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Abstract. Regional emulation tools based on statistical relationships, such as pattern scaling, provide a computationally
inexpensive way of projecting ocean dynamic sea-level change for a broad range of climate change scenarios. Such approaches
usually require a careful selection of one or more predictor variables of climate change so that the statistical model is properly
optimized. Even when appropriate predictors have been selected, spatiotemporal oscillations driven by internal climate

variability can be a large source of statistical model errordisagreerent. Using pattern recognition techniques that exploit spatial

covariance information can effectively reduce internal variability in simulations of ocean dynamic sea level, significantly
reducing random errors in regional emulation tools. Here, we test two pattern recognition methods based on Empirical
Orthogonal Functions (EOF), namely signal-to-noise maximising EOF pattern filtering and low-frequency component
analysis, for their ability to reduce errors in pattern scaling of ocean dynamic sea-level change. These-twe-methedsare-apphed
toWe use the Max Planck Institute Grand Ensemble (MPI-GE) as a testbed for both methods.~the as it is a type of initial-

condition large ensemble designed for an optimal characterization of the externally forced response. MPH-GE —se-that-internal
tabihity— i i i i s- We show that patternfilteringthe two methods tested here

more cfficiently reduce prevides-an-efficient-way-ofredueing-errors thaneempared-to-other conventional approaches such as a

simple ensemble average. For instance, filtering only two realizations by characterising their common response to external

forcing reduces the random error by almost 60%, a reduction-tevel that is only achieved by averaging at least 12 realizations.

We further investigate the applicability of both methods to single realization modelling experiments, including four CMIP5
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simulations for comparison with previous regional emulation analyses. Pattern filteringsealing leads to a varying degree of
error reduction depending on the model and scenario, ranging from more than 20% to about 70% reduction in global-mean
root-mean-squared error compared with unfiltered simulations. Our results highlight the relevance of pattern recognition
methods as a tool to reduce errors in regional emulation tools of ocean dynamic sea-level change, especially when one or only
a few realizations are available. Removing internal variability prior to tuning regional emulation tools can optimize the

performance of the statistical model.- leading to substantial differences in emulated dynamic sea level compared to unfiltered

simulavions sadsimpkbhesheies ol ble prodioton

1 Introduction

Sea levels are closely linked to the state of the climate. Understanding how increased radiative forcing in the atmosphere will
affect sea-level rise is of utmost importance given the devastating impacts to coastal systems. Global-mean sea level has been
increasing over the 20" century (Fox-Kemper et al, 2021), and its rate has been accelerating over the past decades both globally
(e.g., Dangendorfet al., 2019; Fox-Kemper, 2021; Frederikse et al., 2020; Nerem et al., 2006) and regionally (e.g., Steffelbauer
et al, 2022). This acceleration is expected to continue over the next century for all greenhouse gas (GHG)
emissionseeneentration scenarios (Fox-Kemper et al., 2021) with the potential to further increase widespread impacts in coastal
areas (Cooley et al., 2022). Increased sea levels will change coastal flood risk through expanding areas under permanent
inundation, increasing frequencies of extreme coastal flooding events (Vitousek et al., 2017; Wahl et al., 2017), and modifying
tides (Haigh et al., 2020) and thus potentially increasing the frequency of tidal-induced flooding (Moftakhari et al., 2015).
These processes will not only impact coastal infrastructure and assets (Hinkel et al., 2014) but also alter coastal ecosystems
and the services they provide, from ecosystem value to natural flood risk protection (Cooley et al., 2022). Understanding how
global and regional sea levels evolve under different scenarios will help to better adapt to changing risks and mitigate their
potential impacts in coastal zones (Haasnoot et al., 2019, 2021).

Global-mean sea-level change is driven by a combination of processes. The melting of the Greenland’s and Antarctica’s ice
sheets; and glaciers and ice caps, changes in land-water storage, and thermal expansion of the ocean are the processes driving
global mean sea-level rise (e.g., Gregory et al., 2019; Fox-Kemper, 2021). Analogously to global warming, sea-level rise is a
global concern but it is not spatially uniform (e.g., Slangen et al., 2017). There are severalFeursaain processes—exist that
determine regional sea-level change. First, the redistribution of mass on the Earth’s surface, as a result of melting land ice and
changes in land-water storage, causes a regionally variable sea-level change due to gravitational, rotational, and deformational
effects (Farrell and Clark, 1976; Mitrovica et al., 2001). Second, vertical land motion also causcesntrels-unequal-chansesin
relative sea-—levels_changes. The viscoelastic relaxation of the Earth induced by deglaciation following the last glacial
maximum, defined as glacial isostatic adjustment (GIA; e.g., Peltier, 1999, 2001) and more local processes driving subsidence
(e.g., Nicholls et al., 2021), are the main processes driving changes in land elevation. Third,{parthy—wind-driven) ocean

circulation, and heat and freshwater fluxes over the ocean, also known as ocean dynamics (Gregory et al., 2019), change local
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densities and move water mass around the ocean. Fourth, changes in sea-level pressure over the oceans, also known as inverted
barometer (IB) effects, may lead to regionally varying rates of sea-level change (Stammer and Hiittemann, 2008). These

regional drivers of sea-level change act on a wide range of spatial and temporal scales, which makes their local assessment

essential for impact studies, planning, and adaptation needs. For instance, while ocean dynamics have a typical temporal scale

ranging from days to decades, vertical land movements presents a much wider range -(Durand et al., 2022), as the latter is

governed by processes affecting land elevation on significantly different timescales from earthquakes (on the order of seconds)

to GIA (on the order of millennia).

This study focuses on ocean dynamic sea-level (DSL) change, which is governed by changes in ocean circulation and density.

DSL t&s&e@%y—mﬂaenee%y%mﬁ%ﬂ#&mb%@m&d—%yp*e&&y—%ﬁaﬂsfeatures—the largest spatiotemporal variations across

the oceansva ake, which makes it a crucial

component to predict regional sea-level changes accurately, yet also one that provides significant uncertainty (Couldrey et al.,

2021). Spatial and temporal variability in DSL is driven by internal climate variability (ICV), which are defined as naturally

occurring climatic variations controlled by interactions between different components of the Earth system (Hasselmann, 1976;

Schwarzwald and Lenssen, 2022), and by a forced response associated with increased radiative forcing in the climate system
The—effeect-of elimate—change—on. DSL is typically projectedsimulated with_Global Climate Models (or related models,
hereinafter GCMs)-General-Cirenlation Models {GEMs), which are state-of-the-art comprehensive climate models -whiehthat
solves—selve a range of environmentalgeephysieal variables controlling the Earth’s-elimate system, including its climate.

