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Abstract Accurate representation of aerosol optical properties is essential for modeling and remote sensing of 21 

atmospheric aerosols. Although aerosol optical properties are strongly dependent upon the aerosol size distribution, 22 

use of detailed aerosol microphysics schemes in global atmospheric models is inhibited by associated computational 23 

demands. Computationally efficient parameterizations for aerosol size are needed. In this study, airborne 24 

measurements over the United States (DISCOVER-AQ) and South Korea (KORUS-AQ) are interpreted with a global 25 

chemical transport model (GEOS-Chem) to investigate the variation in aerosol size when organic matter (OM) and 26 

sulfate-nitrate-ammonium (SNA) are the dominant aerosol components. The airborne measurements exhibit a strong 27 

correlation (r = 0.83) between dry aerosol size and the sum of OM and SNA mass concentration (M!"#$%). A global 28 

microphysical simulation (GEOS-Chem-TOMAS) indicates that M!"#$%, and the ratio between the two components 29 

(&'
()*

) are the major indicators for SNA and OM dry aerosol size. A parameterization of dry effective radius (Reff) for 30 

SNA and OM aerosol is designed to represent the airborne measurements (R2 = 0.74, slope = 1.00) and the GEOS-31 

Chem-TOMAS simulation (R2 = 0.72, slope = 0.81). When applied in the GEOS-Chem high-performance model, this 32 

parameterization improves the agreement between the simulated aerosol optical depth (AOD) and the ground-33 
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measured AOD from the Aerosol Robotic Network (AERONET; R2 from 0.68 to 0.73, slope from 0.75 to 0.96). Thus, 34 

this parameterization offers a computationally efficient method to represent aerosol size dynamically.  35 

1 Introduction  36 

Aerosol size has numerous effects on aerosol physical and chemical properties and further on atmospheric chemistry. 37 

Aerosol size-dependent heterogeneous chemistry affects gaseous oxidants that in turn affect production rates of 38 

aerosol components such as sulfate and secondary organic aerosol (Ervens et al., 2011; Estillore et al., 2016). Aerosol 39 

size also affects loss rates due to dry and wet deposition (Seinfeld and Pandis, 2016). Both direct and indirect aerosol 40 

radiative forcing are sensitive to aerosol size, as aerosol size affects the interaction between particles and radiation, 41 

and the rate at which a particle grows to a cloud droplet (Adams and Seinfeld, 2002; Faxvog and Roessler, 1978; 42 

Mishchenko et al., 2002; Emerson et al., 2020). The size dependence of aerosol extinction and scattering phase 43 

function also affects the retrieval of aerosol properties from satellites (Levy et al., 2013; Kahn et al., 2005; Jin et al., 44 

2023). Aerosol size affects the fraction of particles that deposit in the body when breathing as well as location within 45 

the body where they deposit (Hinds and Zhu, 1999). An appropriate representation of aerosol size is essential for 46 

modeling aerosol composition and optical properties (Kodros and Pierce, 2017), interpreting satellite data (Levy et al., 47 

2013; Kahn et al., 2005), studying climate processes (Twomey, 2007; Kellogg, 1980), and moving from aerosol 48 

exposure towards dose in health studies (Kodros et al., 2018).  49 

The evolution of the aerosol size distribution is affected by various processes, such as nucleation, condensation, 50 

coagulation, and deposition. Nucleation events contribute to the number of particles in the nucleation mode (diameters 51 

less than about 10 nm) and thus tend to decrease the mean aerosol size for a population (Aalto et al., 2001). In polluted 52 

areas with high emission rates of aerosol precursors, mean aerosol size tends to increase by condensation and 53 

coagulation (Sakamoto et al., 2016; Sun et al., 2011). Dry and wet aerosol deposition have strong size dependencies 54 

due to competing physical processes (Emerson et al., 2020; Ruijrok et al., 1995; Reutter et al., 2009). The aerosol size 55 

distribution can be simulated using aerosol microphysical schemes, such as the TwO Moment Aerosol Sectional 56 

(TOMAS; Adams and Seinfeld, 2002) microphysics model, the Advanced Particle Microphysics (APM; Yu and Luo, 57 

2009) model, the Global Model of Aerosol Processes (GLOMAP; Mann et al., 2010), and the Modal Aerosol Module 58 

(MAM4; Liu et al., 2016). These schemes have valuable prognostic capabilities; however, their computational cost 59 

has limited their use in Chemistry Climate Models (CCMs) or Chemical Transport Models (CTMs). For example, the 60 

wall clock time increases by about 2.5 times when APM is enabled in GEOS-Chem CTM relative to the bulk model 61 

(GCST et al., 2023). Only 3 of the 10 models that included aerosols, studied by the Atmospheric Chemistry and 62 

Climate Model Intercomparison Project, include online size-resolved aerosol microphysics, reflecting its 63 

computational cost and complexity (Lamarque et al., 2013; Liu et al., 2012; Szopa et al., 2013; Kodros and Pierce, 64 

2017).  65 

Methods are needed to better represent aerosol size in CCMs or CTMs without a microphysics scheme (referred to as 66 

bulk models). These bulk models usually use prescribed relationships to obtain size-resolved aerosol properties (Croft 67 

et al., 2005; Karydis et al., 2011; Zhai et al., 2021), which may insufficiently represent the temporal and spatial 68 
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variation (Kodros and Pierce, 2017). For example, in the GEOS-Chem CTM, a fixed dry aerosol geometric mean 69 

radius (Rg) is assumed for organic matter (OM) and sulfate-nitrate-ammonium (SNA), which is based on analysis of 70 

long-term aerosol composition and scattering measurements provided by the IMPROVE network across the 71 

continental U.S. (Latimer and Martin, 2019). However, subsequent analysis by Zhai et al. (2021) found that this 72 

aerosol size underestimated the aerosol mass scattering efficiency and the aerosol extinction coefficients during an 73 

aircraft campaign over South Korea (KORUS-AQ). Thus, neglect of aerosol microphysical processes that shape 74 

aerosol size distributions can be a significant source of uncertainty in aerosol optical properties in a CTM. A balance 75 

between computational cost and representativeness of aerosol size is needed. One option is to use models with size-76 

resolved aerosol microphysics models to inform bulk models, such as was done for the parameterization of biomass 77 

burning aerosol size by Sakamoto et al. (2016). 78 

Recent airborne measurements offer information to evaluate and improve the simulation of aerosol size. DISCOVER-79 

AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air 80 

Quality) was a multi-year campaign over four U.S. cities that provides 3-D resolved measurements of atmospheric 81 

gas composition, aerosol composition, size distribution, and optical properties (Choi et al., 2020; Sawamura et al., 82 

2017; Chu et al., 2015). KORUS-AQ (the Korea-United States Air Quality Study) offers similar measurements in a 83 

different environment with higher aerosol mass loadings (Choi et al., 2020; Zhai et al., 2021; Nault et al., 2018; Jordan 84 

et al., 2020). 85 

To study the global variation in aerosol size, we explore airborne measurements from DISCOVER-AQ and KORUS-86 

AQ, as well as output from the GEOS-Chem-TOMAS microphysics model. We focus on OM and SNA, which 87 

dominate fine aerosol composition in populated areas (Weagle et al., 2018; Geng et al., 2017; Meng et al., 2019; Van 88 

Donkelaar et al., 2019; Li et al., 2017). The driving factors for variation in aerosol size are examined. A 89 

parameterization of aerosol size using these driving factors is proposed. This parameterization is then applied to a 90 

GEOS-Chem high-performance model bulk simulation for global aerosol optical depth (AOD), which is evaluated by 91 

ground-measured AOD from the Aerosol Robotic Network (AERONET).   92 

2 Observations and Models  93 

2.1 Observations  94 

2.1.1 Aircraft measurements 95 

We examine airborne measurements from two NASA campaigns, DISCOVER-AQ and KORUS-AQ. DISCOVER-96 

AQ includes four deployments in Maryland (MD), California (CA), Texas (TX), and Colorado (CO). KORUS-AQ is 97 

an international cooperative field study program conducted in South Korea (KO), sponsored by NASA and the South 98 

Korean government through the National Institute of Environmental Research. The year as well as the date and altitude 99 

ranges of each deployment are in Table 1.  100 

 101 
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Table 1. Temporal and spatial coverage of each aircraft deployment 102 

Campaign Year Date Range Altitude from surface 

MD 2011 07/01-07/29 0 to 5 km 

TX 2013 09/04-09/29 0 to 5 km 

CA 2013 01/16-02/06 0 to 4 km 

CO 2014 07/17-08/10 0 to 6 km 

KO 2016 05/02-06/11 0 to 8 km 
 103 

Measurements used in this study include aerosol composition, ambient aerosol extinction, aerosol number size 104 

distribution, gas tracer species, and meteorological data. Measurement methods are listed in Table 2. Measured aerosol 105 

mass is converted from standard to ambient condition before analysis using ambient temperature and pressure. We 106 

use OM directly measured during KORUS-AQ. We use water soluble organic carbon (OC) and a parameterized ratio 107 

between OM and OC (Philip et al., 2014) to calculate OM for DISCOVER-AQ. The parameterized OM is evaluated 108 

with KORUS-AQ data, and overall consistency is found (Figure A1; Appendix A). For both campaigns, dust 109 

concentration is derived from Ca2+ and Na+ assuming non-sea salt Ca2+ accounts for 7.1% of dust mass (Shah et al., 110 

2020): 111 

 
𝐷𝑢𝑠𝑡 = 	

([𝐶𝑎+,] − 0.0439 [𝑁𝑎
,]
2 5

0.071  
Eqn. (1) 

Sea salt is calculated from measured Na+ following previous studies (Remoundaki et al., 2013; Malm et al., 1994; 112 

Snider et al., 2016). The crustal component is removed by subtracting 10 % of [Al3+] (Remoundaki et al., 2013). A 113 

2.54 scalar is applied to [Na+]ss to account for [Cl−] (Malm et al., 1994): 114 

 𝑆𝑒𝑎	𝑆𝑎𝑙𝑡 = 2.54([𝑁𝑎,] − 0.1[𝐴𝑙-,]) Eqn. (2) 

Effective radius (Reff ) (Hansen and Travis, 1974), defined as the area-weighted mean radius of a particle population, 115 

is used as a surrogate for  aerosol size: 116 

 𝑅.// =
∫𝑟𝜋𝑟+𝑛(𝑟)𝑑𝑟
∫𝜋	𝑟+𝑛(𝑟)𝑑𝑟

 Eqn. (3) 

Measurement data are screened for dust influence by excluding data with the sum of SNA and OM (MSNAOM) < 4 × 117 

dust mass.   118 

  119 
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Table 2. Aircraft observations used in this study*  120 

Variables DISCOVER-AQ KORUS-AQ 

Bulk aerosol ionic composition IC-PILS a SAGA b 

Sub-micron non-refractory aerosol composition TOC-PILS c HR-ToF-AMS d 

Refractory black carbon concentration SP2 e 

Dry aerosol size distribution UHSAS f or LAS g LAS g 

Aerosol extinction profile at 532 nm HSRL h 

NO2 4-Channel Chemiluminescence Instrument i 

Relative humidity (RH) DLH j 

* Adapted from Zhai et al. (2021)   121 

a Ion Chromatography Particle-Into-Liquid Sampler, with a 1.3 µm inlet cutoff aerodynamic diameter (Lee et al., 2003; 122 

Hayes et al., 2013).  123 

b Soluble Acidic Gases and Aerosol (SAGA) instrument (Dibb et al., 2003). The cutoff aerodynamic diameter of the 124 

inlet is around 4 µm (McNaughton et al., 2007).  125 

c Water-soluble organic carbon Particle-Into-Liquid Sampler, with a 1 µm inlet cutoff diameter at 1 atmosphere 126 

ambient pressure (Sullivan et al., 2019; Timonen et al., 2010). 127 

d University of Colorado Boulder High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) with 128 

a 1 µm inlet cutoff diameter (Nault et al., 2018; Guo et al., 2021; Canagaratna et al., 2007). 129 

e Single-Particle Soot Photometer (SP2), measuring refractory black carbon with a volume equivalent diameter of 100-130 

