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Abstract. We explore how rock properties and channel morphology vary with rock type in Last Chance canyon, 7 

Guadalupe mountains, New Mexico, USA. The rocks here are composed of horizontally to near-horizontally interbedded 8 

carbonate and sandstone. This study focuses on first and second order channel sections where the streams have a lower channel 9 

steepness index (ksn) upstream and transition to a higher ksn downstream. We hypothesize that differences in bed thickness and 10 

rock strength influence ksn values, both locally by influencing bulk bedrock strength but also nonlocally through the production 11 

of coarse sediment. We collected discontinuity intensity data (the length of bedding planes and fractures per unit area), Schmidt 12 

hammer rebound measurements, and measured the largest boulder at every 40-foot12.2 meter elevation contour to test this 13 

hypothesis. Bedrock and boulder minerology was determined using a lab-based carbonate dissolution method. High resolution 14 

orthomosaics and digital surface models (DSMs) were generated from drone and ground-based photogrammetry. The 15 

orthomosaics were used to map channel sections with exposed bedrock. USGS 10 m digital elevation models (DEMs) were 16 

used to measure channel slope and hillslope relief. We find that discontinuity intensity is negatively correlated with Schmidt 17 

hammer rebound values in sandstone bedrock. Channel steepness tends to be higher where reaches are primarily incising 18 

through more thickly bedded carbonate bedrock, and lower where more thinly bedded sandstone is exposed. Bedrock properties 19 

also influence channel morphology indirectly, through coarse sediment input from adjacent hillslopes. Thickly bedded rock 20 

layers on hillslopes erode to contribute larger colluvial sediment to adjacent channels, and these reaches have higher ksn. Larger 21 

and more competent carbonate sediment armours both the carbonate and the more erodible sandstone and reduces steepness 22 

contrasts across rock types. We interpret that in the relatively steep, high ksn downstream channel sections slope is primarily 23 

controlled by the coarse alluvial cover. We further posit that the upstream low ksn reaches have a baselevel that is fixed by the 24 

steep downstream reaches, resulting in a stable configuration where channel slopes have adjusted to lithologic differences 25 

and/or sediment armour. 26 

1 Introduction 27 

Many studies have recognized that lithologic contrasts are expressed in topography (e.g., Howard and Dolan, 1981; Duvall 28 

et al., 2004; Johnson et al., 2009; Hurst et al, 2013; Johnstone and Hilley, 2015; Harel et al., 2016). For example, Wohl et al. 29 

(1994) found that knickpoints in the Nahal Paran River, Israel formed where relatively resistant chert layers were exposed. 30 

River channels may narrow in reaches with harder rocks (e.g., Bursztyn et al., 2015; Montgomery and Gran, 2001) and/or 31 
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steepen (e.g., DiBiase et al, 2018; Darling and Whipple, 2015). The properties that control bedrock erodibility (such as intact 32 

rock strength, fracture density, and bedding dip) influence both rates of channel adjustment and how channel and hillslope 33 

morphologies evolve through time (e.g., Weissel and Seidl, 1997; Wolpert and Forte, 2021; Chilton and Spotila, 2022).  34 

Erodibility is a model-dependent parameter. For example, the stream power (or shear stress) erosion model can be written 35 

as  36 

 𝑆 = (
𝐸

𝐾
)

1

𝑛
𝐴−

𝑚

𝑛      (1) 37 

where K is fluvial erodibility, S is channel slope, E is erosion rate, A is drainage area, and m and n are exponents that can be 38 

calibrated to local conditions (e.g., Whipple and Tucker, 1999).  This model assumes that erosion rates can be approximated 39 

by a power law function of reach slope and drainage area (e.g., Howard, 1994; Stock and Montgomery, 1999). This 40 

approximation may be adequate to describe multiple processes (Gasparini and Brandon, 2011). The model is widely applied 41 

in tectonic geomorphology to infer relative erosion rates, although the E/K ratio shows that it is equally sensitive to erodibility 42 

differences (e.g., Whipple and Tucker, 1999, Wobus et al. 2006). Whipple and Tucker (1999) show that K is a function of not 43 

only bedrock properties but also channel geometry, basin hydrology, and sediment load; nonetheless the dependence of K on 44 

bedrock properties arguably remains the largest unknown. 45 

Using the simple and idealized stream power model (Equation 1), Forte et al. (2016) and Perne et al. (2017) demonstrated 46 

that spatial contrasts in bedrock erodibility can result in complex and sometimes counterintuitive relations between local 47 

erosion rate, channel slope, and bedrock erodibility. These include local erosion rates being higher in stronger (less erodible) 48 

bedrock layers compared to weaker layers, channels evolving to be steeper in weaker bedrock, and a steady-state topographic 49 

configuration being unattainable at the spatial scale of erodibility contrasts (when measuring elevations and erosion rates 50 

vertically). Perne et al. (2017) showed that local channel topography tends to evolve towards an “erosional continuity” steady 51 

state in which layers with contrasting erodibilities have equal erosion rates when measured parallel to lithologic contacts, but 52 

that topographic steady state in which erodibility contrasts are expressed in landscapes is only strictly possible for vertical 53 

contacts. Erodibility contrasts oriented perpendicular to vertical—i.e., horizontal layers— “exhibit the largest departures from 54 

steady-state, and the most complex patterns of landscape evolution” (Forte et al., 2016).  An advantage of studying 55 

approximately horizontally layered rocks is that the spatial pattern of erodibility contrasts is predictable. Thus, idealized  models 56 

suggest that strong erodibility contrasts from horizontal rock layers can be expressed in topography in complex but potential ly 57 

understandable ways. 58 

A fundamental challenge in moving from models to field constraints is that many variables influence rock erodibility. 59 

Fluvial erosion processes, including abrasion (impact wear) and hydraulic block plucking, depend on rock properties in 60 

different ways and make the relationship between overall erodibility and measurable variables nonunique. For abrasion from 61 

impacting grains, bedrock incision rate should scale inversely with rock tensile strength (Sklar and Dietrich, 2001; Mueller-62 

Hagmann et al., 2020). Fracture density influences bedrock incision rates and dominant processes, especially block plucking 63 

(e.g., Spotila et al., 2015; Dibiase et al., 2018; Scott and Wohl, 2019 ESPL; Chilton and Spotila, 2022). It remains unclear how 64 
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to quantitatively relate different rock properties to erodibility in different settings; semiquantitative relations have been  65 

proposed but not widely validated for fluvial settings (e.g., Selby, 1982). 66 

Channel morphology adjusts not only to substrate erodibility, but also to transport the imposed abundance and size 67 

distribution of sediment (e.g., Hack, 1957). Importantly, in erosional landscapes the sediment size distribution can reflect 68 

bedrock properties, as it derives primarily from hillslope erosion in the upstream watershed (Thaler and Covington, 2016; 69 

