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Abstract. Regional emulation tools based on statistical relationships, such as pattern scaling, provide a computationally 17 

inexpensive way of projecting ocean dynamic sea-level change for a broad range of climate change scenarios. Such approaches 18 

usually require a careful selection of one or more predictor variables of climate change so that the statistical model is properly 19 

optimized. Even when appropriate predictors have been selected, spatiotemporal oscillations driven by internal climate 20 

variability can be a large source of statistical model errordisagreement. Using pattern recognition techniques that exploit spatial 21 

covariance information can effectively reduce internal variability in simulations of ocean dynamic sea level, significantly 22 

reducing random errors in regional emulation tools. Here, we test two pattern recognition methods based on Empirical 23 

Orthogonal Functions (EOF), namely signal-to-noise maximising EOF pattern filtering and low-frequency component 24 

analysis, for their ability to reduce errors in pattern scaling of ocean dynamic sea-level change. These two methods are applied 25 

toWe use the Max Planck Institute Grand Ensemble (MPI-GE) as a testbed for both methods, the as it is a type of initial-26 

condition large ensemble designed for an optimal characterization of the externally forced response. MPI-GE, so that internal 27 

variability is optimally characterized while avoiding model biases. We show that pattern filteringthe two methods tested here 28 

more efficiently reduce provides an efficient way of reducing errors thancompared to other conventional approaches such as a 29 

simple ensemble average. For instance, filtering only two realizations by characterising their common response to external 30 

forcing reduces the random error by almost 60%, a reduction level that is only achieved by averaging at least 12 realizations. 31 

We further investigate the applicability of both methods to single realization modelling experiments, including four CMIP5 32 
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simulations for comparison with previous regional emulation analyses. Pattern filteringscaling leads to a varying degree of 33 

error reduction depending on the model and scenario, ranging from more than 20% to about 70% reduction in global-mean 34 

root-mean-squared error compared with unfiltered simulations. Our results highlight the relevance of pattern recognition 35 

methods as a tool to reduce errors in regional emulation tools of ocean dynamic sea-level change, especially when one or only 36 

a few realizations are available. Removing internal variability prior to tuning regional emulation tools can optimize the 37 

performance of the statistical model,  leading to substantial differences in emulated dynamic sea level compared to unfiltered 38 

simulations.and simplify the choice of suitable predictors. 39 

1 Introduction 40 

Sea levels are closely linked to the state of the climate. Understanding how increased radiative forcing in the atmosphere will 41 

affect sea-level rise is of utmost importance given the devastating impacts to coastal systems. Global-mean sea level has been 42 

increasing over the 20th century (Fox-Kemper et al, 2021), and its rate has been accelerating over the past decades both globally 43 

(e.g., Dangendorf et al., 2019; Fox-Kemper, 2021; Frederikse et al., 2020; Nerem et al., 2006) and regionally (e.g., Steffelbauer 44 

et al., 2022). This acceleration is expected to continue over the next century for all greenhouse gas (GHG) 45 

emissionsconcentration scenarios (Fox-Kemper et al., 2021) with the potential to further increase widespread impacts in coastal 46 

areas (Cooley et al., 2022). Increased sea levels will change coastal flood risk through expanding areas under permanent 47 

inundation, increasing frequencies of extreme coastal flooding events (Vitousek et al., 2017; Wahl et al., 2017), and modifying 48 

tides (Haigh et al., 2020) and thus potentially increasing the frequency of tidal-induced flooding (Moftakhari et al., 2015). 49 

These processes will not only impact coastal infrastructure and assets (Hinkel et al., 2014) but also alter coastal ecosystems 50 

and the services they provide, from ecosystem value to natural flood risk protection (Cooley et al., 2022). Understanding how 51 

global and regional sea levels evolve under different scenarios will help to better adapt to changing risks and mitigate their 52 

potential impacts in coastal zones (Haasnoot et al., 2019, 2021). 53 

Global-mean sea-level change is driven by a combination of processes. The melting of the Greenland’s and Antarctica’s ice 54 

sheets, and glaciers and ice caps, changes in land-water storage, and thermal expansion of the ocean are the processes driving 55 

global mean sea-level rise (e.g., Gregory et al., 2019; Fox-Kemper, 2021). Analogously to global warming, sea-level rise is a 56 

global concern but it is not spatially uniform (e.g., Slangen et al., 2017). There are severalFour main processes exist that 57 

determine regional sea-level change. First, the redistribution of mass on the Earth’s surface, as a result of melting land ice and 58 

changes in land-water storage, causes a regionally variable sea-level change due to gravitational, rotational, and deformational 59 

effects (Farrell and Clark, 1976; Mitrovica et al., 2001). Second, vertical land motion also causeontrols unequal changes in 60 

relative sea- levels changes. The viscoelastic relaxation of the Earth induced by deglaciation following the last glacial 61 

maximum, defined as glacial isostatic adjustment (GIA; e.g., Peltier, 1999, 2001) and more local processes driving subsidence 62 

(e.g., Nicholls et al., 2021), are the main processes driving changes in land elevation. Third, (partly wind-driven) ocean 63 

circulation, and heat and freshwater fluxes over the ocean, also known as ocean dynamics (Gregory et al., 2019), change local 64 
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densities and move water mass around the ocean. Fourth, changes in sea-level pressure over the oceans, also known as inverted 65 

barometer (IB) effects, may lead to regionally varying rates of sea-level change (Stammer and Hüttemann, 2008). These 66 

regional drivers of sea-level change act on a wide range of spatial and temporal scales, which makes their local assessment 67 

essential for impact studies, planning, and adaptation needs. For instance, while ocean dynamics have a typical temporal scale 68 

ranging from days to decades, vertical land movements presents a much wider range  (Durand et al., 2022), as the latter is 69 

governed by processes affecting land elevation on significantly different timescales from earthquakes (on the order of seconds) 70 

to GIA (on the order of millennia). 71 

 72 

This study focuses on ocean dynamic sea-level (DSL) change, which is governed by changes in ocean circulation and density. 73 

DSL is strongly influenced by natural variability, and typically containsfeatures the largest spatiotemporal variations across 74 

the oceansvariability among all the regional sea-level change components. These characteristics make, which makes it a crucial 75 

component to predict regional sea-level changes accurately, yet also one that provides significant uncertainty (Couldrey et al., 76 

2021). Spatial and temporal variability in DSL is driven by internal climate variability (ICV), which are defined as naturally 77 

occurring climatic variations controlled by interactions between different components of the Earth system (Hasselmann, 1976; 78 

Schwarzwald and Lenssen, 2022), and by a forced response associated with increased radiative forcing in the climate system 79 

The effect of climate change on. DSL is typically projectedsimulated with Global Climate Models (or related models, 80 

hereinafter GCMs) General Circulation Models (GCMs), which are state-of-the-art comprehensive climate models  whichthat 81 

solves solve a range of environmentalgeophysical variables controlling the Earth’s climate system, including its climate. 82 

However , GCMs require vast computational resources, and therefore climate modelling experiments have been designed for 83 

a limited range of GHG concentration scenarios (O’Neill et al., 2017; Riahi et al., 2017; van Vuuren et al., 2011) within the 84 

climate model intercomparison (CMIP) framework (Eyring et al., 2016), so that model differences are somewhat comparable.  85 

