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Abstract. The state of the atmosphere, or of the ocean, cannot be exhaustively observed. Crucial parts might remain out of reach

of proper monitoring. Also, defining the exact set of equations driving the atmosphere and ocean is virtually impossible because

of their complexity. The goal of this paper is to obtain predictions of a partially observed dynamical system, without knowing

the model equations. In this data-driven context, the article focuses on the Lorenz-63 system, where only the second and third

components are observed, and access to the equations is not allowed. To account to those strong constraints, a combination of5

machine learning and data assimilation techniques is proposed. The key aspects are the following: the introduction of latent

variables, a linear approximation of the dynamics, and a database that is updated iteratively, maximising the likelihood. We

find that the latent variables inferred by the procedure are related to the successive derivatives of the observed components of

the dynamical system. The method is also able to reconstruct accurately the local dynamics of the partially observed system.

Overall, the proposed methodology is simple, easy to code, and gives promising results, even in the case of small amounts of10

observations.

1 Introduction

In geophysics, even if one has the perfect knowledge of the studied dynamical system, it remains difficult to predict because

of the existence of nonlinear processes (Lorenz, 1963). Beyond this important difficulty, achieving this perfect knowledge of

the system is often impossible. Consequently, the governing differential equations are often not known in full because of their15

complexity, in particular regarding scale-interactions (e.g., turbulent closures are often assumed rather than "known" per se).

On top of these two major difficulties, the state of the system is not and cannot be exhaustively observed. Potentially crucial

components are and might remain partly or fully out of reach of proper monitoring (e.g., deep ocean or small scale features).

Predicting a partially observed and partially known system is therefore a key issue in current geophysics and in particular for

ocean, climate and atmospheric sciences.20

A typical example of such a framework is the use of climate indices (e.g., Global Mean Temperature, Niño 3.4 index, North

Atlantic Oscillation index) and the study of their links and their dynamics. In this context, the direct relationship between those
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indices is unknown, even if their more indirect and complex relation exist, through the full knowledge of the climate dynamics.

Also, it is highly possible that climate indices are dependent on components of the climate that are not currently considered

as key indices, and so are not fully monitored. However, these key indices could be sufficient to describe the most important25

aspect of climate, leading to accurate and reliable predictions, and enabling cost-effective adaptation and mitigation.

Hence, an alternative to physics-based models is to use available observations of the system and statistical approaches to

discover equations, and then make predictions. This has been introduced in several papers, using combinations and polynomials

of observed variables, as well as sparse regressions or model selection strategies (Brunton et al., 2016; Rudy et al., 2017;

Mangiarotti and Huc, 2019). Those methods have then been extended to the case of noisy and irregular observation sampling,30

using a Bayesian framework as in data assimilation (Bocquet et al., 2019; North et al., 2022). Alternatively, some authors used

data assimilation and local linear regressions based on analogs (Tandeo et al., 2015; Lguensat et al., 2017), or iterative data

assimilation coupled with neural networks (Brajard et al., 2020; Fablet et al., 2021; Brajard et al., 2021), to make data-driven

predictions without discovering equations.

However, many approaches cited above are assuming that the full state of the system is observed, which is a strong assump-35

tion. Indeed, in a lot of applications in geophysics, important components of the system are never or only partially observed

such as the deep ocean (see e.g., Jayne et al., 2017), and data-driven methods fail to make good predictions. To deal with those

strong constraints, i.e., when the model is unknown and when some components of the system are never observed, combina-

tion of data assimilation and machine learning shows potential (see e.g., Wikner et al., 2021). Additionally, an option is to use

time-delay embedding of the available components of the system (Takens, 1981; Brunton et al., 2017), whereas another option40

is to find latent representations of the dynamical system (see e.g., Talmon et al., 2015; Ouala et al., 2020). In this study, we will

show that they are strong relationships between those two approaches.

Here, we propose a simple algorithm using linear and Gaussian assumptions, based on a state-space formulation. This

classic Bayesian framework, used in data assimilation, is able to deal with a dynamical model (physics- or data-driven) and

observations (partial and noisy). Three main ideas are used: (i) augmented state formulation (Kitagawa, 1998), (ii) global linear45

approximation of the dynamical system (Korda and Mezić, 2018), and (iii) estimation of the dynamical parameters using an

iterative algorithm combined with Kalman recursions (Shumway and Stoffer, 1982). The current paper is thus an extension of

(Shumway and Stoffer, 1982) to never observed components of a dynamical system, using a state augmentation strategy. The

proposed framework is probabilistic, where the state of the system is approximated using a Gaussian distribution (with a mean

vector and a covariance matrix). The algorithm is iterative, where a catalog is updated at each iteration and used to learn a50

linear dynamical model. The final estimate of this catalog corresponds to a new system of variables, including latent ones.

