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Abstract. The state of the atmosphere, or of the ocean, cannot be exhaustively observed. Crucial parts might remain out of

reach of proper monitoring. Also, defining the exact set of equations driving the atmosphere and ocean is virtually impossible

because of their complexity. Hence, the goal of this paper is to obtain predictions of a partially observed dynamical system,

without knowing the model equations. In this data-driven context, the article focuses on the Lorenz-63 system, where only the

second and third components are observed, and access to the equations is not allowed. To account to those strong constraints,5

a combination of machine learning and data assimilation techniques is proposed. The key aspects are the following: the intro-

duction of latent variables, a linear approximation of the dynamics, and a database that is updated iteratively, maximising the

innovation likelihood. We find that the latent variables inferred by the procedure are related to the successive derivatives of the

observed components of the dynamical system. The method is also able to reconstruct accurately the local dynamics of the

partially observed system. Overall, the proposed methodology is simple, easy to code, and gives promising results, even in the10

case of small amounts of observations.

1 Introduction

In geophysics, dynamical systems are hard to predict and governing differential equations are not necessarily known. An alter-

native to process-based models is to use available observations of the system and statistical approaches to discover equations,

and then make predictions. This has been introduced in several papers, using combinations and polynoms of observed vari-15

ables, as well as sparse regressions or model selection strategies (Brunton et al., 2016; Rudy et al., 2017; Mangiarotti and

Huc, 2019). Those methods have then been extended to the case of noisy and irregular observation sampling, using Bayesian

framework as in data assimilation (Bocquet et al., 2019; North et al., 2022). Alternatively, some authors used data assimilation

and local linear regressions based on analogs (Tandeo et al., 2015; Lguensat et al., 2017), or iterative data assimilation coupled

with neural networks (Brajard et al., 2020; Fablet et al., 2021), to make data-driven predictions without discovering equations.20

All the approaches cited above are assuming that the full state of the system is observed, which is a strong assumption.

Indeed, in a lot of applications in geophysics, important components of the system are never or only partially observed such
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as the deep ocean (see e.g., Jayne et al., 2017), and data-driven methods fail to make good predictions. To deal with those

strong constraints, i.e., when the model is unknown and when the state is partially observed, an option is to use time-delay

embedding of the available components of the system (Takens, 1981; Brunton et al., 2017), whereas another option is to find25

latent representations of the dynamical system (see e.g., Talmon et al., 2015; Ouala et al., 2020). In this study, we will show

that they are strong relationships between those two approaches.

Here, we propose a simple algorithm using linear and Gaussian assumptions, based on a state-space formulation. This

classic Bayesian framework, used in data assimilation, is able to deal with a dynamical model (model- or data-driven) and

observations (partial and noisy). Three main ideas are used: (i) augmented state formulation (Kitagawa, 1998), (ii) global30

linear approximation of the dynamical system (Korda and Mezić, 2018), and (iii) estimation of the parameters using an iterative

algorithm combined with Kalman recursions (Shumway and Stoffer, 1982). The proposed framework is probabilistic, where the

state of the system is approximated using a Gaussian distribution (with a mean vector and a covariance matrix). The algorithm

is iterative, where a catalog is updated at each iteration and used to learn a linear dynamical model. The final estimate of this

catalog corresponds to a new system of variables.35

The paper is organized as follows. Firstly, the methodology is explained in section 2. Secondly, section 3 describes the

experiment using the Lorenz-63 system. Thirdly, the results are reported in section 4. The conclusions and perspectives are

drawn in section 5.

2 Methods

The methodology proposed in this paper is borrowed from data assimilation, machine learning, and theory of dynamical40

systems. It is summarized in Fig. 1 and explained below.

In data assimilation, the goal is to estimate, from partial observations y, the full state of a system x. When the dynamical

model used to propagate x in time is available (i.e., when model equations are given), classic data assimilation techniques are

used to retrieve unobserved components of the system. For instance, in the Lorenz-63 system (Lorenz, 1963), if only 2 variables

(x2 and x3 in the example defined below) are observed, knowing the Lorenz equations (system of three ordinary differential45

equations), it is possible to retrieve the unobserved one (x1 in our example below).

Now, if the model equations are not known and observations of the system are available over a sufficient period of time,

it is possible to use data-driven methods to mathematically approximate the dynamic of the system. In this paper, a linear

approximation is used to model the relationship of the state vector x between two time steps. It is parameterized with the

matrix M, which dimension is equal to the square of the state-space. Moreover, a linear observation operator is introduced to50

relate the partial observations y and the state x. It is written using a matrix H, with its dimension equal to the observation-space

times the state-space dimensions.
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Figure 1. Schematic of the proposed methodology, illustrated using the Lorenz-63 system. The algorithm is initialized with a Gaussian

random noise for the hidden component (i.e., z1) and with partial observations of the system (i.e., y2 and y3). Then, an iterative procedure

is applied with a linear regression, a covariance computation, the Kalman recursions, and a random sampling. This algorithm is iteratively

maximizing the likelihood of the observations noted L. After convergence of the algorithm, a hidden component z1 is stabilized and repre-

sented by a Gaussian distribution represented by the mean xs
1 and variance P s

1 .