500 nm (Lamb et al., 2018; Schwarz et al., 2006). 131 

f Particles with mobility diameters between 60 to 1000 nm can be measured by Ultra-High Sensitivity Aerosol 132 

Spectrometer (UHSAS), which illuminates particles with a laser and relate the single-particle light scattering intensity 133 

and count rate measured over a wide range of angles to the size-dependent particle concentration (Moore et al., 2021). 134 

Particles in the sample are dried to less than 20 % RH.  135 

g Particles between 100 to 5000 nm measured by Laser Aerosol Spectrometer (LAS, TSI model 3340). The principle 136 

of LAS is the same as that of UHSAS, but with a different laser wavelength (1054 nm for the UHSAS and 633 nm for 137 

the LAS) and intensity (about 100 times higher for the UHSAS). These differences affect how the instrument sizes 138 

non-spherical or absorbing aerosols (Moore et al., 2021). Particles in the sample are dried to less than 20 % RH. 139 

h NASA Langley airborne High Spectral Resolution Lidar (HSRL) (Hair et al., 2008). 140 

i National Center for Atmospheric Research (NCAR) 4-Channel Chemiluminescence Instrument (Weinheimer et al., 141 

1993) 142 
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j NASA Diode Laser Hygrometer (DLH) (Podolske et al., 2003). 143 

2.1.2 AERONET AOD 144 

We use ground-based AOD observations to evaluate our parameterization and simulated AOD. The Aerosol Robotic 145 

Network (AERONET) is a worldwide network that provides long-term sun photometer measured AOD, and is 146 

conventionally considered as the ground truth for evaluating model-simulated (Zhai et al., 2021; Meng et al., 2021; 147 

Jin et al., 2023) or satellite-retrieved AOD (Levy et al., 2013; Wang et al., 2014a; Kahn et al., 2005; Lyapustin et al., 148 

2018). We use the Version 3 Level 2 database, which includes an improved cloud screening algorithm (Giles et al., 149 

2019). AOD at 550 nm wavelength, interpolated based on the local Ångström exponent at 440 and 670 nm channels, 150 

is used in this study. For each site, we use data for the year 2017, excluding months with less than 20 days of 151 

measurements and excluding sites with less than 4 months of observations.   152 

2.2 GEOS-Chem simulation 153 

We interpret the aircraft observations with the GEOS-Chem chemical transport model (www.geos-chem.org, last 154 

access: 30 October 2022). GEOS-Chem is driven by offline meteorological data from the Goddard Earth Observing 155 

System (GEOS) of the NASA Global Modeling and Assimilation Office (Schubert et al., 1993). We use the high-156 

performance implementation of GEOS-Chem (GCHP) (Eastham et al., 2018; Bindle et al., 2021)  to examine the 157 

effect of variation in aerosol size on AOD. We also use the TOMAS microphysical scheme, coupled with the standard 158 

GEOS-Chem implementation (GEOS-Chem Classic), to explicitly resolve aerosol microphysics. The bulk and the 159 

microphysics simulations share common emissions and chemical mechanisms. They are both conducted for the year 160 

2017 and driven by MERRA-2 meteorological fields.  161 

The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium system (Fountoukis and Nenes, 2007; 162 

Park, 2004), primary and secondary carbonaceous aerosols (Park et al., 2003; Wang et al., 2014b; Marais et al., 2016; 163 

Pye et al., 2010), sea salt (Jaeglé et al., 2011), and mineral dust (Fairlie et al., 2007). The primary emission data are 164 

from the Community Emissions Data System (CEDSGBD-MAPS; McDuffie et al., 2020). Dust emission inventories 165 

include updated natural dust emission (Meng et al., 2021b), and anthropogenic fugitive, combustion, and industrial 166 

dust (AFCID; Philip et al., 2017). Resolution-dependent soil NOx, sea salt, biogenic VOC, and natural dust emissions 167 

are calculated offline at native meteorological resolution to produce consistent emissions across resolution (Weng et 168 

al., 2020; Meng et al., 2021b). Biomass burning emissions use the Global Fire Emissions Database, version 4 (GFED4) 169 

(Van Der Werf et al., 2017). We estimate organic matter (OM) from primary organic carbon using the same OM/OC 170 

parameterizations as applied for DISCOVER-AQ (Philip et al., 2014; Canagaratna et al., 2015). Dry and wet 171 

deposition follows Amos et al. (2012), with a standard resistance-in-series dry deposition scheme (Wang et al., 1998). 172 

Wet deposition includes scavenging processes from convection and large-scale precipitation (Liu et al., 2001).  173 

Global relative humidity dependent aerosol optical properties are based on the Global Aerosol Data Set (GADS) 174 

(Kopke P., 1997; Martin et al., 2003) with updates for SNA and OM (Latimer and Martin, 2019), mineral dust (Zhang 175 

et al., 2013), and absorbing brown carbon (Hammer et al., 2016). In the current GEOS-Chem model, the SNA and 176 
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OM Reff of particular interest here are based on co-located measurements of aerosol scatter and mass from the 177 

IMPROVE network at U.S. national parks over the period 2000-2010, together with a k-Kohler framework for aerosol 178 

hygroscopicity (Kreidenweis et al., 2008) as implemented by Latimer and Martin (2019). Aerosol extinction is 179 

calculated as the sum of extinction from each aerosol component with aerosol optical properties listed in Table A1, as 180 

described in Appendix A2. 181 

A global GCHP simulation (Eastham et al., 2018) version 13.0.0 (DOI: 10.5281/zenodo.4618180) that includes 182 

advances in performance and usability (Martin et al., 2022), is conducted on a C90 cubed-sphere grid corresponding 183 

to a horizontal resolution of about 100 km, with a spin-up time of 1 month.  184 

The TOMAS microphysics scheme, coupled with the GEOS-Chem simulation, conserves aerosol mass, and tracks 185 

particles with diameters from approximately 1 nm to 10 µm (Adams and Seinfeld, 2002). Microphysical processes in 186 