To reduce the computational demand, several complementary approaches based on parameterizing process-based models are 86 

commonly used. This method, also known as emulation, aims to mimic the output of complex models at a reduced 87 

computational cost and has been widely used in recent literature to model different aspects of the climate system (e.g., (Fox-88 

Kemper et al., 2021; Thomas and Lin, 2018; Edwards et al., 2021;  Adria Schwarber et al., 2019).statistical modelling have 89 

been proposed. For instance, rRegional emulation follows the same principle and aims to estimate a spatiotemporal varying 90 

variable by mimicking GCMs behavior tools provide a computationally inexpensive alternative for projecting a regional 91 

variable and assessing its response to different forcings. . One of the most commonly used emulation approaches for projecting 92 

changes in a regional variable is pattern scaling (Mitchell, 2003; Perrette et al., 2013; Santer et al., 1990), which consists of 93 

relating a local, grid-point variable (predictand) to one or a few global-mean change variables (predictors) via regression. 94 

Based on that statistical relationship, a change in a regional variable can be emulated by projecting the global-mean variables 95 

via simpler climate models (Goodwin et al., 2018; Meinshausen et al., 2011; Millar et al., 2017; Smith et al., 2018)  96 

Here, we build on the approach proposed by Bilbao et al. (2015), who applied a linear pattern scaling approach to assess the 97 

ensemble mean DSL computed from five CMIP5 models and their simulations of several variables describing global changes, 98 
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including Global Surface Air Temperature (GSAT), Global-Mean Thermosteric Sea-Level Rise (GMTSLR), and ocean-99 

volume mean temperature. While GSAT turned out to be the best predictor of 21st-century DSL change in a high emissions 100 

scenario (Representative Concentration Pathway (RCP) 8.5), ocean-volume mean temperature and GMTSLR outperformed 101 

the rest of variables considered in lower emissions scenarios (RCP 2.6 and 4.5). As the surface ocean layer responds quicker 102 

to air temperature changes than the deeper ocean layer, they speculated that surface warming had a more important role relative 103 

to deep warming in a high emissions scenario. Based on Bilbao et al. (2015)’s findings, Yuan and Kopp (2021) used the same 104 

set of CMIP5 models to develop a bivariate pattern scaling approach, accounting for the surface and deep ocean layers 105 

separately. Their goal was to capture the different delayed response of those two layers by using GSAT and global-mean deep 106 

ocean temperature changes as predictors. By employing a bivariate pattern scaling approach, Yuan and Kopp (2021) reported 107 

a reduction of the predicted DSL error for the period 2271-2290 of 36%, 24%, and 34% for RCP 2.6, 4.5, and 8.5, respectively, 108 

compared to a univariate approach based on only GSAT.  109 

The aforementioned studies highlight the importance of selecting appropriate predictors to attain an optimized regional 110 

emulator of DSL, and how accounting for different processes driving DSL change (in different layers of the ocean) can help 111 

further improve emulator performance. While designing a regional emulator based on performance metrics may provide 112 

insights into the global processes driving DSL changes, this process can be obscured by other drivers of emulator error. In 113 

particular, random errors contained in the regression forming the pattern scaling approach, are assumed to be mostly caused 114 

by internal climate variabilityICV (Bilbao et al., 2015) and may be a source of large uncertainty. Thus, if random errors are 115 

not minimized prior to emulator training with GCM simulations, their presence could impair a proper selection of global 116 

predictors, such that it would be uncertain whether an increase in model performance is due to an appropriate selection of 117 

predictors or an artifact of natural variabilityICV  causing a biased selection. In previous studies, this effect has been minimized 118 

by computing 30-year means, assuming this cancels out natural variabilityICV. This step, however, entails a substantial loss 119 

of data and does not guarantee natural variabilityICV is optimally subtracted, and residual natural variabilityICV, for instance 120 

caused by long-memory processes (e.g., Becker et al., 2014; Dangendorf et al., 2014), can remain.  121 

 122 

We therefore propose to take a different approach to separate internal variabilityICV from the response driven by external 123 

radiative forcing in the Earth, by employing state-of-the-art modelling experiments specifically designed to do so. These are 124 

known as Single-Model Initial Condition Large Ensembles (SMILES) and consist of a set of simulations with the same forcing 125 

but with the variability evolving in a different phase (Deser et al., 2020). These realizations can be combined through different 126 

methods (e.g., Frankcombe et al., 2015) so that internal variabilityICV cancels out. However, conventional approaches such 127 

as computing the ensemble mean or linear trends are not the most efficient tools to do so and tend to lead to the loss of much 128 

of the information gained from running large ensembles (Wills et al., 2020). Other methods based on pattern recognition via 129 

Empirical Orthogonal Functions (EOFs) exploit spatial covariance information to remove internal variabilityICV more 130 

efficiently (Wills et al., 2020) and have demonstrated to provide a superior agreement between observations and simulations 131 
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than an ensemble average (Marcos and Amores, 2014). These types of efficient methods for removing internal variabilityICV 132 

hold potential to benefit emulation experiments of DSL for which the number of simulations is limited. 133 

The aim of this study is to characterise the importance of natural variabilityICV as a driver of random errors in statistically 134 

based (pattern-scaled) projections of DSL change. To achieve this aim, we will compare different pattern recognition 135 

techniques, including Signal-to-Noise Maximising (S/N M) EOF pattern filtering (Wills et al., 2020) and Low Frequency 136 

Component Analysis (LFCA, Wills et al., 2018, 2020). We will use these techniques to truncate natural variabilityICV in DSL 137 

simulations from the Max Planck Institute Grand Ensemble (MPI-GE) SMILE (Maher et al., 2019), and explore their 138 

applicability to single realization modelling experiments, including a set of CMIP5 simulations used in previous pattern scaling 139 

studies. In this paper, we particularly aim to attain the following objectives: 140 

 141 

1) Use a large ensemble (MPI-GE) to determine the forced pattern and examine to which extent pattern recognition 142 

techniques isolate the forced response in DSL change more efficiently than conventional methods (Section 4.1) 143 

2) Determine the error reduction in pattern scaling of DSL provided by pattern recognition methods relative to more 144 

conventional methods (Section 4.2). 145 

3) Test whether filtering improves pattern scaling in single-realization modelling experiments of DSL (Section 4.3). 146 

2 Climate model data and pre-processing 147 

Separating natural variabilityICV from the forced response is key for detection and attribution studies in climate change (Labe 148 

and Barnes, 2021) and to understand its effects on the climate system (Deser et al., 2020; Mankin et al., 2020). However, the 149 

combination of distinct GCMs to analyse internal variabilityICV should be performed with caution, as this may conflate 150 

internal variabilityICV with model biases (Maher et al., 2021b). In recent literature, this has motivated the development and 151 

use of SMILES, which branch each realization at a different model stage in the pre-industrial control simulation (Danabasoglu 152 

et al., 2020; Deser et al., 2020; Fasullo et al., 2020; Kay et al., 2015; Maher et al., 2019, 2021a; Mankin et al., 2020). This 153 

results in simulations with the same forced response but with variability evolving in a different phase, enabling a separation of 154 

the variability from the forced response.  155 

There are two main procedures for creating SMILEs: 1) inducing small round-off level differences in their atmospheric initial 156 

conditions (micro-initialization); 2) branching simulations at different times in the control simulation (macro-initialization). 157 

