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Abstract. In this paper, we propose a sampling algorithm based on statistical machine learning to obtain conditional nonlin-

ear optimal perturbation (CNOP), which is different from traditional deterministic optimization methods. The new approach

reduces the expensive gradient (first-order) information directly by the objective value (zeroth-order) information and does

not use the adjoint technique that requires large amounts of storage and produces instability due to linearization. An intuitive

analysis of the sampling algorithm is shown rigorously within the form of a concentration inequality for the approximate gra-5

dient. The numerical experiments of a theoretical model, Burgers equation with small viscosity, are implemented to obtain

the CNOPs. The performance of standard spatial structures demonstrates that at the cost of losing accuracy, the sample-based

method with fewer samples spends time relatively shorter than the adjoint-based method and directly from the definition. Fi-

nally, we show that the nonlinear time evolution of the CNOPs obtained by all the algorithms is nearly consistent with the

quantity of norm square of perturbations, their difference and relative difference based on the definition method.10

1 Introduction

The short-term behavior of a predictive model with imperfect initial data is a critical issue for weather and climate predictability.

Understanding the model’s sensitivity to errors in the initial data to assess subsequent errors in forecasts is important. Perhaps

the simplest and most practical way is to estimate the likely uncertainty in the forecast by considering an ensemble of runs

with initial data polluted by the most dangerous errors. Traditionally, based on the linear stability analysis of fluid dynamics,15

the well-known tool is the normal mode method (Rayleigh, 1879; Lin, 1955), and has been used to understand and analyze the

observed cyclonic waves and long waves of middle and high latitudes (Eady, 1949). However, atmospheric and oceanic modes

are often unstable; thus, the transient growth of perturbations can still occur in the absence of growing normal modes (Farrell

and Ioannou, 1996a, b). Therefore, the normal mode theory is generally unavailable to evaluate the predictability problem

generated by atmospheric and oceanic motion flows. To achieve this goal for a low-order two-layer quasi-geostrophic model20

in a periodic channel, Lorenz (1965) first proposes a nonnormal mode approach based on the view of linearization, which

introduces the concepts of the tangent linear model, adjoint model, singular values, and singular vectors. Then, Farrell (1982)

uses the linear approach to investigate the linear instability within finite time. In the last decade of the past century, such a
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linear approach has been widely used to identify the most dangerous perturbations of atmospheric and oceanic flows, and has

been extended to explore error growth and predictability, such as patterns of the general atmospheric circulations (Buizza and25

Palmer, 1995) and the coupled ocean-atmosphere model of the El Niño-Southern Oscillation (ENSO) (Xue et al., 1997a, b;

Thompson, 1998; Samelson and Tziperman, 2001). The nonnormal approach has recently been extended to an oceanic study

to investigate the predictability of the Atlantic meridional overturning circulation (Zanna et al., 2011) and the Kuroshio path

variations (Fujii et al., 2008).

Both the approaches of normal and nonnormal modes are based on the assumption of linearization; thus, the perturbation30

must be sufficiently small such that a tangent linear model can approximately represent the evolution of the perturbation. The

complex nonlinear atmospheric and oceanic processes have not still been well considered in the literature. To overcome this

limitation, Mu (2000) proposed a nonlinear nonnormal mode approach, which introduces the concepts of nonlinear singular

values and nonlinear singular vectors, and is then used to successfully capture the local fastest-growing perturbations for a

2D quasi-geostrophic model (Mu and Wang, 2001). However, several disadvantages still exist, such as practical inconvenience35

and unreasonable physics of the large norm for local fastest growing perturbations. Starting from the perspective of nonlinear

programming, Mu et al. (2003) proposed an innovative approach, named conditional nonlinear optimal perturbation (CNOP),

to explore the optimal perturbation that can fully consider the nonlinear effect without any linear approximation assumption.