TOMAS include nucleation, condensation, evaporation, coagulation, and wet and dry deposition (Adams and Seinfeld, 187 

2002). Nucleation in TOMAS follows a ternary scheme (sulfuric acid, ammonia, and water) when ammonia mixing 188 

ratios are greater than 0.1 ppt; otherwise, a binary nucleation scheme is used (Napari et al., 2002). The nucleation rate 189 

is scaled by 10-5 to better match the observations (Westervelt et al., 2013). The condensation and evaporation algorithm 190 

is based on a study from Tzivion et al. (1989), including interaction with secondary organic aerosol (D’Andrea et al., 191 

2013). Interstitial coagulation in clouds is also included (Pierce et al., 2015).  192 

For each size bin, TOMAS tracks the mass and number of sulfate, sea salt, black carbon, OC, dust, and water. Primary 193 

sulfate emissions have 2 lognormal modes: 15% of the mass with a number median diameter (NMD) of 10 nm and 194 

geometric standard deviation (σ) of 1.6 and the remainder with a NMD of 70 nm and σ of 2 (Adams and Seinfeld, 195 

2003). The size of emitted carbonaceous particles varies depending on the source: those produced by fossil fuel have 196 

a NMD of 30 nm and σ of 2, while biofuel and biomass burning particles are emitted with a NMD of 100 nm and σ 197 

of 2 (Pierce et al., 2007). Meteorology and most of the emissions in GEOS-Chem-TOMAS follow the bulk simulation, 198 

except that online schemes are used for dust (Zender et al., 2003) and sea salt (Jaeglé et al. 2011).   199 

The GEOS-Chem-TOMAS (version 13.2.1. DOI: 10.5281/zenodo.5500717) is used to provide insights into global 200 

scale aerosol size variation and the driving factors. For computational feasibility, a one-year global simulation is 201 

conducted with a horizontal resolution of 4º × 5º and 47 vertical layers from surface to 0.01 hPa. The spin-up time is 202 

1 month. Aerosols are tracked in 15 size bins with particle diameters ranging from about 3 nm to 10 µm. We also 203 

conducted a 2º × 2.5º simulation for October to evaluate the sensitivity of our conclusions to the resolution of the 204 

aerosol microphysics simulation.  205 

3 Development of a Parameterization of Aerosol Size   206 

We first examine the aircraft measurements for insight into the observed variation in aerosol size. Then we apply the 207 

size-resolved GEOS-Chem-TOMAS model to extend our analysis to the global scale and identify driving factors of 208 

aerosol size. We subsequently develop and test a parameterization of aerosol size for use in bulk models. 209 
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3.1 Observed variation in aerosol size 210 

Figure 1 shows the daily-mean dry effective radius from DISCOVER-AQ and KORUS-AQ as a function of aerosol 211 

mass. Aerosol size, in terms of dry Reff, ranges from 90 nm to 179 nm for DISCOVER-AQ, which is generally smaller 212 

than for KORUS-AQ that ranges from 135 nm to 174 nm. MSNAOM from DISCOVER-AQ (1.4 μg/m3 to 27.4 μg/m3) 213 

is also generally less than that from KORUS-AQ (5.5 μg/m3 to 33.2μg/m3). A strong correlation (r = 0.83) between 214 

aerosol size and MSNAOM is evident. Reff from KORUS-AQ is less sensitive to MSNAOM (slope = 1.23) compared to 215 

DISCOVER-AQ (slope = 3.57). The relatively large particle size at low mass concentration during KORUS-AQ might 216 

reflect the influence of aged aerosol transported from upwind (Jordan et al., 2020; Zhai et al., 2021; Nault et al., 2018).  217 

 218 

Figure 1. Airborne measurements of dry effective radius (Reff) versus the sum of SNA and OM mass 219 

(MSNAOM) for DISCOVER-AQ (Maryland is abbreviated as MD, California as CA, Texas as TX, Colorado as 220 

CO) and for KORUS-AQ (KO) campaigns. Each point represents a daily average for the entire flight profile. 221 

Only data with MSNAOM > 4 × Dust mass is used.  222 

The positive relationship between dry aerosol size and mass of SNA and OM reflects the roles of emission, 223 

condensation, and coagulation in simultaneously increasing aerosol size and mass. This general tendency is also 224 

observed by many other studies (e.g., Sakamoto et al., 2016; Rodríguez et al., 2007; Sun et al., 2012; Bahreini et al., 225 

2003) despite variable aerosol sources and growth mechanisms. In cities, the joint increases in aerosol size and mass 226 

are usually attributable to anthropogenic emissions and condensation (Tian et al., 2019; Sun et al., 2011; Huang et al., 227 

2013). In remote areas, biomass burning shifts the particle size distribution toward larger radii due to high emission 228 

rates and coagulation in plumes (Rissler et al., 2006; Ramnarine et al., 2019) that, for example, increase both aerosol 229 

size and mass from the wet season to the dry season in Amazonia (Rissler et al., 2006; Andreae et al., 2015). The 230 

positive relationship between aerosol size and mass suggests the possibility of using aerosol mass as a predictor of 231 

Reff.  232 
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We examine the ability of the GEOS-Chem bulk model to reproduce the observed extinction. The top panel of Figure 233 

2 compares the measured aerosol extinction profiles to calculated aerosol extinction profiles using default Reff. Details 234 

about the calculation are described in Appendix A2. Both measured and calculated extinction profiles exhibit 235 

increasing extinction toward the surface associated with increasing aerosol mass concentrations. However, biases are 236 

apparent for both DISCOVER-AQ and KORUS-AQ. The Reff from KORUS-AQ shown in Figure 1 have a mean value 237 

of 164 nm, larger than the value of 101 nm inferred by Latimer & Martin (2019) based on measurements of aerosol 238 

scatter and mass by the U.S. IMPROVE network. This bias was previously noted by Zhai et al. (2021). The mean Reff 239 

from DISCOVER-AQ of 138 nm is also larger than the inferred value. This likely reflects representativeness 240 

differences since the DISCOVER-AQ deployments focused on major urban areas during months of high aerosol 241 

loadings, while the IMPROVE measurements were at national parks throughout the year. The middle panel shows the 242 

calculated extinction using the measured aerosol size distribution. Applying the measured aerosol size distribution 243 

addresses most discrepancies between the calculated and measured aerosol extinction profile for both KORUS-AQ 244 

and DISCOVER-AQ. The corresponding discrepancies in AOD estimation also significantly decreased (from 0.09 to 245 

