Response to Reviewer 1

Data-Driven Reconstruction of Partially Observed Dynamical
Systems, by Tandeo et al.

Note: your comments and questions are reported in this document and we use bold
text for our responses.

In this manuscript, the authors derive a method to reconstruct the dynamics of a system from
partial observations, in which data assimilation and machine learning steps are alternate.
The data assimilation steps are used to estimate the state from observations using the
surrogate model, while the machine learning steps are used to estimate the surrogate model
from the data assimilation analysis. This method is the same as the one derived by Brajard
et al. 2020, with the exception that, on top of this method, the authors propose a new,
innovative state augmentation process. The entire method is illustrated using numerical
experiments with the 3-variable Lorenz 1963 system. | am overall positive about this
manuscript. The text reads very well and is easy to follow. To my knowledge, the state
augmentation process is new and deserves to be published. However, | have some
concerns, in particular about the methodology and about the experiments, that needs to be
fixed before | can recommend publication.

Thank you for your encouraging review. Below you will find the responses to your
different points.

1 General comments
1.1 How the methodology differs from that of Brajard et al. (2021)

As far as | understand, the method derived in this manuscript proposes to alternate data
assimilation steps (with the ensemble Kalman smoother) and machine learning steps (with a
linear regression) on a given dataset of observations until convergence. This is exactly what
has been originally proposed by Brajard et al. (2020) and later formalised by Bocquet et al.
(2020). Pushing further the comparison, | see only three significant differences with the
original method:

 in the present method the machine learning step is restricted to linear regression, while in
the original method, nonlinear regression tools (such as neural networks) are used;

- in the present method observations are assumed to be perfect (even though they are
sparse), while in the original method, sparse and noisy observations are used;

- the state augmentation process added on top the data assimilation / machine learning
iterations.

I do not see the first two points as a major limitations, in fact | am rather confident that the
present method should also work with neural networks replacing the linear regression and
with noisy observations. By contrast, the third point is in my opinion the real added value of
the present work, and this should be emphasised.



Indeed, the added value is the state augmentation. This is the core of the paper, and,
we feel, the innovative part. We also wanted to remind that the alternance of DA
(Kalman linear) and ML (linear regression) is not new and has been proposed in the
context of the Expectation Maximization (EM) algorithm. We have clarified this point in
the new version of the manuscript, |. 47: “The current paper is thus an extension of
(Shumway and Stoffer, 1982) to never observed components of a dynamical system,
using a state augmentation strategy.”

Additionally, we now mention |. 33 the following paper, which was not cited
previously: Brajard et al. 2021.

Additional questions about the methodology

1. Is there a fundamental reason to use only linear regression and perfect observations? If
not, | would suggest to get rid of these assumptions in the methodological section.

Indeed, there is no reason to only consider this simple case. This is now stated in I.
77: “Nonlinear and adaptive operators as well as noisy observations could be taken
into account but, for the sake of simplicity, only the linear and non-noisy case is
considered in this paper.”

2. How does the state augmentation scale with the system dimension?

Thank you for this interesting question. We added this discussion I. 153: “This result
is consistent with the effective dimension of the Lorenz-63 system, which is between
two and three. Here, as the estimated dynamical model M is a linear approximation,
the dimension of the augmented state and the observed components is higher than
the effective one.” We also point out the role of the likelihood to find the number of
hidden components, 1. 157: “This likelihood is useful to diagnose the optimal number
of dimensions needed to emulate the dynamics of the observed components.”

3. Can the additional state components be added all at once? Did you try that in the
numerical experiments?

Yes, indeed it is possible to add all the latent variables at the same time. This is now
clarified in I. 142: “Note that several hidden components can be added all at once,
with similar performance as the sequential procedure described above (results not
shown). In this all at once case, the interpretation of the retrieved components is not
as informative, thus we decided to retain the sequential case.” We decided to retain
the iterative strategy, especially to introduce and explain clearly Egs. (6a) and (6b).

4. In the experiments, 30 iterations seem sufficient to reach convergence. Do you have an
idea how this number would scale with the system dimension?