Generally, the CNOP approach captures initial perturbations with maximal nonlinear evolution given by a reasonable constraint

in physics. Therefore, the CNOP approach as a powerful tool has been widely used to investigate the fastest-growing initial40

error in the prediction of an atmospheric and oceanic event and to reveal the related mechanisms, such as the stability of the

thermohaline circulation (Mu et al., 2004; Zu et al., 2016), the predictability of ENSO (Duan et al., 2009; Duan and Hu, 2016)

and the Kuroshio path variations (Wang and Mu, 2015), the parameter sensitivity of the land surface processes (Sun and Mu,

2017), and typhoon-targeted observations (Mu et al., 2009; Qin and Mu, 2012). The review paper (Wang et al., 2020) provides

more details and refer (Kerswell, 2018) for more perspectives on the fields of fluid mechanics.45

The primary goal of obtaining CNOPs is to implement nonlinear programming efficiently and effectively. Generally, the

nonlinear optimization methods used in practice are the spectral projected gradient method (Birgin et al., 2000), sequential

quadratic programming (Barclay et al., 1998) and the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (Liu

and Nocedal, 1989). In fluid mechanics, the standard gradient method is typically used to obtain the minimal finite amplitude

disturbance that triggers the transition to turbulence in shear flows (Pringle and Kerswell, 2010), and the method of Lagrange50

multipliers is used to investigate perturbations that maximize the gain of disturbance energy in 2D isolated vortex and counter-

rotating vortex-pair (Navrose et al., 2018). For the CNOPs, the objective function of the initial perturbations in a black-box

model is obtained by the time evolution of a nonlinear differential equation. Thus, the essential difficulty here in computation

is how to obtain the gradient information efficiently. It is not practical to obtain gradient directly from the definition-based

methods, which require plenty of runs of the nonlinear model. Traditionally, the adjoint-based method is used in practice to55

obtain the gradient information by calculating the tangent linear model and the adjoint matrix (Kalnay, 2003). However, the

adjoint-based method can only deal with smooth programming and is quite unstable for the atmospheric and oceanic models

in practice. Also, a large amount of storage space to save the basic state during each iteration is a critical issue, that produces
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drastically high-dimensional optimization problems, issues with data storage, and long computation times. The current adjoint-

free computational approaches still have their faults. Considering two cases as examples, the ensemble-based methods still60

require colossal memory and repeated calculations (Wang and Tan, 2010; Chen et al., 2015), and the intelligent optimization

methods do not guarantee finding an optimal solution (Zheng et al., 2017; Yuan et al., 2015).

To overcome the limitations of the adjoint-based method described above, we start from the perspective of stochastic opti-

mization methods, which have been the algorithms that have powered recent developments in statistical machine learning (Bot-

tou et al., 2018). In this paper, we use the derivative-free method proposed by Nemirovski and Yudin (1983, Section 9.3.2) that65

is based on the simple high-dimensional divergence theorem (i.e., Stokes’ theorem). Following the popular and natural method,

the derivative-free method is a stochastic approximation-type method, which imitates a stochastic oracle of the first order by

the available stochastic order of the zeroth order. Then, based on the law of large numbers, we use the derivative-free method

by sampling and propose the concentration estimate by the general Hoeffding inequality. The basic description of the CNOP

settings and the proposed sample-based algorithm are given in Section 2 and Section 3, respectively. We then perform a prelim-70

inary numerical test for the simple Burgers equation with small viscosity in Section 4. A summary and discussion are included

in Section 5.

2 The Basic CNOP Settings

In this section, we provide a brief description of the CNOP approach. Currently, the CNOP approach has been extended to

investigate the influences of parameter and boundary condition errors on atmospheric and oceanic models by exploring the75

impact of initial errors (Mu and Wang, 2017). In this study, we only focus on the initial perturbations. The atmospheric and

oceanic model in a region x ∈ Ω⊆ Rd with ∂Ω as its boundary is given as




∂U

∂t
= F (U,P )

U |t=0 = U0

U |∂Ω = G,

(1)

where U is the reference state in the configuration space, P is the set of model parameters, F is a nonlinear operator, and U0

and G are the initial reference state and boundary condition, respectively. Without loss of generality, we note gt(·) to be the80

reference state U(t; ·) in the configuration space evolving with time. Thus, given the initial condition U0, we can obtain that

the reference state at time T is gT (U0) = U(T ;U0). If we consider the initial state U0 + u0 as the perturbation of U0, then the

reference state at time T is given by gT (U0 + u0) = U(T ;U0 + u0) .

