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Abstract. In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning techniques to

obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional (deterministic) optimization

methods. Specifically, the traditional approach requires numerically computing the gradient (first-order information).

However, the sampling approach directly reduces the expensive gradient (first-order information) by the objective value

(zeroth-order information), which also avoids using the adjoint technique that requires large amounts of storage and is unus-5

able for many atmosphere and ocean models. We present an intuitive analysis for the sampling algorithm and a rigorous

Chernoff-type concentration inequality to probabilistically approximate the exact gradient. The experiments are im-

plemented to obtain the CNOPs for two numerical models, the Burgers equation with small viscosity and the Lorenz-96

model. We demonstrate the CNOPs obtained with their spatial structures, objective values, computation times and non-

linear error growth. Compared with the performance of the three approaches, the CNOPs’ spatial structures, objective10

values, and nonlinear error growth is nearly consistent, while the computation time using the sampling approach with

fewer samples is extremely shorter. In other words, the new sampling approach from state-of-the-art statistical machine

learning techniques shortens the computation time to the utmost at the cost of losing little accuracy.

1 Introduction

The short-term behavior of a predictive model with imperfect initial data is a critical issue for weather and climate predictability.15

Understanding the model’s sensitivity to errors in the initial data is of vital importance to assess subsequent errors in

forecasts. Perhaps the simplest and most practical way is to estimate the likely uncertainty in the forecast by considering

to run with initial data polluted by the most dangerous errors. Traditionally, based on the linear stability analysis of fluid

dynamics, the well-known tool is the normal mode method (Rayleigh, 1879; Lin, 1955), and has been used to understand and

analyze the observed cyclonic waves and long waves of middle and high latitudes (Eady, 1949). However, atmospheric and20

oceanic models are often unstable. Specifically, the transient growth of perturbations can still occur in the absence of growing

normal modes (Farrell and Ioannou, 1996a, b). Therefore, the normal mode theory is generally unavailable for the prediction

generated by atmospheric and oceanic flows. To achieve the goal of prediction for a low-order two-layer quasi-geostrophic
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model in a periodic channel, Lorenz (1965) first proposes a non-normal mode approach based on the view of linearization,

which introduces the concepts of the tangent linear model, adjoint model, singular values, and singular vectors. Then, Farrell25

(1982) uses this linear approach to investigate the linear instability within finite time. In the last decade of the past century,

such a linear approach has been widely used to identify the most dangerous perturbations of atmospheric and oceanic flows,

and extended to explore error growth and predictability, such as patterns of the general atmospheric circulations (Buizza and

Palmer, 1995) and the coupled ocean-atmosphere model of the El Niño-Southern Oscillation (ENSO) (Xue et al., 1997a, b;

Thompson, 1998; Samelson and Tziperman, 2001). Recently, the non-normal approach has also been extended to an oceanic30

study for investigating the predictability of the Atlantic meridional overturning circulation (Zanna et al., 2011) and the Kuroshio

path variations (Fujii et al., 2008).

Both the approaches of normal and non-normal modes are based on the assumption of linearization, which means that the

initial error must be so small that a tangent linear model can approximately quantify the error’s growth. Besides, the

complex nonlinear atmospheric and oceanic processes have not yet been well considered in the literature. To overcome this35

limitation, Mu (2000) proposes a nonlinear non-normal mode approach, which introduces the concepts of nonlinear singular

values and nonlinear singular vectors, and is then used to successfully capture the local fastest-growing perturbations for a

2D quasi-geostrophic model (Mu and Wang, 2001). However, several disadvantages still exist, such as practical inconvenience

and unreasonable physics of the large norm for local fastest growing perturbations. Starting from the perspective of nonlinear

programming, Mu et al. (2003) proposes an innovative approach, named conditional nonlinear optimal perturbation (CNOP),40

to explore the optimal perturbation that can fully consider the nonlinear effect without any assumption of linear approximation.

Generally, the CNOP approach captures initial perturbations with maximal nonlinear evolution given by a reasonable constraint

in physics. Therefore, the CNOP approach as a powerful tool has been widely used to investigate the fastest-growing initial

error in the prediction of an atmospheric and oceanic event and to reveal the related mechanisms, such as the stability of the

thermohaline circulation (Mu et al., 2004; Zu et al., 2016), the predictability of ENSO (Duan et al., 2009; Duan and Hu, 2016)45

and the Kuroshio path variations (Wang and Mu, 2015), the parameter sensitivity of the land surface processes (Sun and Mu,

2017), and typhoon-targeted observations (Mu et al., 2009; Qin and Mu, 2012). The review paper (Wang et al., 2020) provides

more details, and we also refer (Kerswell, 2018) for more perspectives on general fluid mechanics.

