
Review of « Improving Statistical Projections of Ocean Dynamic Sea-level Change 

Using Pattern Recognition Techniques” by Malagon-Santos et al. 

The paper investigates the benefit of using pattern recognition approaches to 

assess statistical regional sea level projections from coupled climate model outputs. 

The study shows that using EOF pattern recognition and low-frequency component 

analysis significantly reduce errors in pattern scaling of regional ocean dynamic sea 

level change. The authors apply those two methods on the large ensemble MPI-GE 

simulations. Each member has different initial conditions. Therefore, it is possible to 

assess the impact of ocean initial conditions on projected dynamic sea level change. 

The presented results highlight the need to apply such a pattern recognition 

methods to reduce errors in regional emulation tools of ocean dynamic sea level 

change especially when a few realizations are available because of the huge 

computation cost. 

The topic of the paper is interesting as the future generation of AOGCM will increase 

both atmosphere and oceans spatial resolutions. Thus, a few simulation 

integrations will be preferred from large ensembles because of the computational 

cost. Therefore, this technique may be relevant for future sea level change 

investigations. 

Thank you for the positive comments. 

I find the paper well written. It is well organized. However, the methodology part 

could be improved as the methodology is not easy to understand especially for a 

non-expert in pattern filtering. I think the authors can provide more explanations to 

help the reader. 

We agree the methodology section may be difficult to follow for a non-expert. We 

thought it was not needed to further expand the methodological steps, as 

interested readers are referred to appropriate literature where methods are 

thoroughly explained already. We have summarized the methodology to include 

only the basics of both methods. Readers are referred to appropriate literature if 

they wish to read a more detailed explanation. We’ve also added a flowchart (now 

Fig. 1 in the revised manuscript) showcasing how the forced response is constructed 

and separated from internal climate variability. We hope these changes make the 

paper seem less technical and more accessible to a wider audience. 

See lines 220-271 for the revised Methods. 

Overall, the paper is well supported but some parts are unclear. For instance, I 

struggle to fully understand and interpret Fig1 as it lacks of explanation in the 

caption (see my comment below). 



I find the paper very technical and I wander if Ocean Science is the right journal to 

publish this piece of work. I recommend a major revision for the manuscript before 

a possible publication. 

Ocean Science was chosen based on the specific dedication of the journal, which is 

on all aspects of ocean science including experimental, theoretical, and laboratory 

studies. We believe the topic of manuscript falls within different fields covered by 

Ocean Sciences, especially ocean physics and ocean models. Moreover, since our 

paper aims to simplify complex global climate (or related) models by using statistical 

approximations, the methods and results presented here may be also tested in 

other oceanic processes, such as regional changes in temperature. This made us 

feel Ocean Science was a suitable journal for this manuscript. We hope the 

amended methods sections will make the paper seem less technical and more 

accessible to a broader audience in Ocean Science. 

Major comments 

• When using EOF decomposition, one strong assumption is that all the modes 

are independent (i.e., they are orthogonal to each other). Is it really the 

case especially at global scale? This might be discussed in the conclusion as 

a limitation of the approach. 

By construction, the EOFs patterns and principal components are 

orthogonal. It is this orthogonality constraint what inhibits a physical 

interpretation of EOFs (as noted in Line 308 of the original manuscript, 293 

in the revised manuscript). 

• What do you mean by ‘well separated’? (L143) How is it performed? Are you 

sure the initial conditions are totally different and independent? Please, 

clarify. 

Single-model initial condition large ensembles (SMILES) are designed to 

assess a range of outcomes due to the presence of unpredictable internal 

climate variability. This is usually achieved by running a number of 

simulations with the same model and identical forcing, only differing in 

their initial conditions. Simulations are independent as long as the memory 

of the initial conditions is lost, which ensures each ensemble member have 

a unique climate trajectory (Deser, 2020). There are two main procedures 

to achieve this: 1) by inducing small round-off level differences in their 

atmospheric initial conditions (micro-initialization); 2) by branching 

simulations at different times in the control simulation (macro-

initialization). Both micro and macro initialization procedures are useful to 

characterize unpredictable internal variability within a model. Macro-

initialization, however, provides larger differences in the initial states in 

both the atmosphere and ocean. Since we are assessing ocean processes 



here (i.e., ocean memory is important for our analysis), we deemed a 

macro-initialized ensemble more suitable for the purpose of this study. 

