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Supplementary Information Text 

 

Model version 
 45 
We used the atmosphere-only configuration of version 1 of the UK Earth System Model 

(UKESM1) (1) to create our perturbed parameter ensembles (PPEs). UKESM1 was the model 

version submitted to the 6th Coupled Model Intercomparison Project (CMIP6) (2). UKESM1 is 

based on the HADGEM3-GC3.1 physical climate model (3) with additional coupling to key Earth 

System processes (1), including the United Kingdom Chemistry and Aerosol (UKCA) model (4). 50 
The atmosphere-only configuration as used here consists of the GA7.1 atmosphere (5, 6), with 

additional aerosol, cloud and physical atmosphere structural updates as implemented in UKESM1 

(6). GA7.1 includes several structural advancements to the aerosol component of the model which 

significantly affect anthropogenic aerosol radiative forcing (7). We refer to this model version as 

UKESM1-A. 55 
Horizontal wind fields above around 2km in our simulations (model vertical level 17) were 

nudged towards ERA-Interim values for the period December 2016 to November 2017. Nudging 

largely removes the effects of differences in large-scale meteorology from our PPE members, 

meaning we can attribute differences between model variants to perturbed parameter values. We 

do not nudge winds within the boundary layer, as many of our parameters are intended to affect 60 
meteorological conditions in this part of the atmosphere.  

The model was forced using anthropogenic SO2 emissions, for the years 2014 and 1850, as 

prescribed in CMIP6 simulations. We calculated aerosol effective radiative forcing (ΔFaer) as the 

difference in top-of-the-atmosphere radiative fluxes between these two periods. We accounted for 

above-cloud aerosol in our calculation of the components of ΔFaer (8) and aerosol-cloud interactions 65 
(9). 

Carbonaceous aerosol from fossil fuel and residential sources match those used in CMIP6 in 

our early-industrial simulations. However, in our present-day simulations (2014 anthropogenic SO2 

emissions) we prescribed carbonaceous aerosol from biomass burning sources using emissions 

generated using Copernicus Atmospheric Monitoring Service Information (December 2016 to 70 
November 2017) (10) and spread these emissions between the surface and around 3km. We used 

emissions for the same period as prescribed wind fields, for the closest possible comparison to 

observed values. In our early-industrial simulations (1850 anthropogenic SO2 emissions) we 

similarly scaled CMIP6 carbonaceous aerosol from biomass burning over model levels between 

the surface and around 3km. 75 
We also prescribed, rather than simulated, sea surface temperatures and sea ice fraction for 

the December 2016 to November 2017 period. We prescribed land surface quantities, ocean surface 

concentrations of dimethylsulfide (DMS) and chlorophyll, and atmospheric concentrations of gas 

species (including oxidants OH and O3, which we then perturb), using monthly mean output values 

from a fully-coupled version of the UKESM model, averaged over the 1979 to 2014 period. 80 
Additionally, we prescribe volcanic SO2 emissions for continuously emitting and sporadically 

erupting volcanoes (11) and for explosive volcanic eruptions (12). 

 We use an N96 horizontal resolution, which is 1.875 × 1.25o (208 ×139 km) at the equator, 

with 85 vertical levels between the surface and 85km in altitude. Model vertical levels use a 

stretched grid such that the vertical resolution is around 13 m near the surface and around 150 to 85 
200 m at the top of the boundary layer. We chose this resolution since it is the same as that used 

for long climate runs in CMIP6.  

Aerosol number concentrations are treated prognostically with the GLOMAP multi-modal 

scheme (13, 14), which uses five log-normal aerosol size modes and includes sulfate, sea-salt, black 

carbon and organic carbon chemical components that are internally mixed within each size mode. 90 
Mineral dust is simulated separately using the CLASSIC dust scheme (15). GLOMAP simulates 



 

 

3 

 

new particle formation, coagulation, gas-to-particle transfer, cloud processing and deposition of 

gases and aerosols. The activation of aerosols into cloud droplets is calculated using distributions 

of sub-grid vertical velocities based on available turbulent kinetic energy (16) and the removal of 

cloud droplets by autoconversion to rain is calculated by the host model. Aerosols are also removed 95 
by impaction scavenging of falling raindrops according to the collocation of clouds and 

precipitation (17, 18). 