The primary goal of obtaining the CNOPs is to efficiently and effectively implement nonlinear programming, which gener-

ally in practice mainly includes the spectral projected gradient (SPG) method (Birgin et al., 2000), sequential quadratic pro-50

gramming (SQP) (Barclay et al., 1998) and the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Liu

and Nocedal, 1989). Also, gradient-based optimization algorithms are adopted in the field of fluid mechanics to obtain the

minimal finite amplitude disturbance that triggers the transition to turbulence in shear flows (Pringle and Kerswell, 2010),

and the method of Lagrange multipliers is used to investigate perturbations that maximize the gain of disturbance energy in

a 2D isolated vortex and counter-rotating vortex-pair (Navrose et al., 2018). For the CNOP, the objective function of the ini-55

tial perturbations in a black-box model is obtained by the error growth of a nonlinear differential equation. Therefore, the

essential difficulty here is how to efficiently compute the gradient (first-order information). Generally, it is unavailable

for an earth system model or an atmosphere-ocean general circulation model to compute the gradient directly from
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the definition of numerical methods since it requires plenty of runs of the nonlinear model. Perhaps the most popular

and practical method adopted to obtain the gradient is the adjoint technique, which is based on calculating the tan-60

gent linear model and the adjoint matrix (Kalnay, 2003). Specifically, when we can distill out the adjoint matrix or

the expression of adjoint iteration, it becomes available to compute the gradient at the cost of massive storage space

to save the basic state. In other words, the adjoint-based method uses a large amount of storage space to exchange the

significant reduction of computation time. However, the adjoint-based method can only deal with the smooth case and

is unusable for many atmospheric and oceanic models since the adjoint models are not easy to develop. The ensemble-65

based methods are proposed in (Wang and Tan, 2010), which introduces the classical techniques of EOF decomposition

widely used in atmospheric science and oceanography. Specifically, it takes some principal modes of the EOF decom-

position to approximate the tangent linear matrix. However, the colossal memory and repeated calculations occurring

in the adjoint-based method still exist (Wang and Tan, 2010; Chen et al., 2015). In addition, the intelligent optimization

methods (Zheng et al., 2017; Yuan et al., 2015) are unavailable on the high-dimension problem (Wang et al., 2020). All70

of the traditional (deterministic) optimization methods above can not guarantee to find an optimal solution.

To overcome the limitations of the adjoint-based method described above, we start to take consideration from the perspective

of stochastic optimization methods, which have powered recent developments in statistical machine learning (Bottou et al.,

2018). In this paper, we use the derivative-free method proposed by Nemirovski and Yudin (1983, Section 9.3.2) that takes a

basis on the simple high-dimensional divergence theorem (i.e., Stokes’ theorem). Along the popular and natural way, the75

derivative-free method imitates the first-order oracle by the available zeroth-order oracle in terms of expectation. It is

essentially a probabilistic approximation-type method, so we implement the derivative-free method via sampling. Based

on the law of large numbers, we provide a concentration estimate for the gradient by the general Hoeffding inequality.

This paper is organized as follows. The basic description of the CNOP settings and the proposed sampling algorithm are

given in Section 2 and Section 3, respectively. We then perform the preliminary numerical test for two numerical models, the80

simple Burgers equation with small viscosity and the Lorenz-96 model in Section 4. A summary and discussion are included

in Section 5.

2 The Basic CNOP Settings

In this section, we provide a brief description of the CNOP approach. Currently, the CNOP approach has been extended to

investigate the influences of other errors, i.e., parameter errors and boundary condition errors, on atmospheric and oceanic85

models (Mu and Wang, 2017) beyond the original intention of CNOPs exploring the impact of initial errors. We only focus on

the initial perturbations in this study.
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Let Ω be a region in Rd with ∂Ω as its boundary. We provide a general expression for the atmospheric and oceanic model as


∂U

∂t
= F (U,P )

U |t=0 = U0

U |∂Ω =G,

(1)90

where U is the reference state in the configuration space, P is the set of model parameters, F is a nonlinear operator, and U0

and G are the initial reference state and the boundary condition, respectively. Without loss of generality, we note gt(·) to be

the reference state evolving with time U(t; ·) in the configuration space. Thus, given any initial state U0, we can obtain that

the reference state at time T is gT (U0) = U(T ;U0). If we consider the initial state U0 +u0 as the perturbation of U0, then the

reference state at time T is given by gT (U0 +u0) = U(T ;U0 +u0) .95

With both the reference states at time T , gT (U0) and gT (U0+u0), the objective function of the initial perturbation u0 based

on the initial condition U0 is

J(u0;U0) =
∥∥gT (U0 +u0)− gT (U0)

∥∥2 , 1 (2)

and then the CNOP formulated as the constrained optimization problem is

max
∥u0∥≤δ

J(u0;U0). (3)100

Both the objective function (2) and the optimization problem (3) come directly from the theoretical model (1). When we

take the numerical computation, the properties of the two objects above, (2) and (3), probably become different. Here,

it is necessary to mention some similarities and dissimilarities between the theoretical model (1) and its numerical

implementation. If the model (1) is a system of ordinary differential equations, then it is finite-dimensional, and so there

are no other differences between the theoretical model (1) and its numerical implementation except some numerical105

errors. However, if the model (1) is a partial differential equation, then it is infinite-dimensional. When we implement it

numerically, the dimension is reduced to be finite for both the objective function (2) and the optimization problem (3).