The proposed methodology is based on an important assumption: the surrogate model is linear. Although it can be considered

as a disadvantage compared to nonlinear models, this linear assumption also has interesting properties. Indeed, nonlinear

model combined with state-augmentation is a very broad family of model and may lead to identifiability issues. Using a linear

dynamics already leads to a very flexible family of model since the latent variable may describe nonlinearities and include55

for example any transformation of the observed or non-observed components of a dynamical model. Furthermore, it allows

a rigorous estimation of the parameters using well established statistical algorithms which can be run at a low computational
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Figure 1. Schematic of the proposed methodology, illustrated using the Lorenz-63 system. The algorithm is initialized with a Gaussian

random noise for the hidden component (i.e., z1) and with partial observations of the system (i.e., y2 and y3). Then, an iterative procedure

is applied with a linear regression, a covariance computation, the Kalman recursions, and a random sampling. This algorithm is iteratively

maximizing the likelihood of the observations noted L. After convergence of the algorithm, a hidden component z1 is stabilized and repre-

sented by a Gaussian distribution represented by the mean xs
1 and variance P s

1 .

cost. The proposed methodology is evaluated on a low-dimensional and weakly nonlinear chaotic model. As this paper is a

proof of concept, a linear surrogate model is certainly well suited for this situation.

The paper is organized as follows. Firstly, the methodology is explained in section 2. Secondly, section 3 describes the60

experiment using the Lorenz-63 system. Thirdly, the results are reported in section 4. The conclusions and perspectives are

drawn in section 5.

2 Methods

The methodology proposed in this paper is borrowed from data assimilation, machine learning, and dynamical systems. It is

summarized in Fig. 1 and explained below.65

In data assimilation, the goal is to estimate, from partial and noisy observations y, the full state of a system x. When the

dynamical model used to propagate x in time is available (i.e., when model equations are given), classic data assimilation

techniques are used to retrieve unobserved components of the system. For instance, in the Lorenz-63 system (Lorenz, 1963),

if only 2 variables (x2 and x3 in the example defined below) are observed, knowing the Lorenz equations (system of three

ordinary differential equations), it is possible to retrieve the unobserved one (x1 in our example below). But this estimation70

requires good estimates of model and observations error statistics (see e.g., Dreano et al., 2017; Pulido et al., 2018).
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Now, if the model equations are not known and observations of the system are available over a sufficient period of time, it is

possible to use data-driven methods to mathematically approximate the system dynamics. In this paper, a linear approximation

is used to model the relationship of the state vector x between two time steps. It is parameterized with the matrix M, which

dimension is equal to the square of the state-space. Moreover, a linear observation operator is introduced to relate the partial75

observations y and the state x. It is written using a matrix H, with its dimension equal to the observation-space times the

state-space dimensions. Nonlinear and adaptive operators as well as noisy observations could be taken into account but, for the

sake of simplicity, only the linear and non-noisy case is considered in this paper.

Mathematically, matrices (M, H) and vectors (x, y) are linked using a Gaussian and linear state-space model such that

xt =Mxt−1 +ηt, (1a)80

yt =Hxt + ϵt, (1b)

where t is the time index and ηt and ϵt are unbiased Gaussian vectors, representing the model and observation errors, respec-

tively. Their error covariance matrices are noted Q and R, respectively. Those matrices indirectly control the respective weight

given to the model and to the observations. It constitutes an important tuning part of the state-space models (see Tandeo et al.,

2020, for a more in depth discussion).85

In such a data-driven problem where only a part of the system is observed, a first natural step is to consider that the state

x is directly related to the observations y. For instance, in the example of the Lorenz-63 previously introduced, observations

correspond to the second and third components of the system (i.e., x2 and x3, formally defined later).