Shobe et al., 2021b). Mechanistically, abrasion requires sediment transport (tools effect), while incision by most erosion 70 

processes is inhibited by alluvial cover (cover effect) (Sklar and Dietrich, 2004). Studies have found that the abundance and  71 

size distribution of sediment delivered to a channel reach from upstream and surrounding hillslopes can steepen reaches beyond 72 

what might be predicted from channel bedrock properties alone (e.g., Brocard and van der Beek, 2006; Johnson et al., 2009; 73 

Thaler and Covington, 2016; Chilton and Spotila, 2020; Lai et al., 2021; Shobe et al 2021a). In particular, Thaler and Covington 74 

(2016) isolated the role of large and relatively immobile boulders on channel slopes by comparing reaches incised into the 75 

same underlying bedrock, but with different amounts and sizes of boulders supplied from a caprock layer present in only some 76 

watersheds. Further, Shobe et al., (2021a) developed a steepening ratio, that calculates the impact of boulders on channel slope 77 

in comparison with a boulder free reach. Discharge variability has also been shown to matter for understanding cover effects 78 

in natural systems, particularly in reaches with boulders, as the bigger the boulder the larger (and more rare) the flood that can 79 

mobilize it larger boulders are (e.g., Lague et al., 2005; Shobe et al., 2021b; Ramming and Whipple, 2022). Importantly, the 80 

landscape evolution models used by Forte et al. (2016) and Perne and Covington (2017) did not include sediment load, and it 81 

remains unclear how cover effects and boulder supply may influence relations between topography and bedrock properties in 82 

natural landscapes. Taken as a whole, the studies above suggest that rock properties impact erosion processes and channel 83 

morphology in multiple ways. Strength and resulting erosion processes are impacted by the density of fractures and the relative 84 

dip of the bedding. Fracture density also influences size distributions of coarse sediment supplied to channel reaches. Although 85 

the impact of rock properties on channel evolution is complex, it is potentially tractable. 86 

The overall objective of this study is to better understand how fluvial network topography in a real erosional landscape is 87 

influenced by horizontal rock units, both directly through bed erodibility and indirectly through coarse sediment supplied from 88 

hillslopes. We hypothesize that local topography—as quantified through channel steepness index (ksn, defined below) and local 89 

relief—correlates with measurable properties of both bedrock and boulders. The field area has alternating layers of primarily 90 

sandstone and primarily carbonate rocks. Our approach was to measure compressive rock strength, fracture density, boulder 91 

dimensions, and bedrock exposure along channels from extensive field surveys. We objectively quantified rock mineralogy 92 

from field samples.  We do not have measurements of erosion rates and so cannot directly calculate erodibil ity (Equation 1). 93 

However, we interpret that patterns of bedrock-controlled erodibility and boulder distributions in this landscape have resulted 94 

in a bimodal topography.  Upstream channels and hillslopes have lower channel steepness, gentler hillslopes, and hypothesized 95 

higher erodibilities.  Downstream channels and hillslopes are steeper, with hypothesized lower erodibilities.  96 

 97 
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2 Field Area 98 

This study focuses on channels with intermittent flow in Last Chance canyon, which is part of the Guadalupe mountains 99 

(Figure 1). During Permian time, a shallow lagoon existed behind a reef complex to the south and deposited what would 100 

become interbedded carbonate and siliciclastic bedrock of Last Chance Canyon (Hill, 2000; Phelps et al., 2008; Kerans et al., 101 

2017). The Guadalupe mountains were uplifted during basin and range extension beginning 27 million years ago, exposing the 102 

previously buried bedrock (Chapin and Cather, 1994; Ricketts et al., 2014, Hoffman, 2014; Decker et al., 2018).  103 

 104 

 105 

 106 

Figure 1: Regional topographic map of a section of the Guadalupe mountain range, with location in New Mexico, USA, shown 107 
at right.  108 

Because of its morphology and accessibility, we collected data along tributaries of Last Chance Canyon to identify how 109 

changes in bedrock lithology and boulder characteristics correlate with stream channel and landscape morphology. Over the 110 

small spatial area and range of vertical elevations of the specific study channels (Figure 2), climate varies minimally.  Mean 111 

annual precipitation is ≈40-50 cm/year and mean annual temperature ≈14-16 ℃ (PRISM Climate Group). Last Chance Canyon 112 

has horizontally to near-horizontally bedded bedrock and is currently tectonically inactive (Hill, 1987; Hill, 2006). Mapped 113 

descriptions of stratigraphic units in Last Chance canyon include both sandstone and carbonate bedrock, with bed thicknesses 114 

within mapped units on the order of centimetres to meters (Figure 2; Scholle et al., 1992; Hill, 2000; Phelps et al., 2008), which 115 

agrees with what we observed in the field (Figure 3). This seemingly simple variation in lithology makes Last Chance canyon 116 

an ideal location to explore the effect of varying bedrock properties on stream channel morphology.  117 
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Beyond Last Chance Canyon, the Guadalupe Mountains are comprised mostly of horizontally to near-horizontally bedded 118 

carbonate and siliciclastic rock (Figure 2). Rock unit descriptions from published maps are not at the scale needed for us to 119 

constrain rock strength variability along channels (NPS, 2007). Higher order channels further downstream of the survey 120 

reaches in Last Chance Canyon are inundated with coarse alluvium and have essentially no exposed bedrock. Therefore, we 121 

focus on first- and second- order channels, as defined by Strahler (1957), in Last Chance Canyon because this is where we 122 

have collected extensive data and where we are able to measure rock properties in the channel bed and in proximal hillslopes. 123 