Both micro and macro initialization are useful to characterize unpredictable ICV within a model. Macro-initialization, 158 

however, provides larger differences in the initial states in both the atmosphere and ocean. Macro-initialized ensembles are 159 

therefore better suited than ‘micro’ ensembles to sample uncertainty in an initialized framework (Hawkins et al., 2016; 160 

Stainforth et al., 2007), facilitating an assessment of ICV in different aspects of the climate system. 161 

Since we are assessing ocean processes, a macro-initialized ensemble is most suitable for the purpose of this study. From the 162 

available macro-initialized SMILES (Deser et al., 2020; Maher et al., 2021a), we decided to use the Max-Planck Institute 163 
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Grand Ensemble (MPI-GE; Maher et al., 2019) because it contains the largest number of ensemble members available (100) 164 

in a SMILE. Moreover, the realizations are available for historical simulations and for different RCP scenarios (RCP 2.6, 4.5, 165 

and 8.5) up to 2100 together with an extended pre-industrial control simulation. MPI-GE simulations assume a stationary and 166 

volcano free 1850 climate, and are macro-initialized on the first of January in different years of the control simulation (Table 167 

1 in Maher et al., 2019). The branching separation between realizations varies along the pre-industrial control, ranging from 6 168 

to 24 years and with a median of 16 years. MPI-GE has a relatively lower resolution than other GCMs, representing the 169 

atmosphere at an approximate horizontal resolution of 200 km (1.875 degrees) with 47 layers (up to 0.01 hPa ~ 80 km in 170 

height). The horizontal resolution of the ocean (including biogeochemistry) varies from 12 to 150 km at 40 layers, whereas the 171 

land biosphere has the same horizontal resolution as the atmosphere. Despite its relatively low resolution, (Suarez-Gutierrez 172 

et al., (2021) show that MPI-GE samples observed ocean variability well in all regions except for the Southern Ocean. 173 

The MPI-GE ensemble design is based on macro-initialization, where 100 distinct coupled initial conditions are sampled from 174 

well separated starting dates in the pre-industrial control, such that ensemble members start from different ocean and 175 

atmospheric states. This procedure allows assessing uncertainty due to initial conditions differences in large scale aspects of 176 

the climate system as well as uncertainty in future model climate due to the non-linear nature of the climate system (Hawkins 177 

et al., 2016; Stainforth et al., 2007). Macro-initialized ensembles are therefore better suited than ‘micro’ ensembles, which are 178 

the ones where atmospheric initial conditions are perturbed, to sample uncertainty in an initialized framework, facilitating an 179 

assessment of natural variability within a model.  180 

Additionally, we use four CMIP5 models that were used in previous studies of DSL pattern scaling (Bilbao et al., 2015; Yuan 181 

and Kopp, 2021), including GISS-E2-R, HadGEM2-ES, IPSL-CM5A-LR, and MPI-ESM-LR. These four GCMs were selected 182 

in the afore-mentioned studies because they were used to calibrate the parameters of the simple climate model used by Geoffroy 183 

et al. (2013a, b), which facilitated the design of their emulation tool. Also, these models provide multi-century data (up to 184 

2300) in three emissions scenarios, granting an assessment of the suitability of pattern scaling for long-term projections. We 185 

use them here for comparison purposes. 186 

The focus of this study is on DSL, which in CMIP models is also known as ‘zos’ (Griffies et al., 2016) and defined at each 187 

location and time as the difference between local sea-surface height relative to the geoid, and its global mean over the ocean 188 

area (GMTSLR, or ‘zostoga’ in CMIP experiments). Hence, by definition, DSL, or zos, varies locally due to ocean circulation 189 

and horizontal gradients, but its global mean is zero at every time step. Both zos and zostoga are often expressed in terms of 190 

changes relative to a control state, expressing them as differences in relation to a baseline period. Moreover, sea level is 191 

influenced by atmospheric pressure anomalies, which is known as the IB effect. DSL simulations from GCMs do not include 192 

the effect of sea-level pressure on sea level and such effect is not subject of study in our analysis, hence it is not considered 193 

here.  194 

Since we are interested in assessing the forced response in DSL for historical and future GHG emissions we will use zos from 195 

a range of GCMs for historical and future radiative forcing scenarios, including RCP 2.6, 4.5, and 8.5 (Meinshausen et al., 196 

2011). Once the forced DSL has been characterized, we will proceed to pattern scale each model and scenario using GMTSLR 197 
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(zostoga) from their respective GCM simulation. Among other potential global predictors, we chose GMTSLR as it is closely 198 

related to DSL, and it has been successfully used in previous pattern scaling analysis of DSL (e.g., Bilbao et al., 2015; Thomas 199 

and Lin, 2018). We refrain from testing other global variables as predictors to ease comparing models and scenarios, and 200 

determining to which extent pattern filtering reduces statistical error via reducing internal variabilityICV. 201 

In this study, we are particularly interested in removing interannual variability, thus we compute annual mean zostoga and zos 202 

time series from the raw monthly mean GCM data. In addition, since GCMs are run for a few centuries and the deep ocean 203 

usually takes millennia to reach an equilibrium, both zos and zostoga are subject to model drift (Sen Gupta et al., 2013). Model 204 

drift in the historical and scenario simulations can be corrected for by subtracting the smoothed long-term change of the pre-205 

industrial control run. To avoid contaminating the drift correction with natural variabilityICV, ideally the full length of the 206 

control run is used to determine the drift (Sen Gupta et al., 2013). Therefore, to dedrift the historical and scenario simulations 207 

of zostoga and zos (the latter on a grid cell by grid cell basis) we first fit a quadratic polynomial to the full pre-industrial control 208 

simulations of these variables. Then, we evaluate and subtract the polynomial fit over the time period in which the pre-industrial 209 

control run and historical and scenario runs overlap, as identified by the branch times of the different simulation realizations 210 

and their length, from the historical and scenario runs. Similar to what was found by Hermans et al., (2020) and Hobbs et al. 211 

(2016), fitting a linear or quadratic polynomial to the pre-industrial control simulations yields little difference for the drift-212 

correction of the zostoga simulations of GISS-E2-R, HadGEM2-ES, IPSL-CM5A-LR, and MPI-ESM-LR. However, in the 213 

pre-industrial simulation of MPI-GE, the increase of zostoga behaves non-linearly and levels off toward the branching time of 214 

ensemble member 40, so we only dedrift ensemble members 1 to 39. For zos, some differences are found between linear and 215 

quadratic drift correction depending on the model, variant, and location. We assume linear dedrifting is suitable for our 216 

purpose, since we verified that the dedrifting does not substantially affect the pattern scaling performance and it is tedious to 217 

assess the best fit on a grid-point basis. After dedrifting, the area-weighted mean of zos is removed at each timestep, and the 218 

resulting fields are bilinearly regridded to a common 1 by 1 degree grid. 219 

3 Methods 220 

3.1 Pattern filtering techniques 221 

Both S/N M EOF pattern filtering and LFCA aim to identify those spatial patterns in the data than explain most of the forced 222 

climate change signal, by decomposing the data into EOFs. Effectively, this allows to distinguish the forced signal from 223 

noise caused by ICV. The difference between S/N M EOF and LFCA lies in their definition of what type of variance (or 224 

patterns of variance) in the data belongs to the signal and the noise. Here, only the basics of both methods will be explained. 225 