There is no clear relationship between the number of EM iterations and the dimension
of the system, and this point doesn’t seem to be discussed in the literature. However,
the EM algorithm has a slow (linear) asymptotic convergence speed, but is generally



efficient in the first iterations to quickly increase the likelihood, and provide a first
estimate of the parameters.

5. The text is ambiguous about the data assimilation method used: ‘and thus uses the
classic Kalman filter and smoother equations’ (L 71-72), ‘by the Kalman filter’ (77-78) ‘a
Kalman smoother is applied’ (L 87) ‘Kalman filter and smoother’ (L 161). Kalman filter or
smoother, you have to choose (I assume it is Kalman smoother).

The two Kalman recursions are necessary in this paper and we decided to keep this
distinction because, as now stated in I. 98: “The Kalman filter (forward in time) is used
to get the information of the likelihood, whereas the Kalman smoother (forward and
backward in time) is used to get the best estimate of the state.”

1.2 About the numerical experiments

The description of the experiments is incomplete, in such a way that the experiments cannot
be reproduced without further assumptions. For example, what numerical method is used to
integrate in time the model equations to compute the truth? Furthermore, | have a serious
concern about the ‘model distance’ introduced by equation (6). Without further details, |
assume that it is computed using the same trajectory as the training step. Using the same
data for training and testing should be avoided by all means. Moreover, in this context where
observation are perfect, | am not sure to see the point of this metric: observations are
required to initialise the model (for the hidden components), but if we have observations, we
do not need the forecasting system any more since observations are perfect... Therefore, |
think that the metric used to evaluate the accuracy of the model should be reconsidered.

Thank you for those remarks about the numerical experiments. It is now stated in I.
132: “Runge-Kutta 4-5 is used to integrate the Lorenz-63 equations to generate x1, x2,
and x3.”

Regarding the Eq. (6) and the metric of evaluation, it has been completely modified,
taking into account the remarks of the two Reviewers. It now reads, |. 189: "To
compare the performance of the naive linear model M with [x2, x3] and the ones with
[x2, x3, z1] or [x2, x3, z1, z2], their forecasts are evaluated. After applying the
proposed algorithm, the M and Q estimated matrices are used to derive probabilistic
forecast, starting from the last available observation y_t, using:

E[xi11]y1,- .,y = ME[X|y1,..., ¥4,
Cov[xit1]y1,....y:] = MCov[x,|yy.....y: ] M" +Q,

with E and Cov, the expectation and the covariance, respectively. To test the
predictability of the different linear models (i.e., with or without hidden components
z), a test set has been created, starting from the end of the sequence of observations
(y_1, ..., y_T) used in the assimilation window. This test set is also corresponding to
1074 time steps with dt=0.001. It is used to compute two metrics, the Root Mean
Square Error (RMSE) and the coverage probability at 50%. The RMSE is used to
evaluate the precision of the forecasts, comparing the true x2 and x3 components to
the estimated ones, whereas the coverage probability is used to evaluate the
reliability of the prediction, evaluating the proportion of true trajectories falling within



the 50% prediction interval of x2 and x3. Examples of predictions are given in Fig. 4. It
shows bad linear predictions of the model with only [x2, x3] (dashed black lines). As
the M operator is not time-dependent, the predictions are quite similar, close to the
persistence. Then, adding one (green) or two (red) hidden components in the M
operators creates some nonlinearities in the forecasts.

In Fig. 5, the predictions are evaluated over the whole test dataset, for different lead
times. By introducing hidden components, the RMSE decreases for both x2 and x3
components (top panels). For instance, for a lead time of 0.05, when considering two
hidden components, the RMSE is halved when it is compared to the naive linear
model without hidden components. The coverage probability metric is also largely
improved (bottom panels). Indeed, the results with two hidden components are close
to 50%, the optimal value.

To evaluate where the linear model with [x2, x3, z1, z2] performs better than the one
with [x2, x3], the Euclidean distances between the forecasts (for a lead time of 0.1)
and the truth are computed. Those errors are evaluated at each time step of the test
dataset, in the (x2, x3) space. Based on those errors, Fig. 6 shows the relative
improvement between the model without and the model with hidden components.
When the two models have similar performance, values are close to 0 (white), and
when the model including z1 and z2 is better, values are close to 1 (red). Figure 6
clearly shows that error reduction is not homogeneous in the attractor. The
improvement is moderate in the outside of the wings of the attractor, but important in
the wing-transition. It suggests that the introduction of the hidden components z1 and
z2 makes it possible to provide information on the position in the attractor and thus to
make better predictions, especially in bifurcation regions.”