Although some of our observations from Last Chance Canyon likely apply in other locations, mapped rock units have spatial 124 

variability in rock properties, and we refrain from making conclusions about other parts of the landscape. 125 
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Figure 2: a. Topographic map with elevations superimposed on a hillshade of Last Chance canyon with five ephemeral 127 

study channels LC1 – LC5 labelled. Main stem channel that all streams flow to is coloured black with arrow indicating the 128 

direction of stream flow. All mapped streamlines begin with a threshold drainage area of 1 km2. b. Geologic map of study area 129 

with c. a description of mapped lithologies (King, 1948; Boyd, 1958; Hayes, 1964; USGS, 2017). Approximate elevation and 130 

thicknesses apply only to the section of Last Chance canyon displayed here. Dots in b indicate locations we took measurements 131 

at (in five tributaries, labelled LC1-LC5and one hillslope labelled HS1). The reach marked with a red dot is LC3.2 and is 132 

shown in Figure 4. 133 

3 Methods 134 

3.1 DEM Analysis 135 

We used a 10 m digital elevation model (DEM) of Last Chance canyon to identify channels of interest to survey and to 136 

calculate relevant topographic metrics, and slope breaks along longitudinal stream profiles (USGS, 2019). The normalized 137 

channel steepness index, ksn, is a measure of channel gradient normalized for drainage area (i.e., in principle allowing reach 138 

slope to be compared independent of drainage area): 139 

  𝑆 = 𝑘𝑠𝑛𝐴
−𝜃𝑟𝑒𝑓     (2),   140 

where 𝜃𝑟𝑒𝑓     is a reference concavity (Whipple and Tucker, 1999; Wobus et al., 2006). Based on a calibration to this 141 

landscape we use 𝜃𝑟𝑒𝑓 = 0.5,                  giving m-1 as the units for 𝑘𝑠𝑛. Although ksn is an empirical metric of fluvial topography 142 

(Equation 2) and not model dependent, if the stream power model is assumed to be valid then combining Equations (1) and 143 

(2) gives  𝐸 𝐾⁄ = 𝑘𝑠𝑛
𝑛

, Illustrating how this topographic metric potentially informs both erosion rates and erodibilities.  ksn 144 

allows for the comparison of slope along a single channel or among multiple channels to isolate erosional and/or bedrock 145 

erodibility patterns (Kirby & Whipple, 2012).  We also calculated χ plots (Perron and Royden, 2012; Willet et al., 2014), which 146 

represent a method of transforming the horizontal variable (x) of longitudinal stream profiles into dimensionless variable χ.  147 

Generally speaking, a smoothly concave stream profile without changes in erodibility or erosion rate along its length will be  a 148 

straight line on an elevation vs. χ plot, while deviations from linear may represent changes in erodibility or erosion rate (Perron 149 

and Royden, 2012; Willet et al., 2014). Because channels can adjust to more resistant lithologic units by steepening across 150 

them (Duval et al., 2004; Jansen et al., 2010), we used χ plots and ksn maps to detect changes in slope that could be due to 151 

differences in bedrock erodibility and/or sediment size and cover. TopoToolBox and Matlab were used to generate longitudinal 152 

profiles, ksn maps, and χ (chi) plots of all surveyed channels (Schwanghart and Scherler, 2014). 153 

We also used a DEM to measure channel slope and hillslope relief. Elevations were measured 75 m upstream and 75 m 154 

downstream from each reach, the downstream elevation was then subtracted from the upstream elevation and the value was 155 

divided by the length, 150 m, to determine slope. The 150 m scale of measurement was used to smooth the data, as is commonly 156 

done in topographic analysis because slope data can be noisy and have artifacts (Wobus et al., 2006; Kirby and Whipple, 2012). 157 
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We used 150 m because this reach length reduced noise while still capturing the relevant details of our study area.   Relief was 158 

measured in ArcGIS using a circular 500 m window around each reach. The radius of the relief window was chosen because 159 

ridgetop spacing is ~ 500 m in the field area. Therefore our relief values roughly represent the elevation change from valley 160 

bottom to ridge top. 161 

3.2 Field Surveys 162 

In March and May of 2018, and in February of 2021, we surveyed five channels which we had preselected based on DEM 163 

analysis, mapped geology, and accessibility. Our investigation started in lower order channels at elevations above 1400 m in 164 

channels LC3, LC4, and LC5 and in elevations above 1500 m in channels LC1 and LC2 (Figure 2). We studied reaches of 165 

varying length in the five different channels. USGS topographic contour maps of the field area use a 40 ft (≈12.2 m) contour 166 

interval. Following these maps for convenience and to ensure unbiased sampling, at every ≈12.2 m contour interval we 167 

surveyed channel reaches for bedrock properties when exposed, measured the largest, assumedly most immobile, boulder in 168 

the reach, and took rock samples from each to confirm minerology. Previous work suggests that boulders and the coarsest 169 

sediment size fractions can significantly influence reach topography, erosion, and transport (e.g. Shobe et al., 2016). The 170 

largest boulder was chosen (rather than a particular coarse grain size percentile such as D84) as a balance between available  171 

time for field surveys and statistical accuracy for characterizing coarse sediment. We assume that the largest boulder size is 172 

positively correlated with other coarse grain size percentiles when averaged over many surveyed reaches, while acknowledging 173 

that this method may introduce a bias due to size selection. For each boulder we measured the longest (a), intermediate (b) and 174 

shortest (c) axes (Figure 3). We multiply these dimensions together to approximate boulder volumes. We also constrain 175 

differences in boulder shape using a simple shape factor defined as c/a (the shortest axis divided by the longest axis) 176 

 177 
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 178 

Figure 3: Photo demonstrating the differences in a. bed thicknesses between lithologies and b. large boulders (with axes labelled 179 
in red) sourced from the more thickly bedded dolomitic rock. Dog height is approximately 75 cm at shoulders. 180 

3.3 Bedrock Properties and Photogrammetry 181 

We used a Schmidt hammer to take a minimum of 30 rebound values in each reach we surveyed that had exposed bedrock 182 

(Niedzielski et al., 2009). Schmidt hammer rebound values scale with compressive strength but are typically reported as 183 

unitless numbers between 10 (very weak) and about 70 (very strong) (e.g., Bursztyn et al., 2015; Murphy et al., 2016). We 184 

discarded Schmidt hammer values less than 10, the minimum value the device can read, as they represent multiple values and 185 
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make statistical analysis of the data difficult (Duval et al., 2004). Schmidt hammer values were recorded at roughly evenly 186 

spaced intervals up the thalweg of each channel regardless of weathering or presence of fractures. All Schmidt hammer values 187 

were taken perpendicular to the bedrock surface. Schmidt hammer values are affected by proximal discontinuities. Because 188 

we sampled at evenly spaced intervals in the exposed bedrock and did not avoid discontinuities, our Schmidt hammer values 189 

reflect a combination/distribution of local rock elastic properties modulated by discontinuities (Katz et al., 2000).  190 

We used a GoPro5 attached to the end of a selfie stick to take wide-angle HD videos of the bottom of 18 different reaches 191 

of varying size. We used iMovie to extract frames (1 frame for every second of video). We used Agisoft PhotoScan (Agisoft 192 

PhotoScan Professional, 2018) to generate high resolution orthomosaics. First we aligned the frames from the GoPro videos, 193 

then built a dense cloud, created a DSM (called a DEM in Agisoft PhotoScan), and finally made an orthomosaic. 194 

