
The manuscript entitled “Identification and ranking of volcanic tsunami hazard sources in 
Southeast Asia” by Zorn et al. proposed a catalogue of potentially tsunamigenic volcanos in 
Southeast Asia and ranked these volcanoes by their tsunami hazards. The evaluation is based 
on a Multicriteria Decision Analysis (MDA) composed of five weighted factors. They identified 19 
volcanoes with high tsunami hazard and 48 with moderate tsunami hazard. The proposed 
ranking system can identify the hazards of Anak Krakatau and Kadovar before a tsunami occurs 
as a retroactive study. 

I agree that this study is meaningful to disaster mitigation of volcanic tsunamis. However, the 
ranking system proposed in this study is not objective and in lack of quantitively evidence to 
support the assessment. Meanwhile, the linear combination of five individually weighted factors 
for MDA are questionable. Unfortunately, the present form is not suitable for publication in 
Natural Hazards and Earth System Sciences. Significant additional work is required to improve 
the methodology and contents. My suggestion is that the manuscript should be revised 
substantially and resubmitted. I am willing to review this manuscript again after their revision. 
Here are my comments on this manuscript. 

Reply: We appreciate the feedback and the constructive comments that helped us to 
improve and clarify many points related to ranking system, objectivity of the analysis and 
interpretation. We especially improve the methods related to the individually weighted 
factors for the MCDA, we quantify the uncertainties, and rewrite large parts of the 
discussion section, where limitation aspects are now much more carefully illuminated. 
By responding to this point and the more specific points below, our manuscript has 
much improved. 

1. My first concern on this manuscript is that the ranking system is not objective. The scoring (F) 
is based on qualitive analysis. There is not physical or experimental evidence to prove the 
reasonability of such scoring. For example, the scoring of H/D-Ratio has values ranged from 
0.02 to 0.89 and these values are multiplied by 100 to get a 0–100-point scale linearly. In that 
case, it means that a H/D-Ratio of 0.4 has twice the score (i.e., risk) to a value of 0.2. However, 
such assumption lacks evidence. No numerical simulation or geological evidence are presented 
to support the scoring method. This problem also occurs in other four factors. 

Reply: We appreciate this comment and now improve the reasonability and 
objectiveness of our scoring (F) analysis. We also better discuss the limitations of the 
approach. As the reviewer correctly points out in the next comment, our score should be 
seen as an estimation for hierarchy rather than strict empirical criteria. 

We clarify this by firstly pointing to the purpose of our approach (creating a hierarchy) by 
adding the following text to the introduction. We make these changes:  

Page 3, line 79: “While we incorporate some elements of review studies, which have been done 
extensively for the volcanic tsunamis in Southeast Asia (see e.g. Paris et al. 2014; Mutaquin et al. 2019), 
we expand on this by attempting to place the potential source volcanoes in a hierarchical order and 
identify the most likely volcanoes to cause tsunamis in the future. For this purpose, we create a 
comprehensive catalogue of potentially tsunamigenic volcanoes and further use this data to create a 
point-based hierarchical ranking and identify the most likely candidates for sourcing potentially 
catastrophic tsunamis in the future.” 

 



We then further improve on the method description and reasonability. We note that our 
score, while being subjective and in lack of empirical hazard relation, is still reasonable 
to use for creating a hierarchy. We further point out that our data used to create the 
score is based on very objective criteria that can be measured and quantified. We add 
this in: 

Page 6, line 137: “While there are numerous factors that can be considered to reflect the tsunami 
hazard from a volcano, most of them do not have a known empirical relation to the hazard. For example, 
it is reasonable that a steep volcano close to the sea is more likely to produce a tsunami than a gently 
sloped one far inland, but exactly how much more likely this makes a tsunami is not known. With our 
ranking, we can therefore only aim to compare these factors by assuming that certain higher values equal 
a higher hazard. We consider the following five factors and point systems for the ranking. Each 
represents a set of data that can be recorded or quantified objectively, which is then assigned a 
subjective but consistent point scale in order to create a comparable hierarchy:” 

Page 13, line 265: “...our MCDA is based on arbitrary and thus subjective point scales, assigned to 
best cover the range of values used to build the ranking score.” 

