Style Definition: Headin	g 1
Style Definition: Headin	g 2
Style Definition: Headin	g 3
Style Definition: Headin	g 4
Style Definition: Headin	g 5
Style Definition: Headin	g 6
Style Definition: Title	
Style Definition: Subtitle	2
Formatted: Justified	
Deleted:)	
Formatted: Font: 12 pt,	Not Bold

		3217 - 7	
2	the Earth system with stratospheric aerosol injection (ARISE-		Style Definition:
			Style Definition:
3	SAI): protocol and initial results from the first simulations		Style Definition:
4			Style Definition:
			Style Definition: Style Definition:
5	Jadwiga H. Richter ¹ , Daniele Visioni ² , Douglas G. MacMartin ² , David A. Bailey ¹ , Nan		Formatted: Justif
6	Rosenbloom ¹ , <u>Brian Dobbins¹</u> , Walker R. Lee ² , Mari Tye ¹ , Jean-Francois Lamarque ¹		Deleted:)
7			Formatted: Font:
8	¹ Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder CO		
9	² Sibley School for Mechanical and Aerospace Engineering, Cornell University, Ithaca NY		
10			
11	Correspondence to: Jadwiga H. Richter (jrichter@ucar.edu)		
12			
13	Abstract. Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global		
14	mean temperatures to reduce the worst consequences of climate change. A detailed assessment of responses and		Deleted: some of
15	impacts of such an intervention is needed with multiple global models to support societal decisions regarding the use		
16	of these approaches to help address climate change. We present here a new modeling protocol aimed at simulating a		Deleted: and a 10
17	plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system		one of the most co
18	models, Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol		Deleted: to enabl
19	injection (ARISE-SAL). The protocol and simulations are aimed at enabling community assessment of responses of		the Earth system t
20	the Earth system to solar climate intervention. ARISE-SAI simulations are designed to be more policy relevant than		(Deleted:)
21	existing large ensembles or multi-model simulation sets. We describe in detail the first set of ARISE-SAI simulations,		
22	ARISE-SAI-1.5, which utilize a moderate emissions scenario, introduce stratospheric aerosol injection at ~ 21.5 km		Deleted: emission
23	in year 2035, and keep global mean surface air temperature near 1.5°C above the pre-industrial value utilizing a		Deleted: (ARISE
24	feedback or control algorithm. We present here the detailed set-up, aerosol injection strategy, and preliminary climate		Deleted: mean su
25	analysis from a 10-member ensemble of these simulations carried out with the Community Earth System Model,		Deleted: changes
26	version 2 with the Whole Atmosphere Community Climate Model version 6 as its atmospheric component.		Deleted: so they o

Assessing Responses and Impacts of Solar climate intervention on-

1 Introduction

Solar climate intervention (SCI), or solar radiation modification, is a proposed strategy that could potentially reduce

the adverse effects on weather and climate associated with climate change by increasing the reflection of sunlight by

particles and clouds in the atmosphere. The recent National Academies of Sciences, Engineering and Medicine

(NASEM) report on solar geoengineering research and governance (NASEM, 2021) calls for increased research to

understand the benefits, risks and impacts of various SCI approaches. Stratospheric aerosol injection (SAL), which

1	Deleted:)
ĺ	Deleted: to enable community assessment of responses of the Earth system to solar climate intervention. The
	Deleted: and a 10-member ensemble of simulations using one of the most comprehensive Earth system models,

(Deleted: emission
-(Deleted: (ARISE-SAI-1.5).
-(Deleted: mean surface
-(Deleted: changes in
-(Deleted: so they can be reproduced in other global models.