At last, we conclude this section with the notation J(u0) shortening J(u0;U0) afterward for convenience.

3 Sample-based algorithm

In this section, we briefly describe the sampling algorithm and then conclude with a formal theorem to probabilistically110

approximate the exact gradient by use of the Chernoff-type concentration inequality. The detailed proof is postponed

to show in Appendix A. The sampling algorithm is described in two steps. We consider first the population case. In the

sense of the expectation, the gradient on the unit ball is reduced to the objective value on the unit sphere, which is based on

the high-dimensional Stokes’ theorem. Then, we show the numerical implementation via sampling and provide an intuitive

analysis of the concentration inequality for the samples with the law of large numbers.115
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Let Bd be the unit ball in Rd and v0 ∼ Unif(Bd), a random variable (v0) following the uniform distribution in the unit ball

(Bd). Given a small real ϵ > 0, we can define the expectation of the objective function J in the ball with the center u0 and the

radius ϵ as

Ĵ(u0) = Ev0∈Bd [J(u0 + ϵv0)] . (4)

In other words, the objective function J is required to define in the ball B(0;δ+ ϵ) = {u0 ∈ Rd : ∥u0∥ ≤ ϵ+ δ}. Also, we find120

that Ĵ(u0) is approximate to J(u0), that is, Ĵ(u0)≈ J(u0). If the gradient ∇J exists in the ball B(0;δ+ ϵ), the fact that the

expectation of v0 is zero tells us that the error of the objective value is estimated as

∥J(u0)− Ĵ(u0)∥=O(ϵ2).

Before proceeding to the next, we note the unit sphere as Sd−1 = ∂Bd. With the representation of Ĵ(u0) in (4), we can obtain

the gradient ∇Ĵ(u0) directly from the function value J by the high-dimensional Stokes’ theorem as125

∇Ĵ(u0) = Ev0∈Bd [∇J(u0 + ϵv0)] =
d

ϵ
·Ev0∈Sd−1 [J(u0 + ϵv0)v0] , (5)

where v0 ∼ Unif(Sd−1) in the last equality. Similarly, ∇Ĵ(u0) is approximate to ∇J(u0), that is, ∇Ĵ(u0)≈∇J(u0). If the

gradient ∇J exists in the ball B(0;δ+ ϵ), we can show that the error of the gradient is estimated as

∥∇Ĵ(u0)−∇J(u0)∥=O(dϵ). (6)

The rigorous description and proof are shown in Appendix A (Lemma A.1 with its proof).130

Next, we provide a simple but intuitive analysis of the convergence in probability for the samples in practice. With the

representation of ∇Ĵ(u0) in (5), the weak law of large numbers states that the sample average converges in probability toward

the expected value, that is, for any t > 0, we have

Pr

(∥∥∥∥ d

nϵ

n∑
i=1

J(u0 + ϵv0,i)v0,i−∇Ĵ(u0)

∥∥∥∥≥ t

)
→ 0, with n→∞.

Combined with the error estimate of gradient (6), if t is assumed to be larger than Ω(dϵ) (i.e., there exists a constant τ > 0 such135

that t > τdϵ), then the probability that the sample average approximates to ∇J(u0) satisfies

Pr

(∥∥∥∥ d

nϵ

n∑
i=1

J(u0 + ϵv0,i)v0,i−∇J(u0)

∥∥∥∥≥ t−Ω(dϵ)

)
→ 0, with n→∞.

Finally, we conclude the section with the rigorous Chernoff-type bound in probability for the simple but intuitive analysis

above with the following theorem. The rigorous proof is shown in Appendix A with Lemma A.2 and Lemma A.3 proposed.

Theorem 1. If J is continuously differentiable and satisfies the gradient Lipschitz condition, i.e., for any u0,1,u0,2 ∈B(0, δ),140

there exists a constant L > 0 such that the following inequality holds as

∥∇J(u0,1)−∇J(u0,2)∥ ≤ L∥u0,1 −u0,2∥.
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For any t > Ldϵ/2, there exists a constant C > 0 such that the samples satisfy the concentration inequality as

Pr

(∥∥∥∥ d

nϵ

n∑
i=1

J(u0 + ϵv0,i)v0,i−∇J(u0)

∥∥∥∥≥ t− Ldϵ

2

)
≤ 2exp

(
−Cnt2

)
.

4 Numerical model and experiments145

In this section, we perform several experiments to compare the proposed sampling algorithm with the baseline algorithms for

two numerical models, the Burgers equation with small viscosity and the Lorenz-96 model. After the CNOP was first proposed

in (Mu et al., 2003), plenty of methods, adjoint-based or adjoint-free, have been introduced to compute the CNOPs (Wang

and Tan, 2010; Chen et al., 2015; Zheng et al., 2017; Yuan et al., 2015). However, some essential difficulties have still not

been overcome. Taking the classical adjoint technique for example, the massive storage space and unusability in many150

atmospheric and oceanic modes are the two insurmountable points. In this study, different from traditional (deterministic)

optimization methods above, we obtain the approximate gradient by sampling the objective values introduced in Section 3.