Hewewver ; GCMs require vast computational resources, and therefore climate modelling experiments have been designed for
a limited range of GHG concentration scenarios (O’Neill et al., 2017; Riahi et al., 2017; van Vuuren et al., 2011) within the
climate model intercomparison (CMIP) framework (Eyring et al., 2016), so that model differences are somewhat comparable.

To reduce the computational demand, several-complementary approaches based on parameterizing process-based models are

commonly used. This method, also known as emulation, aims to mimic the output of complex models at a reduced

computational cost and has been widely used in recent literature to model different aspects of the climate system (e.g., {Fox-
Kemper et al., 2021; Thomas and Lin, 2018; Edwards et al., 2021; -Adria-Schwarber et al., 2019).statistical-modeting have
beenpropesed: Ferinstanee+Regional emulation_follows the same principle and aims to estimate a spatiotemporal varying

variable by mimicking GCMs behavior-tee

variable-and-assessingits response-te-differentforeings—. One of the most commonly used emulation approaches for projecting

changes in a regional variable is pattern scaling (Mitchell, 2003; Perrette et al., 2013; Santer et al., 1990), which consists of

relating a local, grid-point variable (predictand) to one or a few global-mean change variables (predictors) via regression.
Based on that statistical relationship, a change in a regional variable can be emulated by projecting the global-mean variables
via simpler climate models (Goodwin et al., 2018; Meinshausen et al., 2011; Millar et al., 2017; Smith et al., 2018)

Here, we build on the approach proposed by Bilbao et al. (2015), who applied a linear pattern scaling approach to assess the

ensemble mean DSL computed from five CMIP5 models and their simulations of several variables describing global changes,

3
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including Global Surface Air Temperature (GSAT), Global-Mean Thermosteric Sea-Level Rise (GMTSLR), and ocean-
volume mean temperature. While GSAT turned out to be the best predictor of 21%-century DSL change in a high emissions
scenario (Representative Concentration Pathway (RCP) 8.5), ocean-volume mean temperature and GMTSLR outperformed
the rest of variables considered in lower emissions scenarios (RCP 2.6 and 4.5). As the surface ocean layer responds quicker
to air temperature changes than the deeper ocean layer, they speculated that surface warming had a more important role relative
to deep warming in a high emissions scenario. Based on Bilbao et al. (2015)’s findings, Yuan and Kopp (2021) used the same
set of CMIP5 models to develop a bivariate pattern scaling approach, accounting for the surface and deep ocean layers
separately. Their goal was to capture the different delayed response of those two layers by using GSAT and global-mean deep
ocean temperature changes as predictors. By employing a bivariate pattern scaling approach, Yuan and Kopp (2021) reported
a reduction of the predicted DSL error for the period 2271-2290 of 36%, 24%, and 34% for RCP 2.6, 4.5, and 8.5, respectively,
compared to a univariate approach based on only GSAT.

The aforementioned studies highlight the importance of selecting appropriate predictors to attain an optimized regional
emulator of DSL, and how accounting for different processes driving DSL change (in different layers of the ocean) can help
further improve emulator performance. While designing a regional emulator based on performance metrics may provide
insights into the global processes driving DSL changes, this process can be obscured by other drivers of emulator error. In
particular, random errors contained in the regression forming the pattern scaling approach, are assumed to be mostly caused
by internal-elimatevariabiityICV (Bilbao et al., 2015) and may be a source of large uncertainty. Thus, if random errors are
not minimized prior to emulator training with GCM simulations, their presence could impair a proper selection of global
predictors, such that it would be uncertain whether an increase in model performance is due to an appropriate selection of
predictors or an artifact of rataral-variability|CV -causing a biased selection. In previous studies, this effect has been minimized
by computing 30-year means, assuming this cancels out rataral-variability]CV. This step, however, entails a substantial loss
of data and does not guarantee natural-variabilityICV is optimally subtracted, and residual naturalvariabilityICV, for instance

caused by long-memory processes (e.g., Becker et al., 2014; Dangendorf et al., 2014), can remain.

We therefore propose to take a different approach to separate internal-variabilityCV from the response driven by external
radiative forcing in the Earth, by employing state-of-the-art modelling experiments specifically designed to do so. These are
known as Single-Model Initial Condition Large Ensembles (SMILES) and consist of a set of simulations with the same forcing
but with the variability evolving in a different phase (Deser et al., 2020). These realizations can be combined through different
methods (e.g., Frankcombe et al., 2015) so that internal-variabilityICV cancels out. However, conventional approaches such
as computing the ensemble mean or linear trends are not the most efficient tools to do so and tend to lead to the loss of much
of the information gained from running large ensembles (Wills et al., 2020). Other methods based on pattern recognition via
Empirical Orthogonal Functions (EOFs) exploit spatial covariance information to remove internal—variabilityICV more

efficiently (Wills et al., 2020) and have demonstrated to provide a superior agreement between observations and simulations
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than an ensemble average (Marcos and Amores, 2014). These types of efficient methods for removing terral-variability| CV
hold potential to benefit emulation experiments of DSL for which the number of simulations is limited.

The aim of this study is to characterise the importance of rataral-variabiityICV as a driver of random errors in statistically
based (pattern-scaled) projections of DSL change. To achieve this aim, we will compare different pattern recognition
techniques, including Signal-to-Noise Maximising (S/N M) EOF pattern filtering (Wills et al., 2020) and Low Frequency
Component Analysis (LFCA, Wills et al., 2018, 2020). We will use these techniques to truncate aaturalsariabilitrICV in DSL
simulations from the Max Planck Institute Grand Ensemble (MPI-GE) SMILE (Maher et al., 2019), and explore their

applicability to single realization modelling experiments, including a set of CMIP5 simulations used in previous pattern scaling

studies. In this paper, we particularly aim to attain the following objectives:

1) Use a large ensemble (MPI-GE) to determine the forced pattern and examine to which extent pattern recognition
techniques isolate the forced response in DSL change more efficiently than conventional methods (Section 4.1)

2) Determine the error reduction in pattern scaling of DSL provided by pattern recognition methods relative to more
conventional methods (Section 4.2).

3) Test whether filtering improves pattern scaling in single-realization modelling experiments of DSL (Section 4.3).

2 Climate model data and pre-processing

Separating ratural-variabilityl CV from the forced response is key for detection and attribution studies in climate change (Labe
and Barnes, 2021) and to understand its effects on the climate system (Deser et al., 2020; Mankin et al., 2020). However, the
combination of distinct GCMs to analyse internal—variabilityICV should be performed with caution, as this may conflate
internal-variability|CV with model biases (Maher et al., 2021b). In recent literature, this has motivated the development and
use of SMILES, which branch each realization at a different model stage in the pre-industrial control simulation (Danabasoglu
et al., 2020; Deser et al., 2020; Fasullo et al., 2020; Kay et al., 2015; Maher et al., 2019, 2021a; Mankin et al., 2020). This
results in simulations with the same forced response but with variability evolving in a different phase, enabling a separation of
the variability from the forced response.