MPI-GE simulations assume a stationary and volcano free 1850 climate, 

and are macro-initialized on the first of January in different years of the 

control simulation (Table 1 in Maher et al., 2019). The branching separation 

between realizations varies along the pre-industrial control, ranging from 6 

to 24 years and with a median of 16 years.  

As already noted in Line 144 (original manuscript), the branching times of 

macro ensembles are designed to sample large scale aspects of the climate 

systems (atmosphere, land, and ocean). Nonetheless, we have included 

further information on the MPI-GE in the revised manuscript and 

emphasize its value for assessing internal climate variability within the 

model. We have also provided an improved description of micro vs macro 

and why we chose the latter. (See lines 145-161 for these amendments) 

Deser, C. (2020). Certain uncertainty: The role of internal climate variability 

in projections of regional climate change and risk management. Earth's 

Future, 8(12), e2020EF001854. 

Maher, N., Milinski, S., Suarez‐Gutierrez, L., Botzet, M., Dobrynin, M., 

Kornblueh, L., ... & Marotzke, J. (2019). The Max Planck Institute Grand 

Ensemble: enabling the exploration of climate system variability. Journal of 

Advances in Modeling Earth Systems, 11(7), 2050-2069. 

• As GMTSLR is removed, the underline hypothesis is that the model conserves 

volume instead of mass. Is that right? If so, this is due to the Boussinesq’s 

approximation. This should be clearly stated to avoid any 

misunderstanding. 

We would like to clarify GMTSLR is not removed, we simply do not use it. 

Dynamic sea level (zos) and GMTSLR (zostoga) are usually provided 

separately in AOGCMs. 

Almost all CMIP6 and CMIP5 models use the Boussinesq approximation 

(Irving et al., 2021) which implies, as mentioned by the reviewer, that 

volume is conserved instead of mass. This means steric processes are 

represented by a change in density, from which a change in mass can be 

inferred (the so-called Boussinesq ocean mass). That is why GMTSLR (or 

zostoga) is inferred separately. 

Irving, D., Hobbs, W., Church, J., & Zika, J. (2021). A mass and energy 

conservation analysis of drift in the CMIP6 ensemble. Journal of 

Climate, 34(8), 3157-3170. 



• MPI-GE description is too succinct. Please, provide more insights. There is no 

mention on the spatial resolution of the MPI-GE simulations especially for 

the ocean part. I assume that the ocean spatial resolution is about 1° 

meaning that the oceans have laminar flows. If so, what is the 

consequence when assessing the internal variability? Are not you 

underestimated it? Some studies have estimated the ocean-based internal 

variability from a large ensemble of forced OGCM. When increasing the 

spatial ocean resolution, the ocean-based internal variability increases in 

space and time. We can expect the same behavior for the coupled internal 

variability. I would appreciate some discussion on this specific point in the 

discussion’s section. 

The model is indeed course resolution: T63L47/GR15L40 (“LR” - Low 

Resolution). Nonetheless, Suarez-Gutierrez et al. (2021) show that MPI-GE 

well samples observed ocean variability in all regions except for the 

Southern Ocean. Below we provide more details about the model’s 

resolution: 

 

• Atmosphere: approximate horizontal resolution of 200 km (1.875 degrees) 

at 47 layers (up to 0.01 hPa / 80 km in height) 

• Land biosphere (interactive vegetation): same horizontal resolution as 

atmosphere. 

• Ocean including biogeochemistry: horizontal resolution varies from 12 to 

150 km at 40 layers. 

This information is now in lines 145-161 in the revised manuscript. 