Then, we use the second spectral projected gradient method (SPG2) proposed in (Birgin et al., 2000) to compute the CNOPs.

4.1 The Burgers equation with small viscosity

We first consider a simple theoretical model, the Burgers equation with small viscosity under the Dirichlet condition. It should155

be noted here that we adopt the internal units, m and s. The reference state U evolves nonlinearly with time as

∂U

∂t
+U

∂U

∂x
= γ

∂2U

∂x2
, (x,t) ∈ [0,L]× [0,T ]

U(0, t) = U(L,t) = 0, t ∈ [0,T ]

U(x,0) = sin

(
2πx

L

)
, x ∈ [0,T ]

(7)

where γ = 0.005m2/s and L= 100m. We use the leapfrog/DuFort-Frankel scheme (i.e., the central finite difference scheme

in both the temporal and spatial directions) to numerically solve the viscous Burgers equation above (7), with ∆x= 1m as

the spatial grid size (d= 101) and ∆t= 1s as the time step. The objective function J(u0) used for optimization (2) can be160

rewritten in the form of the perturbation’s norm square as

J(u0) = ∥u(T )∥2 =
d∑
i=1

ui(T )
2.

The constraint parameter is set to be δ = 8×10−4m/s such that the initial perturbation satisfies ∥u0∥ ≤ δ = 8×10−4m/s.

We note the numerical gradient computed directly as the definition method, where the step size for the difference is set

to be h= 10−8. Together with the adjoint methods, we set them as the baseline algorithms. For the sampling algorithm,165

we set the parameter ϵ= 10−8 in (4), the expectation of the objective function. The time T in the objective function (2)

is named as the prediction time. We take the two groups of numerical experiments according to the prediction time,
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T = 30s and T = 60s, to calculate the CNOPs by the baseline algorithms and the sampling method. And then, we com-

pare their performances to show the superiority of the sampling method.

The spatial distributions of the CNOPs computed by the baseline algorithms and the sampling method are shown170

in Figure 1, where we can find the change of the CNOPs’ spatial pattern for the Burgers equation with small viscosity

as:

(1) The spatial pattern of the CNOPs computed by two baseline algorithms, the definition method and the adjoint

method, are nearly identical.

(2) Based on the spatial pattern of the CNOPs computed by two baseline algorithms, there are some fluctuating errors175

for the sampling method.

(3) When the number of samples increase from n= 5 to n= 15, the fluctuating errors in the spatial patter are re-

duced.
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Figure 1. Spatial distributions of CNOPs (unit: m/s). Prediction time: on the top is T = 30s, and on the bottom is T = 60s.

We have figured out the spatial distributions of the CNOPs in Figure 1. Or says, we have qualitatively characterized

the CNOPs. However, we still need some quantities to measure the CNOPs’ performance. Here, we use the objective180

value of the CNOP as the quantity. The objective values corresponding to the spatial patterns in Figure 1 are shown

in Table 1. To show them clearly, we make them over that computed by the definition method with the percentage

representation, which is also shown in Table 1. For the Burgers equation with small viscosity, we can also find that the

objective values by the adjoint method over that by the definition method is 100% for both the two cases, T = 30s and

T = 60s, respectively; the objective values by the sampling method are all more than 90%; when we increase the number185

of samples from n= 5 to n= 15, the percentage increases from 94.95% to 96.75% for the case T = 30s and from 95.46%
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Case

Method
Definition Adjoint Sampling (n= 5) Sampling (n= 15)

T = 30s 1.2351× 10−5 1.2351× 10−5 1.1727× 10−5 1.1950× 10−5

100% 100% 94.95% 96.75%

T = 60s 2.5035 2.5035 2.3899 2.4426

100% 100% 95.46% 97.57%

Table 1. The objective values of CNOPs and the percentage over that computed by the definition method.

to 97.57% for the case T = 60s. The objective values of the CNOPs in Table 1 quantitatively echo the performances of

spatial patterns in Figure 1.

Next, we show the computation times to obtain the CNOPs by the baseline algorithms and the sampling method

in Table 2. For the Burgers equation with small viscosity, the computation time taken by the adjoint method is far less190

than that directly by the definition method for the two cases, T = 30s and T = 60s. When we implement the sampling

method, the computation time using n= 15 samples is almost the same as that taken directly by the definition method.

If we reduce the number of samples from n= 15 to n= 5, the computation time is shortened by more than half.

Case

Method
Definition Adjoint Sampling (n= 5) Sampling (n= 15)

T = 30s 3.2788s 1.0066s 0.3836s0.3836s0.3836s 0.8889s

T = 60s 6.3106s 1.4932s 0.6464s0.6464s0.6464s 1.4845s

Table 2. Comparison of computation times (unit: s). Run on Matlab2022a with Intel® CoreTM i9-10900 CPU@2.80GHz.

