosen. The275

temperature trend rate is often higher, and with higher uncertainty, when the record is shorter and including more recent data,

relative to those estimated using longer time periods. This further confirms the accelerating warming that we observe over time.

From these studies, three looked at temperature trends below the surface at the long-term sites: Malan et al. (2021), Hol-

brook and Bindoff (1997) and Thompson et al. (2009). While Malan et al. (2021) estimated subsurface trends at depths of

approximately 20 m (their Table S2 in supplementary materials), Holbrook and Bindoff (1997) used depth-averaged temper-280

ature changes for the upper 100 m of the water column some distance away from Maria Island. Thompson et al. (2009) used

depth-averaged temperatures to estimate the seasonal trends (a trend for each month of the year) and hence cannot directly be

compared with our annual trends.

When using subsurface temperature data between 2010 and 2019 at NRSNSI and CH100, and between 2008 and 2019 at

Port Hacking, our trends are similar to those presented by Malan et al. (2021) keeping in mind that at Port Hacking their285
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trends were estimated at another site approximately 25 km to the northeast. We find that our 50 m Maria Island trends (Fig 6)

agree relatively well with those estimated by Holbrook and Bindoff (1997) between 1955 and 1988 at a rate approximately

0.15 ◦ C decade−1. This similarity exists even though we use different time periods (e.g. 1953 to 2022), data platforms, and

depth ranges, suggesting that the rate of change has been relatively constant during this time. This implies that the fast-changing

regional dynamics at the site play less of a role in long-term temperature change, and points to large scale drivers on longer290

time-scales. Despite the low number of studies that use subsurface temperature data, these comparisons further highlight the

depth-dependency of trends, suggesting that we need to consider the full water column and local dynamics when characterising

regional environmental change.

5 Conclusions and Outlook

We have characterised coastal ocean temperature trends at five shelf locations spanning approximately 2,000 km of the south-295

eastern Australian coastline adjacent to a major western boundary current. We use the EEMD method to estimate non-linear

trends that provide the time-varying rates of change, keeping in mind the estimated high uncertainty. Using this method, we

estimate an acceleration in the near-surface trends at Port Hacking and Maria Island consistent with trends seen globally. This

acceleration is related to modifications of the EAC system and the atmosphere, under anthropogenic warming.

Our results off Sydney show that temperature trends are highest at the surface and at the bottom, with temperature trends300

here varying over time at different rates to mid-waters. Temperature trends at Port Hacking vary more over depth than trends

at Maria Island, and rates at both sites vary over time. We discuss the importance of regional dynamics in driving these

temperature trends.

Marine species that inhabit coastal waters are expected to change or adapt as a response to rising temperature and extremes

(Vergés et al., 2014; Niella et al., 2020; Smith et al., 2022). As marine species are often not confined to the surface waters, it is305

therefore important to understand how temperature will change over time throughout the water column. For example, coastal

regions will likely undergo tropicalisation of their ecosystems (Vergés et al., 2014), hence understanding temperature change

at depths where species live will be vital for understanding ecosystem response to warming. Our study is the first to explore

temperature change beneath the surface at multiple depth levels at these sites, and will aid future studies on the potential

impacts of temperature change on subsurface marine species. Additionally, understanding trend velocity may provide context310

for environmental tipping points where marine species are impacted beyond their rates of recovery.

We compare our non-linear EEMD trends with linear trends estimated using the TSSE method. When considering the long

periods, we find that linear trends approximate the temperature trends well over the entire time period, but that they are prone

to under or overestimate the trend during selected shorter time periods.

Future studies may consider using the EEMD (or similar) method to estimate temporal variability in warming trends over315

the larger Tasman Sea region using satellite sea surface temperature measurements to complement the work done by Malan

et al. (2021), Wijffels et al. (2018) and others using linear trends. Estimating the time-varying rates of change using data over

the satellite record will be useful in determining how and where warming (potentially cooling) has accelerated or plateaued
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Table 1. A comparison of trends estimated in this study, and in other studies using observations, at Port Hacking and Maria Island. We

compare trends at and below the surface for different time periods. The trend time period, method and data platforms used are also shown.

The trends estimated by Wijffels et al. (2018) correspond with those shown in Fig. 1, and trend estimates taken from studies denoted with

‘**’ are not from the exact location of the sites, but instead from the approximate area. The trend estimated by (Holbrook and Bindoff, 1997),

denoted with ‘++’ uses vertically-averaged temperature changes for the upper 100 m of the water column at 43 ◦S, 149 ◦E.
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Figure 6. A comparison of temperature trends estimated in this study with trends estimated in other studies, at (a) the surface, (b) subsur-

face, and (c) deep for sites North Stradbroke Island (NRSNSI), Coffs Harbour (CH100), Port Hacking (NRSPHB), Batemans Marine Park