Discontinuities were visually interpreted and manually traced on the orthomosaic images using Adobe Illustrator software 195 

(Figure 4). Bedding planes are zones of weakness by which bedrock can be plucked, and both bedding planes and fractures 196 

were treated as discontinuities (Spotila, 2015). Although identifying discontinuities from the images was somewhat subjective, 197 

the same person did all these analyses and so they are likely internally consistent. We used Fraqpac (Healy, 2017), a Matlab 198 

software suite, to determine the discontinuity intensity, which is the length of all traced discontinuities divided by the area 199 

examined in each reach. The discontinuity intensity is reported in units of per meter. 200 
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 206 

 207 

Figure 4: a) An orthomosaic and b) photo of sandstone reach LC3.2 (Figure 2b), with a discontinuity intensity of 13.03 1/m in 208 
the steep channel section.  The shadows in the orthomosaic are from the GoPro and selfie stick used to film the reach. Lat, Long: 209 
32.252513, -104.701289 210 

We used a drone, DJI Mavic 2 pro, to take photos of the five surveyed channels from elevations of approximately 20 211 

meters above the five stream channels, and 120 meters above adjacent hillslopes for three of the five channels. We used Agisoft 212 

PhotoScan to generate high resolution digital surface models (DSMs) with 0.027 to 0.28 m resolution (we refer to these as 213 

DSMs rather than DEMs because vegetation is not removed from the DSMs) and orthomosaics of the five channels and three 214 

adjacent hillslopes. The methodology we used to create the DSMs and orthomosaics is the same that we used to create the 215 
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orthomosaics of the reaches and is described in the previous paragraph. We used the orthomosaics to quantify relative 216 

proportion of where stream channel beds were exposed bedrock or covered with sediment. Given the sub-decimeter scale of 217 

our channel imagery, it was generally clear what was and was not sediment on the channel bed, and we did this mapping by 218 

eye. We partitioned the channel reach into lengths that were and were not covered in sediment. This means that we only looked 219 

at changes along the channel center line. However, this seemed a reasonable assumption as the predominant variation in 220 

sediment cover was usually down channel, not across channel.  221 

3.4 Lithology 222 

At each ≈12.2 M elevation contour interval we collected rock samples from exposed bedrock and from the largest boulder 223 

in the stream channel to ensure correct categorization of lithology. The minerology of each rock sample was assumed to be 224 

representative of the minerology of the reach or boulder it was taken from. Our efforts to determine end-member lithological 225 

classifications of sandstone or carbonate in the field were imprecise because individual samples usually contained both 226 

carbonate and quartz. To find a quantifiable ratio of the amount of carbonate in each sample, back in the lab we broke off a 227 

very small piece of each rock sample that appeared representative of its composition and ground up this subsample using a 228 

jaw crusher and disk mill. The average size of each subsample that we processed was 1.689 g with a standard deviation of 229 

0.707 g, and the scale was precise to 0.001 g. The ground subsample was rinsed in water a minimum of five times, dried in an 230 

oven overnight, and then weighed the following morning. We then dissolved the carbonate minerals by soaking each sample 231 

in Nitric acid for at least 24 hours. The subsample was again rinsed in water a minimum of five times and dried overnight. We 232 

used a microscope to check that only quartz remained after dissolving each subsample in nitric acid. We then reweighed each 233 

subsample to determine the ratio amount of dissolved carbonate minerals. Samples were classified as carbonate if the 234 

subsample had more than 50% carbonate minerals, and sandstone if they had more than 60% quartz (Bell, 2005). Samples 235 

which ranged from 50 – 59% of quartz were lithologically unclassified, so that the endmember carbonate and sandstone classes 236 

would be more distinct. However, the fact that there was bedrock exposed was still recorded. Only 1 bedrock sample and 2 237 

boulder samples fell in the range of 50-59% quartz, compared to 56 boulder and 56 bedrock samples that were classified. To 238 

ensure the validity of this methodology, we replicated this process on six samples by repeating the process with a different 239 

subsample from the original rock sample.  For one of the samples, we replicated this process five times. All replicate 240 

measurements demonstrated similar results (standard deviation of 0.62% carbonate dissolved, and variance of 0.39% carbonate 241 

dissolved).). 242 

4 Results 243 

4.1 Morphometric Analysis 244 

Last Chance canyon tributaries have upstream sections with relatively shallow channels and lower gradient hillslopes, and 245 

a knickzone downstream which has steep channels and hillslopes (Figure 5). χ plots (Figure 5c and d) and field observations 246 
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demonstrate that the stream channels transition from steep to shallow at approximately 1640 m for channels 1 and 2 and at 247 

approximately 1550 m for channels 3, 4 and 5. At the transition from steep to shallow in channels 1 and 2 the slope of the χ 248 

plot changes less than in channels 3, 4, and 5. The average value for slope gradients above 1550 m in elevation is 16.5 (n = 249 

145765, σ = 11.1), above 1640 m in elevation the average slope is 11.5 (n = 68853, σ = 8.8), and from 1400 m to  1550 m in 250 

elevation the average slope gradient is 24.5 (n = 70438, σ = 11.1). 251 

We used a t test to verify a bimodal distribution of hillslopes between the shallow section, elevations above 1550 m in 252 

channels 3, 4, and 5 and above 1640 m in channels 1 and 2, and the steep section, elevations from 1400 to 1550 m. The null 253 

hypothesis was that the hillslope values in the steep and shallow sections are the same and/or do not vary between the lower 254 

steepness (upstream) and higher steepness (downstream) reaches. This would indicate that landscape form does not change at 255 

the elevations we interpreted using the chi plots in figure 5. Conversely, if the hillslope values from the different elevation bins 256 

are from statistically different populations, this supports our interpretation that landscape form changes at elevation 1550 m in 257 

channel 3, 4, and 5 and 16 40 m in channels 1 and 2. The t test demonstrated that slope gradient values from the shallow 258 

channel section are different that slope gradient values from the steep channel section. 259 

We do not have erosion rate data for the field channels, and so cannot quantitatively constrain erodibility (Equation 1). 260 

Our overall approach instead is to evaluate whether the existing fluvial morphology in this part of the landscape likely reflects 261 

measurable rock properties.  262 
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Figure 5 - a. Slope map of Last Chance canyon with channel colored by ksn values.  The contour lines correspond to elevations 264 

which are interpreted as approximate inflection points for hill and channel slope (1550 m for LC 3, 4, and 5 and 1640 m for LC 1 265 

and 2). b. Kernal density estimates of slope values from the shallow landscape sections, >1640 m and > 1550 m, and the steep section, 266 