Finally, we describe the nonlinear evolution behavior of the CNOPs in terms of norm squares ∥u(t)∥2 computed

by the baseline algorithms and the sampling method in Figure 2. We can find that there exists a fixed turning-time195

point, approximately t= 20s for the prediction time T = 30s and approximately t= 50s for T = 60s. In the beginning,

the nonlinear growth of the CNOPs is very slow. When the evolving time comes across the fixed turning-time point,

the perturbations start to proliferate. Figure 2 shows the nonlinear evolution behaviors of the CNOPs computed by

all the algorithms above are almost consistent but do not provide any tiny difference between the baseline algorithms

and the sampling method. So we further show that the nonlinear evolution behavior of the CNOPs in terms of the200

difference ∆∥u(t)∥2 and relative difference ∆∥u(t)∥2/∥u(t)∥2 based on the definition method in Figure 3. There is

no difference or relative difference in the nonlinear error growth between the two baseline algorithms. The top two

graphs in Figure 3 show that the differences do not grow fast until the time comes across the turning-time point. When

we reduce the number of samples, the difference enlarges gradually, with the maximum around 6× 10−7m2/s2 for

T = 30s and 0.12m2/s2 for T = 60s. However, the differences are very small compared with the nonlinear growth of205
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Figure 2. Nonlinear evolution behavior of the CNOPs in terms of the norm square.

the CNOPs themselves, which is shown by the relative difference in the bottom two graphs of Figure 3. In addition, some

numerical errors exist around t= 11s for the relative difference and decrease with increasing the number of samples.

The Burgers equation with small viscosity is a partial differential equation, which is an infinite-dimensional dynami-

cal system. In the numerical implementation, it corresponds to the high-dimensional case. Taking all the performances

with different test quantities into account, i.e., spatial structures, objective values, computation times and nonlinear210

error growth, we conclude that the adjoint method obtains almost the total information and save much computation

time simultaneously; the sampling method with n= 15 samples drops a few accuracies and loses little information but

share nearly the same computation time; when we reduce the number of samples from n= 15 to n= 5, we can obtain

about 95% of information as the baseline algorithms, but the computation time is reduced more than half. The cause

for the phenomenon described above is perhaps due to the high-dimensional property.215

4.2 The Lorenz-96 model

Next, we consider the Lorenz-96 model, one of the most classical and idealized models, which is designed to study

fundamental issues regarding the predictability of the atmosphere and weather forecasting (Lorenz, 1996; Lorenz and

Emanuel, 1998). In recent two decades, the Lorenz-96 model has been widely applied in data assimilation and pre-

dictability (Ott et al., 2004; Trevisan and Palatella, 2011; De Leeuw et al., 2018) to studies in spatiotemporal chaos (Pazó220

et al., 2008).The Lorenz-96 model is also used to investigate the predictability of extreme amplitudes of travelling

waves (Sterk and van Kekem, 2017), which points out that it depends on the dynamical regime of the model.

With a cyclic permutation of the variables as {xi}Ni=1 satisfying x−1 = xN−1, x0 = xN , x1 = xN+1, the governing

system of equations for the Lorenz-96 model is described as

dxi
dt

= (xi+1 −xi−2)xi−1︸ ︷︷ ︸
advection

− xi︸ ︷︷ ︸
damping

+ F︸ ︷︷ ︸
external forcing

(8)225
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Figure 3. Nonlinear evolution behavior of the CNOPs in terms of the difference and relative difference of the norm square.

where the system is nondimensional. The physical mechanism considers that the total energy is conserved by the ad-

vection, decreased by the damping and kept away from zero by the external forcing. The variables xi (i= 1, . . . ,N)

can be interpreted as values of some atmospheric quantity (e.g., temperature, pressure or vorticity) measured along a

circle of constant latitude of the earth (Lorenz, 1996). The Lorenz-96 model (8) can also describe waves in the atmo-

sphere. Specifically, Lorenz (1996) observed that the waves slowly propagate westward toward decreasing i for F > 0230

sufficiently large.

In this study, we use the classical 4th-order Runge-Kutta method to numerically solve the Lorenz-96 model (8). The

two parameters are set as N = 40 and F = 8, respectively. The spatial distributions of the CNOPs computed by the base-

line algorithms and the sampling method are shown in Figure 4. Unlike the three dominant characters described above

for the Burgers equation with small viscosity, the spatial distributions of the CNOPs computed by all four algorithms235

are almost consistent except for some little fluctuations for the Lorenz-96 model. Similarly, we provide a display for

the objective values of the CNOPs computed by the baseline algorithms and the sampling method and the percentage
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Figure 4. Spatial distributions of CNOPs.

over that computed by the definition method in Table 3. We find that the percentage of the objective value computed

by the adjoint method is only 92.35%, less than that by the sampling method for the Lorenz-96 model. In addition,

the difference between the number of samples n= 5 and n= 15 is only 0.57% in the percentage of the objective value.240

In other words, we can obtain about 95% of the total information by taking the sampling algorithm only using n= 5

samples.

Definition Adjoint Sampling (n= 5) Sampling (n= 15)

50.9099 47.0154 48.015748.015748.0157 48.3093

100% 92.35% 94.32%94.32%94.32% 94.89%

Table 3. The objective values of CNOPs and the percentage over that computed by the definition method.