Mathematically, matrices (M, H) and vectors (x, y) are linked using a Gaussian and linear state-space model such that

xt = Mxt−1 + ηt, (1a)

yt = Hxt + ϵt, (1b)55

where t is the time index and ηt and ϵt are unbiased Gaussian vectors, representing the model and observation errors, respec-

tively. Their error covariance matrices are noted Q and R, respectively. Those matrices indirectly control the respective weight

given to the model and to the observations. It constitutes an important tuning part of the state-space models (see Tandeo et al.,

2020, for a more in depth discussion).

In such a data-driven problem where only a part of the system is observed, a first natural step is to consider that the state60

x is directly related to the observations y. For instance, in the example of the Lorenz-63 previously introduced, observations

correspond to the second and third components of the system (i.e., x2 and x3, formally defined later).

In this paper, we propose to introduce a hidden vector noted z, corresponding to one or more hidden components that are

not observed. To this purpose, the state is augmented using this hidden component z, the observation vector y does not change,

and the operator H is a truncated identity matrix. The use of augmented state-space is classic in data assimilation and mostly65

refer to the estimation of unknown parameters of the dynamical model (see Ruiz et al., 2013, for further details).

The hidden vector z is now accounted in the linear model M, given in Eq. (1a), whose dimension has increased. The hidden

components are completely unknown and thus randomly initialized using Gaussian white noises, parameterized by σ2, their
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level of variance. The next step is to infer z using a statistical estimation method. Starting from the random initialization, an

iterative procedure is proposed, based on the maximization of the likelihood.70

The proposed approach is based on a linear and Gaussian state-space model given in Eqs. (1) and thus uses the classic

Kalman filter and smoother equations. It is inspired by the Expectation-Maximization algorithm (noted EM, see Shumway and

Stoffer, 1982) and is able to iteratively estimate the matrices M and Q. In this paper, R is assumed known and negligible. The

criterion used to update those matrices is based on the innovations, defined by the difference between the observations y and

the forecast of the model M, noted xf . The likelihood of the innovations, noted L, is written as:75

L ∝
T∏

t=1

exp
(
−

(
yt−Hxf

t

)⊤
Σ−1

t

(
yt−Hxf

t

))
, (2)

where Σt = HPf
t H

⊤+R, with Pf
t = MPa

t−1M
⊤+Q and Pa

t−1 corresponds to the state covariance estimated by the Kalman

filter at time t− 1. The innovation likelihood given in Eq. (2) is interesting because it corresponds to the squared distance

between the observations and the forecast normalized by their uncertainties, represented by the covariance Σt.

At each iteration of the augmented Kalman procedure, the estimate of the matrix M is given by the least square estimator,80

using a linear regression such that:

M(i) =
T∑

t=2

(
x(i−1)

t−1 (x(i−1)
t−1 )⊤

)−1

x(i−1)
t (x(i−1)

t−1 )⊤

T − 1
, (3)

where x(i−1) corresponds to the output catalog of the previous iteration (result of a Kalman smoothing and a Gaussian sam-

pling, explained more in details below). Following Eq. (1a), the covariance Q is estimated empirically using the estimate of M

given in Eq. (3), such that:85

Q(i) =
T∑

t=2

(
x(i−1)

t −M(i)x(i−1)
t−1

)(
x(i−1)

t −M(i)x(i−1)
t−1

)⊤

T − 1
. (4)

Then, a Kalman smoother is applied using the M(i) and Q(i) matrices estimated in Eq. (3) and Eq. (4). At each time t, it

results to a Gaussian mean vector xs
t and a covariance matrix Ps

t . As input of the next iteration of the algorithm, the catalog

x(i) is updated using a Gaussian random sampling using xs
t and Ps

t at each time t. This random sampling is used to exploit the

correlations between the components of the state vector and also to avoid being trapped in a local maximum, as in stochastic90

EM procedures (Delyon et al., 1999).