We modified some aspects of UKESM1-A in our PPE. Firstly, we define an ice mass fraction 

threshold (cloud_ice_thresh; table S1) above which no nucleation scavenging occurs, to allow 

sufficient aerosol to be transported to the Arctic (19). We assume that the wet scavenging of all 100 
aerosol particles (soluble and insoluble) is set to zero in large-scale raining clouds if the simulated 

ice to total water mass fraction is higher than this fixed value. This first structural change replicates 

the model change we implemented in (20) which is not yet in the release version of the model. We 

evaluated the climatic importance of this parameter as a cause of uncertainty in (21–24). Secondly, 

we implemented a version of look-up tables for aerosol optical properties (25) that includes optical 105 
properties for mineral dust (26) and higher-resolution increments of the imaginary part of the 

refractive indices, to better resolve the absorption coefficient of aerosols, especially at the low-

absorption end of the spectrum. Finally, we included an organically-mediated boundary layer 

nucleation parametrisation (27) to enhance remote marine and early-industrial aerosol 

concentrations in the model. 110 

Perturbed Parameter Ensembles (PPEs) 

We created a new PPE of 221 UKESM1-A model simulations for this study. Each member of the 

PPE has a distinct combination of 37 aerosol and physical atmosphere parameter values, spanning 

expert elicited ranges (table S1). Parameters perturbed in previous PPEs using older versions of our 

model (20, 28) and identified as important causes of uncertainty in cloud active aerosol 115 
concentrations and/or aerosol forcing (21, 29, 30) are perturbed here, alongside parameters 

associated with structural model developments (5–7). Many parameters are described in table S1 

as ‘scale factors’, which indicates we scaled the corresponding process parameter up or down over 

the indicated range. Other parameters are specific components of process parametrizations. 

 120 
Multi-stage experimental design 

 

We created our PPE in two stages, following ‘history matching’ conventions (31, 32). In the first 

stage, , the 221 member ensemble was made by combining a simulation using median values for 

each parameter with 220 additional parameter combinations were drawn from a Latin hypercube 125 
optimized to ensure design points were distributed as evenly as possible across the 37-dimensional 

parameter space, using the ‘optimumLHS’ R function (33). We output monthly mean data for 4 

months for each ensemble member and analysed output from the final month, which corresponded 

to anthropogenic emissions for May 2014 and horizontal wind fields for 2015.  

We created statistical Gaussian process emulators (34) of multiple monthly mean output 130 
variables. For each variable, we sampled one million model variants (parameter combinations), 

from the corresponding emulator, that uniformly spanned the uncertain parameter space, in keeping 

with efforts to constrain aerosol radiative forcing uncertainty using large ensembles (22, 23). We 

then ruled out implausible parameter combinations that compared poorly to observations within 

known emulator uncertainty and assumed observational uncertainty bounds. Observations included 135 
global mean shortwave and longwave top-of-the-atmosphere radiative fluxes from the Clouds and 

the Earth’s Radiant Energy System experiment (35) and global mean precipitation amount from 

version 2 of the Global Precipitation Climatology Project (36). Additionally, we used North Pacific 

and North Atlantic marine only data between 10o and 60o N for low- and total-cloud fraction from 

the Moderate Resolution Imaging Spectroradiometer (37) and LWP from the Multi-Sensor 140 
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Advanced Climatology of Liquid Water Path data set (38). We assumed errors of 8%, 2%, 30%, 

20%, 20% and 40% respectively for these observations. Of the retained model variants, we started 

with the parameter combination central to the retained space, then iteratively identified an 

additional 220 parameter combinations with the greatest Euclidean distance from existing points, 

until we had a new and diverse set of 221 members that span the uncertain parameter space retained 145 
from the first observational filter. Thus, the simulation to perturbed parameter ratio in our PPE is 

around six. 