With both the reference states gT (U0) and gT (U0 + u0), the objective function of the initial perturbation u0 based on the

initial condition U0 is85

J(u0;U0) =
∥∥gT (U0 + u0)− gT (U0)

∥∥2
, (2)
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and then the CNOP formulated as the constrained optimization problem is

max
∥u0∥≤δ

J(u0;U0). (3)

Both the objective function (2) and the optimization problem (3) come directly from the model (1), which is a theoretical

model and hence infinite-dimensional. Furthermore, when numerical computation is implemented, the optimization problem90

of infinite dimension is reduced to finite dimension. Without loss of generality, we shorten J(u0;U0) as J(u0) afterward for

convenience.

3 Sample-based algorithm

In this section, we briefly describe the sample-based algorithm and conclude with a formal theorem for the concentration

estimate of the approximate gradient. The detailed proof is shown in Appendix A. The sample-based algorithm consists of two95

steps. First, for the population case, we transform the expectation of the gradient on the unit ball to that of objective values

on the unit sphere by the high-dimensional Stokes’ theorem. Then, we provide an intuitive analysis of the concentration in

probability for the samples with the law of large numbers.

Let Bd be the unit ball in Rd and v0 ∼ Unif(Bd), a random variable following the uniform distribution in Bd. Given a small

real ϵ > 0, we can define the expectation of J in the unit ball centering on u0 as100

Ĵ(u0) = Ev0∈Bd [J(u0 + ϵv0)] . (4)

In other words, the objective function J is required to define in the ball B(0;δ+ϵ) = {u0 ∈ Rd : ∥u0∥ ≤ ϵ+δ}1. Also, we find

that Ĵ(u0) is approximate to J(u0), thus, Ĵ(u0)≈ J(u0). If the gradient ∇J exists in the ball B(0;δ + ϵ), the fact that the

expectation of v0 is zero tells us that the error estimate for the objective value is

∥J(u0)− Ĵ(u0)∥= O(ϵ2).105

With the representation of Ĵ(u0) in (4), we can obtain the gradient ∇Ĵ(u0) directly from the function value J by the high-

dimensional Stokes’ theorem as

∇Ĵ(u0) = Ev0∈Bd [∇J(u0 + ϵv0)] =
d

ϵ
·Ev0∈Sd−1 [J(u0 + ϵv0)v0] , (5)

where the random variable v0 follows the uniform distribution on the unit sphere Sd−1 = ∂Bd in the last equality. Similarly,

∇Ĵ(u0) is approximate to ∇J(u0), thus, ∇Ĵ(u0)≈∇J(u0). If the gradient ∇J exists in the ball B(0;δ + ϵ), we can show110

that the error estimate of the gradient is

∥∇Ĵ(u0)−∇J(u0)∥= O(dϵ). (6)
1Throughout the paper, the norm ∥ · ∥ is defined as the Euclidean norm

∥v∥=

√√√√ d∑
i=1

v2
i .
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The rigorous description and proof are shown in Lemma A.1 with its proof in Appendix A.

Next, we provide a simple but intuitive analysis of the convergence in probability for the samples in practice. With the

representation of ∇Ĵ(u0) in (5), the weak law of large numbers states that the sample average converges in probability toward115

the expected value. Thus, for any t > 0, we have

Pr

(∥∥∥∥
d

nϵ

n∑

i=1

J(u0 + ϵv0,i)v0,i−∇Ĵ(u0)
∥∥∥∥≥ t

)
→ 0, with n→∞.