It is true that variability tends to become larger at higher model 

resolutions (Penduff, 2010). However, since the goal of our study is to 

remove internal variability and isolate the forced response to improve its 

statistical modelling, how well internal variability is represented in a 

model should not be important in our analysis.  

Penduff, T., Juza, M., Brodeau, L., Smith, G. C., Barnier, B., Molines, J. M., ... 

& Madec, G. (2010). Impact of global ocean model resolution on sea-level 

variability with emphasis on interannual time scales. Ocean Science, 6(1), 

269-284. 

Suarez-Gutierrez, L., Milinski, S., & Maher, N. (2021). Exploiting large 

ensembles for a better yet simpler climate model evaluation. Climate 

Dynamics, 57(9-10), 2557-2580. 

 

Minor comments 



L54-63: When describing the drivers of regional sea level changes, one might want 

to know the associated time scales of each processes. Please, clarify. This would 

help the reader. 

We agree with the reviewer that this could help the reader notice the differences 

between the different regional contributions and highlight the importance of ocean 

dynamics as a significant driver of variability in sea-level change projections. Some 

examples and appropriate literature have been added in line 63 in the revised 

manuscript.  

Durand, G., van den Broeke, M. R., Le Cozannet, G., Edwards, T. L., Holland, P. R., 

Jourdain, N. C., ... & Chapuis, A. (2022). Sea-level rise: From global perspectives to 

local services. Frontiers in marine science, 8, 2088. 

L66: What do you mean by natural variability? Could you define this concept? This 

would help the readers. 

As also pointed out by the other reviewer, we use ‘natural variability’ here when we 

meant to refer to ‘internal climate variability’. We realized we committed a mistake 

when using those terms interchangeable throughout the paper, which can lead to 

confusion. Climate variability is defined as variations in the mean state and other 

statistics (e.g., extremes) of the climate (Mason-Delmotte et al., 2018). Climate 

variability can be caused by natural internal processes (internal variability) or by 

variations in natural or anthropogenic external forcing (external variability). In this 

study, we address internal climate variability, defined as naturally occurring climatic 

variations controlled by interactions between different components of the Earth 

system (Hasselmann, 1976; Schwarzwald et al., 2022). We have checked the paper 

and made terminology consistent to avoid ambiguity, including a definition of 

internal climate variability as suggested (see line 71) 

IPCC, 2018: Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An 

IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels 

and related global greenhouse gas emission pathways, in the context of strengthening 

the global response to the threat of climate change, sustainable development, and efforts 

to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, 

P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. 

Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. 

Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, 

USA, pp. 541-562, doi:10.1017/9781009157940.008. 

Hasselmann, K. (1976). Stochastic climate models part I. Theory. tellus, 28(6), 473-

485. 

https://doi.org/10.1017/9781009157940.008


Schwarzwald, Kevin, and Nathan Lenssen. "The importance of internal climate 

variability in climate impact projections." Proceedings of the National Academy of 

Sciences 119.42 (2022): e2208095119. 

L75: What do you mean by ‘regional emulation tools’? Please, define any new 

terminology. 

Emulation is a method consisting of parameterizing process-based models so that 

their output is estimated at significantly reduced computational cost (Thomas and 

Lin, 2018). Regional emulation follows the same principle and aims to estimate a 

spatiotemporal varying variable by mimicking computationally expensive 

approaches, such as process based GCMs, using less computationally extensive 

approaches, such as statistical models. We have included this definition here and 

provide appropriate references and examples when doing so (see line 80). 

Thomas, M. A., & Lin, T. (2018). A dual model for emulation of thermosteric and 

dynamic sea-level change. Climatic Change, 148(1-2), 311-324. 

L109-110: How many members do you need to completely cancel out the internal 

variability? 

There is no straightforward answer for this question. Strictly speaking, we would 

need an infinite number of realizations to completely cancel out variability. The 

number of members needed to robustly characterize internal variability depends on 

the question to address and acceptable error, as explained by Milinski et al. (2020). 

What we have observed in this study regarding dynamic sea-level variability is that 

internal variability associated to well-known modes of climatic oscillations leading to 

coherent spatial structures may be easy to define using a few ensemble members, 

whereas higher variability (e.g., related to eddy dynamics) is much more difficult 

identify. 