Interested readers can find an extensive methodological explanation about S/N ME EOF pattern filtering applied to an 226 

ensemble and LFCA in Wills et al. (2020) and Wills et al (2018), respectively.  227 

S/N M EOF pattern filtering diagnoses the variance that is forced by either assessing a simulation of forced climate change 228 

relative to a preindustrial control simulations (DelSole et al., 2011; Marcos and Amores, 2014), or by using an ensemble mean 229 
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of realizations with the same forcing (Wills et al., 2020). The former is advantageous in single realization GCM experiments, 230 

as it only requires one forced realization and one preindustrial control run. However, this could neglect the forced response 231 

when external forcing only affects the phase of an ICV mode (Wills et al., 2020). The latter allows to effectively reduce ICV 232 

while avoiding phase neglection issues but requires the availability of two or more ensemble members. Since one of our 233 

objectives is to determine how efficient pattern filtering methods are compared to an ensemble mean of realizations to reduce 234 

ICV in DSL, here we focus on the latter approach.  235 

Essentially, S/N M EOF pattern filtering exploits a SMILE to find patterns where different ensemble members agree on the 236 

temporal evolution (forced response), whereas those patterns in which members disagree are considered ICV. S/N M EOF 237 

pattern filtering finds spatial patterns (r.h.s. of Fig. 3, for example) associated with the time series tk of each pattern k (l.h.s. of 238 

Fig. 3, for example) that maximize the ratio of (ensemble mean) signal to total variance 𝑠!:  239 

 240 

𝑠! 	= 	 ⟨#!⟩
"⟨#!⟩

#!
"#!

,            ( 1 ) 241 

 242 

where angle brackets represent an ensemble average. The leading S/N patterns (i.e., anomaly patterns with high signal fraction 243 

𝑠!) can be combined to isolate the forced response from the ICV (Fig. 1).  244 
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 245 

Figure 1. Main steps involved in isolating the forced response, including variability decomposition (EOF analysis), finding 246 

leading anomaly patterns, and combining leading patterns above a significant statistical level.  247 

 248 

To apply S/N M EOF pattern filtering, we must determine two parameters: 1) the number of EOFs retained (N), and 2) the 249 

number of S/N patterns used to compose the forced response (M). Following the approach by Wills et al. (2020), we choose 250 

N to retain between 75% and 95% of the total variance. We use a block bootstrapping approach to determine M, which consists 251 

of taking block samples with replacement from the ensemble members to construct a randomized ensemble where the forced 252 

response timing of their realizations should not agree with one another. Here, we choose 30-yr blocks to distinguish forced 253 

patterns from ICV, so that most of the ICV in DSL is excluded. S/N EOF pattern filtering is then applied to randomized 254 

ensembles and the sk value of the pattern with the highest S/N ratio is taken as a threshold. This allows us to obtain a distribution 255 

of sk values (one for each randomized ensemble produced) from which a desired confidence level can be estimated. S/N M 256 

EOF patterns with a higher sk value than the threshold can be considered as part of the forced response with the chosen 257 

confidence level (Fig. 1). As there is no sufficient statistical evidence to include patterns with a lower sk value in the forced 258 

response, those are considered noise (ICV).  259 
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Pattern 3

Pattern 4

Pattern 5

Pattern 6

Pattern 7
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In contrast to S/N M EOF, LFCA identifies the signal that makes it through a low-pass filter. The advantage of LFCA is that 260 

it can analyse the forced response in a single ensemble member without relying on the preindustrial control run (Schneider and 261 

Held, 2001; Wills et al., 2018). LFCA is similar to S/NP M EOF pattern filtering but, instead of using an ensemble mean, it 262 

detects anomaly patterns associated with time series tk  (Eq. 2) that maximize the ratio of low-frequency signal to total variance. 263 

The failure to detect some forced variations such as those driven by volcanic activity in surface air temperature and some 264 

changes in the seasonal cycle is the main disadvantage of this method being documented in the literature (Wills et al., 2020).  265 

 266 

𝑟! = 	 #!%
"	#!%	
#!
"#!

,            ( 2 ) 267 

 268 

Variations that make it through a low-pass filter (denoted by a tilde), constitute the low-frequency signal (forced response). 269 

Here, we apply a linear Lanczos filter (Duchon, 1979) with a 30-yr lowpass filter, so only variability at larger timescales is 270 

included. Following the same process as in S/N M EOF, a forced response can be constructed by linearly combining leading 271 

anomaly patterns, as illustrated in Fig. 1. 272 

3.2 Pattern scaling 273 

Pattern scaling is usually based on grid-point regression against a global variable, and it assumes that a regional change in DSL 274 

can be explained by global changes of the predictor(s) of choice. Previous studies have shown such relationships can be a 275 

reasonable approximation for different variables of the climate system. For instance, local surface air temperature change 276 

(Collins et al., 2013; Hawkins and Sutton, 2012) and local precipitation (Osborn et al., 2016) have successfully been linked to 277 

GSAT change. Regional emulation based on pattern scaling assumes that patterns of local response to external forcing remains 278 

constant (Tebaldi and Arblaster, 2014), an assumption that can lead to errors (Wells et al., 2022). However, its simplicity and 279 

transferability to many regional variables have made it a popular approach for exploring regional changes in climate change 280 

studies (Bilbao et al., 2015; Fox-Kemper, 2021; Herger et al., 2015; Mitchell, 2003; Osborn et al., 2016; Perrette et al., 2013; 281 

Tebaldi and Arblaster, 2014; Thomas and Lin, 2018; Wells et al., 2022; Wu et al., 2021; Yuan and Kopp, 2021). 282 

Once we have identified the forced DSL within an ensemble of realizations or a single simulation (as outlined in Section 3.1), 283 

we will use this forced response as a predictand in our statistical model for projecting regional DSL. There are different forms 284 

of pattern scaling, mostly differing in the number of predictors included in the analysis (e.g., univariate, Bilbao et al., 2015; 285 

bivariate, Yuan & Kopp, 2021). Here, for simplicity and to ease comparison between raw (de-drifted) DSL and its pattern-286 

filtered equivalent, we only test pattern scaling based on GMTSLR (or zostoga) as a predictor. The univariate case of pattern 287 

scaling for relating DSL with GMTSLR can be described by the following linear regression relationship:  288 

 289 
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𝜁(𝑡, 𝑥, 𝑦) = 𝛼(𝑥, 𝑦)	𝜂̅(𝑡) + 𝑏(𝑥, 𝑦) + 𝜀(𝑡, 𝑥, 𝑦)    ( 310 ) 290 

 291 

Where 𝜁 and 𝜂̅ denote DSL and GMTSLR, respectively. Longitude and latitude are represented by x and y, whereas t denotes 292 

time. 𝛼 is a spatial pattern that captures the scaling relationship between DSL and GMTSLR, and b is an intercept term, both 293 

being only a function of location. 𝜀 is a residual term regarded as random noise and often assumed to be driven by internally 294 

generated variability (Bilbao et al, 2015). 295 

4 Results & Discussion 296 

4.1 Forced response in MPI-GE and efficiency of pattern filtering. 297 

In this section, we focus on determining the forced response in DSL within a SMILE (MPI-GE) using S/N M EOF pattern 298 

filtering and show the efficiency of the latter to remove internal variabilityICV compared to the more conventional approach 299 

of ensemble averaginges. To construct the forced response based on S/N patternsP, we follow the block-bootstrapping 300 

approach described in Section 3.1.1. we define blocks in terms of thirty years, so most natural variabilityICV in DSL is 301 

excluded. 30-yr block samples are taken from the 100 historical realizations of the MPI-GE to construct 20 randomized 302 

ensembles. A value of 20 is chosen because increasing it further does not lead to substantial changes in the estimation of the 303 