There are two main procedures for creating SMILEs: 1) inducing small round-off level differences in their atmospheric initial

conditions (micro-initialization); 2) branching simulations at different times in the control simulation (macro-initialization).

Both micro and macro initialization are useful to characterize unpredictable ICV within a model. Macro-initialization,

however, provides larger differences in the initial states in both the atmosphere and ocean. Macro-initialized ensembles are

therefore better suited than ‘micro’ ensembles to sample uncertainty in an initialized framework (Hawkins et al., 2016;

Stainforth et al., 2007), facilitating an assessment of ICV in different aspects of the climate system.

Since we are assessing ocean processes, a macro-initialized ensemble is most suitable for the purpose of this study. From the

available_macro-initialized SMILES (Deser et al., 2020; Maher et al., 2021a), we decided to use the Max-Planck Institute
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Grand Ensemble (MPI-GE; Maher et al., 2019) because it contains the largest number of ensemble members available (100)
in a SMILE-Mereover-therealizations-are-available for historical simulationsand for different RCP scenarios (RCP 2.6, 4.5,

and 8.5) up to 2100-tegetherwith-an-extended pre-industrial-control simulation. MPI-GE simulations assume a stationary and

volcano free 1850 climate, and are macro-initialized on the first of January in different years of the control simulation (Table

1 in Mabher et al., 2019). The branching separation between realizations varies along the pre-industrial control, ranging from 6

to 24 vyears and with a median of 16 years. MPI-GE has a relatively lower resolution than other GCMs, representing the

atmosphere at an approximate horizontal resolution of 200 km (1.875 degrees) with 47 layers (up to 0.01 hPa ~ 80 km in

height). The horizontal resolution of the ocean (including biogeochemistry) varies from 12 to 150 km at 40 layers, whereas the

land biosphere has the same horizontal resolution as the atmosphere. Despite its relatively low resolution, {Suarez-Gutierrez

et al.; (2021) show that MPI-GE samples observed ocean variability well in all regions except for the Southern Ocean.

Additionally, we use four CMIP5 models that were used in previous studies of DSL pattern scaling (Bilbao et al., 2015; Yuan
and Kopp, 2021), including GISS-E2-R, HadGEM2-ES, IPSL-CM5A-LR, and MPI-ESM-LR. These four GCMs were selected

in the afore-mentioned studies because they were used to calibrate the parameters of the simple climate model used by Geoffroy
et al. (2013a, b), which facilitated the design of their emulation tool. Also, these models provide multi-century data (up to
2300) in three emissions scenarios, granting an assessment of the suitability of pattern scaling for long-term projections. We
use them here for comparison purposes.

The focus of this study is on DSL, which in CMIP models is also known as ‘zos’ (Griffies et al., 2016) and defined at each
location and time as the difference between local sea-surface height relative to the geoid, and its global mean over the ocean
area (GMTSLR, or ‘zostoga’ in CMIP experiments). Hence, by definition, DSL, or zos, varies locally due to ocean circulation
and horizontal gradients, but its global mean is zero at every time step. Both zos and zostoga are often expressed in terms of
changes relative to a control state, expressing them as differences in relation to a baseline period. Moreover, sea level is
influenced by atmospheric pressure anomalies, which is known as the IB effect. DSL simulations from GCMs do not include
the effect of sea-level pressure on sea level and such effect is not subject of study in our analysis, hence it is not considered
here.

Since we are interested in assessing the forced response in DSL for historical and future GHG emissions we will use zos from
a range of GCMs for historical and future radiative forcing scenarios, including RCP 2.6, 4.5, and 8.5 (Meinshausen et al.,

2011). Once the forced DSL has been characterized, we will proceed to pattern scale each model and scenario using GMTSLR

6
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(zostoga) from their respective GCM simulation. Among other potential global predictors, we chose GMTSLR as it is closely
related to DSL, and it has been successfully used in previous pattern scaling analysis of DSL (e.g., Bilbao et al., 2015; Thomas
and Lin, 2018). We refrain from testing other global variables as predictors to ease comparing models and scenarios, and
determining to which extent pattern filtering reduces statistical error via reducing internal-variability|CV.

In this study, we are particularly interested in removing interannual variability, thus we compute annual mean zosfoga and zos
time series from the raw monthly mean GCM data. In addition, since GCMs are run for a few centuries and the deep ocean
usually takes millennia to reach an equilibrium, both zos and zosfoga are subject to model drift (Sen Gupta et al., 2013). Model
drift in the historical and scenario simulations can be corrected for by subtracting the smoothed long-term change of the pre-
industrial control run. To avoid contaminating the drift correction with rateral-ariabiitylCV, ideally the full length of the
control run is used to determine the drift (Sen Gupta et al., 2013). Therefore, to dedrift the historical and scenario simulations
of zostoga and zos (the latter on a grid cell by grid cell basis) we first fit a quadratic polynomial to the full pre-industrial control
simulations of these variables. Then, we evaluate and subtract the polynomial fit over the time period in which the pre-industrial
control run and historical and scenario runs overlap, as identified by the branch times of the different simulation realizations
and their length, from the historical and scenario runs. Similar to what was found by Hermans et al., (2020) and Hobbs et al.
(2016), fitting a linear or quadratic polynomial to the pre-industrial control simulations yields little difference for the drift-
correction of the zostoga simulations of GISS-E2-R, HadGEM2-ES, IPSL-CMS5A-LR, and MPI-ESM-LR. However, in the
pre-industrial simulation of MPI-GE, the increase of zostoga behaves non-linearly and levels off toward the branching time of
ensemble member 40, so we only dedrift ensemble members 1 to 39. For zos, some differences are found between linear and
quadratic drift correction depending on the model, variant, and location. We assume linear dedrifting is suitable for our
purpose, since we verified that the dedrifting does not substantially affect the pattern scaling performance and it is tedious to
assess the best fit on a grid-point basis. After dedrifting, the area-weighted mean of zos is removed at each timestep, and the

resulting fields are bilinearly regridded to a common 1 by 1 degree grid.

3 Methods

3.1 Pattern filtering techniques

Both S/N M EOF pattern filtering and LFCA aim to identify those spatial patterns in the data than explain most of the forced

climate change signal, by decomposing the data into EOFs. Effectively, this allows to distinguish the forced signal from

noise caused by ICV. The difference between S/N M EOF and LFCA lies in their definition of what type of variance (or

patterns of variance) in the data belongs to the signal and the noise. Here, only the basics of both methods will be explained.

Interested readers can find an extensive methodological explanation about S/N ME EOF pattern filtering applied to an

ensemble and LFCA in Wills et al. (2020) and Wills et al (2018), respectively.