Milinski et al 2020: How large does a large ensemble need to me.  

https://doi.org/10.5194/esd-11-885-2020 

L297: What do you mean by ‘conventional approaches’? please, clarify. 

We refer to simpler but less efficient approaches that have been widely used to 

remove internal variability, such as ensemble averaging. This has been referred to in 

other sentences, (e.g., 27, 110, 333, 365, 502) but will also include it here to increase 

readability.  

L323-324: ‘…that appear to be linked to volcanic eruptions’. Can you bring extra 

explanation here or a suitable reference? 

https://doi.org/10.5194/esd-11-885-2020


The time evolution (in standard deviation) of these patterns is rather stable except 

for specific points in time where aerosol forcing was significantly altered in the 

atmosphere due to volcanic eruptions. Aerosols from volcano eruptions can change 

temperatures in the atmosphere (Wills et al., 2020), which in turn also affects sea 

level. As an example, the peaks that can be seen in the figure below (a, c, e) coincide 

with eruptions from Krakatoa, Agung, El Chinchón, and Pinatubo, suggesting that 

those eruptions indeed exerted a change in ocean dynamic sea level. We have 

included this explanation in this in text (line 307) 

 

 

Figure1: I do not fully understand this plot. Why Sk is decreasing when pattern 

number is increasing? Please, clarify it and maybe extend the caption. 

In the pattern filtering approaches tested here, signal to noise (S/N) patterns are 

sorted in terms of their signal fractions (Sk), and that is why Sk is maximal for 

pattern 1 and decreases with pattern number. This is already briefly mentioned in 

line 233 (in the original manuscript). The caption of this figure now emphasizes this 

in the amended manuscript. This is also illustrated in the newly introduced 

flowchart in Figure 1 of the revised manuscript. 

Figure2: Please, change SD by standard deviation. This would help the reader. 

SD have been changed in the revised manuscript to standard deviation. 



Figure 4: Are the results consistent when considering RCP 4.5 an RCP 8.5? It would 

be interesting to add them into the supplementary materials. 

As noted in Sentence 371, we found no significant differences between scenarios 

when it comes to RMSE reduction provided by pattern filtering techniques. As 

filtering techniques remove internal variability, and the latter does not significantly 

change between scenarios up to 2100, results are similar for different scenarios. 

However, we did found contrast in emulated DSL and the slope difference between 

unfiltered and filtered results for different RCP scenarios. Emulated DSL differences 

increases with forcing, and this is expected because so does the magnitude of the 

predictor (GMTSLR). On the other hand, slope differences are highest for the lowest 

emission scenarios, and decrease as radiative forcing increasing. Since lower 

radiative forcing leads to a lower signal/noise ratio, noise (internal variability) can 

drive large differences in slopes between filtered and unfiltered results (and vice 

versa).  

We have included a new plot (Figure 8 in the revised manuscript) showing 

differences in emulated DSL for distinct RCPs considered here. We have also added 

slope differences in supplementary material, together with a few local examples 

(Fig. S8 to S14 in the revised supplementary material). A discussion of these results 

can be found in lines 489 -508 of the revised manuscript. We have also added this in 

the conclusions.  

  



In this study the authors used large ensemble simulations from one climate model 

to test to what extent pattern filtering approaches help to reduce internal variability 

in the dynamic sea level. They then discussed the benefits of using such approach to 

reduce uncertainties in pattern scaling of dynamic sea level change. This is an 

important research topic as large ensemble simulations are computationally 

expensive and usually we need to deal with limited or even single ensemble from 

climate model. 

My main comment is that the reduced regression errors (residuals) in pattern 

scaling after applying the pattern filtering approach are well expected as the 

internal variability is reduced. I agree quantifying them is useful but the current 

manuscript fails to demonstrate more value for using such approach prior to 

pattern scaling, as claimed in the title and main message. Specifically, to what extent 

the application of pattern filtering could change the slope α of pattern scaling? Is 

there a significant change? Could you please show this change not only for global 

maps but also for time series in key regions as examples? Afterall this is what we 

really obtain and need from pattern scaling. 