Combined with the error estimate of gradient (6), if t is assumed to be larger than Ω(dϵ) (i.e.,there exists a constant τ > 0 such

that t > τdϵ), then the probability that the sample average approximates to ∇J(u0) satisfies

Pr

(∥∥∥∥
d

nϵ

n∑

i=1

J(u0 + ϵv0,i)v0,i−∇J(u0)
∥∥∥∥≥ t−O(dϵ)

)
→ 0, with n→∞.120

Finally, we conclude the section with the rigorous Chernoff-type bound in probability for the simple but intuitive analysis

above with the following theorem. The rigorous proof is shown in Appendix A with Lemma A.2 and Lemma A.3 proposed.

Theorem 1. If J is continuously differentiable and satisfies the gradient Lipschitz condition (i.e., there exists a constant L > 0

such that for any u0,1,u0,2 ∈B(0, δ)), then we have

∥∇J(u0,1)−∇J(u0,2)∥ ≤ L∥u0,1−u0,2∥.125

For any t > Ldϵ/2, there exists a constant C > 0 such that the concentration inequality for samples is satisfied:

Pr

(∥∥∥∥
d

nϵ

n∑

i=1

J(u0 + ϵv0,i)v0,i−∇J(u0)
∥∥∥∥≥ t− Ldϵ

2

)
≤ 2exp

(
−Cnt2

)
.

4 Model and numerical experiments

In this section, we perform several numerical experiments to compare the proposed sample-based algorithms with the baseline

algorithms for a theoretical model, the Burgers equation with small viscosity. After the concept of CNOPs was proposed in (Mu130

et al., 2003), there have been several methods, adjoint-based or adjoint-free, proposed to obtain the CNOPs (Wang and Tan,

2010; Chen et al., 2015; Zheng et al., 2017; Yuan et al., 2015). However, essential difficulties, such as a massive storage space to

save the basic state and instability when running an atmospheric and oceanic model, have still not been overcome. In this study,

different from traditional deterministic optimization methods above, we obtain the approximate gradient by sampling objective

values introduced in Section 3. Then, we use the second spectral projected gradient method (SPG2) proposed in (Birgin et al.,135

2000) to obtain the CNOPs.
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We consider the simple theoretical model, the Burgers equation with small viscosity under the Dirichlet condition that

describes the nonlinear time evolution of the reference state U as




∂U

∂t
+ U

∂U

∂x
= γ

∂2U

∂x2
, (x,t) ∈ [0,L]× [0,T ]

U(0, t) = U(L,t) = 0, t ∈ [0,T ]

U(x,0) = sin
(

2πx

L

)
, x ∈ [0,T ]

(7)

where γ = 0.005m2/s and L = 100m. We use the leapfrog/DuFort-Frankel scheme (i.e., the central finite difference scheme140

in both the temporal and spatial directions) to numerically solve the viscous Burgers equation above (7), with ∆x = 1m as

the spatial grid size (d = 101) and ∆t = 1s as the time step. The objective function J(u0) used for optimization (2) can be

rewritten in the form of the norm square of perturbation as

J(u0) = ∥u(T )∥2 =
d∑

i=1

ui(T )2.

The constraint for the initial condition is set to be ∥u0∥ ≤ δ = 8× 10−4m/s. With ϵ = 10−8 for the definition of Ĵ(u0) in (4),145

we perform numerical experiments to calculate the CNOPs directly from the definition, by the adjoint-based method and the

sample-based method with n = 5 and n = 15. The prediction time is set for two cases, T = 30s and T = 60s, respectively. The

CNOPs computed by the four algorithms are shown in Figure 1, and the computation times are shown in Table 1.
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Figure 1. Spatial distributions of CNOPs (m/s). Prediction time: on the top is T = 30s, and on the bottom is T = 60s. From left to right:

Definition method, Adjoint method, Sample method (n = 5) and Sample method (n = 15).