S/N M EOF pattern filtering diagnoses the variance that is forced by either assessing a simulation of forced climate change

relative to a preindustrial control simulations (DelSole et al., 2011; Marcos and Amores, 2014), or by using an ensemble mean

7
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of realizations with the same forcing (Wills et al., 2020). The former is advantageous in single realization GCM experiments,

as it only requires one forced realization and one preindustrial control run. However, this could neglect the forced response

when external forcing only affects the phase of an ICV mode (Wills et al., 2020). The latter allows to effectively reduce ICV

while avoiding phase neglection issues but requires the availability of two or more ensemble members. Since one of our

objectives is to determine how efficient pattern filtering methods are compared to an ensemble mean of realizations to reduce

ICV in DSL, here we focus on the latter approach.

Essentially, S/N M EOF pattern filtering exploits a SMILE to find patterns where different ensemble members agree on the

temporal evolution (forced response), whereas those patterns in which members disagree are considered ICV. S/N M EOF

pattern filtering finds spatial patterns (r.h.s. of Fig. 3, for example) associated with the time series # of each pattern k£ (Lh.s. of

Fig. 3, for example) that maximize the ratio of (ensemble mean) signal to total variance s,:

_ (T
ko™ Ty, 2 1)

where angle brackets represent an ensemble average. The leading S/N patterns (i.e., anomaly patterns with high signal fraction

S, ) can be combined to isolate the forced response from the ICV (Fig. 1).
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Figure 1. Main steps involved in isolating the forced response, including variability decomposition (EOF analysis), finding

leading anomaly patterns, and combining leading patterns above a significant statistical level.

To apply S/N M EOF pattern filtering, we must determine two parameters: 1) the number of EOFs retained (N), and 2) the

number of S/N patterns used to compose the forced response (M). Following the approach by Wills et al. (2020), we choose

N to retain between 75% and 95% of the total variance. We use a block bootstrapping approach to determine M, which consists

of taking block samples with replacement from the ensemble members to construct a randomized ensemble where the forced

response timing of their realizations should not agree with one another. Here, we choose 30-yr blocks to distinguish forced

patterns from ICV, so that most of the ICV in DSL is excluded. S/N EOF pattern filtering is then applied to randomized

ensembles and the sx value of the pattern with the highest S/N ratio is taken as a threshold. This allows us to obtain a distribution

of sx values (one for each randomized ensemble produced) from which a desired confidence level can be estimated. S/N M

EOF patterns with a higher si value than the threshold can be considered as part of the forced response with the chosen

confidence level (Fig. 1). As there is no sufficient statistical evidence to include patterns with a lower sk value in the forced

response, those are considered noise (ICV).
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In contrast to S/N M EOF, LFCA identifies the signal that makes it through a low-pass filter. The advantage of LFCA is that

it can analyse the forced response in a single ensemble member without relying on the preindustrial control run (Schneider and

Held, 2001: Wills et al., 2018). LFCA is similar to S/NP M EOF pattern filtering but, instead of using an ensemble mean, it

detects anomaly patterns associated with time series & (Eq. 2) that maximize the ratio of low-frequency signal to total variance.

The failure to detect some forced variations such as those driven by volcanic activity in surface air temperature and some

changes in the seasonal cycle is the main disadvantage of this method being documented in the literature (Wills et al., 2020).

~—T —

g tg
T
tktk

. (2)

T'kZ

Variations that make it through a low-pass filter (denoted by a tilde), constitute the low-frequency signal (forced response).

Here, we apply a linear Lanczos filter (Duchon, 1979) with a 30-yr lowpass filter, so only variability at larger timescales is

included. Following the same process as in S/N M EOF, a forced response can be constructed by linearly combining leading

anomaly patterns, as illustrated in Fig. 1.

3.2 Pattern scaling

Pattern scaling is usually based on grid-point regression against a global variable, and it assumes that a regional change in DSL
can be explained by global changes of the predictor(s) of choice. Previous studies have shown such relationships can be a
reasonable approximation for different variables of the climate system. For instance, local surface air temperature change
(Collins et al., 2013; Hawkins and Sutton, 2012) and local precipitation (Osborn et al., 2016) have successfully been linked to
GSAT change. Regional emulation based on pattern scaling assumes that patterns of local response to external forcing remains
constant (Tebaldi and Arblaster, 2014), an assumption that can lead to errors (Wells et al., 2022). However, its simplicity and
transferability to many regional variables have made it a popular approach for exploring regional changes in climate change
studies (Bilbao et al., 2015; Fox-Kemper, 2021; Herger et al., 2015; Mitchell, 2003; Osborn et al., 2016; Perrette et al., 2013;
Tebaldi and Arblaster, 2014; Thomas and Lin, 2018; Wells et al., 2022; Wu et al., 2021; Yuan and Kopp, 2021).

Once we have identified the forced DSL within an ensemble of realizations or a single simulation (as outlined in Section 3.1),
we will use this forced response as a predictand in our statistical model for projecting regional DSL. There are different forms
of pattern scaling, mostly differing in the number of predictors included in the analysis (e.g., univariate, Bilbao et al., 2015;
bivariate, Yuan & Kopp, 2021). Here, for simplicity and to ease comparison between raw (de-drifted) DSL and its pattern-
filtered equivalent, we only test pattern scaling based on GMTSLR (or zostoga) as a predictor. The univariate case of pattern

scaling for relating DSL with GMTSLR can be described by the following linear regression relationship:
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{(t,x,y) =alx,y) 1) + b(x,y) + &(t, x,y) (319)

Where ¢ and 77 denote DSL and GMTSLR, respectively. Longitude and latitude are represented by x and y, whereas t denotes
time. « is a spatial pattern that captures the scaling relationship between DSL and GMTSLR, and b is an intercept term, both
being only a function of location. ¢ is a residual term regarded as random noise and often assumed to be driven by internally

generated variability (Bilbao et al, 2015).

4 Results & Discussion
4.1 Forced response in MPI-GE and efficiency of pattern filtering.

In this section, we focus on determining the forced response in DSL within a SMILE (MPI-GE) using S/N M EOF pattern
filtering and show the efficiency of the latter to remove internal-variabilitylCV compared to_the more conventional approach
of ensemble averaginges. To construct the forced response based on S/N patternsP, we follow the block-bootstrapping
approach described in Section 3.1-+- we define blocks in terms of thirty years, so most rnataral—variabilityICV in DSL is

excluded. 30-yr block samples are taken from the 100 historical realizations of the MPI-GE to construct 20 randomized

ensembles. A value of 20 is chosen because increasing it further does not lead to substantial changes in the estimation of the
95t percentile of Sk. The estimated ratio Sk (Eq. 1) for a 95 % confidence level is 0.08, leading to a total of eight patterns that

can be considered as part of the forced response at such a confidence level (Figure 1).
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Figure 21: Signal fraction of the leading S/N M EOF patterns along with their respective explained forced response variance
(%). The significance level (95%) computed using 30-year block-bootstrapping is represented as a dashed line. Patterns are

sorted based on the magnitude of their signal fraction, as illustrated in Figure 1.

