
The First Response to Reviewers’ Comments

We thank the editor and the two referees for thoroughly reading the manuscript and their helpful
comments. We are very pleased to see many positive remarks. For example, the first reviewer said,
“A notable feature of the sample-based approach is that it is an adjoint-free algorithm and requires
less storage.” Reviewer 2 added, “The authors propose to determine the gradient by the Monte-
Carlo method, which may be more economical than the adjoint method (but apparently at the cost
of lower accuracy). That is perfectly all right. The mathematical method is clearly defined and
mathematically sound.” In light of the comments, we have made a thorough revision addressing
all major concerns, resulting in a significantly improved paper version.

1 The First Reviewer’s Report

1.1 Major Comments

1. The sample-based algorithm is very similar to the ensemble-based method [Wang and Tan,
2010]. It is necessary to compare these two approaches. I also find that the ensemble-based
result (Fig. 2 in [Wang and Tan, 2010]) seems to have less error than the sample-based al-
gorithm.

Thank you for pointing out that it is necessary to compare the sample-based algorithm with
the ensemble-based method [Wang and Tan, 2010].

The ensemble-based method The classical adjoint method to compute the CNOP is
composed of two parts, computing the tangent linear matrix and obtaining the adjoint ma-
trix, or the representation of adjoint iteration, by transposing the tangent linear matrix.
The ensemble-based method [Wang and Tan, 2010] introduces the techniques of the EOF
decomposition widely used in atmospheric science and oceanography, which takes some prin-
cipal modes to approximate the tangent linear matrix. In other words, the ensemble-based
method [Wang and Tan, 2010] converts the computation of the adjoint matrix into the com-
putation EOF decomposition, where the large amount of storage and repeated calculations
occurring in the adjoint method still exist [Wang et al., 2020]. Furthermore, the ensemble-
based method [Wang and Tan, 2010] is an algorithm under the framework of the adjoint-based
method. Meanwhile, the choice of localization radius is also empirical.

The sample-based method The sample-based algorithm has no relationship with the
tangent linear matrix and the adjoint matrix. The gradient is first approximated by the
expectation in the small ball-type neighborhood O(u0, ϵ). By Stokes’ theorem, the expectation
in the ball can be transformed into that on the sphere. Then, we take the samples with the
average to approximate the expectation. The samples following the uniform distribution are
chosen to be fully independent, which has no dependence on the numerical model and the
objective function.

Hence, we conclude that the sample-based algorithm is essentially different from the ensemble-
based method [Wang and Tan, 2010].
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2. Line 105, this equation is satisfied if the gradient exists. As mentioned in Section 1, the gra-
dient may not exist in some cases, such as the on-off process. In this situation, whether the
sample-based method can be used to calculate the CNOP. If not, it will be a great challenge
to use this method in practical models.

Yes, the sample-based method can be used to calculate the CNOP. Actually, we compute the
gradient approximately following the way as

∇Ĵ(u0) =
d

ϵ
· Ev0∈Sd−1 [J(u0 + ϵv0)v0] ≈

d

nϵ

n∑
i=1

J(u0 + ϵv0,i)v0,i,

where only the function value is used in the computation. The unique difference is that if
the gradient exists, it is easy for us to get the estimate in Line 105; if the gradient does not
exist, we need to characterize the first-order information to obtain the estimate in Line 105,
i.e., the subgradient for the continuous objective function which is not differentiable.

3. What are the similarities between the CNOPs obtained by the sample-based methods with
gradient-definition or adjoint approaches? In the Burgers model, to what extent the value of
n affects the accuracy of the CNOPs? Could it be possible to provide the results with larger n
values?

Thanks for these good comments. The similarities between the CNOPs obtained by the
sample-based methods with gradient-definition or adjoint approaches are that they are very
similar in the spatial distributions (patterns) in Figure 1 (the paper). Specifically, the
CNOP obtained by the sample-based method is very similar to that by the baseline algorithms,
the definition method and the adjoint method, except for some fluctuations generated by the
noise in the spatial distribution. However, we still need a quantity to characterize the
similarities. In the revised version, we add the objective function values generated by the
CNOPs obtained as the testing quantity, which is shown in Table 1.

Case
Method

Definition Adjoint Sampling (n = 5) Sampling (n = 15)

T = 30s 1.2351× 10−5 1.2351× 10−5 1.1727× 10−5 1.1950× 10−5

100% 100% 94.95% 96.75%

T = 60s 2.5035 2.5035 2.3899 2.4426
100% 100% 95.46% 97.57%

Table 1: The objective values of CNOPs and the percentage over that computed by the definition
method.