The likelihood calculated at each iteration of the procedure increases until convergence. The algorithm is stopped when the

likelihood difference between two iterations becomes small. The solution of the proposed method is the last Gaussian mean

vectors xs
t and covariance matrices Ps

t calculated at each time t. The component corresponding to the latent component z is

finally retrieved, with an information about its uncertainty.95
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3 Experiment

The methodology is tested on the Lorenz-63 system (Lorenz, 1963). This 3-dimensional dynamical system models the evolution

of the convection (x1) as a function of horizontal (x2) and vertical temperature gradients (x3). The evolution of the system is

governed by three ordinary differential equations such as:

ẋ1 = 10(x2−x1), (5a)100

ẋ2 = x1(28−x3)−x2, (5b)

ẋ3 = x1x2−
8
3
x3. (5c)

In this paper, it is assumed that x1 is never observed, only x2 and x3 are observed on a small period of time (10 loops of

the Lorenz-63 system) every dt = 0.001 time steps (top of Fig. 2). The observation vector is thus y = [y2,y3]. In what follows,105

only those data are available, not the set of Eqs. (5).

The methodology is applied to the Lorenz-63 system, adding sequentially a new hidden component in the state of the system

as follow. At the beginning, the state is augmented such that x = [x2,x3,z1], where z1 is randomly initialized with a white

noise, with variance σ2 = 5. The observations are stored in the vector y = [y2,y3]. The observation operator is thus the 2× 3

matrix H = [1,0,0|0,1,0]. After 30 iterations of the algorithm presented in section 2, the hidden component z1 is stabilized.110

After that, a new white noise z2 is used to augment the state such that x = [x2,x3,z1,z2], the vector y = [y2,y3] remains the

same, and the iterative algorithm is applied until stabilization of z2. As long as the stabilized likelihood continues to increase

with the addition of a hidden component, this augmented state procedure is repeated.

4 Results

Using the experiment presented in section 3, three hidden components z1, z2, and z3 were sequentially added. They are115

reported in Fig. 2, as well as the true Lorenz components x1, x2, and x3. Although they do not fit the hidden variable x1 of the

Lorenz-system, the two first hidden components z1 and z2 show time variations. On the contrary, z3 is very flat with a large

confidence interval. This suggests that our method has identified that 2 hidden variables are enough to retrieve the dynamics of

the 2 observed variables.

This is confirmed by the evaluation of the likelihood of the observations y2 and y3 with different linear models, obtained with120

or without the use of hidden components z (Fig. 3). As the proposed method is stochastic, 50 independent realizations of the

likelihood are shown for each experiment. The 50 realizations vary from the random values given to the added hidden variable

at the beginning of the iterative procedure. In the naive case where the state of the system is [x2,x3] (black dashed line), the

likelihood is small. Then, adding successively z1 (green lines) and z2 (red lines), after 30 iterations of the proposed algorithm,

the likelihood significantly increases. Finally, the inclusion of z3 reduces the likelihood (purple lines). Those results indicate125
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Figure 2. True components of the Lorenz-63 model (top) and hidden components estimated using the iterative and augmented Kalman

procedure (bottom). The shaded colors corresponds to the 95% Gaussian confidence intervals.

that the best linear model to predict the variations of the observations y2 and y3 is the one using two hidden components. Thus,

for the rest of the paper, the focus is thus done on the model with the following augmented state x = [x2,x3,z1,z2].

To compare more precisely the performance of the naive linear model M with [x2,x3] and the one with [x2,x3,z1,z2], their

forecasts are evaluated. The distance between the forecasts and the truth (i.e., the error) is computed at each time t in the

(x2,x3) space (using the observation operator H), such that130

dist(M) = ∥Hxt−HMxt−1∥, (6)

where ∥.∥ represents the Euclidean norm. The errors from model using [x2,x3] to model using [x2,x3,z1,z2] reduce signifi-

cantly (by half in average, not shown). However, this error reduction is not homogeneous in the attractor. Figure 4 indicates

when the two models are similar (values close to 0) and when model including z1 and z2 is better (values close to 1). The

improvement is moderate in the outside of the wings of the attractor, important in the wing-transition, and almost not changed135

in inside of the wings (e.g., for x2 close to 10). The question is now: what is the significance of those hidden components z1 and

z2 estimated using the proposed methodology? Are they correlated with the unobserved component x1 or with the observed

one x2 and x3? Are they somehow proxies of the unobserved component?

6

https://doi.org/10.5194/egusphere-2022-1316
Preprint. Discussion started: 29 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 3. Likelihoods as a function of the iteration of the augmented Kalman procedure. Different dynamical models are considered, from

none to three hidden components in z, whereas only x2 and x3 are observed in the Lorenz-63 model. The likelihood of 50 independent

realizations of the iterative and augmented Kalman procedure are shown.