95th percentile of Sk. The estimated ratio Sk (Eq. 1) for a 95 % confidence level is 0.08, leading to a total of eight patterns that 304 

can be considered as part of the forced response at such a confidence level (Figure 1). 305 

 306 
 307 
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Figure 21: Signal fraction of the leading S/N M EOF patterns along with their respective explained forced response variance 308 

(%). The significance level (95%) computed using 30-year block-bootstrapping is represented as a dashed line. Patterns are 309 

sorted based on the magnitude of their signal fraction, as illustrated in Figure 1. 310 

 311 

Even though patterns constructed based on EOFs are created from mathematical constraints, known physical processes can be 312 

identified in some patterns. For instance, the S/N M EOF pattern with the highest Sk value pattern 1, (Fig. 32) explains 62% of 313 

the forced response variance (Fig. 1Fig. 2) and is similar to the main forced pattern of DSL change field driven by increased 314 

radiative forcing due to increased GHG emissions. There is a zonal dipole in the Southern Ocean, with decreased and increased 315 

sea level relative to the mean below and above 50°S, respectively (e.g., Frankcombe et al., 2013). Another dipole structure is 316 

found in the North Atlantic with a decreased DSL in the north compared to an increased DSL in the southern section, a feature 317 

which appears to disagree with some models (e.g., Bouttes et al., 2014). Nonetheless, the North Atlantic Ocean is an area of 318 

large model spread in both CMIP5 and CMIP6 models (Lyu et al., 2020), which suggests the representation of such zonal 319 

dipole may be model dependent. Other relevant features include a large DSL rise in the Beaufort Sea and an increased DSL in 320 

the North-West Pacific Ocean. Most of these features agree with those documented among CMIP6 and earlier models (Church 321 

et al., 2013; Ferrero et al., 2021; Landerer et al., 2007; Lowe and Gregory, 2006; Lyu et al., 2020; Slangen et al., 2014). Patterns 322 

are similar between RCP scenarios, mainly differing on their intensity. 323 

The three following resulting patterns (patterns 2, 3 and 4, Fig. S1, S2 and S3) represent between 4-1% (Fig. 1Fig. 2) of the 324 

forced response variance and, although with a much lower importance than pattern 1, when combined together represent non-325 

linear processes that start to have an effect in DSL after 2050. Patterns 5, 6, 7 and 8 (Fig. S4, S5, S6, and S7) explain between 326 

1-0.7% of the forced response variance (Fig. 1Fig. 2) and show a rather stable temporal evolution except for small perturbations 327 

and that coincide with historical volcanic eruptions from Krakatoa, Agung, El Chinchón, and Pinatubo. Volcano-induced 328 

perturbations were also observed in the analysis by Wills et al. (2020), as aerosol changes in the atmosphere can affect global 329 

and regional temperatures, subsequently affecting DSL. regional responses that appear to be linked to volcanic eruptions. The 330 

p Patterns number 9 and beyond explain a variance of less than 0,6% and, since their Sk value is not statistically significant at 331 

the 95% level, they could be caused by random chance.  332 

 333 



13 
 

334 

 335 



14 
 

Figure 32: Time evolution in terms of DSL SDstandard deviation (a, c, and e, respectively) and associated S/N M EOF pattern 336 

number 1 for RCP 2.6, 4.5, and 8.5 (b, d, and f respectively). Light coloured lines in a, c, and d represent sdstandard deviation 337 

anomalies from ensemble members, whereas dark coloured lines depict ensemble mean evolution of the pattern. In the 338 

historical + RCP scenarios DSL is calculated relative to the mean of 1993–2012. 339 

 340 

We first compare the efficiency of pattern filtering techniques to that of conventional methods, in particular an ensemble mean, 341 

to isolate the forced response in DSL. For the comparison, Wwe follow the approach used by Wills et al. (2020) based on the 342 

number of ensemble members needed to constrain a certain level of variance of the forced response using the coefficient of 343 

determination r2, which indicates the proportion of variance shared between two datasets., where As we need two datasets for 344 

such a comparison, the 100-member MPI-GE ensemble is divided into two sub-ensembles: one is used for testing (estimate 345 

ensemble) and the other is left for reference (reference ensemble). This leaves us with two 50-member sub-ensembles, where 346 

all 50 members in the reference sub-ensemble are used to estimate the forced response by either using ensemble averaging or 347 

S/N M EOF pattern filtering and this reference sub-ensemble is considered as ground truth. The other (estimate) 50-member 348 

ensemble is also used to estimate the forced response, but instead of using all sub-ensemble members this is performed 49 349 

times we estimate the forced response in an iterative process by increasing the number of members included in the analysis 350 

from 2 to 50. As an illustration of the procedure, we start with only 2 members which are used to characterize the forced 351 

response in the estimate sub-ensemble and compare the result with the forced response from the 50-member reference sub-352 

ensemble. This comparison is performed via the coefficient of determination between two estimated forced responses on a 353 

grid-point basis, identifying where the 80% level is exceeded. Grid points where the threshold is not reached are used for 354 

subsequent analysis where an additional member (3 in total) is included in the estimate sub-ensemble, repeating the same 355 

process until the latter reaches 50 members. This procedure enables an evaluation of the number of ensemble members needed 356 

in the estimate sub-ensemble to characterize the forced response based on explained variance (i.e., r2) in the reference sub-357 

ensemble. To consider sampling uncertainty, this process is repeated ten times for random choices of realizations, taking the 358 

median value of all iterations.  359 

When simple averaging is used, we find that 50 members are not sufficient to constrain at least 80% of the forced response 360 

variance of the reference ensemble over most of the ocean surface (Fig. 3Fig. 4a). In contrast, S/N M EOF pattern filtering 361 

characterises the forced response more efficiently than simply averaging, as it requires a much smaller number of realizations 362 

to remove natural variabilityICV (Fig. 3Fig. 4b). While the grid-point median value of the number of ensemble members 363 

required is 50 or more when using simple averaging, the median estimate for the filtering method is reduced to eight. Large 364 

areas of the ocean benefit from filtering and there are significant reductions, especially the Indian Ocean, South and Northwest 365 

Atlantic Ocean, as well as large areas in the Pacific Ocean (Fig. 3Fig. 4b). Other areas, however, remain over the 50-member 366 

threshold to explain forced response variance after filtering. Those areas are mostly found where strong western boundary 367 

currents exist (Imawaki et al., 2013), as well as in areas influenced by the Antarctic Circumpolar Current (Rintoul et al., 2001). 368 

In those locations, variability is higher, and a larger number of realizations is needed to characterize it. Yet, there clearly is an 369 
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advantage in using S/N M EOF over simple averaging methods, as less realizations are required to explain a significant part 370 

of the forced response in DSL, which means that the forced response can also be determined in models with smaller ensembles. 371 