In Table 1, we can find that the percentage increase when we increase the number of samples.
In other words, with the increase of the number of samples, the CNOP computed by the
sampling method is closer to that by the baseline algorithm. Here, we add case n = 30
to show the number of samples affect the accuracy of the CNOPs in Figure 1. The spatial
distributions of the CNOPs corresponding to Figure 1 is shown in Table 2. We can also find
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Case
Sampling

n = 5 n = 15 n = 30

T = 30s 1.1727× 10−5 1.1950× 10−5 1.2212× 10−5

94.95% 96.75% 98.87%

T = 60s 2.3899 2.4426 2.4738
95.46% 97.57% 98.81%

Table 2: The objective values of CNOPs and the percentage over that computed by the definition
method.

the fluctuations decrease and the spatial pattern is closer to that by the defention method
with increasing samples in Figure 1
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(a) n = 5
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(b) n = 15
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(c) n = 30

Figure 1: Spatial distributions of CNOPs (m/s). Prediction time: on the top is T = 30s, and on
the bottom is T = 60s.

4. Are the results sensitive to the choice of the samples? How to choose the samples, especially
for the realistic applications?

In the two experiments for two numerical models, the Burgers equation with small viscosity
and the Lorenz-96 model, the results are not sensitive when the number of samples are no
less than n = 5. In this study, we generate the samples in Matlab by v ∼ Unif(Sd−1), the
random variable following the uniform distribution on the unit sphere. We believe that it
should follow the same way and be not hard for the realistic applications in the GCM models.

5. The Burgers equations is too simple. To show the valid of the method, I strongly recommend
using a GCM realistic model to test this method. In fact, in the GCM model, the sample
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number may be very important. Larger sample number may be required in realistic model.
But too large sample number will limit the potential use of this method, because too many
nonlinear model runs need to be performed. How to obtain the accurate CNOP with suitable
sample number?

Thanks for the suggestion. In this paper, we propose the sampling method to obtain the
CNOPs, focusing on the theoretical investigation. Under your suggestion, we add the Lorenz-
96 model, one of the most classical models used to investigate the predictability of the at-
mosphere and weather forecasting, to further investigate the sampling method on the strong
nonlinear model. The performance shows the superiority of the sampling method, saving more
computation time and obtaining about 95% of total information. In the next step, we will
start to investigate the sampling method to obtain the CNOPs on more realistic models, such
as the Zebiak-Cane and MM5 models. Finally, we will implement the sampling method to
obtain the CNOPs on a realistic earth system model or atmosphere-ocean general circulation
model. Meanwhile, we will introduce the sampling method into the 4D-Var data assimilation.

6. Fig. 3. Why are the errors remarkable larger when t = 11?

Thanks for the careful observation. The errors are remarkably larger around t = 11 on
the nonlinear evolution of relative difference, because the relative error computed by the
definition method evolving at t = 11 is so close to zero that the small deviation generated
by the sampling method over it becomes very large. It is verified that the relative error’s
decrease is very obvious, when we reduce the number of samples from n = 15 to n = 5.

1.2 Minor Comments

1. Line 60: “faults” is inappropriate.

Thanks, we have taken “disadvantages” instead of “faults”.

2. Line 62: “an optimal solution” can also hardly be guaranteed in other approaches, such as
ensemble or even adjoint approaches in GCM model.

Thanks for pointing the point out. All of the traditional (deterministic) optimization methods
above can not guarantee to find an optimal solution. We have revised the sentenses below
line 62, which is in the revised version from Line 15 to Line 70.

3. Line 145: ϵ = 10−8 is selected for calculating the CNOPs. Does the value of this parameter
affect the obtained CNOPs?

We select the parameter ϵ = 10−8 for calculating the CNOPs. Actually, when we select the
order of magnitude no more than O(10−6), the CNOPs obtained are almost not affected by
the parameter ϵ. The obtained CNOPs has some observed errors when we take the parameter
ϵ = 10−5.
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4. Line 150: Further clarify the parameter α = 10−8. Is it the same with ϵ = 10−8?

Thanks for the suggestion. To make it clear, we modify the notation α as h to strengthen
that the parameter is used as the step size to compute the number gradient as

∇J(u) ≈ J(u+ hei)− J(u)

h

where ei (i = 1, . . . , N) is the unit orthogonal basis with the ith entry being one and others
zero. The parameter of step size h = 10−8 used to compute the number gradient is different
from ϵ = 10−8, which is used to sampling the gradient as

∇Ĵ(u0) = Ev0∈Bd [∇J(u0 + ϵv0)] =
d

ϵ
· Ev0∈Sd−1 [J(u0 + ϵv0)v0] ≈

d

nϵ

n∑
i=1

J(u0 + ϵv0,i)v0,i.

5. Line 189: “We implement ...” −→ “We will implement ...”

Thanks for pointing out the grammar mistake. We have rewritten the last section. The new
sentense locates on Line 300. It looks very interesting and practical to test the validity of the
sampling algorithm to calculate the CNOPs on the two more realistic numerical models, the
ZC model and the MM5 model.