0.03 for DISCOVER-AQ and from 0.17 to 0.02 for KORUS-AQ). The reduced discrepancies support the conclusions 246 

from Zhai et al. (2021) that the GEOS-Chem aerosol size is underestimated for KORUS-AQ and motivate 247 

parameterization of Reff for efficient representation of aerosol size for global scale aerosol modeling.  248 
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 249 
Figure 2. Aerosol extinction profile for the DISCOVER-AQ and KORUS-AQ aircraft campaigns. Blue lines 250 

are the measured extinction profiles. Horizontal bars are calculated extinction using (top) default GEOS-251 

Chem Reff , (middle) measured Reff , and (bottom) parameterized Reff (described in Section 3.3), together with 252 

measured aerosol composition and RH. The aerosol extinction calculation is described in Appendix A.  253 

3.2 Driving factors  254 

Given the strong positive correlation of aerosol mass with aerosol size, we further examine this relationship globally 255 

using GEOS-Chem coupled with the TOMAS aerosol microphysics scheme. To focus on areas that are dominated by 256 

SNA and OM, we only include grid boxes with MSNAOM > 90% of the aerosol mass. Inspection of the GEOS-Chem-257 

TOMAS size distribution across continental regimes reveals a general tendency for the distribution to shift toward 258 

smaller sizes as Reff decreases and toward larger sizes as Reff increases, thus supporting the use of the single summary 259 

statistic of Reff for aerosol size. The top panel of Figure 3 shows the geographic distribution of annual mean surface 260 

layer dry Reff for locations and monthsgrid boxes that meet the criterion where aerosol mass is dominated by SNA and 261 
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OM, as indicated by MSNAOM > 90% of the aerosol mass. Among the areas of interest, biomass burning regions of 262 

Central Africa, South America, and boreal forests of North America exhibit the highest surface Reff of about 180 nm. 263 

Industrial areas such as East Asia and South Asia also exhibit high Reff of about 130 nm, given an abundance of particle 264 

emissions and gaseous precursors. The lowest surface Reff of about 80 nm is found in North America, where aerosol 265 

mass concentrations are low.  266 

The middle panel of Figure 3 shows the simulated MSNAOM from GEOS-Chem-TOMAS. Enhanced MSNAOM 267 

concentrations of over 40 μg/m3 are apparent over East Asia and South Asia, reflecting intense anthropogenic 268 

emissions. Another MSNAOM hotspot can be seen in Central Africa, driven by biomass burning during the dry season 269 

(Van Der Werf et al., 2017; McDuffie et al., 2021) and sometimes exacerbated by anthropogenic emissions (Ngo et 270 

al., 2019). Moving from North America to Europe, and then to Asia (defined by boxes in the middle panel), MSNAOM 271 

concentrations exhibit a generally increasing tendency (mean value of 11, 17, and 25 μg/m3, respectively), consistent 272 

with the Reff tendency (mean value of 124, 133, and 136 nm, respectively) in the top panel and aligning with the 273 

relationship between aircraft measurements over the U.S. and South Korea.  274 

However, in South America, where Reff is among the highest, MSNAOM is relatively low. This discrepancy motivates 275 

the search for other factors, such as aerosol composition, that are associated with aerosol size. In South America, 276 

aerosol mass is mostly from natural sources, particularly biomass burning during the dry seasons. Rg for a particle 277 

population from biomass burning ranges from 60 nm to 170 nm (Rissler et al., 2006; Reid et al., 2005; Janḧall et al., 278 

2010), usually larger than that of primary sulfate aerosol (5 to 35 nm) (Whitey, 1978; Plaza et al., 2011). Therefore, 279 

the relative abundance of OM in the total MSNAOM can serve as another predictor of Reff. The bottom panel of Figure 280 

3 shows the ratio between OM and SNA mass. In addition to the Amazon basin, the biomass burning regions of Central 281 

Africa and boreal forests in Asia and North America are all areas with high OM mass fractions, which contribute to 282 

their high Reff .  283 
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 285 

Figure 3: Geographic distribution of GEOS-Chem-TOMAS-simulated annual mean surface layer aerosol 286 

properties; (top) Reff when MSNAOM > 90% of aerosol mass, (middle) the sum of SNA and OM mass (MSNAOM), 287 

and (bottom) OM/SNA.  288 

3.3 Parameterization and evaluation 289 

We use Multiple Linear Regression (MLR) to derive a parameterization of dry Reff for SNA and OM as a function of 290 

MSNAOM and OM/SNA. We sample the GEOS-Chem-TOMAS simulation for locations dominated by MSNAOM (> 90%). 291 

We include all qualified data (8,569 grid boxes) from the planetary boundary layer (PBL) to focus on this region, 292 

while randomly sample 0.5% of simulations in the free troposphere (217,772 grid boxes) to allow the influence of 293 

remote regions in the training set. The reason for focusing on the PBL is twofold. First, the PBL generally has the 294 

highest aerosol loading that largely determines the columnar mass and AOD (Koffi et al., 2016; Zhai et al., 2021; Tian 295 

et al., 2019). Second, the PBL is the domain where most model-measurement difference exists (Figure 2, top panel).  296 

Taking the logarithm of Reff and the logarithm of the two predictors facilitates linear relationships for regression, 297 

which yields the initial parameterization 298 

 𝑅.// = 78.3𝑀()*&'
0.+0 	(

𝑂𝑀
𝑆𝑁𝐴)