Even though patterns constructed based on EOFs are created from mathematical constraints, known physical processes can be
identified in some patterns. For instance, the S/N M EOF pattern with the highest Sk value pattern 1, (Fig. 32) explains 62% of
the forced response variance (Fig—Fig. 2) and is similar to the main forced pattern of DSL change field driven by increased
radiative forcing due to increased GHG emissions. There is a zonal dipole in the Southern Ocean, with decreased and increased
sea level relative to the mean below and above 50°S, respectively (e.g., Frankcombe et al., 2013). Another dipole structure is
found in the North Atlantic with a decreased DSL in the north compared to an increased DSL in the southern section, a feature
which appears to disagree with some models (e.g., Bouttes et al., 2014). Nonetheless, the North Atlantic Ocean is an area of
large model spread in both CMIP5 and CMIP6 models (Lyu et al., 2020), which suggests the representation of such zonal
dipole may be model dependent. Other relevant features include a large DSL rise in the Beaufort Sea and an increased DSL in
the North-West Pacific Ocean. Most of these features agree with those documented among CMIP6 and earlier models (Church
etal.,2013; Ferrero et al., 2021; Landerer et al., 2007; Lowe and Gregory, 2006; Lyu et al., 2020; Slangen et al., 2014). Patterns
are similar between RCP scenarios, mainly differing on their intensity.

The three following resulting patterns (patterns 2, 3 and 4, Fig. S1, S2 and S3) represent between 4-1% (Eie—1Fig. 2) of the
forced response variance and, although with a much lower importance than pattern 1, when combined together represent non-
linear processes that start to have an effect in DSL after 2050. Patterns 5, 6, 7 and 8 (Fig. S4, S5, S6, and S7) explain between
1-0.7% of the forced response variance (Fig—Fig. 2) and show a rather stable temporal evolution except for smal perturbations

and that coincide with historical volcanic eruptions from Krakatoa, Agung, El Chinchdn, and Pinatubo. Volcano-induced

perturbations were also observed in the analysis by Wills et al. (2020), as aerosol changes in the atmosphere can affect global

and regional temperatures, subsequently affecting DSL.

p_Patterns number 9 and beyond explain a variance of less than 0,6% and; since their Sk value is not statistically significant at

the 95% level; they could be caused by-randess chance.

12



a) RCP 2.6 b) RCP 2.6

0

STD [m]

I 1 1 1 T
1850 1900 1950 2000 2050 2100
c) RCP 4.5

STD [m]

1 1
1850 1900 1950 2000 2050 2100
e) RCP 8.5

T T T T
1850 1900 1950 2000 2050 2100
Year

(a)

STD [m]

0

I 1 1 1 T 1
1850 1900 1950 2000 2050 2100

(c)

T T T T
1850 1900 1950 2000 2050 2100

(e)

T
1850 1900 1950 2000 2050 2100
Year

13



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
| 61

62
| 63

64

65
| 66

67

68

69

Figure 32: Time evolution-n-terms of DSL SBstandard deviation (a, ¢, and e;+espeetively) and associated S/N M EOF pattern

number 1 for RCP 2.6, 4.5, and 8.5 (b, d, and f respectively). Light coloured lines in a, ¢, and d represent sdstandard deviation

anomalies from ensemble members, whereas dark coloured lines depict ensemble mean evolution of the pattern. In the

historical + RCP scenarios DSL is calculated relative to the mean of 1993-2012.

We first compare the efficiency of pattern filtering techniques to that of conventional methods, in particular an ensemble mean,
to isolate the forced response in DSL. Forthe-comparison;-Wwe follow the approach used by Wills et al. (2020) based on the

number of ensemble members needed to constrain a certain level of variance of the forced response using the coefficient of

determination r2, which indicates the proportion of variance shared between two datasets.where As we need two datasets for

such a comparison, the 100-member MPI-GE ensemble is divided into two sub-ensembles: one is used for testing (estimate

ensemble) and the other is left for reference (reference ensemble). This leaves us with two 50-member sub-ensembles, where
all 50 members in the reference sub-ensemble are used to estimate the forced response by either using ensemble averaging or
S/N M EOF pattern filtering and_this reference sub-ensemble is considered as ground truth. The other (estimate) 50-member

ensemble is also used to estimate the forced response, but_instead of using all sub-ensemble members—this-is-performed49

times_we estimate the forced response in an iterative process by increasing the number of members included in the analysis

from 2 to 50. As an illustration of the procedure, we start with only 2 members which are used to characterize the forced

response in the estimate sub-ensemble and compare the result with the forced response from the 50-member reference sub-

ensemble. This comparison is performed via the coefficient of determination between two estimated forced responses on a

grid-point basis, identifying where the 80% level is exceeded. Grid points where the threshold is not reached are used for

subsequent analysis where an additional member (3 in total) is included in the estimate sub-ensemble, repeating the same

process until the latter reaches 50 members. This procedure enables an evaluation of the number of ensemble members needed

in the estimate sub-ensemble to characterize the forced response based on explained variance (i.e., r2) in the reference sub-
ensemble. To consider sampling uncertainty, this process is repeated ten times for random choices of realizations, taking the
median value of all iterations.

When simple averaging is used, we find that 50 members are not sufficient to constrain at least 80% of the forced response
variance of the reference ensemble over most of the ocean surface (Fig—3Fig. 4a). In contrast, S/N M EOF pattern filtering
characterises the forced response more efficiently than simply averaging, as it requires a much smaller number of realizations
to remove natural-variabiitylCV (Fig—3Fig. 4b). While the grid-point median value of the number of ensemble members
required is 50 or more when using simple averaging, the median estimate for the filtering method is reduced to eight. Large
areas of the ocean benefit from filtering and there are significant reductions, especially the Indian Ocean, South and Northwest
Atlantic Ocean, as well as large areas in the Pacific Ocean (Fig—3Fig. 4b). Other areas, however, remain over the 50-member
threshold to explain forced response variance after filtering. Those areas are mostly found where strong western boundary
currents exist (Imawaki et al., 2013), as well as in areas influenced by the Antarctic Circumpolar Current (Rintoul et al., 2001).

In those locations, variability is higher, and a larger number of realizations is needed to characterize it. Yet, there clearly is an
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advantage in using S/N M EOF over simple averaging methods, as less realizations are required to explain a significant part

of the forced response in DSL, which means that the forced response can also be determined in models with smaller ensembles.