We created full year simulations forced using 1850 and 2014 anthropogenic aerosol and 

precursor gas emissions for each of these 221 PPE members. We held greenhouse gas 

concentrations constant at 2014 levels. These 221 model simulationa are the second stage of our 150 
PPE creation process. As in the first stage, we created and validated statistical emulators of global 

mean and regional mean variables using these 221 members, then created a sample of one million 

model variants from these emulators.  

 

Measurements 155 

Measurements: Regional mean cloud and radiative properties 

Satellites carry instruments that measure atmospheric properties, then geophysical quantities are 

calculated using retrieval algorithms and inverse modelling methods. We compare values derived 

from MODIS instruments (39) to model output calculated using the Cloud Feedback Model 

Intercomparison MODIS satellite simulator (40, 41) where available. This simulator minimizes 160 
errors in model comparisons to MODIS retrieval data, by recreating as near as possible what the 

satellite would retrieve given the model-simulated atmospheric conditions.  

We use MODIS retrievals of of liquid water path (LWP), liquid cloud fraction (fc), cloud 

optical depth (τc) and cloud droplet effective radius (re) at 1o by 1o resolution and use τc and re 

values to calculate cloud droplet number concentration (Nd). We assume constant Nd throughout 165 
cloud layers, which is a good approximation for stratocumulus clouds (9, 42). We compare all cloud 

properties to satellite-simulator output and compare Nd to values calculated at model–simulated 

cloud tops. We use outgoing top-of-the-atmosphere shortwave radiative flux (FSW) measurements 

from the Clouds and the Earth’s Radiant Energy Systems instrument (35). 

We degrade all satellite-derived measurements to match our model resolution, then identify 170 
regions with high cloud fraction across the year (table S2). We evaluate constraint variables at the 

regional level, since there are no clear relationships between aerosol forcing and observations of 

global mean values (SI Fig. S26). These regions are dominated by stratocumulus cloud, have 

relatively high multi-model diversity in cloud amount in CMIP6 models (43) and are the most 

important regions for understanding the role of aerosol-cloud interactions (44). We only used values 175 
corresponding to model grid boxes with at least 50% ocean coverage in our area-weighted regional 

mean calculations. 

 

Measurements: Hemispheric difference in Nd 

The contrast between marine Nd in the polluted Northern Hemisphere and relatively pristine 180 
Southern Hemisphere (Hd) can act as a proxy for the difference in Nd between the early-industrial 
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and present-day atmospheres (45). We calculate Hd as the difference in hemispheric mean marine 

Nd values, using MODIS τc and re values.  

Measurements: Transects from stratocumulus- to cumulus-dominated regions 

We calculate the changes in multiple measurement values along transects from regions dominated 185 
by stratocumulus cloud to those dominated by cumulus. Cloud physical and radiative properties are 

sensitive to changes in aerosol concentrations in these transition regions (46). We chose transects 

on the Eastern side of major ocean basins (Fig. S12, table S3) where air is advected from the sub-

tropics towards the equator. We used data from July 2017 for Northern Hemisphere transects and 

for November 2017 for Southern Hemisphere transects, to evaluate relatively strong transitions in 190 
warmer months. 