Figure 1 shows that the CNOP obtained by the adjoint method is nearly identical to that computed directly from the definition,

when the numerical gradient with the spatial grid is set as α = 10−8 for both the two cases, T = 30s and T = 60s. The150

computation time for the adjoint method is known to be far less than that directly computed from the definition, which is tested
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for the Burgers equation with small viscosity in Table 1. For the sample-based method, some fluctuating errors of the CNOPs

are shown in the spatial distributions (the right two columns of Figure 1) due to noise. However, the basic spatial pattern of the

CNOPs can be obtained, even in the case with fewer samples n = 5. Also, the computation time to obtain the CNOP by taking

the samples n = 15 is similar with that of the adjoint method. However, the computation time of the sample-based method155

decreases by more than half when we reduce the number of samples from n = 15 to n = 5.

Time

Methods
Definition Adjoint Sample (n = 5) Sample (n = 15)

T = 30s 3.2788s 1.0066s 0.3836s0.3836s0.3836s 0.8889s

T = 60s 6.3106s 1.4932s 0.6464s0.6464s0.6464s 1.4845s

Table 1. Comparison of computation time within the four algorithms for the prediction time, T = 30s and T = 60s.

The nonlinear time evolutions of all CNOPs in terms of norm squares ∥u(t)∥2, which are obtained by the four algorithms

above, are nearly identical in Figure 2 for both the two cases, T = 30s and T = 60s. With T = 30s, the nonlinear time evolution

of the CNOP in terms of norm square ∥u(t)∥2 is small before the perturbations start to proliferate at approximately time

t = 20s, and then its growth changes sharply. Similarly, the nonlinear time evolution tendency is nearly identical to that with160

T = 60s with the rapid growth of the perturbations at approximately t = 50s. Considering the top two figures of Figure 3, we

find that the most important difference in the nonlinear time evolution of norm square of perturbations ∆∥u(t)∥2 is between the

definition method and the sample-based method with n = 5 samples, which is less than 6×10−7m2/s2 for the prediction time

T = 30s and 0.12m2/s2 for the prediction time T = 60s, respectively. Considering the bottom two figures of Figure 3, this

phenomenon can also be observed — the relative difference within the nonlinear time evolution ∆∥u(t)∥2/∥u(t)∥2 is nearly165

zero, except for a large ratio at the time t = 11s.
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Figure 2. Nonlinear time evolution of CNOP in terms of the norm square (m2/s2). Left: the prediction time is T = 30s; Right: the prediction

time is T = 60s, respectively.
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Figure 3. Nonlinear evolution of CNOPs in terms of the difference (m2/s2) and relative difference of the norm square of perturbations.

The top two figures show the difference and the bottom two show the relative difference. Left: the prediction time is T = 30s; Right: the

prediction time is T = 60s.

Based on all the results in the numerical experiments above, for Figures 1 - 3 and Table 1, we use the sample-based method

with n = 5 to obtain the CNOP within a shorter time at the cost of losing accuracy while overcoming the disadvantage of the

massive storage space for the basic state and the running instability based on the linearization.

5 Summary and discussion170

In this paper, we introduced a sample-based algorithm to obtain the CNOPs, that is based on the high-dimensional Stokes’

theorem and the law of large numbers. We have also provided a rigorous concentration estimate for the exact gradient by

averaging the samples and compared the performance between the sample-based and baseline algorithms by performing several

numerical experiments. Compared with the classical adjoint-based method, this approach is easier to implement and reduces

the amount of required storage for the basic state. When we reduce the number of samples to some extent, it reduces the175

computation markedly more when using the sample-based method, which can guarantee that the CNOP obtained is nearly

consistent with some minor fluctuating errors oscillating in spatial distribution. Currently, the CNOP method has been widely

applied to the predictability of atmospheric and oceanic motions. However, for an earth system model that is more realistic,
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such as the Community Earth System Model (CESM), many difficulties still exist in obtaining the CNOP (Wang et al., 2020),

or even for a high–regional resolution model, such as the Weather Research and Forecasting (WRF) Model, which is used180

widely in the operational forecasting (Yu et al., 2017). Based on increasingly reliable models developed in atmospheric science

and oceanography, we will now comment on some extensions of the sample-based method to investigate them using more

complex models, whether theoretical or practical, to obtain the CNOPs. First, to test the validity of the sampling algorithm to

calculate the CNOPs, we start from an idealized ocean-atmosphere coupling model with its adjoint model, the Zebiak-Cane

(ZC) model (Zebiak and Cane, 1987), which might characterize the oscillatory behavior of ENSO in amplitude and period185

based on oceanic wave dynamics. Mu et al. (2007) obtained the CNOP and studied the spring predictability barrier for El Niño

events by applying the ZC model and its adjoint model. In addition, Mu et al. (2009) also used the PSU/NCAR mesoscale

model (i.e.,the MM5 model) with its adjoint model to explore the predictability of tropical cyclones by computing its CNOP.