 

Finally, we also appreciate the reviewers comment specifically on the linearity of our 
scale. Scales like this are usually linear as these are the simplest scales, but can still be 
reasonable and meaningful. In order to further improve the manuscript, we now have 
added a discussion paragraph in the limitations section referencing some relevant 
previous papers as examples. These are the changes: 

Page 13, line 267: “In studies previous ranking volcanic hazards and risks, these could be done by a 

simple count of “yes” or “no” features adding 1 or 0 points, respectively (Yokoyama et al. 1984), or similar 
variations (Ewert 2007; 2018), or via the creation of index values and adding them up to create a score 
(Scandone et al. 2016). Then categories (e.g. high, medium and low hazard) are defined to best cover the 
range of scores (e.g. Ewert 2018), which is also what we do in our ranking. MCDAs in other fields often 
have more quantitative scales such as 0-9 points (Fernandez et al. 2010; Rahmati et al. 2015) or 0-100 
(Nutt et al. 2010), but the score systems are still assigned arbitrarily. Thus, all these approaches and our 
ranking presented here use some degree of subjective judgement, as not all factors directly translate into 
an empirical hazard or risk value. Without this, no meaningful comparison between volcanoes could be 
made. However, as the rules with which points are given are kept strictly the same for all volcanoes, the 
comparability of scores is retained, allowing for a meaningful hierarchical order or scores. For our ranking, 
this means that the hazard score by itself should be seen as a rough hierarchy estimation rather than a 
strict empirical value as it has little meaning in terms of hard data, such as expected tsunami event 
frequency, possible wave heights, or impacts on shorelines and population. Similarly, we can thus not 
adequately assess the risk to shores and population in the traditional sense. Instead, we identify which 
volcanoes are the most likely to cause a tsunami in the future as these are expected to produce the 
highest hazard score.” 

  

2. Similarly, the weighting (W) of the ranking system is also subjective. I agree that the results of 
robustness testing are satisfactory. But the testing itself cannot show the importance (or 
contribution) of each factor for MDA. Therefore, the total weighted score can only be used as a 
rough estimation rather than a strict criterion. The authors may add a confidence level to each 
total weighted score. 



Reply: We agree that the weights are subjective. We also agree that the weighted score is 
not a strict criterion. We thus further clarify and improve the subjectivity issue in the 
methods section by adding the following on: 

Page 8, line 228: “For the factor weights, we have to choose values based on the importance of the 

factor data. A higher weight of a factor will result in a larger impact of this factor on the final score and 
thus make it more important. Here too, these choices are largely subjective, but allow reducing the impact 
or importance of e.g. less reliable factor data and in-turn raise the impact of more reliable factors” 

Page 13, line 267-275: “For our ranking, this means that the hazard score by itself should be seen as a 
rough hierarchy estimation rather than a strict empirical value as it has little meaning in terms of hard 
data, such as expected tsunami event frequency, possible wave heights, or impacts on shorelines and 
population.” 

 

Furthermore, we now follow the advice of the reviewer, by adding standard deviations to 
quantify this method and modify our robustness testing approach. We show that we can 
reliably identify the most likely volcanoes to cause future tsunamis despite the 
subjectivity of our weights, but can be less certain of the sorting with lower scoring 
volcanoes. We can also identify which volcanoes are more sensitive to the importance 
(or contribution) of single factors. We have replaced figure 4 and modified our method 
description and results accordingly. 