The gradients of linear relationships between observed values and distances (in meters) along 

these transects are used as constraint variables. We evaluate gradients of individual measurement 

types including Nd, re, fc and LWP, calculated using values that informed our regional mean 

calculations. Additionally, we calculate gradients of aerosol index (AI; the total aerosol optical 195 
depth at 550 nm multiplied by the Ȧngstrὃm exponent) using MODIS aerosol optical depth retrieval 

data. We additionally include gradients of ratios of observation types along each transect as 

constraint variables. We calculate gradients of ratios using natural logarithms following (47). We 

include the ratios of Nd to AI, re to Nd, LWP to Nd and fc to Nd. We compare satellite-derived values 

to probability distributions of corresponding output from our PPE members in SI Fig. S27-30. 200 

 

Relative Importance of Parameters 

For each constraint variable, we calculated the relative importance of parameters as causes of model 

uncertainty using Pearson partial correlations (48). Partial correlations control for the effects of all 

other perturbed parameters on the variable of interest in the correlation calculations. A partial 205 
correlation between some variable and a chosen parameter is the correlation between the residuals 

from a) linear regression of the variable on the remaining 36 parameters and b) linear regression of 

the chosen parameter on the remaining 36. For each of the 37 model parameters, we define the 

relative importance metric, for any chosen variable, as the proportion of its partial correlation with 

the chosen variable to the total of the 37 partial correlations, multiplied by the sign of the gradient 210 
of the linear regression of the variable on the parameter in question. We include the sign of the 

gradient in the relative importance metric to convey the effect of changing parameter values on the 

variable, which helps develop a process-based understanding of model behavior within the 

uncertainty framework. Relative importance metrics are used here as a guide to our choice of 

variables for model constraint and inform our understanding of how they relate to ΔFaer. Variance-215 
based sensitivity analyses (49) can be used to robustly quantify the percentage of variance caused 

by each parameter. However, the multi-stage design of our PPE leaves gaps in the parameter space 

that limits the interpretability of variance-based methods. Therefore, we approximate the relative 

importance of parameters as causes of uncertainty using a method that is suited to our data structure 

and purpose. We calculate relative importance metrics using 1 million model variants for Fig. 2 220 
and 221 PPE members for SI Fig. S1-11.  

Constraint process 

We identified over 450 constraint variables for consideration as potential constraints on the ΔFaci 

component of ΔFaer. This total includes monthly mean values, annual means and seasonal 
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amplitudes of Hd and regional mean constraint variables. Gradients along transects from 225 
stratocumulus to cumulus regions were also included as constraint variables.  

We previously used ‘implausibility metrics’ that quantify the implausibility of each model 

variant with reference to an observed value, accounting for emulator uncertainty, observational 

uncertainty, inter-annual variability and representation errors (22, 23). Implausibility metrics were 

calculated for one million model variants across more than 9000 distinct measurements and we 230 
used these implausibility values to rule out model variants as observationally implausible if they 

did not compare well to the full set of observations. In practice, observations associated with 

relatively large uncertainties had little-to-no impact on ruling out model variants. Using this 

approach, we constrained ΔFaer and our parameter space, but could not readily isolate the role of 

individual constraint variables on the resulting ΔFaer constraint and could not quantify the efficacy 235 
of total constraint in terms of improved model skill, only in terms of reduced ΔFaer uncertainty 

range.  

Here, we calculated root mean squared error (RMSE) values for every model variant in our 

one million member sample for each of the 450 plus constraint variables. For each constraint 

variable, we then normalized the one million RMSE values and ranked model variants according 240 
to their normalized RMSE (NRMSE) values, to identify which model variants we could rule out as 

observationally implausible. To avoid over-constraining our model, we set NRMSE values to zero 

where the uncertainty in our emulators was large relative to the difference between observed and 

emulated values. For this step, we defined the emulator uncertainty as the square root of the 

emulator variance at that specific combination of model parameters. In this way, individual 245 
constraints were stronger for constraint variables where parameter perturbations clearly defined the 

response surface of the associated statistical emulators. 