Additional questions about the experiments:

1. “10 loops of the Lorenz-63 system’ (L 104-105) Do you mean 10 model time units or 10
revolutions on the model attractor? In any case, | would not say that this is a small period of
time, compared to the doubling time which is 0.78 MTU.

Thanks for the suggestion, it now reads I. 133: “10 model time units of the Lorenz-63
system” and we removed “a small period of time”.

2. From what | understand (L 104-106), you have access to the true x2 and x3 (no
observation noise) every dt = 0.001 (which is probably the integration time step for the truth).
This seems to be very strong requirements. Can you discuss this?

Yes, this is a strong requirement, but for the sake of simplicity, we decided to keep
dt=0.001, showing that only two latent variables are needed. It is nhow explained in I.
144: “Note also that the methodology has been tested with larger dt (i.e., 0.01 and 0.1).
The conclusion is that by increasing the time delay between observations, it
significantly increases the number of latent variables (results not shown).”



3. What is the choice of the data assimilation window length for the ensemble Kalman
smoother? Without further details, | assume that it covers the entire experiment, i.e. 10*4
observation steps. This is really huge. Can you discuss this?

L. 146, it is mentioned that: “Finally, the assimilation window length corresponds to
1074 time steps. By reducing this length (e.g., to 103, 1022, 1071), the conclusions
remain the same as for dt=0.001.”

Technical comments and suggestions

L 17-18 ‘using Bayesian framework’ — ‘using a Bayesian framework’ ?

Done.

L 21 ‘All the approaches cited above are assuming that the full state of the system is
observed’ This is not true: at least Tandeo et al. (2015), Lguensat et al. (2017), Bocquet et
al. (2019), Brajard et al. (2020), Fablet et al. (2021) use sparse observation operators in their
methods. | would replace ‘All the approaches cited above’ by ‘Many approaches’.

Done.

L 23-24 ‘To deal with those strong constraints’ | would replace here ‘constraints’ by
‘assumptions’ in order to avoid a potential confusion with strong-constraint methods in
variational data assimilation.

Done.

L 24-26 ‘An option is to [...] whereas an other option is to [...]' | would suggest to also
mention here the combination of data assimilation and machine learning, because (i) this is
what is used in some of the previously cited papers (the ones that can handle sparse and
noisy observations), and (ii) this is what is used in the present manuscript!

Thanks, this sentence now reads, |. 37: “To deal with those strong constraints, i.e.,
when the model is unknown and when some components of the system are never
observed, combination of data assimilation and machine learning shows potential

(see e.g., Wikner et al. 2021).”

L 29 ‘with a dynamical model (model- or data-driven)’ | would replace here ‘model-driven’ by
‘based on physical knowledge’ or something like this (to avoid a model-driven model).

We replaced “model-driven” by “physics-driven”, this seems to be the adequate term.
L 31 ‘estimation of the parameters’ Which parameters?
It is now clarified, I. 46: “dynamical parameters”, i.e. M and Q matrices in our case.

L 40-41 from data assimilation, machine learning, and theory of dynamical systems’
— ‘from data assimilation, machine learning, and dynamical systems’ ?



Done.

L 42 ‘from partial observations y' In data assimilation, observations are usually noisy in
addition to being partial.

We added, I. 66: “and noisy”.

L 42-46 In this paragraph, why didn’t you mention the crucial role of the background error
statistics?

We added, I. 70: “But this estimation requires good estimates of model and
observations error statistics (see e.g., Dreano et al., 2017; Pulido et al., 2018).”

L 48 ‘to mathematically approximate the dynamic of the systen?’
— ‘to mathematically approximate the system dynamics’.

Done.

L 76 In equation (2), | would suggest to explicit the definition of L, i.e. use something like
that:

1
L= plyr.. }’1|xfyjfi x H
t=1
Thanks, the mathematical definition of the likelihood has been introduced in Eq. (2), I.
104.