Page 9, line 245: “We further tested how robust our ranking is with respect to used factor weights. This 

is done to confirm that the highest scoring volcanoes still retain their high score even when the weighing 
is significantly different, which can confirm that these volcanoes really pose the highest tsunami hazard 
despite possible human error or misjudgement. The test was carried out by changing the five factor 
weights, increasing one factor to 60% and all others are set to 10%. The procedure was repeated for all 
five factor weights, so that every single factor was once set as the strongest influence. We also added 
one instance of all weights being considered equal (i.e., all five factors being weighed at 20%). This then 
enabled us to calculate both an average score and standard deviations within this variability of weights. 
The results could then be used to judge whether our ranking can generally identify the highest scoring 
and most hazardous volcanoes well, despite the subjective weight choices. We could further determine 
which volcanoes were more sensitive to the influence of single factors, as this would result in higher 
deviations.” 

 

We also updated the figure 4 caption. 

Page 19, line 357: “Figure 4: Robustness test of the factor weights used in the ranking. This was done 

by calculating an average score and standard deviations from repeat scoring while systematically 
changing the factor weights. It shows that the volcanoes we classed as high hazard volcanoes are 
generally well distinguished, with the highest values independently of factor weights. This demonstrates 
that changing the factor weights may slightly change the order in which the volcanoes are ranked, but our 
analysis is generally classifying higher hazard volcanoes correctly, confirming the robustness of our 
ranking. However, for the medium and low hazard volcanoes the ranking is less robust, due to a high 
number of volcanoes with similar scores, which can significantly change the hierarchical order depending 
on the chosen factor weights.” 



 

 

3. The MDA of the ranking system is based on a linear combination of five individually weighted 
factors (Equation 1). However, these factors are not mutually independent. For example, a 
higher slope angle may result in a higher tsunami activity, and therefore, also increases the 
score of tsunamigenic history. The scoring and weighting of five factors may overlap, which is 
not appropriate to be represented by a linear combination. 



Reply: We appreciate this comment and improve the manuscript by clarifying the factor 
dependency. The individually weighted factors we used are, in fact, largely independent. 
Taking the example above, we actually discuss this for the 2018 Krakatau event at page 
22, line 403. The removed steep slope resulted in a lower slope score for Krakatau after 
the landslide, but a higher tsunami score due to the additional event, so these are 
measured separately and independently. The only exceptions are the H/D-ratio and slope, 
which are actually dependent, but this is not problematic for our ranking. We added a 
statement highlighting this point in the limitations, but use a different example. 

Page 14 line 290: “Conducting a comparative ranking can be more challenging if there are major 
dependencies between the used factors. As an example for our case, it would be reasonable to assume 
that recent eruptive activity would more likely cause hydrothermal alteration, thus making the eruptive 
history and hazardous features factors interdependent. However, in our catalogue, only few volcanoes 
are recorded to have extensive hydrothermal alteration on their flanks and for many of these, no eruption 
occurred for decades to centuries (e.g. Manuk, Teon, Serua). Hence, we think that these issues are 
unlikely to significantly affect our results. The only exception is a direct dependence between the H/D-
ratio and the slope angle as it is essentially the same value if the volcano is close to the coast, however 
the separation does allow for a more distinct look at volcanoes that may be far from the coast, but still 
have steep slopes on a local level.” 

  

4. The heat map (Figure 7) and travel-distance plots (Figure 8) cannot accurately represent the 
potential volcanic tsunami hazards because they do not incorporate the information of tsunami 
amplitude. It makes the hazard assessment less powerful. A tsunami with 1 m amplitude has 
evidently different impact from the one with 0.1 m amplitude. I believe it is a MUST to consider 
the potential maximum amplitude when analyzing volcanic tsunami hazards. 