We did not account for inter-annual variability because we ensured large-scale 

meteorological features of our model variants were very similar to observed conditions. We did not 

include (largely unquantified) observational errors in our constraint because we compared satellite 250 
data to model output from satellite simulators, which significantly reduced the importance of this 

source of uncertainty in observation to model comparisons. We also neglected the effects of 

representation errors (50) because they are unquantified for the satellite-derived observations used 

here. Instead, we compared mean values with stratocumulus-dominated regions to reduce the 

magnitude of these errors. Thus, observational and representation errors did not influence our 255 
method to identify which model variants to reject as implausible. Instead, we retained a proportion 

of model variants of the same order of magnitude as earlier constraint efforts that used constraint 

variables with more readily quantifiable sources of model-observation comparison uncertainty (22, 

23). In this way, our method avoided over-constrain the model, yet allowed us to identify model 

structural inconsistencies without the masking effects of additional uncertainties. 260 
For each of the 450 individual constraint variables we retained the 5000 model variants (0.5% 

of our original sample) with the lowest NRMSE values. However, the number of variants retained 

was larger than 5000 in many cases where the standard deviation from the associated emulator is 

larger than the difference in observed and emulated values (NRMSEs set to zero) for multiple model 

variants. For combinations of constraint variables, we calculated the average NRMSE value across 265 
all variables, for each model variant, prior to ranking and rejecting model variants with the highest 

average NRMSE values across variables. The number of constraint variables needed to optimally 

constrain ΔFaer in our structurally imperfect model was affected by the number of model variants 

retained (SI Fig. S25 and table S4) because reducing the efficacy of individual constraint variables 

affects the potential for additional observations to further reduce the ΔFaci uncertainty. However, 270 
the strength of constraint (quantified as a reduction in the 90% credible interval) was largely 

unaffected by the number of model variants retained at each step. The constraint was improved by 

only around 4 percentage points when we significantly increased the constraint criteria to retain 1k 

variants at each step (rather than 5k, as in the main article), and decreased by only around 3 
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percentage points when we significantly relaxed our constraint criteria to retain 20k variants. The 275 
constrained ΔFaer bounds were largely unaffected by the number of variants retained, shifting by 

only around 0.1 W m-2 (table S4). Thus, the choice of retaining 5k model variants at each step was 

arbitrary and did not affect our interpretation of results.  

We removed constraint variables from our constraint process where the associated emulator 

average standard deviation across our sample of points was larger than the standard deviation of 280 
emulated values. That is, we discounted constraint variables where the emulator uncertainty was 

larger than the changes in the emulated response surface. This was the case for a small number of 

transect constraint variables and for the seasonal amplitude of fc in the Southern Ocean. 

Additionally, we removed transect measurements from our set of constraint variables where the 

observed values were outside of the 90% credible interval of corresponding values in our sample, 285 
since such discrepancies are indicative of structural model inadequacies and/or unaccounted for 

observational errors (SI Fig. S27-30).  

In each region we identified a subset of constraint variables as being pairwise consistent with 

Nd. Individual monthly mean Nd values in each region were used to identify which other constraint 

variables could be considered pairwise consistent. The months used were September, October, 290 
December, March and the annual mean for the North Atlantic, North Pacific, South Atlantic, South 

Pacific and Southern Ocean respectively. In these months, Nd was determined to be most consistent 

on average with Nd in other months, as represented by the effect on average NRMSE in the 

associated constraint (Fig. 4 and SI Fig. S18-21). At this stage, we assumed constraint variables 

that are consistent with Nd in these specific months in these regions were also consistent with Nd 295 
(and other selected constraint variables) in other regions. Our strategy here was to rule out 

constraint variables that are clearly inconsistent, rather than to assure internal consistency between 

all remaining constraint variables. Across all regions, we retained 225 constraint variables (out of 

more than 450) which we considered consistent with Nd.  