Furthermore, T is undefined in this equation.
L. 103, we added: “is computed using T time steps such that”.

L 78-79 ‘The innovation likelihood given in Eq. (2) is interesting because it corresponds to
the squared distance between the observations and the forecast normalized by their
uncertainties, represented by the covariance Zt.’ In data assimilation, this quantity is simply
called ‘the likelihood’.

We prefer to keep “innovation likelihood” because different likelihoods appear in DA:
the likelihood of the innovation and the total likelihood of the state-space model (see
Tandeo et al. 2020, section 4, available here:
https://tandeo.files.wordpress.com/2020/11/tandeo_2020_mwr.pdf).

L 89-90 ‘This random sampling is used to exploit the correlations between the components
of the state vector’ | do not understand why this is necessary. Could you elaborate?

Sorry, it was not clear. It now reads, I. 117: “This random sampling is used to exploit
the linear correlations between the components of the state vector, which appear in
the non-diagonal terms of P*s.”



L 110 ‘After 30 iterations of the algorithm presented in section 2, the hidden component z1 is
stabilized.” Can you please explain the exact meaning of ‘stabilized’ in this context?

In 1. 138, we replaced “is stabilized” by "has converged”.

L 114 ‘this augmented state procedure is repeated’ — ‘this state augmentation process is
repeated’.

We prefer, I. 141: “this state augmentation procedure is repeated”.
L 117 ‘z3 is very flat’ | would replace ‘very’ by ‘rather’ in this statement.
We prefer, I. 151: “z3 remains close to 0”.

L 125 ‘Finally, the inclusion of z3 reduces the likelihood (purple lines).” Do you have an
explanation for this phenomenon?

Thanks for this question. After investigation, we discovered that, I. 162: “Finally, due
to a significant increase of the forecast covariance PAf in Eq. (2), the inclusion of z3
reduces the likelihood (purple lines). This suggests that a third variable is not needed,
and is even detrimental to the skill of the reconstruction.”

L 131 In equation (6), | would explicit the dependence on time, i.e. replace dist (M) by
dist(M)(t).

We hope that the new Egs. (7) clarify this point.

L 137-138 ‘Are they correlated with the unobserved component x1 or with the observed one
x2 and x3?’ — ‘Are they correlated to the unobserved component x1 or to the observed ones
x2 and x37’ ?

Done.

L 139 ‘It has been found that...” How did you come up with this? As it is presented, it looks
like something pulled out of a hat.

Thank you very much for this remark. It now reads, I. 169: “Using symbolic regression
(i.e., using basic mathematical transformations of x2 and x3 to explain z1 and z2), it
has been found that the hidden components z correspond to linear combinations of
the derivatives of the observations such that: Eqgs. (6)”. Sorry for this important
omission.

L 47-48 ‘This is illustrated in Fig. (3), with 50 independent realizations of the proposed
algorithm.” Strictly speaking, this is not the case since a and b are not represented in this

figure.

We decided to add a subfigure in the right panel of Fig. 3.
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The caption of Fig. 3 now reads: “Likelihoods as a function of the iteration of the
augmented Kalman procedure (left) and estimation of the a2 and a3 parameters
(right). Different dynamical models are considered, from none to three hidden
components in z, whereas only x2 and x3 are observed in the Lorenz-63 model. The
likelihood of 50 independent realizations of the iterative and augmented Kalman
procedure are shown.”

L 152-153 ‘Then, when considering z1 and z2 (red lines), the 50 independent realizations
reach the same likelihood after 30 iterations.” What about a and b? Are they similar over the
50 realisations?

Based on the new Fig. 3 (right panel), it now reads, I. 184: “Interestingly, the scatter
plot between a2 and a3 shows a circular relationship. This is also the case for b2 and
b3 (results not shown).”

L 153-154 ‘it will then focuses’ — ‘it will then focus’.
Done.

L 175-176 ‘the dynamical evolution of the system is retrieved with our methodology’. This is
not clearly shown in the experiments.

We hope that the new Fig. 4 and Fig. 5 give more information about this. However, the
sentence was maybe too strong and we replaced it, I. 236, by: “the dynamical
evolution of the system is relatively well captured, for short lead times, with our
methodology.”