We implement the sample-based methods to obtain the CNOPs on the above models and compare their performances with the

adjoint-based methods. Second, based on the fact about the validity of the sampling algorithm, the CNOPs will be investigated190

for an earth system model or atmosphere-ocean general circulation models (AOGCMs) without its adjoint model. We take the

sample-based algorithms to investigate further the nonlinear instability and predictability in a popular atmospheric blocking

model, the nonlinear multiscale interaction model (NMI) (Luo et al., 2014), which also successfully implements an eddy-

blocking matching mechanism.

Appendix A: Proof of Theorem 1195

Lemma A.1. If Ĵ(u0) is defined in (4), then the equation (5) is satisfied. Also, under the same assumption of Theorem 1, the

estimates for the objective value and gradient difference can be described by

∥Ĵ(u0)− J(u0)∥ ≤
Lϵ2

2
, (A1)

∥∇Ĵ(u0)−∇J(u0)∥ ≤
Ldϵ

2
. (A2)

Proof of Lemma A.1. First, with the definition of Ĵ(u0), we show the proof about the computation of gradient ∇Ĵ(u0) in (5).200

– For d = 1, the gradient Ĵ(u0) about u0 can be computed as

dĴ(u0)
du0

=
d

du0


1

2

1∫

−1

J(u0 + ϵv0)dv0


=

1
2

1∫

−1

dJ(u0 + ϵv0)
ϵdv0

dv0 =
J(u0 + ϵ)− J(u0− ϵ)

2ϵ
.
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– For the case of d≥ 2, we assume that a ∈ Rd is an arbitrary vector. Then, the gradient ∇Ĵ(u0) satisfies the following

equality as

aaa · ∇Ĵ(u0) =
∫

v0∈Bd

aaa · ∇u0J(u0 + ϵv0)dV205

=
1
ϵ

∫

v0∈Bd

∇v0 · (J(u0 + ϵv0)aaa)dV

=
1
ϵ

∫

v0∈Sd−1

J(u0,k + ϵv0)aaa · v0dS

= aaa · 1
ϵ

∫

v0∈Sd−1

J(u0 + ϵv0)v0dS.

Because the vector aaa is arbitrary, we can obtain the following equality:

∇
∫

v0∈Bd

J(u0 + ϵv0)dV =
1
ϵ

∫

v0∈Sd−1

J(u0 + ϵv0)v0dS.210

Then, with d being the ratio of the surface area and the volume of Bd, the representation of the gradient in (5) is satisfied.

If J is continuously differentiable and satisfies the gradient Lipschitz condition, we can obtain the following inequality for J :

∣∣J(u0 + ϵv0)− J(u0)− ϵ⟨∇J(u0),v0⟩
∣∣≤ Lϵ2

2
∥v0∥2.

Because
∫
v0∈Bd ⟨∇J(u0),v0⟩dV = 0, the estimate (A1) can be obtained directly. For any i ̸= j ∈ {1, . . . ,d}, v0,i and v0,j are

uncorrelated, thus215
∫

v0∈Sd−1

v0,iv0,jdS = 0;

for the case i = j ∈ {1, . . . ,d}, we have

∫

v0∈Sd−1

v2
0,idS =

1
d

∫

v0∈Sd−1

(
d∑

i=1

v2
0,i

)
dS =

1
d

∫

v0∈Sd−1

dS.