0.023 Eqn. (4) 

where Reff has units of nm, MSNAOM has units of μg/m3, and OM/SNA is unitless. The Reff parameterization is driven 299 

primarily by the mass of SNA and OM, modulated by the ratio of OM to SNA. This equation well represents the 300 

variation of Reff during the aircraft campaigns with an R2 of 0.74 (Figure B1, top left). The slope below unity (0.90) 301 
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likely reflects the effect of coarse model resolution, which dilutes the particle or precursor concentration in turn 302 

reducing condensation and coagulation growth (AboEl-Fetouh et al., 2022; Ramnarine et al., 2019; Sakamoto et al., 303 

2016). Adjustment to this parameterization to account for these effects and align the slope with the airborne 304 

measurements rather than the model results in a final parameterization of 305 

 𝑅.// = 87.0𝑀()*&'
0.+0 	(

𝑂𝑀
𝑆𝑁𝐴)

0.023 Eqn. (5) 

Figure 4 shows the distribution of dry Reff based on GEOS-Chem-TOMAS and Eqn. (5). Circles in Figure 4 show the 306 

mean values of the sampled GEOS-Chem-TOMAS simulated Reff as a function of simulated MSNAOM concentrations, 307 

ranging from 0.02 to 102 μg/m3, and OM/SNA ranging from 0.13 to 55. Simulated Reff extends from 15 nm when both 308 

MSNAOM and OM/SNA are low (0.09 μg/m3 and 1.3, respectively), up to 282 nm when MSNAOM and OM/SNA are high 309 

(about 44 μg/m3 and 14 respectively). The background color indicates our parameterized Reff. A high degree of 310 

consistency exists between the parameterized Reff and simulated Reff, especially in the free troposphere where large 311 

gradients in Reff exist, with overall for the troposphere an R2 of 0.72, and a slope of 0.81 (Figure B1, bottom right). At 312 

the lower end of Reff, the agreement between simulation and the parameterization can also be found in Figure B1, 313 

which shows that the small Reff are reproduced by the parameterization. Despite the overall consistency, a few 314 

differences exist. When aerosol mass concentration is high, the parameterization tends to yield a higher Reff than in 315 

the GEOS-Chem-TOMAS simulation, since the adjustment using aircraft measurements led to 11% increase in Reff. 316 

At MSNAOM near 10 μg/m3 and OM/SNA near 10, the simulation indicates higher Reff than the parameterization, 317 

reflecting dilution downwind of biomass burning that reduces the aerosol mass concentration but has less influence 318 

on particle size in GEOS-Chem-TOMAS (Park et al., 2013; Rissler et al., 2006; Sakamoto et al., 2016). A 10-20% 319 

underestimation in the parameterization at low OM/SNA reflects the advection and dilution of downwind of urban 320 

areas and in the free troposphere (Yue et al., 2010; Asmi et al., 2011). Evaluation of our parameterization versus the 321 

GEOS-Chem-TOMAS simulation of 2º × 2.5º for October yields similar results but explains an additional 14% of the 322 

variance in simulated Reff, providing additional evidence of the fidelity of the parameterization.  323 
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 324 

Figure 4.  Dry Reff as a function of MSNAOM and OM/SNA when SNA and OM are dominant (>90%). Each 325 

circle represents the mean value of the GEOS-Chem-TOMAS simulated Reff in each bin. Background color 326 

indicates the parameterized Reff. 327 

When applied to the airborne measurements, this parameterization only slightly overestimates the measured Reff from 328 

DISCOVER-AQ (139 nm vs. 138 nm) and slightly underestimates Reff from KORUS-AQ (157 nm vs. 164 nm). 329 

Discrepancies between calculated and measured extinction from aircraft campaigns are largely reduced (Figure 2, 330 

bottom panel) with AOD biases of 0.01 and 0.08 for DISCOVER-AQ and KORUS-AQ, respectively. Minor 331 

differences are still present in aerosol extinction above 4 km for KORUS-AQ, but a physical explanation remains 332 

elusive since the calculated extinction is biased even if measured aerosol size and composition are used; instrument 333 

uncertainties may play a role. Nonetheless, effects on columnar AOD from these disagreements aloft are minor (<5%).     334 

We then apply Eqn. (5) to a GEOS-Chem bulk simulation to calculate Reff and AOD. The top panel of Figure 5 shows 335 

the annual mean dry Reff for surface SNA and OM aerosol. The parameterized Reff is usually higher than the default 336 

value of about 100 nm in GEOS-Chem over land, and lower than that over the ocean, with a normalized root mean 337 

square deviation (NRMSD) of 43.8%. The parameterized spatial pattern well represents the GEOS-Chem-TOMAS 338 

simulation, with high Reff found is the highest in biomass burning regions in South America and Central Africa, as 339 

well as industrial regions in Asia, similar to the pattern found in the GEOS-Chem-TOMAS simulation. The 340 

parameterized Reff and its horizontal variation diminishes with altitude (Figure B2), with the mean Reff decreasing 341 

fromof 85 nm at the surface decreasing by 18.8% to 69 nm at about 5 km85 nm (surface) to 43 nm (10 km). By design, 342 

the parameterization has little effect in regions and seasons where and when MSNAOM is not dominant, since the 343 

parameterization only affects Reff of SNA and OM.  344 

The middle panel of Figure 5 shows the simulated AOD, with the corresponding difference between the base 345 

simulation and the updated simulation in the bottom panel. To accommodate the parameterized Reff, a look-up table 346 
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with a wide range of Reff (0.02 µm to 1.7 µm) and the corresponding extinction efficiencies for OM and SNA is created 347 

based on Mie Theory (Mishchenko et al., 2002, 1999). This update generally increases aerosol mass scattering by 348 

increasing the mass extinction efficiency, in turn, increasing AOD over regions with strong anthropogenic sources, 349 

such as East Asia (by 0.10, 28.3%) and South Asia (by 0.14, 31.1%). It also slightly increases AOD over regions 350 

influenced by wildfires, such as South America (by 0.02, 19.7%), Central Africa (by 0.03, 22.7%), and the boreal 351 

forests in Europe (by 0.01, 9.9%).  Most increases occur near the surface (Figure B3), where the highest aerosol mass 352 

loading and mass extinction efficiency exist. The NRMSD between original and updated GEOS-Chem simulated AOD 353 

is 18.9% globally, and 25.6% over continents.  354 
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 356 