 372 
 373 

Figure 43. The number of ensemble members (realizations) needed to form an MPI-GE sub-ensemble that shares explain at 374 

least 80% of the variance of the forced response variance with a reference 50-member MPI-GE sub-ensemble using an 375 

ensemble average (a) and using S/N M EOF pattern filtering (b) for RCP 2.6. The reference dataset is an average (a) or S/M 376 

EOF-filtered sub-ensemble (b) of 50 members which does not share realizations with the sub-ensemble used for estimation. 377 

Values represent the median of ten random choices of realizations sampling for both estimate and reference sub-ensembles. 378 

Note that bright yellow indicates more than 50 ensembles members required. 379 

4.2 Improved Pattern Scaling Using SMILES 380 

In this section, we demonstrate how S/N M EOF pattern filtering can increase the capabilities of statistical approaches for 381 

explaining DSL based in GMTSLR by reducing internal variabilityICV within SMILES. For comparison, we first show pattern 382 

scaling performance when using single realizations and how conventional methods (ensemble mean) reduces RMSE when 383 

using a couple of realizations instead. Second, we examine S/N M EOF as a method for reducing RMSE more efficiently. We 384 

compare regional RSME from both ensemble mean and pattern filtering on only two realizations to allow an assessment of the 385 

areas that benefit the most from filtering when a few simulations are available. Lastly, we contrast how both ensemble mean 386 

and S/N M EOF pattern filtering reduce global mean RMSE as the number of realizations included in the analysis is increased.  387 

 388 
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As pattern scaling is performed on a grid-point basis, regression performances can be location dependent (Fig. 4a). Despite 389 

such regional variations, we found not substantial differences between GHG scenarios for both the regional and global mean 390 

RMSE estimates when pattern scaling DSL simulations extending up to 2100. Thus, results shown and discussed here are 391 

pertinent to the historical+RCP2.6 scenario for illustrative purposes, unless otherwise stated. When applying pattern scaling 392 

on a single realization of DSL from MPI-GE, the area-weighted, ensemble average RMSE is 3.78 cm, a value which is similar 393 

to previous estimates from studies performed on some of the CMIP5 models (Bilbao et al., 2015; Yuan and Kopp, 2021). 394 

However, pattern scaling performance shows a large spatial variability, ranging from 1.13 to 14.95 cm regionally (Fig. 4Fig. 395 

5a). High RMSE values (i.e., lower regression performance) can be found in places subject to non-linear mesoscale processes 396 

driven by strong currents, coinciding with the places where the S/N M EOF technique requires many realizations to explain at 397 

least 80% of the forced response variance (Fig. 3Fig. 4b). These are the Antarctic Circumpolar Current (Southern Ocean) or 398 

western boundary currents, including the Gulf Stream (West North Atlantic), and Agulhas Current (South Africa), the Kuroshio 399 

Current (West North Pacific), and at the Brazil-Malvinas Confluence (West South Atlantic). Low RMSE values are found in 400 

the more stable eastern boundary currents, such as the Humboldt (Peru) Current, and in equatorial locations where DSL is 401 

relatively less influenced by large modes of climate variability (e.g., Equatorial Atlantic and Indian Ocean). 402 

Despite its inefficiency, using an ensemble average cancels out some of the natural variabilityICV that varies in a different 403 

phase between realizations. When using a 2-member ensemble mean, RMSE reduction is observed both globally and 404 

regionally: The area-weighted average RMSE estimate is reduced from 3.78 to 2.77 cm (27% reduction) when two ensembles 405 

are used, with regional values ranging from 0.87 to 11.00 cm (Fig. 4Fig. 5b). This translates to increased statistical model 406 

capabilities within the entire model domain. While grid-point RMSE reduction ranges from 10 to 30%, the majority of the 407 

ocean benefits from a decrease of more than 25% due to the removal of some of the internal variabilityICV (Fig. 4Fig. 5c). 408 

Locations experiencing a lower improvement in regression performance include those that already performed relatively well 409 

prior averaging and those with a high internal variabilityICV. 410 
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 411 

Figure 45. Regional pattern scaling performance based on regression RMSE when one realization (a) and a two-member 412 

ensemble average (b) are used in the univariate regression. Sampling uncertainty is accounted for in (a) by averaging RMSE 413 

from pattern scaling performed individually to the 100 realizations, whereas in (b) random pairs (without replacement) are 414 

taken to for the two-member ensemble average. The difference in regression performance between (a) and (b) is shown in (c) 415 

in terms of percentage. Results are shown for RCP 2.6 as an example. 416 

 417 

To compare how S/N M EOF pattern filtering improves pattern scaling as opposed to averaging, we take two ensemble 418 

members from the MPI-GE historical+RCP2.6 experiment and proceed to remove their natural variabilityICV by pattern 419 

filtering. The 2-member pattern-filtered DSL (Fig. 5Fig. 6a) shows an improved RMSE with similar regional structures 420 

compared to its averaged counterpart (Fig. 4Fig. 5b), featuring higher values in western boundary currents and Southern 421 

Ocean. Nonetheless, the overall improvement is apparent in all areas: the global estimated RMSE from the regression 422 

decreases almost 60% from an average value of 2.77 to 1.12 cm (Fig. 5Fig. 6 c and d). Regionally, RMSE ranges from 0.39 423 

to 6.05 cm when filtering is applied on two ensemble members (Fig. 5Fig. 6a and c). The differences between averaged and 424 
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filtered approaches are substantial and location dependent, with filtering yielding a decrease in RMSE ranging from 12% to 425 

about 80% (Fig. 5Fig. 6b). The tropical Indian and Eastern Pacific Ocean are among the locations benefiting the most from 426 

the largest performance improvement, which highlights the skill of pattern filtering to remove variability associated with 427 

large climate modes (e.g., ENSO has a large influence on sea level in the Eastern Pacific Ocean). Similar to previous 428 

findings when using averaging (Fig, 4c), pattern filtering offers a reduced improvement in areas where regression already 429 

performed relatively well or where the presence of meso-scale processes is significant. Regardless of improvement 430 

magnitude, pattern filtering provides an overall increase in regression performance that is observable in the entire ocean 431 

domain. While averaging also offers an enhancement of pattern scaling skill, filtered 2-member pairs produce a distribution 432 

of RMSE that is significantly superior (Fig. 5Fig. 6c).  433 

We further investigate how pattern filtering enhances regression compared to averaging by increasing the number of 434 

members included in the analysis (Fig. 5Fig. 6d). Increasing the number of realizations grants ensemble averaging a 435 

considerable decrease in RSME. Yet, performance improvement asymptotically reaches a plateau around 20 members after 436 

which further reductions in RMSE are modest. Regression based on pattern-filtered DSL also shows an improvement as the 437 

number of realizations increases. Such improvement is very limited compared to the one undergone by averaging, although 438 

filtering always provides a superior performance regardless of the number of members incorporated in the analysis. 439 