Then, with the row vector representation of v0, we can obtain the following equality:

Ev0∈Sd−1 [vT0 v0] =
1
d
· I.220

Also, we can obtain the equivalent representation of the gradient ∇J(u0) as

∇J(u0) =
d

ϵ
·Ev0∈Sd−1 [ϵ⟨∇J(u0),v0⟩v0] .
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Finally, with Ev0∈Sd−1 [v0] = 0, the norm of the gradient difference is estimated as

∥∇Ĵ(u0)−∇J(u0)∥ ≤
∥∥∥∥

d

ϵ
·Ev0∈Sd−1 [(J(u0 + ϵv0)− J(u0))v0]−

d

ϵ
·Ev0∈Sd−1 [ϵ⟨∇J(u0),v0⟩v0]

∥∥∥∥

≤ d

ϵ
·Ev0∈Sd−1

[∥∥J(u0 + ϵv0)− J(u0)− ϵ⟨∇J(u0),v0⟩
∥∥ ·
∥∥v0

∥∥]225

≤ Ldϵ

2
,

where the last inequality follows the gradient Lipschitz condition.

Considering any ϵ > 0, to proceed with the concentration inequality, we must still know that the random variable J(u0+ϵv0)

for v0 ∼ Unif(Sd−1) is sub-Gaussian. Thus, we first introduce the following lemma.230

Lemma A.2 (Proposition 2.5.2 in Vershynin (2018)). Let X be a random variable. If there exist two constants K1,K2 > 0

such that the moment generating function of X2 is bounded:

E
[
exp

(
X2

K2
1

)]
≤K2,

then the random variable X is sub-Gaussian.

Because J(u0 + ϵv0) is bounded on Sd−1, exp((J(u0 + ϵv0)2/K2
1 ) is integrable on Sd−1 for any K1 > 0, i.e., there exists a235

constant K2 > 0 such that

Ev0∈Sd−1

[
exp

(
J(u0 + ϵv0)2

K2
1

)]
≤K2.

With Lemma A.2, the random variable J(u0 + ϵv0) is sub-Gaussian. Therefore, for any fixed vector v′0 ∈ Sd−1, we know

the random variable J(u0 + ϵv0)⟨v0,v
′
0⟩ is sub-Gaussian. We will now introduce the following lemma to proceed with the

concentration inequality.240

Lemma A.3 (Theorem 2.6.3 in Vershynin (2018)). Let X1, . . . ,Xn be independent, mean zero, sub-Gaussian random variables,

and a = (a1, . . . ,an) ∈ Rn. Then, for every t≥ 0, we have

Pr

(∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣≥ t

)
≤ 2exp

(
− ct2

K2∥a∥2
)

,

where K = max1≤i≤n ∥Xi∥ψ2 .2

2The sub-Gaussian norm of a random variable X is defined as

∥X∥ψ2 = inf

{
t > 0 : Eexp

(
X2

t2

)
≤ 2

}
.
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With Lemma A.1 and Lemma A.3, we can obtain the concentration inequality for the samples as245

Pr

(∣∣∣∣
d

nϵ

n∑

i=1

〈
J(u0 + ϵv0,i)v0,iv

′
0

〉
−
〈
∇Ĵ(u0),v′0

〉∣∣∣∣≥ t

)
≤ 2exp

(
−cnt2

K2

)
.

Because v′0 is a unit vector on Sd−1, we can proceed with the concentration estimate as follows by the Cauchy-Schwarz

inequality:

Pr

(∥∥∥∥
d

nϵ

n∑

i=1

J(u0 + ϵv0,i)v0,i−∇Ĵ(u0)
∥∥∥∥≥ t

)
≤ 2exp

(
−cnt2

K2

)
.

Based on the triangle inequality, the concentration inequality can proceed with the estimate of the gradient difference (A2) as250

Pr

(∥∥∥∥
d

nϵ

n∑

i=1

J(u0 + ϵv0,i)v0,i−∇J(u0)
∥∥∥∥≥ t− Ldϵ

2

)
≤ 2exp

(
−cnt2

K2

)

for any t > Ldϵ/2. With C = c/K2, the proof of Theorem 1 is complete.
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