In this paper, we propose to introduce a hidden vector noted z, corresponding to one or more hidden components that are

not observed. To this purpose, the state is augmented using this hidden component z, the observation vector y does not change,90

and the operator H is a truncated identity matrix. The use of augmented state-space is classic in data assimilation and mostly

refer to the estimation of unknown parameters of the dynamical model (see Ruiz et al., 2013, for further details).

The hidden vector z is now accounted in the linear model M, given in Eq. (1a), whose dimension has increased. The hidden

components are completely unknown and thus randomly initialized using Gaussian white noises, parameterized by σ2, their

level of variance. The next step is to infer z using a statistical estimation method. Starting from the random initialization, an95

iterative procedure is proposed, based on the maximization of the likelihood.

The proposed approach is based on a linear and Gaussian state-space model given in Eqs. (1) and thus uses the classic

Kalman filter and smoother equations. The Kalman filter (forward in time) is used to get the information of the likelihood,

whereas the Kalman smoother (forward and backward in time) is used to get the best estimate of the state. The proposed

approach is inspired by the Expectation-Maximization algorithm (noted EM, see Shumway and Stoffer, 1982) and is able to100

iteratively estimate the matrices M and Q. In this paper, R is assumed known and negligible. The criterion used to update

those matrices is based on the innovations, defined by the difference between the observations y and the forecast of the model

M, noted xf . The likelihood of the innovations, noted L, is computed using T time steps such that:

L≜ p
(
y1, . . . ,yT |xf

1 , . . . ,x
f
T

)
∝

T∏
t=1

exp

(
−
(
yt −Hxf

t

)⊤
Σ−1

t

(
yt −Hxf

t

))
, (2)
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where Σt =HPf
t H

⊤+R, with Pf
t =MPa

t−1M
⊤+Q and Pa

t−1 corresponds to the state covariance estimated by the Kalman105

filter at time t− 1. The innovation likelihood given in Eq. (2) is interesting because it corresponds to the squared distance

between the observations and the forecast normalized by their uncertainties, represented by the covariance Σt.

At each iteration of the augmented Kalman procedure, the estimate of the matrix M is given by the least square estimator,

using a linear regression such that:

M(i) =

T∑
t=2

(
x
(i−1)
t−1 (x

(i−1)
t−1 )⊤

)−1

x
(i−1)
t (x

(i−1)
t−1 )⊤

T − 1
, (3)110

where x(i−1) corresponds to the output catalog of the previous iteration (result of a Kalman smoothing and a Gaussian sam-

pling, explained more in details below). Following Eq. (1a), the covariance Q is estimated empirically using the estimate of M

given in Eq. (3), such that:

Q(i) =

T∑
t=2

(
x
(i−1)
t −M(i)x

(i−1)
t−1

)(
x
(i−1)
t −M(i)x

(i−1)
t−1

)⊤

T − 1
. (4)

Then, a Kalman smoother is applied using the M(i) and Q(i) matrices estimated in Eq. (3) and Eq. (4). At each time t, it115

results to a Gaussian mean vector xs
t and a covariance matrix Ps

t . As input of the next iteration of the algorithm, the catalog

x(i) is updated using a Gaussian random sampling using xs
t and Ps

t at each time t. This random sampling is used to exploit

the linear correlations between the components of the state vector, that appear in the non-diagonal terms of Ps. The random

sampling is also used to avoid being trapped in a local maximum, as in stochastic EM procedures (Delyon et al., 1999).

The likelihood calculated at each iteration of the procedure increases until convergence. The algorithm is stopped when the120

likelihood difference between two iterations becomes small. The solution of the proposed method is the last Gaussian mean

vectors xs
t and covariance matrices Ps

t calculated at each time t. The component corresponding to the latent component z is

finally retrieved, with an information about its uncertainty.

3 Experiment and evaluation metrics

The methodology is tested on the Lorenz-63 system (Lorenz, 1963). This 3-dimensional dynamical system models the evolution125

of the convection (x1) as a function of horizontal (x2) and vertical temperature gradients (x3). The evolution of the system is

governed by three ordinary differential equations such as:

ẋ1 = 10(x2 −x1), (5a)

ẋ2 = x1(28−x3)−x2, (5b)

ẋ3 = x1x2 −
8

3
x3. (5c)130
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Runge-Kutta 4-5 is used to integrate the Lorenz-63 equations to generate x1, x2, and x3. In this paper, it is assumed that x1

is never observed, only x2 and x3 are observed on 10 model time units of the Lorenz-63 system, every dt= 0.001 time steps

(top of Fig. 2). The observation vector is thus y = [y2,y3]. In what follows, only those data are available, not the set of Eqs. (5).