We identified an optimal set of constraint variables by first identifying the individual 300 
constraint variable with the greatest impact on ΔFaci uncertainty (our target model variable), then 

progressively added constraint variables that most improved the overall constraint. We continued 

to add constraint variables to the optimal set, that weakened the ΔFaci constraint the least, in case 

our constraint was a local maximum. The effects on ΔFaci uncertainty are shown in Fig. 5 of the 

main article. At each of the more than twenty thousand steps in this process, we evaluated the 305 
average NRMSE values for each of the one million model variants, for every possible additional 

constraint. The blue and purple lines in Fig. 5 are synthetic examples of how our constraint may be 

improved with fewer, or no, remaining structural model inadequacies. These values used to create 

these lines are chosen to exemplify our point and do not correspond to actual constraints of our 

model.  310 
The order these constraint variables were chosen may affect the outcome. That is, a stronger 

constraint may have been achieved using a different set of ‘optimal’ constraint variables. However, 

we could not calculate NRMSE values for one million model variants across all possible 

combinations of 225 consistent constraint variables. Instead, we tested the effect of starting with 

all 225 consistent constraint variables and progressively removing one variable at a time. This is 315 
the most distinct test of reordering the constraint variables, from the method we used in the main 

article. This approach yielded a similar constraint on ΔFaer as achieved by progressively adding 

constraint variables (90% CI between -1.4 and -0.2 W m-2, or -1.2 to -0.0 W m-2 depending on which 

local maxima is used) and very similar constraints on marginal parameter distributions (equivalent 

to SI Fig. S23, 24). These tests revealed there are multiple ways to combine sets of consistent 320 
constraint variables to achieve a similar constraint on ΔFaer, highlighting the degree of redundancy 

in using multiple observations of the same variable for constraint.   
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 325 
 

Fig. S1. Relative importance of model parameters as causes of uncertainty in Hd. Relative 

importance metrics are calculated for each month (December 2016 to November 2017), for the 

annual mean (Ann) and the seasonal amplitude (Amp). Relative importance metrics lower than 330 
4% are not shown. 

 

  



 

 

9 

 

  

 335 
Fig. S2. Relative importance of model parameters as causes of uncertainty in global mean Nd. 

Figure features are identical to Fig. S1. 
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Fig. S3. Relative importance of model parameters as causes of uncertainty in global mean FSW. 

Figure features are identical to Fig. S1. 340 
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Fig. S4. Relative importance of model parameters as causes of uncertainty in global mean fc. 

Figure features are identical to Fig. S1. 

  345 
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Fig. S5. Relative importance of model parameters as causes of uncertainty in global mean LWP. 

Figure features are identical to Fig. S1. 
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  350 
Fig. S6. Relative importance of model parameters as causes of uncertainty in global mean τc. 

Figure features are identical to Fig. S1. 
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Fig. S7. Relative importance of model parameters as causes of uncertainty in global mean re. 355 
Figure features are identical to Fig. S1. 
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Fig. S8. Relative importance of model parameters as causes of uncertainty in North Atlantic 

transect constraint variables. Figure features are identical to Fig. S1. 360 
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Fig. S9. Relative importance of model parameters as causes of uncertainty in North Pacific 

transect constraint variables. Figure features are identical to Fig. S1. 
  365 
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Fig. S10. Relative importance of model parameters as causes of uncertainty in South Atlantic 

transect constraint variables. Figure features are identical to Fig. S1. 
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 370 
Fig. S11. Relative importance of model parameters as causes of uncertainty in South Pacific 

transect constraint variables. Figure features are identical to Fig. S1. 
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Fig. S12. Transects from stratocumulus to cumulus cloud dominated regions in a) July and b) 375 
November, superimposed on MODIS liquid cloud fraction values for the corresponding month. 
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Fig. S13. Median and standard deviations of annual mean ΔFaer, ΔFaci and ΔFari, across the 221 