1400 to 1550 m. c. χ plots of LC1 and LC2 and d. LC3, LC4, and LC5 with inset of channel profiles. Channels are labelled and color 267 

coded to match channel labels on 7a. in c. and d. The downstream portion of the channels that is colored in black in c and d was not 268 

surveyed. 269 

4.2 Bedrock Properties 270 

The extent of exposed sandstone and carbonate rock in the five study channels is presented in Table 1. The data are 271 

presented for above and below 1550 m elevation, of the elevation in which the channel steepness index changes in LC 3, 4, 272 

and 5. Due to limits on our field time, there are a reaches of exposed bedrock above 1550 m that we were not able to sample, 273 

and these are labelled as "undefined rock". In all the channels except LC1 there is more alluvial cover downstream of 1550 m 274 

than above 1550 m. 275 

 276 

 277 

Table 1 – Table describing  channel lithology and sediment cover characteristics in the steep and shallow sections of the five study 278 

channels. 279 

Discontinuity intensity and Schmidt Hammer values change with slope in the more thinly bedded sandstone rock, but not 280 

in carbonate rock (Figure 6). Because the units are horizontally to near horizontally bedded, steeper stream channels cutting 281 

through thinly bedded sandstone rock have more exposed bedding planes than channels with lower slopes. They also have 282 
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lower Schmidt hammer values (Figure 6a). However, discontinuity intensity and rebound values are invariant with slope in the 283 

thickly bedded carbonate rock. 284 

 285 

 286 

Figure 6: a. Median Schmidt Hammer rebound value vs. channel slope   rebound value.  b. Mean discontinuity intensity vs 287 
channel slope. We calculated slope over a distance of 150 m downstream and 150 m upstream of each reach. C. Median Schmidt 288 
Hammer values vs. Mean discontinuity intensity. All plots show data for 5 sandstone and 11 carbonate reaches. LC3.2, which was 289 
highlighted in Figure 2 and shown in Figure 4, is labelled. 290 

The average discontinuity intensity and Schmidt Hammer values from the thinly bedded sandstone in the steep channel 291 

section, where more bedding planes are exposed than in carbonate reaches, is 7.98 m-1 (n = 2 reaches, standard deviation σ = 292 

5.04) and 31.6 (n = 61, σ = 9.5) respectively. The average discontinuity intensity of the thickly bedded carbonate in the steep 293 

channel section is 2.34 m-1 (n = 6, σ = 0.56), and they have an average Schmidt Hammer value of 36.1 (n = 240, σ = 10.8). 294 

Within the upstream channel sections, the reaches have a shallower slope with fewer exposed bedding planes per channel 295 

distance. In the shallower sandstone reaches, measured discontinuity intensity is smaller, 0.77 m -1 (n = 3, σ = 0.16), but average 296 

Schmidt Hammer values are larger, 41.7 (n = 88, σ = 9.1), in comparison with the sandstone in the steeper section. Carbonate 297 

reaches in the shallow channel sections have a slightly higher discontinuity intensity of 1.51 m -1 (n = 6, σ = 0.32) and average 298 

Schmidt Hammer value of 37.1 (n = 90, σ = 9.3) in comparison with the shallow sandstone reaches. In carbonates, discontinuity 299 

intensity and Schmidt Hammer values are essentially uncorrelated with channel slope.  300 

 301 

Table 21: Table lists the a. discontinuity intensity values, b. mean Schmidt hammer values, and c. number of Schmidt hammer 302 
rebound values for sandstones and carbonates in the steep and shallow channel sections. Tables a. and b. include the differences 303 
(Delta) between the means of the same rock types or the same channel steepness. In table b., blue delta values denote that the Schmidt 304 
hammer populations are statistically the same, red delta values indicate that the populations are statistically different.  305 

Commented [JJP108]: fig5 how does a plot of 

discontinuity vs. Schmidt Hammer Rebound look like? What 

do the results tell you?     

Commented [ASR109R108]: I don’t understand this 

comment. In plain english: The plot of SH vs discontinuity looks 

like figure 5b and the results are described in detail in the paragraph 
following the figure. 

Commented [JJP110]: AE 177 Which slope is this? 
 

Commented [ASR111R110]: RESOLVED 

Commented [JJP112]: R2 Figure 5b: It seems to me that 

the discontinuity intensity differences as a function of 

slope are not all that different between the carbonates and 

sandstone except for at LC3.2. I suspect this is the most 

important observation (see comment on L173).   
 

Commented [ASR113R112]: NICOLE OR JOEL: This is 

true. I am not sure how to rectify this as per the response I left to the 
comment at L173.   

Commented [JJP114]: Main text (methods section) says 75m 

upstream and downstream, for total distance of 150. This says 300m 

total.  Change one or the other.  

Commented [JJP115]: AE 180-188 When using a 

comparative (‘more’, ‘larger’), please state both items that 

are compared. 
--I agree… 

Commented [ASR116R115]: RESOLVED 

Commented [JJP117]: R2 L180: I am assuming that 

splitting of the data into steep versus shallow is based on ...

Commented [ASR118R117]: Splitting of the data into steep 
vs shallow is based on channel steepness (see figure 4). If channel ...

Commented [GNM119R117]: Let’s put this whole paragraph 

into a table like they asked. I’m near certain you already have this ...

Commented [JJP120]: AE 181 more than what? 
 

Commented [ASR121R120]: RESOLVED 

Commented [JJP122]: R1 L187f the carbonate values are 

not much dfferent between steep and shallower sections ...

Commented [ASR123R122]: I also agree, carb values are not 

much different. This is relevant. The fact that carbonates are similar ...

Commented [ASR124R122]: PLEASE SEE THE 

PARAGRAPH AFTER "5.1 Lithology and Coarse Sediment ...

Commented [ASR125R122]: ALSO. Probably controversial, 
but the carbonates have lower SH values in the shallow section due ...

Commented [JP126]: fig5 how does a plot of 

discontinuity vs. Schmidt Hammer Rebound look like? What ...

Commented [AR127R126]: I don’t understand this comment. 

In plain english: The plot of SH vs discontinuity looks like figure 5b ...