The methodology is applied to the Lorenz-63 system, adding sequentially a new hidden component in the state of the system135

as follow. At the beginning, the state is augmented such that x= [x2,x3,z1], where z1 is randomly initialized with a white

noise, with variance σ2 = 5. The observations are stored in the vector y = [y2,y3]. The observation operator is thus the 2× 3

matrix H= [1,0,0|0,1,0]. After 30 iterations of the algorithm presented in section 2, the hidden component z1 has converged.

After that, a new white noise z2 is used to augment the state such that x= [x2,x3,z1,z2], the vector y = [y2,y3] remains the

same, and the iterative algorithm is applied until stabilization of z2. As long as the stabilized likelihood continues to increase140

with the addition of a hidden component, this state augmentation procedure is repeated.

Note that several hidden components can be added all at once, with similar performance as the sequential procedure described

above (results not shown). In this all at once case, the interpretation of the retrieved components is not as informative, thus we

decided to retain the sequential case. Note also that the methodology has been tested with larger dt (i.e., 0.01 and 0.1). The

conclusion is that by increasing the time delay between observations, it significantly increases the number of latent variables145

(results not shown). Finally, the assimilation window length corresponds to 104 time steps. By reducing this length (e.g., to

103, 102, 101), the conclusions remain the same as for dt= 0.001.

4 Results

Using the experiment presented in section 3, three hidden components z1, z2, and z3 were sequentially added. They are reported

in Fig. 2, as well as the true Lorenz components x1, x2, and x3. Although they do not fit the hidden variable x1 of the Lorenz-150

system, the two first hidden components z1 and z2 show time variations. On the contrary, z3 remains close to 0, with a large

confidence interval. This suggests that our method has identified that 2 hidden variables are enough to retrieve the dynamics of

the 2 observed variables. This result is consistent with the effective dimension of the Lorenz-63 system, which is between two

and three. Here, as the estimated dynamical model M is a linear approximation, the dimension of the augmented state and the

observed components is higher than the effective one.155

This is confirmed by the evaluation of the likelihood of the observations y2 and y3 with different linear models, obtained with

or without the use of hidden components z (Fig. 3). This likelihood is useful to diagnose the optimal number of dimensions

needed to emulate the dynamics of the observed components. As the proposed method is stochastic, 50 independent realizations

of the likelihood are shown for each experiment. The 50 realizations vary from the random values given to the added hidden

variable at the beginning of the iterative procedure. In the naive case where the state of the system is [x2,x3] (black dashed160

line), the likelihood is small. Then, adding successively z1 (green lines) and z2 (red lines), after 30 iterations of the proposed

algorithm, the likelihood significantly increases. Finally, due to a significant increase of the forecast covariance Pf in Eq. (2),

the inclusion of z3 reduces the likelihood (purple lines). This suggests that a third variable is not needed, and is even detrimental

to the skill of the reconstruction. Those results indicate that the best linear model to predict the variations of the observations
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Figure 2. True components of the Lorenz-63 model (top) and hidden components estimated using the iterative and augmented Kalman

procedure (bottom). The shaded colors corresponds to the 95% Gaussian confidence intervals.

y2 and y3 is the one using two hidden components. Thus, for the rest of the paper, the focus is thus done on the model with the165

following augmented state x= [x2,x3,z1,z2].

The question is now: what is the significance of those hidden components z1 and z2 estimated using the proposed methodol-

ogy? Are they correlated to the unobserved component x1 or to the observed one x2 and x3? Are they somehow proxies of the

unobserved component? Using symbolic regression (i.e., using basic mathematical transformations of x2 and x3 as regressors

to explain z1 and z2), it has been found that the hidden components z correspond to linear combinations of the derivatives of170

the observations such that:

z1 = a2ẋ2 + a3ẋ3, (6a)

z2 = b1ż1 + b2ẋ2 + b3ẋ3. (6b)

When developing Eq. (6b) using Eq. (6a), the second hidden component writes z2 = b2ẋ2+ b3ẋ3+ b1a2ẍ2+ b1a3ẍ3. It shows

that z1 uses the first derivative of x2 and x3, whereas z2 uses the second derivatives. This result makes the link with Taylor’s175

and Takens’ theorem, which shows that an unobserved component (i.e., x1), can be replaced by the observed components