PPE members. Values are calculated in each model grid box independently. 380 
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Fig. S14. Probability distributions of North Pacific regional mean output from our sample of 

model variants, satellite-derived measurements and the default UKESM1-A model, for individual 

months spanning December 2016 to November 2017 and the annual mean. 385 
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Fig. S15. Probability distributions of South Atlantic regional mean output from our sample of 

model variants, satellite-derived measurements and the default UKESM1-A model, for individual 

months spanning December 2016 to November 2017 and the annual mean. 390 
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Fig. S16. Probability distributions of South Pacific regional mean output from our sample of 

model variants, satellite-derived measurements and the default UKESM1-A model, for individual 

months spanning December 2016 to November 2017 and the annual mean. 395 
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Fig. S17. Probability distributions of Southern Ocean regional mean output from our sample of 

model variants, satellite-derived measurements and the default UKESM1-A model, for individual 

months spanning December 2016 to November 2017 and the annual mean. 400 
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Fig. S18. Pairwise comparisons of North Pacific and Hd constraint variables. Figure features are 

identical with Fig. 3. 405 
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Fig. S19. Pairwise comparisons of South Atlantic and Hd constraint variables. Figure features are 410 
identical with Fig. 3. 
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Fig. S20. Pairwise comparisons of South Pacific and Hd constraint variables. Figure features are 415 
identical with Fig. 3. 
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Fig. S21. Pairwise comparisons of Southern Ocean and Hd constraint variables. Figure features 420 
are identical with Fig. 3. 
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Fig. S22. Probability density functions for global, annual mean a) ΔFaer, b) ΔFaci and c) ΔFari in 425 
the original one million member sample and after optimal constraint.  
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Fig. S23. Probability density functions of model parameters after constraint using our optimal set 

of constraint variables. In the original sample of 1 million model variants, these pdfs would be 430 
uniformly distributed on this scale. Non-shaded sections indicate a proportion of model variants 

with corresponding parameter values have been ruled out as implausible. 
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Fig. S24. Probability density functions of model parameters after constraint using our optimal set 435 
of constraint variables. Features are identical to Fig. S23. 
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Fig. S25. Constraint of ΔFaci and the effect of varying the number of constraint variables used and 

the number of model variants retained (percentage of original 1 million) at each stage of the 440 
constraint (legend). The constraints achieved by retaining 5000 model variants at each stage is 

identical to the constraints shown in Fig. 5. 
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Fig. S26. Density plots of global, annual mean output from 221 PPE members for ΔFaer, ΔFaci, 445 
ΔFari, and global mean FSW, LWP, Nd, fc,τc and re,. Diagonal panels show probability density 

functions for individual variables. 
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Fig. S27. Probability density functions of North Atlantic transect constraint variables.  450 
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Fig. S28. Probability density functions of North Pacific transect constraint variables. 
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Fig. S29. Probability density functions of South Atlantic transect constraint variables. 455 
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Fig. S30. Probability density functions of South Pacific transect constraint variables. 

 

 460 
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Table S1. Parameters perturbed in our PPE, the ranges they were perturbed over and default 465 
values as prescribed in the release version of the model. 

 
Parameter Minimum Maximum Default Parameter Description 

bl_nuc 0.1 10 1 Boundary layer nucleation rate scale 

factor 

ait_width 1.2 1.8 1.59 Modal width of Aitken modes (nm) 

cloud_ph 1e-7 2.51e-5 1e-5 Cloud droplet pH 

carb_ff_diam 30 90 60 Emission diameter of carbonaceous 

aerosol from fossil fuel sources (nm) 

carb_bb_diam 90 300 110 Emission diameter of carbonaceous 

aerosol from biomass burning sources 

(nm) 

carb_res_diam 90 500 150 Emission diameter of carbonaceous 

aerosol from residential sources (nm) 

prim_so4_diam 3 100 150 Emission diameter of 50% of new sub-

grid sulfate particles (nm). Remaining 

50% emitted into the larger coarse 

mode (nm) 