It has been found that the hidden components z correspond to linear combinations of the derivatives of the observations such

that:140

z1 = a2ẋ2 + a3ẋ3, (7a)

z2 = b1ż1 + b2ẋ2 + b3ẋ3. (7b)

When developing Eq. (7b) using Eq. (7a), the second hidden component writes z2 = b2ẋ2 + b3ẋ3 + b1a2ẍ2 + b1a3ẍ3. It shows

that z1 uses the first derivative of x2 and x3, whereas z2 uses the second derivatives. This result makes the link with Taylor’s

and Takens’ theorem, which shows that an unobserved component (i.e., x1), can be replaced by the observed components (i.e.,145

x2 and x3) at different time lags. Note that due to the stochastic behaviour of the algorithm, the a and b coefficients are not

fixed and several combination of them can reach to the same performance in term of likelihood. This is illustrated in Fig. (3),

with 50 independent realizations of the proposed algorithm. When considering only z1 (green lines), the algorithm converges to

various solutions, mainly restricted around two solutions (corresponding to a minimum and a maximum of likelihood). Those

minimum and maximum likelihoods correspond to a3 ≈ 0 and to a2 ≈ 0, respectively. This suggests that ẋ3 is more important150

than ẋ2 to explain the variations of the Lorenz system (this is consistent with investigation of Sévellec and Fedorov, 2014, in a

modified version of Lorenz-63 model). Then, when considering z1 and z2 (red lines), the 50 independent realizations reach the

same likelihood after 30 iterations. It means that if the algorithm focuses on the estimation of a2 when considering only z1, it

will then focuses on b3 when introducing z2; in terms of forecast performance, this is similar to firstly focus on a3 and then b2,

because the final likelihood values are similar.155
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Figure 4. 1 minus the ratio between the distance calculated in Eq. (6) for the linear model M using [x2,x3,z1,z2] and the distance calculated

using [x2,x3].

5 Conclusions

In this article, the goal is to retrieve hidden components of a dynamical system that is partially observed. The proposed

methodology is purely data-driven, not model-driven (i.e., without the use of any equations of the dynamical model). It is based

on the combination of data assimilation and machine learning techniques. Three main ideas are used in the methodology: an

augmented state strategy, a linear approximation of a dynamical system, and an iterative procedure. The methodology is easy160

to implement, using simple strategies and well established algorithms: Kalman filter and smoother, linear regression using least

squares, iterative procedure inspired from the EM recursions, and Gaussian random sampling for the stochastic aspect.

The methodology is tested on the Lorenz-63 system, where only two components of the system are observed on a short

period of time. Several hidden components are introduced sequentially in the system. Although the hidden components are ini-

tialized randomly, only a few iterations of the proposed algorithm is necessary to retrieve a relevant information. The recovered165

components are expressed with Gaussian distributions. The new components correspond to linear combinations of successive

derivatives of the observed variables. This result is consistent with the theorems of Taylor and Takens which show that time

delay embedding is useful to improve the forecasts of the system. In our case, this is evaluated using the likelihood: a metric to

evaluate the innovation (i.e., the difference between Gaussian forecasts and Gaussian observations).
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Using our methodology, we do not retrieve the true missing Lorenz component and need two hidden variables to represent170

a single missing one. The reason of this mismatch is two-fold and is mainly due to the linear approximation of the dynamical

system, which implies that: (1) the true missing component, that does not have to be linear combinations of the observed

variables, is impossible to retrieve in our framework and (2) two variables, using combinations of the time derivatives of

the observed variables, are needed to accurately represent the complexity of the dynamics. However, it is important to note

that, even if two variables are needed to replace a single one, the dynamical evolution of the system is retrieved with our175

methodology. This correct representation of the evolution might ultimately be the most important (e.g., for accurate and reliable

forecasting).

The proposed methodology is using a strong assumption: the linear approximation of the dynamical system is global (i.e.,

fixed for the whole observation period). A perspective is to use adaptive approximations of the model using local linear regres-

sions. This strategy is computationally more expensive because a linear regression is adjusted at each time step, but shows some180

improvements in chaotic systems (see Platzer et al., 2021). In this context of adaptive linear dynamical model, the proposed

methodology could be easily plugged into an ensemble Kalman procedure based on analog forecasts (Lguensat et al., 2017).

As stated in the introduction, in lot of problems in geophysics, model equations are not available or difficult to manipulate

(e.g., primitive equations), but time series of partial observations exist. The proposed method is promising to reconstruct a

consistent set of variables when remote, complex dependencies exist (e.g., mean-eddy flow interactions as discussed in Chen185

et al., 2014) or unobserved, small-scale impact is unknown (e.g., turbulent closure as discussed in Zanna and Bolton, 2020).

In these context, dynamics of atmospheric and oceanographic systems will be investigated in the future. The next step will

be to test the proposed methodology on concrete problems and see if the retrieved hidden components correspond to realistic

unmeasurable quantities that could drive the dynamics of those systems.
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