(i.e., x2 and x3) at different time lags. Note that due to the stochastic behaviour of the algorithm, the a and b coefficients
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Figure 3. Likelihoods as a function of the iteration of the augmented Kalman procedure (left) and estimation of the a2 and a3 parameters

(right). Different dynamical models are considered, from none to three hidden components in z, whereas only x2 and x3 are observed in the

Lorenz-63 model. The likelihood of 50 independent realizations of the iterative and augmented Kalman procedure are shown.

are not fixed and several combination of them can reach to the same performance in term of likelihood. This is illustrated in

Fig. 3 (left panel), with 50 independent realizations of the proposed algorithm. When considering only z1 (green lines), the

algorithm converges to various solutions, mainly restricted around two solutions (corresponding to a minimum and a maximum180

of likelihood). As shown in Fig. 3 (right panel), the minimum likelihood corresponds to a3 = 0 and the maximum likelihood

corresponds to a2 = 0. Thus, the likelihood when z1 = a3ẋ3 is higher than when z1 = a2ẋ2. This suggests that ẋ3 is more

important than ẋ2 to explain the variations of the Lorenz system (this is consistent with investigation of Sévellec and Fedorov,

2014, in a modified version of Lorenz-63 model). Interestingly, the scatter plot between a2 and a3 shows a circular relationship.

This is also the case for b2 and b3 (results not shown). Then, in Fig. 3 (left panel), when considering z1 and z2 (red lines), the185

50 independent realizations reach the same likelihood after 30 iterations. It means that if a3 = 0 when considering only z1,

then b3 ̸= 0 when introducing z2. In terms of forecast performance, this is similar to a2 = 0 and b2 ̸= 0, because the likelihoods

converge to the same value (red lines after 30 iterations).

To compare the performance of the naive linear model M with [x2,x3] and the ones with [x2,x3,z1] or [x2,x3,z1,z2], their

forecasts are evaluated. After applying the proposed algorithm, the M̂ and Q̂ estimated matrices are used to derive probabilistic190

forecast, starting from the last available observation yt, using:

E[xt+1|y1, . . . ,yt] = M̂E[xt|y1, . . . ,yt], (7a)

Cov[xt+1|y1, . . . ,yt] = M̂Cov[xt|y1, . . . ,yt]M̂
T + Q̂, (7b)

with E and Cov, the expectation and the covariance, respectively. To test the predictability of the different linear models

(i.e., with or without hidden components z), a test set has been created, starting from the end of the sequence of observations195

(y1, . . . ,yT ) used in the assimilation window. This test set is also corresponding to 104 time steps with dt= 0.001. It is used

to compute two metrics, the Root Mean Square Error (RMSE) and the coverage probability at 50%. The RMSE is used to

evaluate the precision of the forecasts, comparing the true x2 and x3 components to the estimated ones, whereas the coverage
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Figure 4. Example of three statistical forecasts of x2 (left) and x3 (left) with their 50% prediction interval using 3 different linear operators

with: no hidden component (dashed black), one hidden component (green), and two hidden components (red). These predictions are obtained

using sequential statistical forecasts, as explained in Eqs. (7), on an independent test dataset.

probability is used to evaluate the reliability of the prediction, evaluating the proportion of true trajectories falling within the

50% prediction interval of x2 and x3. Examples of predictions are given in Fig. 4. It shows bad linear predictions of the model200

with only [x2,x3] (dashed black lines). As the M operator is not time-dependent, the predictions are quite similar, close to the

persistence. Then, adding one (green) or two (red) hidden components in the M operators creates some nonlinearities in the

forecasts.

In Fig. 5, the predictions are evaluated over the whole test dataset, for different lead times. By introducing hidden compo-

nents, the RMSE decreases for both x2 and x3 components (top panels). For instance, for a lead time of 0.05, when considering205

two hidden components, the RMSE is halved when it is compared to the naive linear model without hidden components. The

coverage probability metric is also largely improved (bottom panels). Indeed, the results with two hidden components are close

to 50%, the optimal value.