Reply: We appreciate this comment and make multiple improvements and clarifications 
to the text and figures, as outlined in the following. Indeed, figures 7 and 8 do not 
incorporate information on tsunami amplitudes. This is intentional as a reliable 
assessment of volcano-generated tsunami wave amplitudes requires knowledge of 
many  of yet unknown source parameters. Specifically, there are multiple potential 
processes at volcanoes which may generate a tsunami (explosion, flank collapse, PDC 
etc.). Each of them has a specific set of parameters describing magnitude, direction, etc. 
and each of them would result in highly different wave amplitudes. Reliable modelling of 
volcanogenic tsunamis requires thorough collection and evaluation of these specific 
source parameters, in addition to the advanced numerical techniques beyond classical 
nonlinear shallow water (NLSW) algorithms, and is usually applied to specific singular 
(historical) events. Incorporating such modelling for multiple volcanoes at once (in a 
ranking study like present) would not only be highly demanding, but, without 
constraining all the principal source parameters, also highly speculative.  

Instead, we would like to avoid producing highly unconstrained results and pursue a 
simpler and more robust approach by setting our ‘tsunami impact metric’ to a length of 
the coastline potentially affected by tsunamis within given propagation time. Note that 
these simple tsunami travel time models have the advantage that they are independent 
from the wave height and the generation mechanism (as long as it is a point source), so 
we can make meaningful assessments without assuming a yet unknown tsunami source. 

 



To improve the manuscript, we firstly address this issue by clarifying the aim of the 
modelling. We particularly emphasise that predictive models (e.g. Giachetti et al. 2012) 
require in-depth understanding of specific local factors:  

page 24 line 451: “Consequently, predictive studies remain rare (Giachetti et al. 2012; Paris et al. 

2019) and are only possible because the specific local circumstances leading to the tsunami are very well 
understood, which is knowledge that is lacking for most coastal volcanoes. Here, we provide multiple 
predictive models for the volcanoes we classified as posing a high tsunamigenic hazard. As volcanogenic 
tsunamis are caused by a large variety of mechanisms (Fig. 6) we contribute to this aspect by providing a 
simplified and broader view at the travel times of potential future tsunamis that are unspecific to the 
mechanism of tsunami generation and their magnitude (with the possible exception of meteotsunamis as 
seen at Hunga Tonga Haʻapai in 2022, which appear to have different wave propagation properties). We 
mainly account for the potential spatial impact of volcanogenic tsunamis and extend our tsunami hazard 
evaluation by assessing the total length of a coastline affected within one and two hours of tsunami 
propagation for the volcanoes categorised as high hazard in our ranking (except Didicas)“ 

 

Secondly, we highlight that the amplitudes and wave heights cannot be considered, but 
that comes with the advantage of the tsunami source independence.  

Page 24 line 455: “This means that we can simulate the travel and arrival times of specific volcanoes 

independent of how the tsunami was generated (as long as it is a point source), but we also cannot 
consider specific wave heights or runup as these depend strongly on the specific source mechanism and 
magnitude of the event and require additional and much more specific modelling data for individual sites.” 

Page 26 line 475: “While our models are limited to the travel time, they can be used to estimate the 

warning time for shores in case a tsunami occurs at one of the considered volcanoes.“ 

 

Thirdly, we agree with the reviewer and recognize the value of models with specific wave 
heights. While we prefer our simplified broader models, we instead provide an additional 
paragraph summarising some previous studies specific to single volcanoes and 
historical events: 

Page 23 line 444: “In order to assess the risks and impacts of volcanogenic tsunamis, numerical 