sea_spray 0.25 4 1 Sea spray emission flux scale factor 

anth_so2 0.6 1.5 1 Anthropogenic SO2 emission flux 

scale factors. Applied independently to 

European, North American, Chinese, 

Asian regions and the rest of the world 

volc_so2 0.71 2.38 1 Volcanic SO2 emission flux scale 

factor 

bvoc_soa 0.32 3.68 1 Biogenic monoterpene production rate 

of secondary organic aerosol scale 

factor 

dms 0.33 3 1 Dimethyl-sulfide emission flux scale 

factor 

prim_moc 0.4 6 1 Primary marine organic carbon 

emission flux scale factor 

dry_dep_ait 0.5 2 1 Dry deposition velocity of Aitken 

mode aerosol 

dry_dep_acc 0.1 10 1 Dry deposition velocity of 

accumulation mode aerosol 

dry_dep_so2 0.2 5 1 Dry deposition velocity of SO2 

kappa_oc 0.2 0.65 0.65 Hygroscopicity parameter κ for organic 

aerosol – affects wet diameter and 

clear-sky radiative flux 

sig_w 0.25 1.75 1 Standard deviation of shallow-cloud 

updraft velocity scale factor 

rain_frac 0.3 0.7 0.3 Fraction of cloud covered area where 

rain forms 

cloud_ice_thresh 0.1 0.5 N/A Threshold of cloud ice water fraction 

for scavenging 

conv_plume_scav 0 0.5 0.5 Scavenging efficieny (as a fraction of 

total aerosol removed) of Aitken mode 

aerosol in convective clouds  

bc_ri 0.2 0.8 0.565 Imaginary part of the black carbon 

refractive index 

oxidant_oh 0.7 1.3 1 Offline oxidant OH concentration scale 

factor 
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oxidants_o3 0.7 1.3 1 Offline oxidant O3 concentration scale 

factor 

bparam -0.15 -0.13 -0.14 Coefficient of the spectral shape 

parameter β  for effective radius 

two_d_fsd_factor 1 2 1.4 Scale factor for the 2D relationship 

between cloud condensate variance, 

cloud cover and convection. Cotrols 

sub-grid cloud heterogeneity 

c_r_correl 0 1 0.9 Cloud and rain sub-grid horizontal 

spatial colocation 

autoconv_exp_lwp 2.15 3.31 2.47 Exponent of liquid water path in the 

power law for initiating autoconversion 

autoconv_exp_nd -3 -1 -1.79 Exponent of cloud droplet 

concentration (Nd) in the power law for 

initiating autoconversion 

dbsdtbd_turb_0 0 1e-3 1.5e-4 Cloud erosion rate (s-1) 

ai 0 5e-2 2.57e-2 Scaling coefficient for the dependence 

of ice mass on diameter 

m_ci 0 3 1 Ice fallspeed scale factor 

a_ent_1_rp 0 0.5 0.23 Cloud top entrainment rate scale factor 
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Table S2. Regions of persistent stratocumulus cloud used to calculate regional mean constraint 

variables. 

Region Latitude range Longitude range 

North Atlantic 34.4o to 54.4o N 329.1o to 347.8o E 

North Pacific 14.4o to 48.1o N 197.8o to 231.6o E 

South Atlantic 30.6o to 10.6o S 347.8o to 2.8o E 

South Pacific 30.6o to 15.6o S 254.1o to 284.1o E 

Southern Ocean 30.6o to 50.6o S 0o to 360o E 
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Table S3. Transects from stratocumulus- to cumulus-dominated regions. 475 
Region Start position End position 

North Atlantic 54.4o N, 336.6o E 45.6o N, 330.9o E 

North Pacific 30.6o N, 229.7o E 19.4o N, 227.8o E 

South Atlantic 11.9o S, 357.2o E 11.9o S, 345.9o E 

South Pacific 20.6o S, 282.2o E 15.6o S, 269.1o E 
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Table S4. Effect of varying the number of model variants retained at each stage of constraint. We 

show the number of measurements needed to optimally constrain ΔFaer and the 90% CI in each 

case. 480 
Number of model 
variants retained 

Number of 
measurements used 

Lower, negative ΔFaer 
bound 

Upper ΔFaer bound 

1000 27 -1.15 -0.07 

2000 31 -1.23 -0.10 

5000 13 -1.26 -0.13 

10000 29 -1.30 -0.13 

20000 15 -1.33 -0.13 
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