Importantly, area-weighted RMSE values differ significantly between the considered approaches when only a small number 440 

of realizations are available and become more similar for a larger number. This highlights the role of pattern filtering 441 

techniques when only a few ensemble members are available. Based on the analysis performed on the DSL simulations from 442 

the MPI-GE, filtering two members provides a regression performance that would only be achieved by averaging at least 12 443 

members. 444 

 445 
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 447 
Figure 65. Regional pattern scaling performance based on regression RMSE when two ensemble members are used to estimate 448 

the forced response via S/N M EOF pattern filtering (a). Panel (b): shows the difference in regression performance between 449 

the 2-member average pattern scaling (Fig. 4Fig. 5b) and the S/N M EOF-filtered equivalent (a). Panel (c): Violin plots 450 

ofdepicting RMSE distributions from the 1-member, 2-member average, and 2-member S/N M EOF-filtered approaches are 451 

shown in panel (c). Panel (d): The area weighted average RMSE obtained in the regression is shown in (d) as a function of the 452 

number ensemble members included when using an ensemble mean (yellow) and filtering (blue). The difference in 453 

performances in terms of percentage is shown in green. Realizations used here belong toAnalysis for the RCP 2.6 scenario (we 454 

observed no discernible differences between scenarios). 455 

 456 

4.3 Improved Pattern Scaling Using Single Realizations 457 

Most models in CMIP prior to CMIP6 (and some in CMIP6) provided only one realization of historical and scenario 458 

simulations. Therefore, we now test whether pattern filtering could improve regional emulation of single-realization models. 459 

To do so, we apply LFCA which uses a similar approach to S/N M EOF (as explained in Section 3.1.2). In this section, we 460 

first examine how LFCA improves the regression RMSE by truncating internal variabilityICV in a single simulation from the 461 
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MPI-GE. We then apply LFCA to a range of CMIP5 models that were used in previous patterns scaling analyses of DSL, 462 

focusing on the differences between models and RCP scenarios in longer simulations. 463 

LFCA filtering uses the same linear algebra machinery as S/N M EOF, providing a similar regional improvement in pattern 464 

scaling (compare Fig. 5Fig. 6a and 6a). Slightly higher RMSE values are observed in LFCA-based regression, for instance, in 465 

the equatorial Pacific. This is expected because only one simulation is used, compared to two simulations in S/N M EOF 466 

filtering, which enables the latter to identify a larger proportion of internal variabilityICV. LFCA provides a substantial 467 

reduction in RMSE, as compared to using a single simulation in pattern scaling (Fig. 6Fig. 7b-c). Regionally, it shows a similar 468 

qualitative pattern of improvement as the other methods shown here (Fig. 6Fig. 7b vs 4c and 5b; averaging and S/N M EOF 469 

filtering, respectively). Quantitatively, however, LFCA provides a larger RMSE reduction on a single realization than S/N M 470 

EOF performed on two. LFCA provides a reduction of the area weighted average RMSE of 68% for all radiative forcing 471 

scenarios (Fig. 6Fig. 7c), while S/N M EOF yields 67% when using two realizations relative to unfiltered 1-member pattern 472 

scaling. While both estimates are quite similar, it is worth noting that S/N M EOF requires two ensemble members to provide 473 

such reduction, while LFCA leads to a similar performance just using one simulation. Similar to S/N M EOF pattern filtering, 474 

no substantial differences are found in pattern scaling RMSE between RCP scenarios up to 2100 (Fig., 6c). This implies that 475 

ICV is analogous for different the relationship between DSL and GMTSLR is analogous between RCP scenarios which, 476 

hence,since a reduction in RMSE is due to the removal of ICV, a linear regression for projecting DSL leads to a similar  leads 477 

to a similar improvement in performance for all RCPs both globally (Fig. 6Fig. 7c) and regionally (not shown).  478 

 479 
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 480 
Figure 76. Regional pattern scaling performance based on regression RMSE when one (RCP 2.6) ensemble member is filtered 481 

via LFCA (a). Filtering is performed individually for each ensemble member to compute 100 scaling patterns whose results 482 

are averaged to diminish sampling issues. Differences in regression performance between Fig. 4Fig. 5a (unfiltered 1-member 483 

pattern scaling) and (a) are shown in (b) in terms of percentage. The area-weighted average RMSE is shown in (c) for RCPs 484 

2.6, 4.5, and 8.5 and depending on whether the ensemble member is (blue) or not (yellow) filtered. Green indicates RMSE 485 

reduction between approaches in terms of percentage, whereas values on top of the bars are the absolute differences in cm. 486 

  487 

Since the aim of this study is to explore differences in emulated DSL when ICV is reduced, we also assess potential differences 488 

between unfiltered and filtered simulations (Fig. 8) when predicting DSL at 2100 using GMTSLR as a predictor. Emulated 489 

DSL differences caused by filtering may differ depending on the realization used, as each realization features an ICV evolving 490 

in a different phase. Thus, we focus on the maximum emulated DSL differences that filtering causes out of all 100 MPI-GE 491 

simulations. Exploring the maximal potential difference in statistically projected DSL is an added benefit of using SMILES, 492 

as such analysis can only be done with a large set of realizations with out-of-phase variability.  493 

The difference in emulated DSL varies geographically (Fig. 8), with a spatial variability resembling the RMSE when ICV is 494 

reduced (e.g., Fig. 6a and 7a). Areas characterized by high temporal variability, which pattern filtering does not completely 495 
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remove, experience greater difference in DSL projections (Fig. 8). Unlike RMSE (e.g., Fig. 7a), the difference between 496 

emulated DSL differs between RCP scenarios, increasing in magnitude with radiative forcing (Fig. 8). RMSE measures the 497 

error throughout the entire regression without accounting for the predictor, so only the effect of reduced ICV is captured. On 498 

the other hand, an increasing difference in predicted DSL with stronger RCP is expected since the magnitude of the predictor 499 

(GMTSLR) is larger for higher emissions scenarios. However, we observe the opposite behavior when assessing the difference 500 

in emulated DSL in relative terms, i.e., when the difference is divided by the emulated unfiltered DSL or by GMTSLR in 2100 501 

(not shown). Despite contrast between RCPs either in total difference (slightly increasing with forcing) or relative terms 502 

(decreasing with increasing forcing), RMSE being similar between RCPs highlights pattern filtering may be relevant for all 503 

scenarios.  504 

The effect of pattern filtering on differences in slope a, a key parameter in pattern scaling, shows again a similar spatial 505 

variability to RMSE (Fig. 7 vs Fig. S8). Changes in slopes are substantial in places with high variability, sometimes even 506 

showing a sign change (e.g., Fig. S13). Contrary to the total difference in emulated DSL and similar to the relative one, slope 507 

differences tend to decrease with higher emissions scenarios (Fig. S8). Since lower radiative forcing means lower signal-to-508 

noise ratio, noise (ICV) can drive large differences in slopes between filtered and unfiltered results, and vice versa. Apart from 509 

reducing RMSE and leading to narrower confidence intervals (e.g., Fig., S10-14), pattern filtering finds slopes that are 510 

significantly different that the one obtained from applying a moving mean (e.g., Fig., S12 and 14), as the latter does not remove 511 

ICV as efficiently and requires neglecting data points for its computation (Fig., S10b-14b). It is worth highlighting that these 512 

differences in emulated DSL and slopes showcase an example for a GCM and may not hold as ground truth for other GCMs, 513 

scenarios, or predictors used. 514 
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 515 