simulations are commonly used, both for distinct future scenarios and in retrospect for past events. For 
Southeast Asia, a large number of such studies had been conducted. Most models were done for Anak 
Krakatau looking specifically at the 2018 flank collapse with some using the known event to calibrate and 
confirm the quality of current simulation methods (Grilli et al. 2019; Borrero et al. 2020;  Mulia et al. 2020; 
Omira and Ramalho 2020; Paris et al. 2020; Zengafinnen et al. 2020), some using the known tsunami 
data (e.g. from tide gauges) to identify source parameters (Heidarzadeh et al. 2020; Ren et al. 2020; Grilli 
et al. 2021) and some testing variations in the source parameters to characterise potential future events 
(Dogan et al. 2021). In general, the consensus is that a landslide between 0.1 and 0.3 km3 volume that 
occurred both with a subaerial and a submarine component is mostly consistent with the observed and 
modelled runup heights at the adjacent shores. Similar models also exist for the 1883 tsunami at 
Krakatau, with the main purpose being the identification of its generation mechanism (Maeno and 
Imamura 2011) and how such a tsunami propagates in the far-field (Choi et al. 2003). Predictive studies 
only considering possible future events are not as abundant, but have been done for Anak Krakatau 
before the 2018 tsunami (Giachetti et al. 2012; Badriana et al. 2017), with Giachetti et al. (2012) making a 
remarkably close prediction to the later event. Other volcanoes in Southeast Asia are not as commonly 
considered. Pranantyo et al. (2021) test the tsunami propagation from Ruang volcano, Indonesia, using 
and comparing both historical observations and data from the 2018 Anak Krakatau event and reproducing 



a 25 m runup in the near-field. In Papua New Guinea numerical tsunami models have almost exclusively 
been considered for the Ritter Island tsunami in 1888 and the reconstruction of its generation (Ward and 
Day 2003; Karstens et al. 2020). Similarly, numerical tsunami models in the Philippines are mostly limited 
to Taal volcano, where models are based both on a past tsunami in 1716 (Pakosung et al. 2020) and a 
predictive study considering scenarios with different explosion sites and energies (Paris et al. 2019). 
Considering these works, it is clear that tsunamis sourced by volcanoes can be well explained with 
numerical models, but the considered volcanoes remain limited to a few select sites and scenarios. These 
models are also typically restricted to one particular volcano and one specific mechanism of tsunami 
generation as a retrospectively investigation.” 

 

We also make a brief point that our travel-time models could be supplemented with more 
specific scenario models in future studies. 

Page 26 line 489: “For future hazard and risk assessments, we thus recommend supplementing the 

knowledge from our TTT-models with specific detailed scenario calculations using established numerical 
modelling approaches, particularly for those high-hazard volcanoes where no such models exist (e.g. 
Batu Tara, Iliwerung, Nila).” 

 

Finally, we combined figures 7 and 8 to avoid confusion regarding our TTT models and 
the heat map highlighting the likely future focus areas for tsunamigenic volcanoes.  



  

 

5. The conclusion of this manuscript is too simple. It is necessary to discuss the limitation of this 
ranking system. 

Reply: We thank the reviewer for raising this point and thoroughly improve the 
conclusions of the manuscript and now also mention the limitations of the ranking 
approach. The new conclusion now reads as follows: 

Page 31 line 607: “Based on our MCDA analysis considering 131 volcanoes in SE-Asia we identify 19 

that pose a high tsunami hazard and another 48 with moderate tsunami hazard. We find our ranking 
system to be robust for the higher scoring volcanoes, meaning that we can reliably identify the most likely 
volcanoes to produce a tsunami in the future. For volcanoes with moderate to low scores the ranking is 
less robust and more susceptible to subjective judgement. The main limitations remaining are (1) a lack of 
knowledge how much individual factors contribute to the tsunami hazard of a volcano, instead requiring 
subjective assumptions, (2) erroneous, incomplete or insufficient data availability for many volcanoes 
(e.g. bathymetry or historical data), and (3) the multitude of different mechanisms which may cause a 
volcanic tsunami (i.e. PDCs, landslides, explosions), making a clear scenario assessment challenging. 



Our results show that the Indonesian Lesser Sunda Islands and northern Molucca Sea as well as the 
southern Bismarck Sea in Papua New Guinea are areas with a high number of hazardous volcanoes and 
may thus be particularly prone to tsunamis sourced by volcanoes. Many of these volcanoes such as Batu 
Tara, Indonesia, are not commonly considered for this type of hazard. We therefore emphasise the need 
to reconsider the current state of monitoring and risk assessment in these areas. Since tsunami warning 
systems are mostly not designed to detect volcanogenic tsunamis, our results highlight the importance of 
a reassessment of the current network and additional suitable equipment on the ground and through 
earth observation satellites. Due to the inherently short warning times of these events, we also 
recommended increased pre-emptive measures on a local level, such as increased public education 
programs for coastal communities and the marking evacuation routes along populated coasts.” 