18 

 

We calculated four separate t-tests on Schmidt hammer measurements from the different rock types and channel sections 306 

in Last Chance Canyon to determine if they are sampled from different populations. The null hypothesis is that the populations 307 

of Schmidt hammer values in the carbonate and sandstone rocks are the same and/or do not vary between the lower steepness 308 

(upstream) and higher steepness (downstream) reaches. This would indicate that the rock strength of the two different rock 309 

types is statistically the same and support the idea that the erodibility does not vary between rock types or within rock types or 310 

with channel steepness. Conversely, if the sampled Schmidt hammer values from different rock types are from statistically 311 

different populations, this supports that the different rock types have different strengths and possibly different erodibilities.  312 

We compared Schmidt hammer values between carbonate and sandstone reaches in the high and low ksn parts of the 313 

channel and found them both to be of different populations. In other words, in the high ksn reaches of the channel, the sampled 314 

Schmidt hammer values from the carbonate and sandstone rocks are from statistically different populations. The same is true 315 

in the low ksn reaches of the channel. The Schmidt hammer values for sandstone reaches in the steep section were found to be 316 

statistically different from the Schmidt hammer values from the sandstone in the shallow section. Schmidt hammer values for 317 

carbonate reaches in steep and shallow sections were found to be from the same statistical population, which was the null 318 

hypothesis. This was the only test of the four in which the null hypothesis was accepted and further demonstrates the lack of 319 

strong correlation between channel slope and rock strength in carbonate reaches. 320 

4.3 Boulder Analysis 321 

 322 

 323 

Figure 7: Relief (calculated using a 500 m window) vs. boulder volume, calculated by multiplying the a, b, and c axis, for all 324 

boulders we measured in the field. 325 

As relief (calculated using a 500 m window) increases, the volume of the largest boulder in each reach tends to increase 326 

exponentially (Figure 7). Carbonate boulders tend to show a larger change in volume with relief than do sandstone boulders. 327 

Of the boulders we measured, 70% of the boulders in the high ksn section and 64% of the boulders in the low ksn channel section 328 
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are carbonate.    Boulder shape is also somewhat different between sandstones and carbonates. We used a simple shape factor 329 

c/a (i.e.., the minimum boulder axis length divided by the maximum axis length) to quantify differences (Figure 8). Carbonate 330 

boulders had an average shape factor of 0.36 (n = 39, σ = 0.17), compared to sandstone boulders with an average shape factor 331 

of 0.29 (n = 19, σ = 0.18). Although the difference is small, carbonate boulders were on average more equidimensional (short 332 

and long axes more similar) while sandstone boulders were more elongate (a greater proportional difference between axes).  333 

The correlation between the a, b, and c axes and relief is similar for the carbonate boulders we measured (R2 > 0.5, and 334 

similar regression exponents from 0.014 to 0.016) (Figure 8). Lower relief corresponds to the upstream reaches. In the 335 

sandstone boulders we measured, the c axis correlates best with relief (R2 = 0.54, regression slope of 1.1). The length of the b 336 

axis shows a slightly weaker relationship with relief (R2 = 0.46, regression slope = 1.8) than the c axis. The length of the a axis 337 

(R2 = 0.11, regression slope = 0.97) correlates poorly with relief. We fit an exponential trendline to the carbonate because it 338 

empirically gives a higher R2 than a linear regression. Conversely, we fit a linear trendline to the sandstone boulders it gave a 339 

higher R2 for the c axis.  There was minimal difference between the R2 values for exponential and linear fits for the a and b 340 

axis of sandstone boulders.  341 
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 342 

Figure 8: Relief (calculated using a 500 m window) vs. the lengths of the a, b, and c axis for all boulders we measured in the 343 
field. 344 

5 Discussion  345 

Bedrock properties vary between lithologies and etch their signal on landscape morphology (Jansen et al., 2010; Scharf et 346 

al., 2013; Bursztyn et al., 2015; Forte et al., 2016; Yanites et al., 2017). In Last Chance canyon, differences in measured rock 347 

properties vary with changes in channel slope and local relief. Here, we introduce four three key interpretations from our study. 348 

(1) Discontinuity intensity affects rock strength. We interpret that Channel steepness tends to be higher where reaches are 349 

primarily within thickly bedded carbonate bedrock in our study area has high rock strength and low rock erodibility. , In 350 

contrast, we interpret that the and lower where more thinly bedded sandstone rock (in comparison with the carbonate rock) is 351 

exposedhas low rock strength and high rock erodibility. (2) The effect of exposed bedrock on landscape morphology is 352 
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confounded by interplay withWe interpret that sediment input from hillslopes, and not rock properties on the channel bed, can 353 

set the rock erodibility when channels are armoured with sediment (following previous studies such as Duval et al., 2004; 354 

Johnson et al., 2009; Finnegan et al., 2017, Keen-Zebert et al., 2017). Thickly bedded and steeper rock units on surrounding 355 

hillslopes contribute larger sized colluvial sediment to the channels, leading to steeper channel slopes (Thaler and Covington, 356 

2016; Shobe et al., 2016). (3) We interpret that steep slopes can be sustained even where the channel bed is relatively weak 357 

sandstone because lLarger and more competent carbonate sediment armours both the carbonate rock and the more thinly 358 

bedded sandstone and dampens the negative effect sandstone bedrock would have on channel steepnessthe bed.  359 

Putting these three interpretations together, we hypothesize that (4) despite the change from low steepness upstream to 360 

high steepness downstream in our study channels, this is a relatively stable morphology The landscape has adjusted to a 361 

relatively stable inconfiguration the current climate.  where We hypothesize that the high steepness portions of our study 362 

channels are not eroding due to the more massive carbonate units and the large, immobile boulders armouring the channel, 363 

both of which lead to low channel erodibility. If the high steepness portions of the channel are not actively eroding, this creates 364 

a pinned base level for the low steepness channel sections upstream. This pinned base level leads up to hypothesize that the 365 

high erodibility, low steepness upstream channels are also not eroding, creating an overall stable morphology. the shallow 366 

channel section in weaker rock at the top of the range has a base level that is pinned by the high steepness downstream channel 367 

that has both more thickly bedded rock and larger alluvium. 368 

5.1 Lithology, Discontinuity Intensity, and Bed Slope  369 

Local slope, bedding plane spacing, and fracture density control discontinuity intensity at the reach scale in Last Chance 370 

canyon. If we assume that all bedding planes and fractures are horizontal, then for a given length of channel reach, steeper 371 

reaches cut across more discontinuities than shallower reaches (Figure 9). We find that thinly bedded sandstone bedrock at our 372 

field site has anisotropic properties. Layers are weaker (as measured by lower Schmidt hammer rebound values and higher 373 

discontinuity intensities) when exposed in steep channels and are stronger in in reaches with lower slopes that are more parallel 374 

to bedding plane orientation (Weissel and Seidl, 1997) (Figure 6. When sandstone bedrock is eroded down to lower slopes that 375 

are sub-parallel to bedding, then rock strength effectively increases and erodibility decreases, slowing further erosion.  376 