Figure 5. (Top) Surface dry Reff for SNA and OM calculated using Eqn. (5) and GEOS-Chem bulk model 357 

simulated SNA and OM mass. FSNAOM is the ratio of SNA and OM mass to the total aerosol mass at the 358 

surfaceReff is shown when MSNAOM is greater than 80% of the total aerosol mass. (Middle) The GEOS-Chem 359 

simulated AOD using inferred Reff. (Bottom) the absolute difference between updated AOD and default AOD 360 

using dry Reff = 101 nm. 361 

Although Reff is only one of many processes affecting AOD, we evaluate the effect of the parameterization on the 362 

GEOS-Chem simulation of AOD to assess its implications. The left and middle panels of Figure 6 shows for the 363 

default Reff, the percent differencediscrepancy between GEOS-Chem simulated AOD and AERONET AOD as a 364 

function of the parameterized surface Reff for SNA and OM. The simulation using the default Reff (Figure 6, left panel) 365 

slightly overestimates AOD at sites with small parameterized Reff and underestimates AOD at sites with large 366 

parameterized Reff. The overestimates occur primarily in western Europe where SNA and OM concentrations are low, 367 

while the underestimates happen mainly over industrial regions in East Asia, Southeast Asia, and biomass burning 368 

areas in South America and Central Africa, where the SNA and OM mass loading are high (Figure B4). The 369 

underestimates are mitigated when applying the parameterized Reff in GEOS-Chem (Figure 6, middle panel), yielding 370 

increased consistency between the measured (AERONET) AOD and simulated AOD (Figure 6, right; R2 change from 371 

0.68 to 0.74, slope from 0.75 to 0.94). 372 
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 373 

Figure 6. (Left and middle) Percent increase in GEOS-Chem simulated AOD minus AERONET AOD as a 374 

function of parameterized surface dry Reff for SNA and OM. Black lines represent the mean values of ∆AOD 375 

in each 35 nm bin; error bars represent the corresponding standard deviation. (Right) Scatter plot of 376 

AERONET versus simulated AOD with the default Reff (blue dots, line, and text), and with the parameterized 377 

Reff (red dots, line, and text). The 1:1 line is dashed. NRMSD is the normalized root mean square deviation 378 

between the two datasets. N is the number of points in each dataset. 379 

4 Conclusion  380 

Aerosol size strongly determines mass scattering efficiency with implications for calculation of aerosol optical 381 

properties. Prior work found that the global mean dry aerosol size used in a bulk aerosol model induced low bias 382 

versus measured extinction in a region with a high aerosol loading (Zhai et al., 2021). We interpreted aircraft 383 

measurements from DISCOVER-AQ and KORUS-AQ with a chemical transport model (GEOS-Chem) to better 384 

understand regional variation in aerosol size. The measurements had a strong positive correlation (r = 0.83) between 385 

aerosol size and mass of sulfate-nitrate-ammonium (SNA) and organic matter (OM), reflecting the high condensation 386 

and coagulation rates where emissions of particles and the gaseous precursors are abundant, indicating the possibility 387 

of using aerosol mass as a predictor of aerosol size.  388 

To gain a broader perspective of the global variation in aerosol size, we used the TOMAS microphysics package of 389 

the GEOS-Chem model to simulate the monthly mean aerosol mass, composition, and size distribution. We used 390 

effective radius (Reff) as a surrogate of aerosol size and examined its relationship with aerosol mass and components 391 

where SNA and OM were dominant. We found that the sum of SNA and OM concentration, and the ratio between 392 

them, were the major predictors of Reff. We used GEOS-Chem-TOMAS model output to derive a parameterization of 393 

Reff, which well reproduced Reff measured from the aircraft campaigns (R2 = 0.74). When applied in the bulk GEOS-394 

Chem high-performance model, the parameterization tended to increase Reff of SNA and OM over regions with high 395 

concentrations of SNA and OM, and decrease Reff elsewhere relative to the standard model. This led to a global 396 

normalized root mean square deviation (NRMSD) of 43.8% between the original and updated surface Reff. The 397 

parameterized Reff tended to increase the vertical gradient in extinction relative to the standard model, due to the 398 

decrease in Reff with altitude. The NRMSD of global mean AOD between the original and updated simulations was 399 
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18.9%, with the most significant regional AOD increase of 0.14 in South Asia, where aerosol mass loadings are high. 400 

This parameterization led to improved consistency of GEOS-Chem simulated AOD with AERONET AOD (R2 from 401 

0.68 to 0.74; slope from 0.75 to 0.94), by increasing AOD at high Reff. 402 

Overall, the simple parameterization of Reff derived in this study improved the accuracy in modeling aerosol optical 403 

properties without imposing additional computational expense. Other chemical transport models and modeling of 404 

other size-related processes, such as heterogeneous chemistry, photolysis frequencies, and dry deposition, may also 405 

benefit from the parameterized Reff. Future work could include additional parameters to better summarize the aerosol 406 

size distribution. Further developments in computational efficiency of aerosol microphysics models and more 407 

abundant measurements of aerosol size and optical properties would both offer opportunities for further advances. 408 

  409 



 

 

21 

Data availability. AERONET data can be found at https://aeronet.gsfc.nasa.gov/. Aircraft data during DISCOVER-410 

AQ are available at https://asdc.larc.nasa.gov/project/DISCOVER-AQ. KORUS-AQ data can be found at 411 

https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01.  412 

Author contributions. HZ and RVM designed the study. HZ performed the data analysis and model simulations with 413 

contributions from BC, SZ, CL, LB, JRP, IS, DC, and RYWC. BEA, LDZ, JWH, RAF, CAH, JLJ, PCJ, JED, JSS, 414 