(BMP120), and Maria Island (NRSMAI). Trends are organised as general time periods: 1944 - 2020, 1992 - 2017, and 2010 - 2020, but

their exact lengths vary and are listed in Table 1 and in supporting information Table S1. The means and standard deviations for each time

period and depth are overlain on top of individual trend estimates, and because of overlap, there is a close-up of the trends shown in (a)

between 1944 and 2020 at Maria Island. Note that all of the trends shown between 2008 and 2022 in this study are not significant and have

high uncertainty, with some shown in Fig. 3. Further, different time series lengths were used for the short-term trends as follows: NRSNSI,

CH100 (2010-2019, 2012-2022) and BMP120 (2011-2019, 2012-2022).
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over time. Keeping in mind that insights gained from doing this will be limited to the surface, and we show that the subsurface

trends, and therefore overall shelf heat content, can vary from those at the surface. We have not investigated whether the trends320

are homogeneous throughout the year, although there is evidence to suggest that trends may vary between seasons (Thompson

et al., 2009; Shears and Bowen, 2017) and this will be studied in future work.

Our results show that subsurface information is important for understanding the full extent of environmental change through

the water column. We also show that considering a range of site locations is also important, as warming rates are complex and

heterogeneous along the length of a coastline influenced by a western boundary current.325

Data availability. We use the aggregated temperature data products created by Roughan et al. (2022) available here: https://doi.org/10.

26198/5cd1167734d90. The data sets contained in these aggregated temperature data products are available as follows: historical bottle and

CTD profiles from https://www.cmar.csiro.au/data/trawler/regions.cfm, IMOS Mooring instrument files, Long Time Series Products, and

CTD profiles from https://thredds.aodn.org.au/thredds/catalog/IMOS/ANMN/catalog.html or from https://portal.aodn.org.au/search, IMOS

Multi-sensor L3S SST data from http://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/L3S-1d/ngt/catalog.html or from https:330

//portal.aodn.org.au/search. The SST data trends shown in Figure 1 and published by Wijffels et al. (2018) are available from https://portal.

aodn.org.au/search - search for ‘SSTAARS’.

Appendix A: Gap-filling

The temperature time series used here had gaps of some days to years, as identified by Roughan et al. (2022), depending on

site location, depth, and retrieval method. For example, the largest gap is a full-depth data gap of approximately 6 years (1960335

to 1966) at Port Hacking out of the approximately 69 years of data, and there were many smaller gaps ranging from a few days

to a few months. The presence of these gaps at certain times of the year or during certain years/decades, would likely lead to a

biased trend estimate. For example, after accounting for seasonality, temperature variability in summer is expected to be quite

different to that in winter. Further, seasonally-corrected temperatures are expected to vary inter-annually. Therefore, data gaps

that dominate a particular season or an extended period of time are expected to have an effect on the trend, and gaps were filled340

to limit this potential effect.

Synthetic data with the same temporal resolution as the binned real data were created over the same time period as the original

time series using real data characteristics. These synthetic data were created using a combination of the mean climatology, an

inter-annual or inter-decadal signal (depending on the length of the data set) based on real de-seasonalised temperatures, and

simulated red noise (integration of white gaussian noise). This red noise had similar serial correlation and standard deviation345

to the original time series. These synthetic data were then used to fill gaps in the time series.

To test the effectiveness of this methodology, we simulated gaps of between 10 % and 50 % of real data points missing

which was compared with the original real data time series. For this, monthly-resolution gaps were selected at random which

sometimes created gaps of a few months at a time. An average coefficient of determination and root mean square error equal

to 0.86 and 1.06 ◦C was found, respectively, when comparing the synthetic surface temperatures with the real data. Further, we350
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found that the methodology worked best for periods when real temperatures were not extreme. Considering these statistics, on

the whole we are confident that the gap-filled temperatures are adequate for estimating trends, but we must keep in mind the

potential uncertainty in trend estimates when gaps are large.

Appendix B: EEMD Method

The EMD method decomposes a given time series x(t) into a set of oscillatory functions called Intrinsic Mode Functions355

(IMFs) through a sifting process that:

1. Connects two cubic splines: one spline through all local minima points and one spline through all local maxima points

in x(t), referred to as the ‘upper’ and ‘lower’ envelopes, respectively.

2. Calculates the difference between the mean of the upper and lower envelopes and x(t), producing a new time series h(t).

3. Repeats steps (1) and (2) above using h(t) until the upper and lower envelopes are symmetric with zero mean. The time360

series h(t) is then considered an IMF.

4. Subtracts the IMF from x(t) to produce a new residual time series R(t), and then repeats steps (1) to (3) using R(t).

This sifting process continues until either R(t) is monotonic or R(t) contains only one extremum. The resulting IMFs and

trend are then obtained, separating various modes of variability. We use the Mathworks Matlab official ‘emd’ function (https:

//au.mathworks.com/help/signal/ref/emd.html), as used by Stallone et al. (2020), with an input sift relative tolerance (stopping365

criteria) of 0.4 and default settings for all remaining input parameters. The EEMD method follows steps 1 to 4 listed above,

however the difference is that it is applied to a number of x(t) + white Gaussian noise realisations (forming an ensemble).