2 The Second Reviewer’s Report

2.1 Major Comments

1. The initial state defined by equation (7) is antisymmetric with respect to the middle point
x = L/2 of the spatial domain [0, L], and will remain so in the ensuring evolution. The
advective velocity U is positive for x < L/2, and negative for x > L/2. This means that
the advection term U∂U/∂x will cause convergence of the flow onto the middle point. The
viscosity term will counteract that convergence, and one can expect that the flow will evolve
to an asymptotic equilibrium state. A simple calculation actually shows that an asymptotic
state to be

U∞(x) = 2γ
(π
L

)
tan

(πx
L

)
.

It has a singularity at point x = L/2, where the velocity U becomes infinite and changes sign.
The dynamics that result from equation (7) is simply an evolution of the flow towards the
asymptotic equilibrium under the opposite effects of advection and viscosity. That is a very
singular situation, from which no conclusion of some generality can be drawn.

Thanks for the good comment. We appreciate the reviewer’s sharp intuition in physics.
Indeed, the singular phenomenon that the velocity U becomes infinite will appear when the
time that we implement the numerical simulation for the Burgers equation with small visocity
is long enough. However, what we consider here is the finite prediction time. In other words,
the nonlinear evolution behavior of the Burgers equation at T = 30s or T = 60s is far from
the blow-up. Hence, it is reasonable for us to compute the CNOP at T = 30s or T = 60s for
the Burgers equation with small visocity with the special initial condition.
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2. Clearly, the authors are aware that their paper is not significant from a geophysical point
of view, and they present in their conclusion a number of further experiments they intend to
perform with realistic atmospheric andor oceanic numerical models. These experiments sound
perfectly reasonable, and I can only encourage the authors to implement their projects. But
even sooner than that, I suggest they perform experiments with the model defined by Lorenz
[1996] (see also [Lorenz and Emanuel, 1998]). That model, in addition of being of small
dimension (40 in its most common use) and easy to integrate, possesses a number of basic
properties that make it a good reference for geophysical applications: (1) it contains both a
physical forcing and an internal dissipation, the competition of which controls the energetics
of the system; (2) it contains nonlinear energy-conserving interactions, somewhat similar to
nonlinear advection, which make the flow chaotic; (3) it has nonlinear waves somewhat sim-
ilar to atmospheric waves.

Thanks for the great suggestion. We are encouraged to add some numerical experiments for
the Lorenz-96 model from a geophysical viewpoint in the revised manuscript. Please refer to
Section 4.2 in the revised manuscript.

2.2 Minor Comments

1. The authors stress that their method does not require the use of an adjoint. They write (ab-
stract, l. 4) that the adjoint technique [. . .] produces instability due to linearization,
with similar statements at other places in the paper. They do not give any supporting evi-
dence for that. For what I know, the adjoint technique is on the contrary very robust and
reliable. For instance, the European Centre for Medium-Range Weather Forecasts (ECMWF)
has used the adjoint approach since 1997, with a complete meteorological model, for its daily
operational system of variational assimilation, without ever encountering problems of stabil-
ity (a fairly large number of other meteorological or oceanographical centres have also used
the adjoint approach for long periods without difficulties). It may be that the authors refer
to situations where the gradient with respect to the control variable (e.g., as here, the initial
condition) varies so rapidly with that variable that the gradient is useless for numerical appli-
cations (such situations will occur for instance when one considers gradients with respect to
initial conditions of a chaotic system, if the prediction time is large enough for the celebrated
butterfly effect to have significantly impacted the prediction). But that is totally independent
of how the gradient is determined, whether by the adjoint method or by another method. Un-
less the authors can give specific examples, I suggest they remove any reference to instabilities
resulting from the linearization introduced in the adjoint approach.

We appreciate the great suggestion. We have removed all the content about instabilities
resulting from the linearization introduced in the adjoint approach. Instead, we add that
the adjoint-based model is unusable for many atmospheric and oceanic models
since the adjoint models are not easy to develop. In addition, we also find that the
adjoint method does not perform very well in the Lorenz-96 model, spending more computa-
tion but the performance in spatial pattern and objective values less than that computed by
the sample method.

2. Concerning again the adjoint method, the authors write (ll. 58-59) a large amount of
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storage space to save the basic state during each iteration is a critical issue, that
produces [. . .] long computation times. It is precisely because it avoids large computing
times that the adjoint approach has been implemented in many applications. But it is true
that the corresponding economy in time is obtained at the cost of a large amount of storage
space (in any operational system, saving computing time matters fundamentally much more
than saving storage space)

Thanks for pointing this out. We know that the adjoint method is an important advance in
computing the CNOPs. In the new revised version, we have modified the sentenses from Line
59 to line 64.