Figure 8. Maximum difference between DSL change in 2100 obtained by pattern scaling with coefficients fitted to unfiltered 516 

and LFCA-filtered realizations, considering all 100 MPI-GE members, for RCP 2.6, RC P4.5, and RCP 8.5 (a, b, and c, 517 

respectively). 518 

We further explore the performance of LFCA by comparing the pattern scaling results when isolating the forced response for 519 

other GCMs. We identify the forced DSL in four CMIP5 models, being GISS-E2-R, HadGEM2-ES, IPSL-CM5A-LR, and 520 

MPI-ESM-LR (Fig. 7Fig. 9a-d, respectively), which all provide scenario simulations up to 2300. To ease comparison with 521 

results from the MPI-GE, however, we first examine results up to 2100 (Fig. 7Fig. 9a-d, small r.h.s. insets). RMSE from 522 

unfiltered simulations up to 2100 vary between models, and so does RMSE reduction provided by LFCA. Nonetheless, error 523 

reduction within a model and between scenarios is very similar, as previously observed for the MPI-GE. This implies that, for 524 

all models considered here, there are no significant changing behaviours in the relationship between DSL and GMTLSR 525 

between RCP scenarios up to 2100.  526 

When considering results up to 2300, pattern scaling of unfiltered DSL against GMTSLR yields similar results as previous 527 

studies (Bilbao et al., 2015), showing a global area-weighted mean RMSE between 2 and 4 cm. RMSE in both unfiltered and 528 

filtered simulations of DSL increases with radiative forcing for all models considered. As simulations run up to 2300, a 529 

decrease in pattern scaling performance for higher RCPs may indicate a more important role of the deeper ocean layer driving 530 
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non-linear processes (Bilbao et al., 2015; Yuan and Kopp, 2021). This tendency is also reflected in the error reduction after 531 

filtering, which decreases as radiative forcing increases both over time and because of the higher emissions scenario, but the 532 

latter is more apparent. Although LFCCFA filtering improves the performance of pattern scaling for all four CMIP5 models, 533 

considerable differences in error reductions are observed. For instance, HadGEM2-ES benefits the most from pattern filtering 534 

between all the models, with a ~70% decrease in error for RCP 2.6. Conversely, GISS-E2-R undergoes the lowest reduction 535 

after pattern filtering, with about a 50% increase in performance for the same RCP scenario. Differences in model performance 536 

pre- and post-filtering do not only highlight differences in how natural variabilityICV is represented in distinct models but 537 

may also reflect model differences in terms of physics representation and modelled forced response. 538 

 539 

 540 
Figure 97. Area-weighted average RMSE is shown for RCP 2.6, 4.5, and 8.5, and depending on  indicating whether the 541 

ensemble member is (blue) or is not (yellow) filtered via LFCA. Green indicates relative RMSE reduction between approaches 542 

(%) in terms of percentage, whereas values on top of the bars are the absolute differences in cm. Different panels represent 543 

different CMIP5 models considered here, as stated on top of each panel. The main panel includes simulation data up to 2300, 544 

whereas the small inset on the right-hand top corner shows RMSE results up to 2100. Small insets share the same axes as main 545 

panels. 546 
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5 Conclusions 547 

Regional emulation tools for DSL change are complementary approaches to GCMs that allow for computationally cheap 548 

statistical projections. Most DSL regional emulators are based on pattern scaling, a statistical model usually based on a grid-549 

point regression against a global variable representing change in the climate system driven by external forcing. While choosing 550 

suitable global predictors is essential for appropriate tuning of the statistical model, random errors can remain leading to high 551 

uncertainties in statistically based projections. A portion of these random errors are driven by internal variabilityICV in DSL 552 

and can be characterised using macro-initialized initial condition large ensembles (SMILES), which are designed to facilitate 553 

a separation between internal variabilityICV and external forcings within a model. Here, we applied pattern recognition 554 

techniques to a SMILE with the aim to efficiently truncate internal variabilityICV, and demonstratinge how these approaches 555 

could significantly reduce random errors in regional emulators of DSL and provide substantially different emulated results in 556 

areas with high ICV..  557 

Although internal variabilityICV can be also reduced by using more conventional methods, such as computing an ensemble 558 

mean or linear trends, this requires a relatively large number of realizations to do it effectively. This is a significant constraint 559 

particularly for modelling experiments featuring a limited number of realizations. A more efficient alternative consists of 560 

employing methods that exploit spatial covariance information, such as S/N M EOF pattern filtering and LFCA. We have 561 

demonstrated that S/N M EOF applied to two realizations attains the same level of error reduction as averaging 12 realizations. 562 

The largest improvement relative to unfiltered simulations was observed when only a few simulations were available, whereas 563 

both S/N-filtered and ensemble average model performance tended to converge for a large number of ensemble members. By 564 

identifying spatiotemporal coherent structures, the S/N M EOF filtering was particularly skilful at removing internal 565 

variabilityICV due to large modes of climate variability, such as the ENSO influence on sea level in the Eastern Pacific.  566 

S/N M EOF pattern filtering can identify the common response within at least two realizations. This motivated us to also test 567 

LFCA, which can remove variability in single relalization modelling experiments by applying a lowpass filter. Apart from 568 

being computationally more efficient, LFCA outperforms S/N M EOF in improving the performance of DSL pattern scaling 569 

when using one or two realizations. Moreover, LFCA applied to individual SMILE realizations allows exploring the maximal 570 

potential difference between statistically projected unfiltered and filtered DSL. We found substantial differences in emulated 571 

DSL and regression slopes in places with high variability, highlighting the relevance of pattern filtering methods in areas 572 

subject to non-mesoscale processes. Despite LFCA versatility and performances results However, previous studies have 573 

emphasized that S/N M EOF pattern filtering provides a range of benefits compared to LFCA, including: 1) a better isolation 574 

of the forced response when the number of ensemble members is large, and 2) the detection of relatively less important forced 575 

patterns, such as those driven by volcanism. 576 

We have also investigated LFCA by applying it to longer (up to 2300) CMIP5 simulations. We found that pattern scaling 577 

performance is independent of the GHG emission scenario up to 2100 and decreases with radiative forcing beyond 2100. Since 578 

we used a linear model, this implies that non-linear processes have different effects on DSL depending on the GHG scenario 579 
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and this is reflected in a decrease in model performance depending on the emissions. We also found substantial differences 580 

between CMIP5 models, due to variability being represented differently as well as distinct model physics. Nonetheless, the 581 

performance improvement of pattern scaling when applying LFCA filtering is considerable for all models and scenarios, 582 

ranging from 20% to more than 70% reduction relative to the unfiltered results. 583 

Here, we have demonstrated that reducing internal variabilityICV increases the capabilities of statistical approaches to project 584 

DSL. Pattern recognition techniques are especially advantageous for such a task, as they do not require numerous realizations 585 

to significantly reduce uncertainties in statistical projections and no data is lost (as in 30-year means) when reducing internal 586 

variabilityICV. Previous studies have not considered removing internal variabilityICV,  prior to searching for suitable global 587 

predictors, which could significantly reduce uncertainties in statistically projected DSL and lead to substantial differences in 588 

emulates DSL. Although the difference in emulated DSL and regression slope varies depending on scenario, and results shown 589 

here are an example and may differ depending on GCM, RCPs, and predictor used, we show that pattern filtering is a useful 590 

approach to consider as a means of enhancing emulated DSL simulations.Hence, for future emulation studies of DSL, we 591 

recommend pattern filtering as a pre-processing step before selecting suitable predictors. 592 
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