50
[V}
[
S
40 8
N
E
30 ¢
ks
H*
20 o
v
10 &
Q
[a'd
0

Figure 43. The number of ensemble members (realizations) needed to form an MPI-GE sub-ensemble that shares explain at

least 80%_of the variance of the forced response—varianee with a reference 50-member MPI-GE sub-ensemble using an

ensemble average (a) and using S/N M EOF pattern filtering (b) for RCP 2.6. The reference dataset is an average (a) or S'M
EOF-filtered sub-ensemble (b) of 50 members which does not share realizations with the sub-ensemble used for estimation.
Values represent the median of ten random choices of realizations sampling for both estimate and reference sub-ensembles.

Note that bright yellow indicates more than 50 ensembles members required.

4.2 Improved Pattern Scaling Using SMILES

In this section, we demonstrate how S/N M EOF pattern filtering can increase the capabilities of statistical approaches for
explaining DSL based in GMTSLR by reducing internalvariabilityl CV within SMILES. For comparison, we first show pattern
scaling performance when using single realizations and how conventional methods (ensemble mean) reduces RMSE when
using a couple of realizations instead. Second, we examine S/N M EOF as a method for reducing RMSE more efficiently. We
compare regional RSME from both ensemble mean and pattern filtering on only two realizations to allow an assessment of the
areas that benefit the most from filtering when a few simulations are available. Lastly, we contrast how both ensemble mean

and S/N M EOF pattern filtering reduce global mean RMSE as the number of realizations included in the analysis is increased.
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As pattern scaling is performed on a grid-point basis, regression performances can be location dependent (Fig. 4a). Despite
such regional variations, we found not substantial differences between GHG scenarios for both the regional and global mean
RMSE estimates when pattern scaling DSL simulations extending up to 2100. Thus, results shown and discussed here are
pertinent to the historical+RCP2.6 scenario for illustrative purposes, unless otherwise stated. When applying pattern scaling
on a single realization of DSL from MPI-GE, the area-weighted, ensemble average RMSE is 3.78 cm, a value which is similar
to previous estimates from studies performed on some of the CMIP5 models (Bilbao et al., 2015; Yuan and Kopp, 2021).
However, pattern scaling performance shows a large spatial variability, ranging from 1.13 to 14.95 cm regionally (Fie—4Fig.
5a). High RMSE values (i.e., lower regression performance) can be found in places subject to non-linear mesoscale processes
driven by strong currents, coinciding with the places where the S/N M EOF technique requires many realizations to explain at
least 80% of the forced response variance (Fig—3Fig. 4b). These are the Antarctic Circumpolar Current (Southern Ocean) or
western boundary currents, including the Gulf Stream (West North Atlantic), and Agulhas Current (South Africa), the Kuroshio
Current (West North Pacific), and at the Brazil-Malvinas Confluence (West South Atlantic). Low RMSE values are found in
the more stable eastern boundary currents, such as the Humboldt (Peru) Current, and in equatorial locations where DSL is
relatively less influenced by large modes of climate variability (e.g., Equatorial Atlantic and Indian Ocean).

Despite its inefficiency, using an ensemble average cancels out some of the nataral-ariabilityICV that varies in a different
phase between realizations. When using a 2-member ensemble mean, RMSE reduction is observed both globally and
regionally: The area-weighted average RMSE estimate is reduced from 3.78 to 2.77 cm (27% reduction) when two ensembles
are used, with regional values ranging from 0.87 to 11.00 cm (Fig—4Fig. 5b). This translates to increased statistical model
capabilities within the entire model domain. While grid-point RMSE reduction ranges from 10 to 30%, the majority of the
ocean benefits from a decrease of more than 25% due to the removal of some of the interral-variabilityCV (Fig—4Fig. 5c).

Locations experiencing a lower improvement in regression performance include those that already performed relatively well

prior averaging and those with a high #terpal-variabiityICV.
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Figure 45. Regional pattern scaling performance based on regression RMSE when one realization (a) and a two-member
ensemble average (b) are used in the univariate regression. Sampling uncertainty is accounted for in (a) by averaging RMSE
from pattern scaling performed individually to the 100 realizations, whereas in (b) random pairs (without replacement) are
taken te-for the two-member ensemble average. The difference in regression performance between (a) and (b) is shown in (c)

in terms of percentage. Results are shown for RCP 2.6 as an example.

To compare how S/N M EOF pattern filtering improves pattern scaling as opposed to averaging, we take two ensemble
members from the MPI-GE historical+RCP2.6 experiment and proceed to remove their aaturalvariabilityICV by pattern
filtering. The 2-member pattern-filtered DSL (Eig—5Fig. 6a) shows an improved RMSE with similar regional structures
compared to its averaged counterpart (Fig—4Fig. 5b), featuring higher values in western boundary currents and Southern
Ocean. Nonetheless, the overall improvement is apparent in all areas: the global estimated RMSE from the regression
decreases almost 60% from an average value of 2.77 to 1.12 cm (Eig—5Fig. 6-c and d). Regionally, RMSE ranges from 0.39
to 6.05 cm when filtering is applied on two ensemble members (Fig—5Fig. 6a and c¢). The differences between averaged and
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filtered approaches are substantial and location dependent, with filtering yielding a decrease in RMSE ranging from 12% to
about 80% (Eig—5Fig. 6b). The tropical Indian and Eastern Pacific Ocean are among the locations benefiting the most from
the largest performance improvement, which highlights the skill of pattern filtering to remove variability associated with
large climate modes (e.g., ENSO has a large influence on sea level in the Eastern Pacific Ocean). Similar to previous
findings when using averaging (Fig, 4c), pattern filtering offers a reduced improvement in areas where regression already
performed relatively well or where the presence of meso-scale processes is significant. Regardless of improvement
magnitude, pattern filtering provides an overall increase in regression performance that is observable in the entire ocean
domain. While averaging also offers an enhancement of pattern scaling skill, filtered 2-member pairs produce a distribution
of RMSE that is significantly superior (Fig—5Fig. 6¢).

We further investigate how pattern filtering enhances regression compared to averaging by increasing the number of
members included in the analysis (Fig—SFig. 6d). Increasing the number of realizations grants ensemble averaging a
considerable decrease in RSME. Yet, performance improvement asymptotically reaches a plateau around 20 members after
which further reductions in RMSE are modest. Regression based on pattern-filtered DSL also shows an improvement as the
number of realizations increases. Such improvement is very limited compared to the one undergone by averaging, although
filtering always provides a superior performance regardless of the number of members incorporated in the analysis.
Importantly, area-weighted RMSE values differ significantly between the considered approaches when only a small number
of realizations are available and become more similar for a larger number. This highlights the role of pattern filtering
techniques when only a few ensemble members are available. Based on the analysis performed on the DSL simulations from
the MPI-GE, filtering two members provides a regression performance that would only be achieved by averaging at least 12

members.
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Figure 65. Regional pattern scaling performance based on regression RMSE when two ensemble members are used to estimate
the forced response via S/N M EOF pattern filtering (a). Panel (b):-shews the difference in regression performance between
the 2-member average pattern scaling (Fig—4Fig. 5b) and the S/N M EOF-filtered equivalent (a)._Panel (c): Violin plots
ofdepieting RMSE distributions from the 1-member, 2-member average, and 2-member S/N M EOF-filtered approaches-are

shewn-in-panel(e). Panel (d): The area weighted average RMSE obtained in the regression isshewn-in{e)-as a function of the

number ensemble members included when using an ensemble mean (yellow) and filtering (blue). The difference in

performances in terms of percentage is shown in green. Realizations-used-here-belengtoAnalysis for the RCP 2.6 scenario (we

observed no discernible differences between scenarios).