Formatted: Normal, Space Before: 0 pt, After: 21 pt, Line spacing: 1.5 lines

Deleted: geoengineering

Deleted:)

----(Formatted: Header

Deleted: (e.g.:

47 aims to mimic the effects of volcanic eruptions on climate, has been shown to be a promising method of global climate 48 intervention in terms of restoring climate to present day conditions in global climate or Earth system models (e.g.: 49 Tilmes et al., 2018; MacMartin et al. 2019; Simpson et al., 2019). However, there still exist large uncertainties in 50 climate response and impacts (NASEM, 2021, Kravitz and MacMartin, 2020), and ensuing human and ecological 51 impacts (Carlson and Trisos, 2018). Due to the large internal variability of Earth's climate, the evaluation of SCI risks 52 and impacts requires large ensembles of simulations (Deser et al., 2012; Kay et al., 2015; Maher et al., 2021) and 53 Earth system models (ESMs) capable of simulating the key processes and interactions between multiple Earth system 54 components, including prognostic aerosols, interactive chemistry, and coupling between the atmosphere, land, ocean, 55 and sea ice. For studies of climate intervention using SAI, an accurate representation of the entire stratosphere, 56 including dynamics and chemistry, is needed to capture the transport of aerosols and their interactions with 57 stratospheric constituents such as water vapor and ozone (e.g.: Pitari et al., 2014).

I

58 The Geoengineering Model Intercomparison Project (GeoMIP) for many years has facilitated inter-model 59 comparisons of possible climate responses to SCI to examine where model responses to geoengineering were robust 60 and identify areas of large uncertainty. However, in order to ensure participation from multiple ESMs, the design of 61 GeoMIP simulations has often been simplified by utilizing solar constant reduction (Kravitz et al., 2013; Kravitz et 62 al., 2021) or prescription of an aerosol distribution (Tilmes et al., 2015) or a spatially uniform injection rate of SO2 63 (i.e. continuous injection from 10°N to 10°S in the most recent G6sulfur experiments (Visioni et al., 2021b). Visioni 64 et al. (2021a) showed that solar dimming does not produce the same surface climate effects as simulating aerosols in 65 the stratosphere. Kravitz et al. (2019) showed that strategically injecting SO2 at multiple locations to maintain more 66 than one climate target may reduce some of the projected side-effects by more evenly cooling at all latitudes; hence, 67 model experiments with plausible implementation of SCI are needed in order to assess risks and benefits of these 68 strategies.

69 The Geoengineering Large Ensemble (GLENS, Tilmes et al. 2018), which used version 1 of the Community 70 Earth System Model with the Whole Atmosphere Community Climate Model as its atmospheric component 71 (CESM1(WACCM), Mills et al. 2017), was the first large-ensemble (20-member) set of climate intervention 72 simulations carried out with a single ESM that interactively represented many of the key processes relevant to SAI 73 and has provided a community dataset for the examination of potential impact of SAI on mean climate and variability. 74 GLENS utilized sulfur dioxide (SO2) injections that were strategically placed every year to keep the global mean 75 temperature, equator-to-pole, and pole-to-pole temperature gradients near 2020 levels in an effort to minimize the 76 surface temperature impacts of this intervention. However, GLENS has several experimental design issues that are 77 not aligned with realistic projections for Earth system outcomes that would provide more accurate representation of 78 possible real-world effects and impacts. Firstly, GLENS adopted a high emission scenario of RCP8.5 until 2100, 79 requiring a very large amount of stratospheric aerosols by the end of the century to offset the continuously increasing 80 emissions. Estimates for future emissions based on current commitments are lower than RCP8.5 (Hausfather and 81 Peters, 2020), and thus impact analyses, especially based on the last two decades of the GLENS, are likely to 82 overestimate the risks and adverse impacts of SAI. Additionally, in the GLENS simulations, intervention commenced