We thank the referee for their constructive comments. We agree that the 

comparison between the slopes α from raw and filtered simulations could further 

highlight the benefit of using pattern filtering approaches. We see substantial slope 

differences in places subject to non-linear mesoscale processes, such as strong 

western boundary currents (Fig. 1 in this document) (e.g., Gulf Stream and Kuroshio 

current; US east coast and Japan east coast, respectively). The maximum slope 

difference decreases with radiative forcing. Since lower radiative forcing means 

lower signal/noise ratio, noise (internal variability) can drive large differences in 

slopes between filtered and unfiltered results. On the contrary, a higher emission 

scenario is characterized by a higher signal/noise ratio, as noise exerts a less 

important control on slope differences.  

 



 

Figure 1. Maximum slope difference between unfiltered and LFCA-filtered 

realizations, considering all 100 MPI-GE members, for RCP26, RCP45, and RCP85 (a, 

b, and c, respectively). Black dot to the east of Japan represents location for figures 

2, 3, and 4. 

The interpretation of slope differences is not straightforward though, so we opted 

to include and assessment of the differences in emulated DSL in 2100 between 

unfiltered and filtered data, as this also considers possible differences in the 

intercept (see Figure 8 and lines 448 – 474 in revised manuscript.). Nonetheless, we 

have also included a small discussion (Lines 475 – 484) about the difference in slope 

and a supplementary figure (Figure S8), as well as mentioning this related results in 

the conclusions (line 538). Also, as suggested by the reviewer, we have added in 

supplementary material (see Figures S9 to S14 in revised manuscript) the linear fit 

for key regions where changes in slope are substantial. As an example, we are 

including here a point in the Kuroshio current (east coast of Japan, see black dot in 

Fig. 1 in this document)., comparing an unfiltered, a 30-yr moving mean, and a 

filtered realization for RCP 2.6, 4.5 and 8.5 (Figs. 2, 3, and 4 in this document; 

respectively). Fig. 2 shows that while unfiltered and 30-year moving means are quite 

similar, the filtered case shows a positive and much steeper slope (for a single 

realization, as an example). These differences are caused by internally generated 

variability and the removal of data points to compute the 30-year mean to remove 

part of the temporal variability (this is highlighted now in line 479 of the revised 



manuscript). Slope differences get smaller as radiative forcing increases (Fig. 2 vs 3 

vs 4), as also shown in Fig. 1 

 

Fig. 2. Linear regression model of dynamic sea level (DSL) and GMTSLR for an 

unfiltered, a 30-year moving mean, and an LFCA-filtered RCP 2.6 realization (left, 

middle, and right panel, respectively).  

 

Fig. 3. Linear regression model of dynamic sea level and GMTSLR for an unfiltered, a 

30-year moving mean, and an LFCA-filtered RCP 4.5 realization (left, middle, and 

right panel, respectively).  

 

Fig. 4. Linear regression model of dynamic sea level and GMTSLR for an unfiltered, a 

30-year moving mean, and an LFCA-filtered RCP 8.5 realization (left, middle, and 

right panel, respectively).  

Some minor comments below, 



L21 “model disagreement” is not straightforward here – please consider rephrasing. 

In the context of last sentence does it refer to “climate model” or “statistical model”? 

should “disagreement” be “uncertainty” here? 

We refer to disagreement between statistically modelled ocean dynamic sea-level 

change and simulations coming from the respective GMC. To avoid confusion, 

‘model disagreement’ has been changed to ‘statistical model error’. 

L26 “MPI-GE” might not be familiar to some readers 

MPI-GE is now introduced as “Max Planck Institute Grand Ensemble (MPI-GE)” both 

in the abstract and main text in the revised manuscript. 

L26 “so that internal variability is optimally characterized while avoiding model 

biases” – please consider rephrasing. We can never avoid the model bias issue. My 

understanding is when using single model large ensemble simulations, the 

externally forced signal is optimally characterized, which provides important basis 

to test pattern filtering methods. 