  

Other minor comments: 

  

Line 71: I agree that “the inherent problem of volcanogenic tsunamis is the lack of warning time 
and quick response options”. However, even if we successfully identified the high-tsunami-risk 
volcanoes, this problem still exists. Please discuss potential solutions (e.g., radar, bottom 
pressure gauges) to fix this inherent problem. 

Reply: We agree and add a short paragraph. While we cannot fully solve this problem, 
our work can help prioritise where best to implement these potential solutions. 

Page 3 line 77: “This may then allow for a targeted implementation of disaster mitigation strategies and 

warning systems at critical sites, e.g. by placing additional tide gauges as proposed for Krakatau 
(Annunziato et al. 2019) or improved volcano monitoring.” 

Page 26 line 489: “For future hazard and risk assessments, we thus recommend supplementing the 

knowledge from our TTT-models with specific detailed scenario calculations using established numerical 
modelling approaches, particularly for those high-hazard volcanoes where no such models exist (e.g. 
Batu Tara, Iliwerung, Nila). This coupled with the prioritisation of specific volcanoes provided by our 
ranking can provide a well-founded basis for future disaster mitigation strategies. While the detection of 
volcanic processes triggering a tsunami will remain challenging to detect due to the multiple possible 
generation mechanisms, other steps can be done to improve warning times. These include the addition of 
strategically placed tide gauges as suggested by Annunziato et al. (2019), or improved real-time volcano 
monitoring through seismometers, radar, cameras or infrasound sensors. Regular use of satellite data 
(e.g. InSAR) can also help to preemptively identify volcanic unrest or destabilising flanks.” 

 

Line 105: Add a figure and use an example to show the process of defining the edifice 
boundary. 

Reply: We agree, but since the edifice boundary is not critical for our scoring, we do this 
in the supplement and point to it in the text. 

Page 5 line 110: “A full example for the NETVOLC and MORVOLC output and an illustration of the 

edifice boundary definition is provided in the supplementary material A.” 

 



Line 332: Remove the repeated word in “high high-hazard”. 

Reply: Much appreciated, we corrected this. 

  

Line 333: Please explain the reason why there are some volcanoes with high scores but not 
prominently considered for their tsunamigenic potential. 

Reply: This statement is confusingly phrased, we apologise. What we meant to say is 
that these volcanoes are not as prominently known to be a major tsunami hazard (e.g. 
Batu Tara, which is not well studied in this regard). We changed the sentence 
accordingly. 

Page 15 line 332: “However, we also identify high-hazard volcanoes that are not as well known for their 

tsunamigenic potential, but received similarly high scores.” 

 

  

Figure 5: Please add a subpanel to show the respective distribution between the countries for all 
considered volcanoes. 

Reply: We agree and reworked the figure as suggested, the new subpanel is a) 

 



  

Figure 6: What are the different meanings between dark red and light red (also blue, yellow, 
green, etc.)? Please specify. 

Reply: The dark and light colour are transparency settings mentioned in the figure 
caption and symbolise that the source mechanism is suspected but uncertain. We clarify 
this by reworking the figure to a donut plot that we can label more clearly. 

 

  

Section 4.3: This section seems verbose. The authors may present Batu Tara here and move 
others to supplementary material. Instead, it is better to have more discussions on potential 
tsunami scenarios of Batu Tara. 

Reply: We agree and moved this section as suggested. We now include Batu Tara in the 
earlier discussion section, including a new figure. The other volcanoes discussion 
generally serves as a contextualisation of the various high-hazard volcanoes, which may 
indeed fit best in a supplementary text. 

Page 23 line 443: “A brief feature of individual high-hazard volcanoes can be found in the 

supplementary material C.” 

  

 