4.3 Improved Pattern Scaling Using Single Realizations

Most models in CMIP prior to CMIP6_(and some in CMIP6) provided only one realization of historical and scenario

simulations. Therefore, we now test whether pattern filtering could improve regional emulation of single-realization models.
To do so, we apply LFCA which uses a similar approach to S/N M EOF (as explained in Section 3.1-2). In this section, we
first examine how LFCA improves the regression RMSE by truncating #terral-variabilityICV in a single simulation from the
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MPI-GE. We then apply LFCA to a range of CMIP5 models that were used in previous patterns scaling analyses of DSL,
focusing on the differences between models and RCP scenarios in longer simulations.

LFCA filtering uses the same linear algebra machinery as S/N M EOF, providing a similar regional improvement in pattern
scaling (compare Eig—5Fig. 6a and 6a). Slightly higher RMSE values are observed in LFCA-based regression, for instance, in
the equatorial Pacific. This is expected because only one simulation is used, compared to two simulations in S/N M EOF
filtering, which enables the latter to identify a larger proportion of internal—variabilityICV. LFCA provides a substantial
reduction in RMSE, as compared to using a single simulation in pattern scaling (Eie—6Fig. 7b-c). Regionally, it shows a similar
qualitative pattern of improvement as the other methods shown here (Fig—6Fig. 7b vs 4c and 5b; averaging and S/N M EOF
filtering, respectively). Quantitatively, however, LFCA provides a larger RMSE reduction on a single realization than S/N M
EOF performed on two. LFCA provides a reduction of the area weighted average RMSE of 68% for all radiative forcing
scenarios (Eig—6Fig. 7c), while S/N M EOF yields 67% when using two realizations relative to unfiltered 1-member pattern
scaling. While both estimates are quite similar, it is worth noting that S/N M EOF requires two ensemble members to provide
such reduction, while LFCA leads to a similar performance just using one simulation. Similar to S/N M EOF pattern filtering,
no substantial differences are found in pattern scaling RMSE between RCP scenarios up to 2100 (Fig., 6¢). This implies that

ICV is analogous for different th r# RCP scenarios_which,

henee;since a reduction in RMSE is due to the removal of ICV, alinearregressionforprojecting DSEleadsto-asimilar leads
to a similar improvement in performance for all RCPs both globally (Eie—6Fig. 7¢) and regionally (not shown).
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Figure 76. Regional pattern scaling performance based on regression RMSE when one (RCP 2.6) ensemble member is filtered
via LFCA (a). Filtering is performed individually for each ensemble member to compute 100 scaling patterns whose results
are averaged to diminish sampling issues. Differences in regression performance between Fig—4Fig. 5a (unfiltered 1-member
pattern scaling) and (a) are shown in (b) in terms of percentage. The area-weighted average RMSE is shown in (c) for RCPs
2.6, 4.5, and 8.5 and depending on whether the ensemble member is (blue) or not (yellow) filtered. Green indicates RMSE

reduction between approaches in terms of percentage, whereas values on top of the bars are the absolute differences in cm.

Since the aim of this study is to explore differences in emulated DSL when ICV is reduced, we also assess potential differences

between unfiltered and filtered simulations (Fig. 8) when predicting DSL at 2100 using GMTSLR as a predictor. Emulated

DSL differences caused by filtering may differ depending on the realization used, as each realization features an ICV evolving

in a different phase. Thus, we focus on the maximum emulated DSL differences that filtering causes out of all 100 MPI-GE

simulations. Exploring the maximal potential difference in statistically projected DSL is an added benefit of using SMILES,

as such analysis can only be done with a large set of realizations with out-of-phase variability.

The difference in emulated DSL varies geographically (Fig. 8), with a spatial variability resembling the RMSE when ICV is

reduced (e.g., Fig. 6a and 7a). Areas characterized by high temporal variability, which pattern filtering does not completely
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remove, experience greater difference in DSL projections (Fig. 8). Unlike RMSE (e.g., Fig. 7a), the difference between

emulated DSL differs between RCP scenarios, increasing in magnitude with radiative forcing (Fig. 8). RMSE measures the

error throughout the entire regression without accounting for the predictor, so only the effect of reduced ICV is captured. On

the other hand, an increasing difference in predicted DSL with stronger RCP is expected since the magnitude of the predictor

(GMTSLR) is larger for higher emissions scenarios. However, we observe the opposite behavior when assessing the difference

in emulated DSL in relative terms, i.e., when the difference is divided by the emulated unfiltered DSL or by GMTSLR in 2100

(not shown). Despite contrast between RCPs either in total difference (slightly increasing with forcing) or relative terms

(decreasing with increasing forcing), RMSE being similar between RCPs highlights pattern filtering may be relevant for all

scenarios.

The effect of pattern filtering on differences in slope o, a key parameter in pattern scaling, shows again a similar spatial

variability to RMSE (Fig. 7 vs Fig. S8). Changes in slopes are substantial in places with high variability, sometimes even

showing a sign change (e.g., Fig. S13). Contrary to the total difference in emulated DSL and similar to the relative one, slope

differences tend to decrease with higher emissions scenarios (Fig. S8). Since lower radiative forcing means lower signal-to-

noise ratio, noise (ICV) can drive large differences in slopes between filtered and unfiltered results, and vice versa. Apart from

reducing RMSE and leading to narrower confidence intervals (e.g., Fig., S10-14), pattern filtering finds slopes that are

significantly different that the one obtained from applying a moving mean (e.g., Fig., S12 and 14), as the latter does not remove

ICV as efficiently and requires neglecting data points for its computation (Fig., S10b-14b). It is worth highlighting that these

differences in emulated DSL and slopes showcase an example for a GCM and may not hold as ground truth for other GCMs,

scenarios, or predictors used.
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Figure 8. Maximum difference between DSL change in 2100 obtained by pattern scaling with coefficients fitted to unfiltered
and LFCA -filtered realizations, considering all 100 MPI-GE members, for RCP 2.6, RC P4.5, and RCP 8.5 (a, b, and c,
respectively).