 This apparent reduction in discontinuity density holds true regardless of the vertical discontinuity spacing (Figure 9). 377 

However, the apparent reduction in discontinuity intensity has less of an impact on the strength of the carbonate rock, because 378 

even in the steep channel reaches the discontinuity intensity is low. We think this results in the carbonate rock strength being 379 

independent of channel slope at our field site (Figure 6). Our statistical analysis of Schmidt hammer values from carbonate 380 

bedrock in the shallow upstream and steep downstream channel sections confirmed that they are of the same population.  381 

 382 
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 383 

Figure 9 – Relationship between measured discontinuity density along the bed (y axis) vs the discontinuity density if 384 

measured on a face perpendicular to the discontinuities (x axis). Different lines represent channels with different slopes. Here 385 

the discontinuities are modelled as perfectly horizontal, so a perpendicular face is vertical, or 90 degrees, or infinity m/m. 386 

There is a lack of exposed sandstone rock in channel reaches with higher slope. In surveyed channel reaches below 1550 387 

m, we observed 0 to 7.8% of the channel to be exposed sandstone (Figure 10; Table XXX- table nic made1). In contrast, below 388 

1550 m channels had 74 to 100% alluvial cover. In reaches below 1550 m that have exposed bedrock, there is always more 389 

carbonate rock exposed than sandstone rock. We think our limited observation of sandstone in the steep channel reaches is 390 

because in comparison to the relatively hard carbonate rock, the relatively weak sandstone rock cannot maintain steep slopes.  391 

Where there is siliciclastic bedrock in the steep reaches, we interpret that it is armoured in boulders. 392 

In summary, the landscape seemingly reflects the tendency of sandstone rock to erode to low slopes, creating a bi-modal 393 

landscape. In the shallow upstream channel section, there are more thinly bedded siliciclastic units exposed. In contrast, the 394 

steep channel section is mostly made up of thickly bedded carbonate rock or is inundated with sediment , resulting in a lower 395 

erodibility channel.  396 

5.2 Lithology and Coarse Sediment Production 397 

More thickly bedded and higher relief hillslopes contribute larger-sized and more geomorphically relevant boulders from 398 

the hillslopes to the channel (Neely et al., 2020) (Figure 7). The steep channel sections of Last Chance Canyon are incised into 399 

relatively narrow canyons, in comparison with the upstream, low steepness portions of the landscape. Hillslope derived 400 

sediment from the thickly bedded units in the canyon wall armors the channel bed in the steep reaches. We think these boulder 401 
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deposits allow the relatively weak sandstone channel reaches to steepen through boulder deposition, as has been shown 402 

elsewhere (Shobe et al, 2016; Thaler and Covington, 2016; Chilton and Spotila, 2020). We assume that there are carbonate 403 

reaches that are also amorered in sediment. However, where bedrock is exposed in the steep channels, it is predominantly 404 

carbonate rocks, which are harder and presumably less erodible than the sandstone reaches (see subsection above).  Within 405 

these steep channel sections which are inundated with sediment, we interpret that channel slope is somewhat independent of 406 

bedrock properties and instead depends on the amount, size, and competency of the sediment armor. In other words, we think 407 

that the larger sediment armoring the steep reaches effectively decreases the erodibility of these reaches.  408 

Bed thickness and fracture patterns control the initial size of sediment supplied by hillslopes to channels (Verdian et al., 409 

2020). In Last Chance canyon, the maximum length of one axis of a boulder entering a channel from proximal hillslopes is 410 

controlled by the distance between bedding planes and fractures. In carbonate bedrock the distance between bedding planes 411 

tends to be longer than in sandstone bedrock. Where hillslope relief increases, bedrock units are thicker, and the length of the 412 

a, b, and c axes increases for the carbonate boulders (Figure 8). (We do not have measurements of discontinuity intensity from 413 

the hillslopes. Our observations were that steep hillslopes were primarily composed of massive carbonate.) In sandstone 414 

boulders, the c axis correlates with hillslope relief, the b axis length also correlates with relief, but to a lesser extent,  and the a 415 

axis length does not demonstrate any relationship with relief. Because sandstone bedrock is more thinly bedded, the c axis 416 

(shortest) will tend to reflect the distance between bedding planes from the source rock.  417 

The carbonate boulders are more equidimensional and have a higher average shape factor of 0.36 in comparison with the 418 

sandstone boulders which have an average shape factor of 0.29. Although small, this difference in shape factor may reflect 419 

how the distance between bedding planes affects sediment shape. Because a sediment grain tends to break across its shortest 420 

axis, the more elongate sandstone boulders are less competent than carbonate boulders (Allan, 1997). Abrasion also reduces 421 

boulder size and may decrease the size of elongate boulders more rapidly (e.g., Miller et al., 2014).  Also, this could be why 422 

there were less sandstone than carbonate boulders. Of the 58 boulders we measured, 70% in the steep channel section and 64% 423 

in the shallow were carbonate. Because carbonate bedrock is thickly bedded, boulders sourced from this bedrock tend to be 424 

larger. Further, because the carbonate boulders are more equidimensional, they likely stay larger for longer than sandstone 425 

boulders.  426 
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Figure 10: Chi plots of LC1 - LC5 with exposed bedrock or sediment armored sections mapped. Where known, rock type 428 
beneath the sediment is shown by either a grey dot to indicate carbonate or a tan square to indicate sandstone. To the left of each 429 
channel, relevant statistics for each channel are displayed from 1400 - 1550m and above 1550 m. Average boulder volumes, which 430 
we measured in the field, above and below 1550 m elevation are shown along with corresponding standard deviations. High order 431 
alluviated channels are locations outside of our study area. 432 

5.3 Are Last Chance Canyon Channels Adjusted to Reflect Rock Properties?  433 

We interpret that erosion in the steep reaches of our study channels is inhibited due to the presence of thick and resistant 434 

bedrock and large boulders that we interpret to be immobile. The downstream portions of our study channels are both steeper 435 

and have higher steepness indices than the upstream channel lengths (Figures 5, 10) and high steepness indices are thought to 436 

correlate with high erosion rates and/or less erodible rocks (Hilley and Arrowsmith, 2008). Although we do not have 437 

measurements of erosion rate in Last Chance canyon, we make the link between channel steepness and erodibility by assuming 438 

all channel reaches have a similar, low, erosion rate. In other parts of the Guadalupe Mountains, west of Last Chance canyon, 439 

erosion rates do not vary systematically with rock type, nor with slope (Tranel, 2020). We suggest that spatial variations in 440 

erodibility, rather than spatial variations in erosion rates, controls channel steepness in our study channels.  441 