Similarly, we show the computation times to obtain the CNOPs by the baseline algorithms and the sampling method

in Table 4. For the adjoint method, different from the Burgers equation with small viscosity, the time to compute the

CNOP by the adjoint method is almost twice that used by the definition method for the Lorenz-96 model. However,245

the computation time that the sampling method uses is less than 1/3 of what the definition method uses. When we

reduce the number of samples from n= 15 to n= 5, the computation time decreases by more than 0.1s. As a result, the

sampling method only using n= 5 samples saves much computation time to obtain the CNOP for the Lorenz-96 model.
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Definition Adjoint Sampling (n= 5) Sampling (n= 15)

3.5576s 6.6346s 0.9672s0.9672s0.9672s 1.0829s

Table 4. Comparison of computation times. Run on Matlab2022a with Intel® CoreTM i9-10900 CPU@2.80GHz.

Finally, we demonstrate the nonlinear evolution behavior of the CNOPs in terms of norm squares ∥x(t)∥2 computed250

by the baseline algorithms and the sampling method in Figure 5. Recall Figure 2 for the Burgers equation with small

viscosity, the norm squares of the CNOPs have almost no growth until the turning-time point and then proliferate.

Unlikely, the norm squares of the CNOPs almost grow linearly for the Lorenz-96 model without any turning-time

point. Similarly, since the four nonlinear evolution curves of norm squares almost coincide in Figure 5, we cannot

find any tiny difference in the nonlinear growth of the CNOPs between the baseline algorithms and the sampling255

method. So we still need to observe the nonlinear evolution behavior of the CNOPs in terms of the difference ∆∥x(t)∥2,

which is shown in the left panel of Figure 6. In the initial stage, the three nonlinear evolution curves share the same

growth behavior, with the maximum amplitude being the one by implementing the sampling method with n= 5 samples.

Afterward, the error’s amplitude decreases for the sampling method with n= 5 samples, and the two curves by the

0 1 2 3 4 5 6 7
0

0.3

0.6

0.9

1.2

1.5
10

3

Figure 5. Nonlinear evolution behavior of the CNOPs in terms of the norm square.

adjoint method and the sampling method with n= 5 samples are similar, with the larger amplitude being the one by260

the adjoint method, which achieves the maximum around 0.3. Indeed, the differences are very small compared with

the nonlinear growth of the CNOPs themselves, which is shown by the relative difference ∆∥x(t)∥2/∥x(t)∥2 in the

12



right panel of Figure 6. We can find that the three curves of the relative difference share the same nonlinear evolution

behavior, with the sampling method of different numbers of samples on both sides and the adjoint method in between.

When the number of samples is reduced, the amplitude of the relative difference decreases. In addition, the order of the265

relative difference’s magnitude is 10−3, which is so tiny that there are no essential differences.
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Figure 6. Nonlinear evolution behavior of the CNOPs in terms of the difference and relative difference of the norm square.

Although the dimension of the Lorenz-96 model is not very large due to being composed of a finite number of ordinary

differential equations, it possesses strongly nonlinear characters. Unlike the Burgers equation with small viscosity, the

adjoint method does not work well for the Lorenz-96 model, which spends more computation time and obtains less

percentage of the total information. The sampling method performs more advantages in the computation, saving far270

more computation time and obtaining more information. However, the performance in reducing the number of samples

from n= 15 to n= 5 is not obvious. Perhaps this is due to the characters of the Lorenz-96 model, strong nonlinearity

and low dimension.

5 Summary and discussion

In this paper, we introduce a sampling algorithm to compute the CNOPs based on the state-of-the-art statistical ma-275

chine learning techniques. The theoretical analysis is based on the high-dimensional Stokes’ theorem and the law of

large numbers. We have also rigorously provided a Chernoff-type concentration inequality to probabilistically approx-

imate the exact gradient by the average of samples. Traditionally, the adjoint method reduces the computation time

significantly by the use of much storage space, which makes the complex atmospheric and oceanic model available in

practice. We adopt the adjoint and definition methods as baseline algorithms to compare with the performance of the280

sampling method and show its advantages.

For the numerical tests, we choose two simple but representative models, the Burgers equation with small viscosity

and the Lorenz-96 model. The Burgers equation with small viscosity is one of the simplest nonlinear partial differential

13



equations simplified from the Navier-Stokes equation, which holds a high-dimensional property. The Lorenz-96 model is

a low-dimensional dynamical system with strong nonlinearity. For the numerical performance of a partial differential285

equation, the Burgers equation with small viscosity, we find that the adjoint method performs very well and saves

much computation time; the sampling method can share nearly the same computation time with the adjoint method

with dropping a few accuracies by adjusting the number of samples; the computation time can be shortened more by

reducing the number of samples further with the nearly consistent performance. For the numerical performance of a

low-dimensional and strong nonlinear dynamical system, the Lorenz-96 model, we find that the adjoint method takes290

underperformance, but the sampling method fully occupies the dominant position, regardless of saving the computation

time and performing the CNOPs in terms of the spatial pattern, the objective value and the nonlinear growth. Still,

unlike the Burgers equation with small viscosity, the performance is not obvious for reducing the number of samples

for the Lorenz-96 model. Based on the summary of the numerical performance above, we propose a possible conclusion

that the sampling method probably works very well for an atmospheric and oceanic model in practice, which is a295

partial differential equation with strong nonlinearity. Perhaps the high efficiency of the sampling method performs

more dominant, and the computation time is shortened obviously by reducing the number of samples.