Perhaps the most popular and practical method adopted to obtain the gradient is the
adjoint technique, which is based on calculating the tangent linear model and the adjoint
matrix [Kalnay, 2003]. Specifically, when we can distill out the adjoint matrix or the
expression of adjoint iteration, it becomes available to compute the gradient at the cost
of massive storage space to save the basic state. In other words, the adjoint-based method
uses a large amount of storage space to exchange the significant reduction of computation
time.

3. L. 146, . . . we perform numerical experiments to calculate the CNOPs directly
from the definition, . . . (with similar statements in other places, see also Figure 1). How
can one determine the CNOPs directly from the definition (equation 3) ?

Thanks for pointing this out. The definition method indicates that the gradient is computed
by the definition of the numerical method as

∇J(u0)i ≈
J(u0 + ϵei)− J(u0)

ϵ

where i = 1, . . . , d and ei is a vector with the ith entry being one and the other being zero.

4. The English is occasionally faulty or difficult to understand. In particular, the last line of the
abstract (l. 10) makes no sense to me.

Thanks for the suggestion on the English expression. We have removed the last sentence in
the abstract. We have also reorganized the language and rewritten the abstract, introduction,
and the last section – summary and discussion. And we have revised the other three sections.
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The Second Response to Reviewers’ Comments

We thank the editor and the two referees for thoroughly reading the manuscript and for their
helpful comments. We are very pleased to see many positive remarks. After we have addressed
his/her concerns, the first referee recommended accepting this manuscript as it is. Also, we are
happy to see that the new referee said “I see a lot of potential in this approach”. In light of
the comments, we have made a thorough revision addressing all major concerns, resulting in a
significantly improved paper version.

1 Main concerns of the third referee

1. It is said in the abstract that machine learning approaches are used in the current manuscript.
I do not see any place where such tools are used, unless I am mistaken. This is misleading
for the reader. This should be revisited in the whole manuscript.

Thanks for pointing out this problem. We have added the explanation in the revised manuscript.
Followed by the first sentence in the abstract (with the superscript label 1 (line 3)), we add
the explanation for machine learning approaches as

� Generally, the statistical machine learning techniques refer to the marriage of traditional
optimization methods and statistical methods, or says, stochastic optimization methods,
where the iterative behavior is governed by the distribution instead of the point due to
the attention of noise. Here, the sampling algorithm used in this paper is to numerically
implement the stochastic gradient descent method, which takes the sample average to
obtain the inaccurate gradient

2. In Section 3, the method is outlined based on some demonstration of theorems, but there is
no information on how the approach is implemented and compared with traditional methods.
Please revisit completely this aspect in order to show the way to follow in order to develop the
method by others.

Thanks for the good suggestion. We have added the content on how the approach is imple-
mented and compared with traditional methods in Section 3. (Line 130)

� In the numerical computation, we obtain the approximate gradient, ∇Ĵ(u0), via the
sampling as

d

ϵ
· Ev0∈Sd−1 [J(u0 + ϵv0)v0] ≈

d

nϵ

n∑
i=1

J(u0 + ϵv0,i)v0,i, (1.1)

where v0,i ∼ Unif(Sd−1), (i = 1, . . . , n) are the independent random variables following
the identical uniform distribution on Sd−1. Since the expectation of the random variable
v0 on the unit sphere Sd−1, we generally take the following way with better performance
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in practice as

d

ϵ
· Ev0∈Sd−1 [J(u0 + ϵv0)v0] =

d

ϵ
· Ev0∈Sd−1 [(J(u0 + ϵv0)− J(u0)) v0]

≈ d

nϵ

n∑
i=1

(J(u0 + ϵv0,i)− J(u0)) v0,i, (1.2)

where v0,i ∼ Unif(Sd−1), (i = 1, . . . , n) are independent. From (1.2), n is the number
of samples and d is the dimension. Generally in practice, the number of samples is
far less than the dimension, n ≪ d. Hence, the times to run the numerical model is
n + 1 ≪ d + 1, which is the times to run the numerical model via the definition of the
numerical method as

∂J(u0)

∂u0,i
≈ J(u0 + ϵei)− J(u0)

ϵ
,

where i = 1, . . . , d. For the adjoint method, the gradient is numerically computed as

∇J(u0) ≈ M⊤Mu0 ≈ M⊤gT (U0 + u0),

where M is a product of some tangent linear models. Practically, the adjoint model,
MT , is hard to develop. In addition. we cannot obtain the tangent linear model for the
coupled ocean-atmosphere models.

3. I have really hard time to read and understand the English. It should considerably be improved
to make the results understandable.

Thanks. We have improved considerable places for the English expression in the revised
version, with bold text as a marker for editor and reviewer to track the changes.
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