Multiple IMFs are produced; one set of IMFs for each x(t) + white Gaussian noise realisation time series, and then the average

is calculated over all ensemble IMFs. The advantage of the EEMD method is that it reduces mixing between IMFs. In this

study, 10,000 x(t) + white noise realisations were used to obtain each monotonic trend, with the white noise having a variance370

of 0.2 relative to the variance of x(t), as used by Chen et al. (2017).

We apply the EEMD method to each time series from the 5 sites at each depth. An example from Port Hacking at the surface

is shown in Figure A1. To ensure that IMFs are comparable over depth at a particular site the maximum number of IMFs

prior to estimating R(t) were limited. A maximum of 6 IMFs were chosen for each depth and site. These limits were chosen

to derive meaningful R(t) that were either monotonic or near-monotonic functions, or containing one extremum. The EEMD375

method, as with any local analysis method, is affected by edge effects (e.g. ‘cone of influence’ for wavelet analysis) (Torrence

and Compo, 1998; Wu et al., 2011). Further, as well as demonstrating this point, Stallone et al. (2020) show the consequence

of using the EEMD algorithm for time series containing spikes or jumps. Hence, we use monthly-binned time series at all sites

to limit the effect of spikes, and we estimate the uncertainty (described below) to better understand the potential influence of

edge effects on trend estimates.380
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The EEMD trends are considered significant if a null hypothesis that the trends have arisen by chance from zero mean

stochastic processes is rejected. The approach used by Ji et al. (2014) and Chen et al. (2017) was used to determine significance,

which is briefly summarised below:

1. Compute the lag-1 autocorrelation (α) of x(t). If α = 0 then the null hypothesis using white noise is chosen, while if

α > 0 as we might expect for ocean time series, then the null hypothesis using red noise is chosen. In our case, lag-1385

corresponds to one month.

2. Generate 1,000 red noise time series with the same length and standard deviation as x(t). We use 1,000 time series here

to reduce computation time.

3. Estimate R(t) for each generated red noise time series using the EEMD method. These 1,000 R(t) form an empirical

probability distribution function, which at any point in time is approximately normally distributed.390

4. Compare the estimated R(t) using x(t) with the 1.96× standard deviation spread (approximately equal to the 95 %

confidence interval) of the generated 1,000 red noise R(t). We do not standardise R(t) prior to comparison as the red

noise time series were produced using the standard deviation of x(t).

If the estimated trend is outside of this 95 % confidence interval, then the null hypothesis that the trends are from noise is

rejected and those portions of R(t) are considered to be significant (see Figure A1a). As α > 0 at all sites using data after395

2010, we generated red noise time series with similar characteristics to the real data using the python function ‘Signalz’

(https://matousc89.github.io/signalz/, accessed: 2021-11-12).

An uncertainty estimate of the trends was also provided using the down sampling method (Chen et al., 2017; Wu et al., 2011;

Wdowinski et al., 2016). For each temperature time series, a monthly temperature is randomly picked for each calendar year

forming a new time series. This is repeated 1,000 times, and the trend is estimated for each time series. The mean and standard400

deviation is then calculated over these 1,000 estimates, the latter of which is used as the uncertainty estimate. Again, 1,000

time series are used here to reduce computation time.
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Figure A1. (a) Port Hacking (NRSPHB) monthly temperatures at a depth of 2 m before (blue) and after (purple) IMFs1−3 have been

subtracted are shown alongside the de-seasonalised temperatures for reference (orange), and the trends (Rt) estimated using the Ensemble

Empirical Mode Decomposition (EEMD) method (light blue) and using the Theil-Sen Slope Estimator (TSSE) method (thick dashed black

line). The non-significant portion of the EEMD trend (red) is also shown. The EEMD trend uncertainty (black patch) estimated using

the downsampling method is also displayed, alongside the 95% confidence range for the null hypothesis that the EEMD trend has arisen

by chance from zero mean stochastic processes (red patch). (b) The same monthly temperature data as in (a) separated into IMFs1−6,

alongside the same EEMD Rt that is shown in (a). The IMFs used for the purple line in (a) is surrounded by a dotted box of same color.

sampling is led by D. Hughes and the CSIRO IMOS team. Data were sourced from Australia’s Integrated Marine Observing System (IMOS) -

IMOS is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an410

unincorporated joint venture, with the University of Tasmania as Lead Agent. This research includes computations using the computational

cluster Katana supported by Research Technology Services at UNSW Sydney.
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Figure A2. Statistically significant (black bold text) and insignificant (light grey text) average EEMD trend rates and Theil Sen Slope

Estimator (TSSE) trend estimates ( ◦ C decade−1) between 2012 and 2020 for multiple depths at (a) North Stradbroke Island (NRSNSI), (b)

Coffs Harbour (CH100), and (c) Batemans Marine Park (BMP120). The locations of the sites are shown in the left panel, and the approximate

depths are shown.
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