The reviewer is right about model biases: it will still be a problem even when using a 

single model. What we were trying to emphasize here is the benefit of using single-

model large ensembles instead of utilizing same-forcing simulations from different 

models. The former allows us to optimally characterize the externally forced 

response within a model, whereas the latter could include model biases as 

externally forced response. We have rephrased this sentence to emphasize large 

ensemble simulations allows to optimally characterize the externally forced signal 

within a model and forcing scenario, instead of saying that using them allows us to 

avoid model biases. 

L27 “pattern filtering” do you mean the “two pattern recognition methods (L23)” or 

specifically the “signal-to-noise maximizing EOF pattern filtering (L24)”. 

We refer to both methods. We have clarified this in the text. 

L66 “natural” should be “internal climate” as used in most other places – please 

check throughout the manuscript for this. 

We agree with the reviewer that, as written in the original paper, natural and 

internal climate variability seem interchangeable when they are not. We have 

checked these terms throughout the paper and made modifications accordingly. We 

have also included a definition of internal climate variability (see line 72) as 

suggested by the other reviewer, reducing ambiguity. In addition, we noticed we 

refer to internal climate variability many times, so no we introduce the abbreviation 

ICV to increase readability.  



Figure 3 It’s unclear (1) how the number of ensembles needed is calculated; (2) what 

does “forced response variance” refer to. Could you please make connections to 

equations in section 3? 

First, we would like to clarify that we calculated the required number of ensemble 

members (realizations), a not the number of ensembles needed. (1) The number of 

ensemble members needed to explain a certain level of variance of the forced 

response is based on the coefficient of determination r2 between the two datasets 

considered. Here, chose the 80% of the variance following similar studies, but other 

arbitrary level could be chosen. The procedure we to took is as follows: 

i. Create two subsets of the 100-member ensemble, with 50 members each. 

ii. The forced response is estimate from one of the 50-member ensembles 

using all members in the subset. We used this forced response as 

reference. 

iii. The forced response is also calculated from the other 50-member subset 

but instead using all 50 members as in (ii) the number of members is 

increased from 2 to 50 in an iterative process. We call this subset the 

testing subset, as it is the one used to estimate the number of ensembles 

needed to explain a certain level of variance in the reference (step ii) 

subset.  

iv. The number of required members is computed as follows. We start with 

only 2 members, which are used to estimate the forced response in the 

testing subset. We compare both forced responses (2-member testing 

subset vs 50-member reference subset) by means of the coefficient of 

determination (r2) which tells us about the proportion of variance that is 

shared between the two subsets. We do this on a grid-point basis and see 

where the 80% level is exceeded. For those grid points where the 

threshold is not exceeded, we do the same comparison but adding an 

additional member to the testing subset (i.e., 3 members). Again, we 

check where the 80% threshold is exceeded when an extra member is 

considered. We continue this procedure by adding more members until 

we reach 50 members (the maximum in the testing dataset).  

v. We do this comparison when either the forced response is calculated by 

averaging (Fig. 3a in manuscript) or S/N M EOF pattern filtering (Fig. 3b in 

manuscript).  

vi. To avoid sampling bias, we repeat this analysis several times by 

randomizing the initial 100-member ensemble. 

We hope it is clearer now. A couple of final notes for this answer. 

- When we say forced response variance, we refer to the proportion of the 

variance that is shared between the two subsets being compared here. We 

have clarified this in the text (see line 322 in revised manuscript) 



- It is difficult to make connections with section 3 (Methodology), since none of 

the equations used there has relation to the calculations performed here to 

estimate the require number of ensembles members to explain the forced 

response variance within a subset.  

Although we attempted to explain how the calculation was performed in the original 

manuscript, we have expanded such explanation by including some steps of the 

iterative process (see lines 319 – 336 in the revised manuscript ). We hope this 

makes the interpretation of the results in Figure 3 (now figure 4) simpler.  

 

 

 

 

 