Currently, the CNOP method has been widely applied in practice to the predictability of the atmosphere and ocean and

weather forecasting. For the nonlinear multiscale interaction (NMI) model (Luo et al., 2014, 2019), a popular atmospheric

blocking model recently developed which successfully sharply characterizes the life cycle of the dynamic atmospheric300

blocking phenomenon from onset to decay, the CNOP method has been used to investigate the sensitivity of the solution’s

nonlinear evolution on initial perturbations and the impact of the westerly background wind (Shi et al., 2022). However,

it is still very challenging to compute the CNOP for an earth system model that is more realistic, such as the Community

Earth System Model (CESM) (Wang et al., 2020). Many difficulties still exist, even for a high-regional resolution model, such

as the Weather Research and Forecasting (WRF) Model, which is used widely in operational forecasting (Yu et al., 2017). Based305

on increasingly reliable models developed in atmospheric science and oceanography, we now comment on some extensions

for further research to compute and investigate the CNOPs on the more complex models by the sampling method,

regardless of theoretical or practical. A more realistic numerical model of ENSO is the Zebiak-Cane (ZC) model (Zebiak

and Cane, 1987), an idealized ocean-atmosphere coupling model, which might characterize the oscillatory behavior of ENSO

in amplitude and period based on oceanic wave dynamics. Mu et al. (2007) computes the CNOP of the ZC model by use of310

its adjoint model to study the spring predictability barrier for El Niño events. In addition, Mu et al. (2009) also computes

the CNOP of the PSU/NCAR mesoscale model (i.e., the MM5 model) using its adjoint model to explore the predictability

of tropical cyclones. It looks very interesting and practical to test the validity of the sampling algorithm to calculate

the CNOPs on the two more realistic numerical models, the ZC model and the MM5 model. The NMI model can also

be used to test the sampling algorithm. For an earth system model or atmosphere-ocean general circulation models315

(AOGCMs), it is often unavailable to obtain the adjoint model, so the sampling method provides a possibility to obtain

the CNOPs such that we can investigate the nonlinear evolution behavior and predictability of the realistic models.

In addition, it becomes possible for us to use 4D-Var data assimilation on a coupled climate system model when the
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sampling method is introduced. Hence, it is also thrilling to implement the sampling method in the Flexible Global

Ocean-Atmosphere-Land System (FGOALS)-s2 (Wu et al., 2018) to make the decadal climate prediction.320

Appendix A: Proof of Theorem 1

Lemma A.1. If the expectation Ĵ(u0) is given by (4), then the expression (5) is satisfied. Also, under the same assumption

of Theorem 1, the difference between the expectation of objective value and itself can be estimated as

∥Ĵ(u0)− J(u0)∥ ≤
Lϵ2

2
; (A1)

and the difference between the expectation of gradient and itself can be estimated as325

∥∇Ĵ(u0)−∇J(u0)∥ ≤
Ldϵ

2
. (A2)

Proof of Lemma A.1. First, with the definition of Ĵ(u0), we show the proof of (5), the equivalent representation of the gradient

∇Ĵ(u0).

– For d= 1, the gradient of the expectation Ĵ about u0 can be computed as

dĴ(u0)

du0
=

d

du0

1

2

1∫
−1

J(u0 + ϵv0)dv0

=
1

2

1∫
−1

dJ(u0 + ϵv0)

ϵdv0
dv0 =

J(u0 + ϵ)− J(u0 − ϵ)

2ϵ
.330

– For the case of d≥ 2, we assume that a ∈ Rd is an arbitrary vector. Then, the gradient ∇Ĵ(u0) satisfies the following

equality as

aaa · ∇Ĵ(u0) =

∫
v0∈Bd

aaa · ∇u0
J(u0 + ϵv0)dV

=
1

ϵ

∫
v0∈Bd

∇v0 · (J(u0 + ϵv0)aaa)dV

=
1

ϵ

∫
v0∈Sd−1

J(u0,k + ϵv0)aaa · v0dS335

= aaa · 1
ϵ

∫
v0∈Sd−1

J(u0 + ϵv0)v0dS.

Because the vector aaa is arbitrary, we can obtain the following equality:

∇
∫

v0∈Bd

J(u0 + ϵv0)dV =
1

ϵ

∫
v0∈Sd−1

J(u0 + ϵv0)v0dS.

Since the ratio of the surface area and the volume of the unit ball Bd is d, the equivalent representation of the gradient (5)

is satisfied.340
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If the objective function J is continuously differentiable and satisfies the gradient Lipschitz condition, we can obtain the

following inequality as∣∣J(u0 + ϵv0)− J(u0)− ϵ⟨∇J(u0),v0⟩
∣∣≤ Lϵ2

2
∥v0∥2.