AW, and BAN contributed to KORUS-AQ and DISCOVER-AQ campaign measurements. HZ and RVM wrote the 415 

paper with input from all authors. 416 

Competing interests. The contact author has declared that neither they nor their co-authors have any competing 417 

interests. 418 

Financial support. This work was supported by NASA Grant 80NSSC21K1343. JRP was funded by the US NSF 419 

Atmospheric Chemistry program, under grant AGS-1950327. JLJ and PCJ were supported by NASA Grant 420 

80NSSC21K1451 and NNX15AT96G. BAN was supported by NASA Grant 80NSSC22K0283. JED was supported 421 

by NASA Grant NNX15AT88G.   422 



 

 

22 

Appendix A 423 

A1 Application of spatially and temporally varying OM/OC ratio 424 

The top panel of Figure A1 shows scatter plots of the estimated and measured OM/OC and OM during the KORUS-425 

AQ campaign. The estimation is obtained by applying to OC measurement a NO2 inferred OM/OC from (Philip et al., 426 

2014), with a subsequent correction factor of 1.09 suggested by Canagaratna et al. (2015). Estimated OM is compared 427 

with measured OM by AMS during the campaign. Overall consistency is evident between NO2-derived OM/OC and 428 

measured OM/OC. The agreement is better below 500 m than above (left panel, R2 = 0.62 vs. 0.33). The discrepancy 429 

at high altitudes is mainly due to the low NO2 (<0.2 ppbv), where the Philip et al. (2014) equation is not applicable. 430 

An average OM/OC ratio (2.1) is applied in this case. A high degree of consistency exists between the estimated OM 431 

and measured OM, with R2 = 0.99 and slope = 0.91 for data from all altitudes (right panel), thus supporting the use of 432 

estimated OM in our analyses. The bottom left panel compares the vertical profile of the estimates and measurements, 433 

yielding overall consistency.  434 

   435 
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Figure A1. Scatter plots of estimated and measured OM/OC (top left) and OM (top right) during KORUS-436 

AQ. Each point represents a mean value of AMS measurement for a 1-hour interval. Red diamonds, lines, 437 

and texts represent data from 0-500 m altitude. Blue dots, lines, and text represent data above 500 m from the 438 

ground. Black solid lines and texts represent the line of best fit for all the data. The 1:1 line is dashed. 439 

NRMSD is the normalized root mean square deviation between the two datasets. N is the number of points in 440 

each dataset. (Bottom left) Mean values of OM/OC and OM from measurements and estimations along the 441 

altitude. (Bottom right) Flight tracks during KORUS-AQ. 442 

  443 
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A2 Aerosol Extinction Calculation in GEOS-Chem 444 

Extinction (Ext) of radiation by aerosols is represented as the sum of extinction due to each of the aerosol components 445 

using the following equation: 446 

 𝐸𝑥𝑡4 =	
3𝑄.56,4𝑀4

4𝜌4𝑅.//,4
 Eqn. (3) 

where subscript k indicates the property for the kth component. Reff is the effective radius defined as the area weighted 447 

mean radius. Qext is the area-weighted mean extinction efficiency. M is the aerosol mass loading per unit volume. ρ is 448 

the aerosol density. Aerosol optical depth (AOD) is the integral of aerosol extinction across the vertical domain. 449 

For each component, extinction is calculated for assumed log-normal size distribution with corresponding dry 450 

geometric mean radius Rg and geometric standard deviation σ, hygroscopicity, refractive index (RI), and density (ρ) 451 

for individual aerosol components, as listed in Table A1. Sulfate, nitrate, and ammonium are grouped into SNA for 452 

convenience. Reff and Qext are calculated using Mie Theory (Mishchenko et al., 1999, 2002) based on assumptions in 453 

aerosol size and RI. Hygroscopicity for SNA and OM is represented using a k-Kohler hygroscopic growth scheme 454 

(Kreidenweis et al., 2008) as implemented by (Latimer and Martin, 2019).  455 

Table A1. Dry aerosol properties in GEOS-Chem bulk model 456 

Aerosol 

components 
Rg, µm σ Hygroscopicity 

Refractive Index 

(dry, 550 nm) 
ρ, g cm-3 

Reff, 

µm  

Qext   

SNA 0.058 1.6 𝜅 = 0.61 1.53 – 6.0×10-3i 1.7 0.101 0.603 

OM 0.058 1.6 𝜅 = 0.1 1.53 – 6.0×10-3i 1.3 0.101 0.603 

  457 
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Appendix B 458 

 459 

Figure B1. (Top) Scatter plot of parameterized Reff and measured Reff from DISCOVER-AQ and KORUS-460 

AQ. Each point represents a daily mean measurement. (Bottom) Scatter plot of parameterized Reff and 461 

GEOS-Chem-TOMAS simulated Reff for the planetary boundary layer (blue dots, line, and texts), and for the 462 

free troposphere (yellow dots, line, and texts). Black solid lines and the texts indicate the entire troposphere 463 

with the sum of SNA and OM > 90% of aerosol mass. The 1:1 line is dashed. NRMSD is the normalized root 464 

mean square deviation between the two datasets. N is the number of points in each dataset. The left panel 465 

indicates the original parameterization from multiple linear regression. The right panel shows the adjusted 466 

parameterization using aircraft measurements.  467 

  468 
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 469 

Figure B2. Annual mean Reff for SNA and OM at (top) about 5 km, (middle) about 1 km, and (bottom) 470 

surface, calculated using Eqn. (5) and simulated SNA and OM mass from GEOS-Chem bulk model. Reff is 471 

shown only if MSNAOM is greater than 80% of the total aerosol mass. Boxes in the bottom panel define regions 472 

referred to in Figure B3. 473 

 474 

Figure B3. Global and regional aerosol extinction coefficient simulated by GEOS-Chem bulk model with 475 

original Reff (solid lines) and parameterized Reff (dashed lines). Regions are defined by the boxes in Figure B2. 476 
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 477 

Figure B4. Difference between AERONET AOD minus default GEOS-Chem simulated AOD (dots) and 478 

difference between simulated AOD with the parameterized Reff minus AOD with default Reff (background).   479 
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