To evaluate where the linear model with [x2,x3,z1,z2] performs better than the one with [x2,x3], the Euclidean distances

between the forecasts (for a lead time of 0.1) and the truth are computed. Those errors are evaluated at each time step of the test210

dataset, in the (x2,x3) space. Based on those errors, Fig. 6 shows the relative improvement between the model without and the
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Figure 5. Root Mean Square Error (top) and 50% coverage probability (bottom) as a function of the lead time (x-axis) for the reconstruction

of the components x2 (left) and x3 (right). These metrics are evaluated on an independent test dataset.

model with hidden components. When the two models have similar performance, values are close to 0 (white), and when the

model including z1 and z2 is better, values are close to 1 (red). Figure 6 clearly shows that error reduction is not homogeneous

in the attractor. The improvement is moderate in the outside of the wings of the attractor, but important in the wing-transition.

It suggests that the introduction of the hidden components z1 and z2 makes it possible to provide information on the position215

in the attractor and thus to make better predictions, especially in bifurcation regions.

5 Conclusions

In this article, the goal is to retrieve hidden components of a dynamical system that is partially observed. The proposed

methodology is purely data-driven, not physics-driven (i.e., without the use of any equations of the dynamical model). It is

based on the combination of data assimilation and machine learning techniques. Three main ideas are used in the methodology:220

an augmented state strategy, a linear approximation of a dynamical system, and an iterative procedure. The methodology is
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Figure 6. Relative forecast improvement measured as 1 minus the ratio between two Euclidean distances: the one calculated with model

[x2,x3,z1,z2] (at numerator) and the one calculated with model [x2,x3] (at denominator). The Euclidean distances are calculated in the

(x2,x3) space and correspond to the error between the forecasts (for a lead time of 0.1) and the truth, evaluated on an independent test

dataset.

easy to implement, using simple strategies and well established algorithms: Kalman filter and smoother, linear regression using

least squares, iterative procedure inspired from the EM recursions, and Gaussian random sampling for the stochastic aspect.

The methodology is tested on the Lorenz-63 system, where only two components of the system are observed on a short

period of time. Several hidden components are introduced sequentially in the system. Although the hidden components are ini-225

tialized randomly, only a few iterations of the proposed algorithm is necessary to retrieve a relevant information. The recovered

components are expressed with Gaussian distributions. The new components correspond to linear combinations of successive

derivatives of the observed variables. This result is consistent with the theorems of Taylor and Takens which show that time

delay embedding is useful to improve the forecasts of the system. In our case, this is evaluated using the likelihood: a metric to

evaluate the innovation (i.e., the difference between Gaussian forecasts and Gaussian observations).230

Using our methodology, we do not retrieve the true missing Lorenz component and need two hidden variables to represent

a single missing one. The reason of this mismatch is two-fold and is mainly due to the linear approximation of the dynamical

system, which implies that: (1) the true missing component, that does not have to be linear combinations of the observed

variables, is impossible to retrieve in our framework and (2) two variables, using combinations of the time derivatives of the
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observed variables, are needed to accurately represent the complexity of the dynamics. However, it is important to note that,235

even if two variables are needed to replace a single one, the dynamical evolution of the system is relatively well captured, for

short lead times, with our methodology. This correct representation of the evolution might ultimately be the most important

(e.g., for accurate and reliable forecasting).

The proposed methodology is using a strong assumption: the linear approximation of the dynamical system is global (i.e.,

fixed for the whole observation period). A perspective is to use adaptive approximations of the model using local linear re-240

gressions. This strategy is computationally more expensive because a linear regression is adjusted at each time step, but shows

some improvements in chaotic systems (see Platzer et al., 2021a, b). In this context of adaptive linear dynamical model, the

proposed methodology could be easily plugged into an ensemble Kalman procedure based on analog forecasts (Lguensat et al.,

2017). In futur works, we plan to compare the global and local linear approaches (i.e., fix or adaptive linear surrogate model).

We also plan to compare them to nonlinear surrogate models, based on neural network architectures with latent information245

encoded in an augmented space or in hidden layers (e.g., LSTM).

In this paper, we have demonstrated the feasibility of the method on an idealized and comprehensive problem, using the

Lorenz-63 system. In the future, we plan to apply the methodology to more challenging problems, like the Lorenz-96 system

or a quasi-geostrophic model. For the application on real data, we plan to use a database of observed climate indices and try to

find latent variables that help to make data-driven predictions.250
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