We further explore the performance of LFCA by comparing the pattern scaling results when isolating the forced response for
other GCMs. We identify the forced DSL in four CMIP5 models, being GISS-E2-R, HadGEM?2-ES, IPSL-CM5A-LR, and

MPI-ESM-LR (Fig—7Fig. 9a-d, respectively), which all provide scenario simulations up to 2300. To ease comparison with
results from the MPI-GE, however, we first examine results up to 2100 (Eig—7Fig. 9a-d, small r.h.s. insets). RMSE from
unfiltered simulations up to 2100 vary between models, and so does RMSE reduction provided by LFCA. Nonetheless, error
reduction within a model and between scenarios is very similar, as previously observed for the MPI-GE. This implies that, for
all models considered here, there are no significant changing behaviours in the relationship between DSL and GMTLSR
between RCP scenarios up to 2100.

When considering results up to 2300, pattern scaling of unfiltered DSL against GMTSLR yields similar results as previous
studies (Bilbao et al., 2015), showing a global area-weighted mean RMSE between 2 and 4 cm. RMSE in both unfiltered and
filtered simulations of DSL increases with radiative forcing for all models considered. As simulations run up to 2300, a

decrease in pattern scaling performance for higher RCPs may indicate a more important role of the deeper ocean layer driving
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non-linear processes (Bilbao et al., 2015; Yuan and Kopp, 2021). This tendency is also reflected in the error reduction after
filtering, which decreases as radiative forcing increases both over time and because of the higher emissions scenario, but the
latter is more apparent. Although LECEEA filtering improves the performance of pattern scaling for all four CMIP5 models,
considerable differences in error reductions are observed. For instance, HadGEM2-ES benefits the most from pattern filtering
between all the models, with a ~70% decrease in error for RCP 2.6. Conversely, GISS-E2-R undergoes the lowest reduction
after pattern filtering, with about a 50% increase in performance for the same RCP scenario. Differences in model performance
pre- and post-filtering do not only highlight differences in how rataralvariabilityICV is represented in distinct models but

may also reflect model differences in terms of physics representation and modelled forced response.
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Figure 97. Area-weighted average RMSE-is—shows for RCP 2.6, 4.5, and 8.5,-and-depending—en— indicating whether the
ensemble member is (blue) or is not (yellow) filtered via LFCA. Green indicates relative RMSE reduction between approaches
(%)-terms-of pereentage, whereas values on top of the bars are the absolute differences in cm. Different panels represent
different CMIP5 models £ a5 . The main panel includes simulation data up to 2300,

whereas the small inset on the right-hand top corner shows RMSE results up to 2100. Small insets share the same axes as main

panels.
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5 Conclusions

Regional emulation tools for DSL change are complementary approaches to GCMs that allow for computationally cheap
statistical projections. Most DSL regional emulators are based on pattern scaling, a statistical model usually based on a grid-
point regression against a global variable representing change in the climate system driven by external forcing. While choosing
suitable global predictors is essential for appropriate tuning of the statistical model, random errors can remain leading to high
uncertainties in statistically based projections. A portion of these random errors are driven by nterral-variabiityICV in DSL
and can be characterised using macro-initialized initial condition large ensembles (SMILES), which are designed to facilitate
a separation between internalvariabilityICV and external forcings within a model. Here, we applied pattern recognition
techniques to a SMILE with the aim to efficiently truncate internal-variability] CV.-and demonstratinge how these approaches

could significantly reduce random errors in regional emulators of DSL and provide substantially different emulated results in

areas with high ICV .-

Although internalvariabiitylCV can be also reduced by using more conventional methods, such as computing an ensemble
mean or linear trends, this requires a relatively large number of realizations to do it effectively. This is a significant constraint
particularly for modelling experiments featuring a limited number of realizations. A more efficient alternative consists of
employing methods that exploit spatial covariance information, such as S/N M EOF pattern filtering and LFCA. We have
demonstrated that S/N M EOF applied to two realizations attains the same level of error reduction as averaging 12 realizations.
The largest improvement relative to unfiltered simulations was observed when only a few simulations were available, whereas
both S/N-filtered and ensemble average model performance tended to converge for a large number of ensemble members. By
identifying spatiotemporal coherent structures, the S/N M EOF filtering was particularly skilful at removing internal
variabiitylCV due to large modes of climate variability, such as the ENSO influence on sea level in the Eastern Pacific.

S/N M EOF pattern filtering can identify the common response within at least two realizations. This motivated us to also test
LFCA, which can remove variability in single relalization modelling experiments by applying a lowpass filter. Apart from
being computationally more efficient, LFCA outperforms S/N M EOF in improving the performance of DSL pattern scaling

when using one or two realizations. Moreover, LFCA applied to individual SMILE realizations allows exploring the maximal

potential difference between statistically projected unfiltered and filtered DSL. We found substantial differences in emulated

DSL and regression slopes in places with high variability, highlighting the relevance of pattern filtering methods in areas

subject to non-mesoscale processes. Despite LFCA versatility and performances resultsHewever, previous studies have

emphasized that S/N M EOF pattern filtering provides a range of benefits compared to LFCA, including: 1) a better isolation
of the forced response when the number of ensemble members is large, and 2) the detection of relatively less important forced
patterns, such as those driven by volcanism.

We have also investigated LFCA by applying it to longer (up to 2300) CMIPS simulations. We found that pattern scaling
performance is independent of the GHG emission scenario up to 2100 and decreases with radiative forcing beyond 2100. Since

we used a linear model, this implies that non-linear processes have different effects on DSL depending on the GHG scenario
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and this is reflected in a decrease in model performance depending on the emissions. We also found substantial differences
between CMIP5 models, due to variability being represented differently as well as distinct model physics. Nonetheless, the
performance improvement of pattern scaling when applying LFCA filtering is considerable for all models and scenarios,
ranging from 20% to more than 70% reduction relative to the unfiltered results.

Here, we have demonstrated that reducing internalariabilityICV increases the capabilities of statistical approaches to project
DSL. Pattern recognition techniques are especially advantageous for such a task, as they do not require numerous realizations
to significantly reduce uncertainties in statistical projections and no data is lost (as in 30-year means) when reducing internal

vartabiitylCV. Previous studies have not considered removing internalvariability| CV, prierto-searching for-suitable-global

predietors;-which could significantly reduce uncertainties in statistically projected DSL and lead to substantial differences in

emulates DSL. Although the difference in emulated DSL and regression slope varies depending on scenario, and results shown

here are an example and may differ depending on GCM, RCPs. and predictor used, we show that pattern filtering is a useful

approach to consider as a means of enhancing emulated DSL simulations. Henee;—forfuture-emulationstudiesof DS —we
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