We further hypothesize that the upstream channel sections also have low erosion rates but for a different reason. These 442 

channel reaches have lower slope and lower channel steepness indices (Figures 5, 10). The upstream channel reaches are less 443 

armoured and have more sandstone exposed in the channel than their downstream reaches. These observations suggest that 444 

these upstream reaches are likely more erodible. Past erosion has d reduced channel slopes leading to lower channel steepness. 445 

The distinct upstream, low steepness channel and downstream high steepness channel is not consistent in all of our study 446 

channels. χ plots for channels LC 3, 4, and 5, demonstrate two well defined channel sections, where in the higher elevation, 447 

lower relief, and lower slope section above 1550 m there is more exposed bedrock, more exposed sandstone, less alluvium, 448 

and smaller boulders armoring the channel (Figure 10). In contrast, LC 1 and 2 lack the obvious transition from downstream 449 

steep section to upstream shallow section observed in LC 3, 4, and 5. We interpret that the less notable change in upstream 450 

steepness in LC 1 and 2 is due to the armoring of sandstone rock units and relative abundance (in comparison with LC 3, 4, 451 

and 5) alluvium above 1550 m in elevation. Lithology measurements from proximal hillslopes in LC 1 and 2 indicate that just 452 

above elevation 1550 m there are sandstone units in the channel, as there are in LC 3, 4, and 5, but they are buried by alluvium 453 

in LC 1 and 2 (Figure 10, Table XXX that Nicole made1). We note that the transition to a lower steepness occurs at a higher 454 

elevation in LC 1 and 2, at about 1640 m (Figure 5) and it may be less distinct in comparison with LC 3, 4, and 5.  We do not 455 

know why there is more extensive armouring in LC 1 and 2 in comparison with LC 3, 4, and 5. One possibility for this armour 456 

is the outcropping of the Queen formation on the hillslopes above LC 1 and 2 but not above LC 3, 4, and 5 (Figure 2). 457 

Regardless of the reason, the fact that LC 1 and 2 remain steep even when the channel bed is sandstone supports our idea that 458 

sediment cover can hide the properties of the local bedrock and impact channel morphology 459 

Through landscape evolution modelling using the stream power model (Equation 1), Forte et al. (2016) showed that where 460 

more erodible rocks upstream are underlain by less erodible rocks downstream, the upstream reaches can have an effectively 461 

pinned base level, such that channel steepnesses evolve to reflect the contrast in rock properties. Our overall interpretation of 462 
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the Last Chance Canyon landscape is consistent with bedrock properties exerting this type of control. We also note that Perne 463 

et al., (2017) demonstrate that if topography is adjusted to bedrock erodibility in horizontally layered rocks, erosion rates 464 

should only be consistent if measured parallel to the layering.  We interpret the Last Chance Canyon landform to approximate 465 

a steady state geometry, but relative to the horizontal bedding over time (Perne and Covington, 2017). Our bedrock properties 466 

data also illustrate challenges in directly linking measurable rock properties to bedrock channel reach erodibility. However, 467 

our data also suggest that coarse sediment—rarely mobile boulders which reflect nearby bedrock eroding from hillslopes, but 468 

not the local channel bed itself—are a key mechanism by which lithologic contrasts are expressed in this landscape. Future 469 

work could explore how boulder transport may move and disperse zones of lithologic control downstream from boulder source 470 

areas. Regardless, we interpret that the bimodal topography in Last Chance Canyon– low to high steepness channels and less 471 

steep to steeper hillslopes - has evolved to reflect the rock properties of the two dominant lithologies, both locally and non-472 

locally. 473 

5.4 The Guadalupe Mountains Beyond Last Chance Canyon 474 

Our ability to hypothesize about the impact of rock properties on landscape morphology in Last Chance Canyon required 475 

extensive observations and field and lab measurements. Even in our small study area of 8 km2, the morphology of channels 476 

LC 1 and 2 varies from LC 3, 4, and 5 above 1550 m. Our measurements of sediment cover and buried rock type allowed us 477 

to hypothesize why these channels are different, despite incising into the same stratigraphic units. This led to a consistent 478 

process interpretation, despite different morphologies.. 479 

 480 

South of Last Chance Canyon, in the main escarpment of the Guadalupe mountains where channels drain to the southeast 481 

(Figure 1), the reef complex led to more massive carbonate deposits. Those deposits now form prominent peaks, such as El 482 

Capitan, in the southern-most part of the Guadalupe mountains. The longevity of these peaks and the strength of the deposits 483 

that form them suggests that the reef complex deposits are less erodible than surrounding deposits. Given the complex local 484 

and non-local role of rock properties on channel morphology and the different rock units that outcrop beyond Last Chance 485 

Canyon, we are hesitant to project our interpretations of how rock properties impact channel morphology to the greater 486 

Guadalupe Mountains. However, we think that the methods laid out in this paper, along with the modeling frameworks of how 487 

rock erodibility contrasts impact channel evolution (Forte et al., 2016; Perne et al., 2017), present a guide for deconvolving 488 

the complex role of rock properties on channel morphology in the broader Guadalupe Mountains and beyond. 489 

6 Conclusions 490 

We present several observations about the effects of rock properties on bedrock channel steepness in tributaries of Last 491 

Chance canyon. We suggest that discontinuity intensity influences channel steepness. Streams steepen across carbonate units 492 

that have thicker beds and lower discontinuity intensities in comparison with the sandstone in this area. Conversely, channel 493 

steepness is lower in channel reaches incised into thinly bedded sandstone units with higher discontinuity intensity.  494 
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The extent of sediment cover and the size of boulders in the channel also impacts channel morphology. More thickly 495 

bedded carbonate bedrock on the hillslopes contributes larger alluvium to the channel. This coarse carbonate sediment armours 496 

both the more and less thickly bedded bedrock and smooths channel slope across reaches with different lithologies and 497 

discontinuity intensities. In Last Chance canyon, channel sections that contain larger carbonate alluvium are generally steeper 498 

even if the channel bed is siliciclastic with high discontinuity intensity. 499 

Finally, we interpret that the study reaches have evolved to a relatively stable morphology adjusted to bedrock erodibility 500 

and local coarse sediment supply. The more erodible shallow channel reaches at the top of Last Chance canyon have a base 501 

level that is pinned by the steep, and less erodible, channel downstream. Any downcutting of the steep channel reaches 502 

downstream will likely result in corresponding lowering in the lower slope and more erodible reaches upstream, maintaining 503 

a similar channel profile through time. 504 

 505 
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