Because
∫
v0∈Bd ⟨∇J(u0),v0⟩dV = 0, the estimate (A1) is obtained directly.

– For any i ̸= j ∈ {1, . . . ,d}, since v0,i and v0,j are uncorrelated, we have345 ∫
v0∈Sd−1

v0,iv0,jdS = 0.

– For any i= j ∈ {1, . . . ,d}, we have∫
v0∈Sd−1

v20,idS =
1

d

∫
v0∈Sd−1

(
d∑
i=1

v20,i

)
dS =

1

d

∫
v0∈Sd−1

dS.

Since v0 is a row vector, we derive the following equality as

Ev0∈Sd−1 [vT0 v0] =
1

d
· I.350

Hence, we obtain the equivalent representation of the gradient ∇J(u0) as

∇J(u0) =
d

ϵ
·Ev0∈Sd−1 [ϵ⟨∇J(u0),v0⟩v0] .

Finally, since v0 ∼ Unif(Sd−1), then Ev0∈Sd−1 [v0] = 0. Hence, we estimate the difference between the expectation of gradient

and itself as

∥∇Ĵ(u0)−∇J(u0)∥ ≤
∥∥∥∥dϵ ·Ev0∈Sd−1 [(J(u0 + ϵv0)− J(u0))v0]−

d

ϵ
·Ev0∈Sd−1 [ϵ⟨∇J(u0),v0⟩v0]

∥∥∥∥355

≤ d

ϵ
·Ev0∈Sd−1

[∥∥J(u0 + ϵv0)− J(u0)− ϵ⟨∇J(u0),v0⟩
∥∥ ·∥∥v0∥∥]

≤ Ldϵ

2
,

where the last inequality follows the gradient Lipschitz condition.

Considering any ϵ > 0, to proceed with the concentration inequality, we still need to know that the random variable J(u0 +360

ϵv0) for v0 ∼ Unif(Sd−1) is sub-Gaussian. Thus, we first introduce the following lemma.

Lemma A.2 (Proposition 2.5.2 in Vershynin (2018)). Let X be a random variable. If there exist two constants K1,K2 > 0

such that the moment generating function of X2 is bounded:

E
[
exp

(
X2

K2
1

)]
≤K2,

then the random variable X is sub-Gaussian.365
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Because J(u0 + ϵv0) is bounded on Sd−1, exp(J(u0 + ϵv0)
2/K2

1 ) is integrable on Sd−1 for any K1 > 0, i.e., there exists a

constant K2 > 0 such that

Ev0∈Sd−1

[
exp

(
J(u0 + ϵv0)

2

K2
1

)]
≤K2.

With Lemma A.2, the random variable J(u0 + ϵv0) is sub-Gaussian. Therefore, for any fixed vector v′0 ∈ Sd−1, we know the

random variable J(u0+ϵv0)⟨v0,v′0⟩ is sub-Gaussian. We now introduce the following lemma to proceed with the concentration370

inequality.

Lemma A.3 (Theorem 2.6.3 in Vershynin (2018)). Let X1, . . . ,Xn be independent, mean zero, sub-Gaussian random variables,

and a= (a1, . . . ,an) ∈ Rn. Then, for every t≥ 0, we have

Pr

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣≥ t

)
≤ 2exp

(
− ct2

K2∥a∥2

)
,

where K =max1≤i≤n ∥Xi∥ψ2 .2375

Combined with Lemma A.1 and Lemma A.3, we can obtain the concentration inequality for the samples as

Pr

(∣∣∣∣ dnϵ
n∑
i=1

〈
J(u0 + ϵv0,i)v0,iv

′
0

〉
−
〈
∇Ĵ(u0),v

′
0

〉∣∣∣∣≥ t

)
≤ 2exp

(
−cnt2

K2

)
,

where v′0 is any unit vector on Sd−1. Thus we can proceed with the concentration estimate by the Cauchy-Schwarz inequality

as

Pr

(∥∥∥∥ d

nϵ

n∑
i=1

J(u0 + ϵv0,i)v0,i−∇Ĵ(u0)

∥∥∥∥≥ t

)
≤ 2exp

(
−cnt2

K2

)
.380

Based on the triangle inequality, we can proceed with the concentration inequality with the estimate of the difference between

the expectation of objective value and itself (A2) as

Pr

(∥∥∥∥ d

nϵ

n∑
i=1

J(u0 + ϵv0,i)v0,i−∇J(u0)

∥∥∥∥≥ t− Ldϵ

2

)
≤ 2exp

(
−cnt2

K2

)
for any t > Ldϵ/2. Taking C = c/K2, we complete the proof of Theorem 1.

Author contributions. Bin Shi constructed the basic idea of this paper, wrote the Matlab code of the sampling method and plotted all the385

figures, and wrote the manuscript. Guodong Sun joined the discussions of this manuscript and provided some suggestions. All the authors

contributed to the writing and reviewing of the manuscript.
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∥X∥ψ2
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t > 0 : Eexp

(
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