Formatted: Justified

I

115

84	in 2020, adding another unrealistic element from a real-world standpoint. Furthermore, SO2 injections were at 23-25	
85	km altitude, which is technologically more difficult to achieve than a lower altitude injection (Bingaman et al. 2020)	(
86	Tilmes et al. (2020) has carried out simulations with SO2 injections with CESM2(WACCM6) and GLENS-	
87	like set-up for the Shared Socioeconomic Pathway SSP5-8.5 and SSP5-3.4-OS scenarios (O'Neill et al., 2016). Here	
88	we propose a new SAI modeling protocol for a suite of simulations designed to simulate a more plausible	(
89	implementation scenario of SCI using SAI that can be replicated by other modeling centers. We denote the entire set	**************************************
90	of current and future simulations conducted under this protocol as "Assessing Responses and Impacts of Solar climate	\mathcal{A}
91	intervention on the Earth system," or "ARISE," with simulations of SAI denoted "ARISE-SAI". We anticipate that in	\sum
92	the future similar simulations utilizing other climate intervention methods such as Marine Cloud Brightening (MCB)	$\langle \rangle \langle$
93	or Carbon Dioxide Removal (CDR), will result in ARISE-MCB or ARISE-CDR simulations respectively. In addition,	$\langle \rangle$
94	we present preliminary results from the first set of these simulations carried out with the Community Earth System	$\langle \rangle \rangle$
95	Model, version 2 with the Whole Atmosphere Community Climate Model version 6 as its atmospheric component	Y
96	(CESM2(WACCM6)). The paper is structured as follows: section 2 provides an overview of ARISE-SAI protocol	Ý
97	including ARISE-SAI-1.5, section 3 describes the model used to describe the realization of ARISE-SAI-1.5 with	
98	CESM2(WACCM6), section 4 shows surface temperature and precipitation in these simulations, and section 5 offers	
99	a summary and conclusions.	
100		
100	2 <mark>ARISE-SAI</mark>	
101	2.1 Reference Simulations	
		l
02	Evaluation of impacts of SCI requires a set of non-SCI reference simulations to enable comparison of impacts with	(
03	and without SAI. As motivated by MacMartin et al (2022), we use here the moderate Shared Socioeconomic Pathway	(
04	scenario of SSP2-4.5 for our simulations, which more closely captures current policy scenarios compared to higher	
05	emission scenarios such as SSP5-8.5 (Burgess et al., 2020). SSP2-4.5, which marks a continuation of the	
06	Representative Concentration Pathway 4.5 (RCP4.5) scenario, is a "middle-of-the-road," intermediate mitigation	
07	scenario where "the world follows a path in which social, economic, and technological trends do not shift markedly	(
80	from historical patterns" (O'Neill et al., 2017), representing the medium range of future forcing pathways (O'Neill et	
09	<u>al., 2016).</u>	
10	2.2 Protocol Overview	
111	2.2 Protocol Overview The ARISE-SAI simulations are designed to simulate a plausible implementation scenario of SCI using SAI for	
110 111 112 113	2.2 Protocol Overview	

scenario choices described in MacMartin et al. (2022) and describe details of implementation in Earth system models,

other factors that could affect decisions. The proposed default ARISE-SAI protocols follow closely the recommended

although different choices can be made in the future to expand the simulation set. In particular, the proposed ARISE-

Formatted: Header

Formatted: Highlight

Deleted: describe
Deleted: set-up of an ensemble
Deleted: with CESM2(WACCM6)
Deleted:
Deleted: ,
Deleted: present preliminary diagnostics to begin enabling community assessment
Deleted: responses of
Deleted: to
Deleted: an intervention

	Deleted: Methods (-)
	Deleted: Model Description↔ → For all
	Deleted: presented here, we utilize
(Moved (insertion) [1]

Ioved (insertion) [2]

163

164

165

166

167

SAI simulations utilize a moderate emission scenario, SSP2-4.5 (O'Neill et al., 2016) and cool the Earth to a global
mean temperature target (TT) above preindustrial levels denoted in the specific name of the simulations (e.g.: ARISE-
SAI-TT). For example, ARISE-SAI-1.5 and ARISE-SAI-1.0 simulations aim to maintain global surface temperatures
at ~1.5°C and ~1.0°C above preindustrial levels respectively.
The protocol in the first ARISE-SAI simulations (without a delayed start) simulates deployment beginning
in 2035 after the global surface temperature reaches ~1.5°C above preindustrial levels, the target proposed in the 2015
Paris agreement and described by the IPCC as an important threshold for climate safety (IPCC 2018). Simulations are
carried out for 35 years (2035 - 2069), which is sufficient to consider both a transition period of ~10 years and a quasi-
equilibrium of at least 20 years after the controller converges. Minimum recommended ensemble size is 3, although
more members will allow for more thorough evaluation of impacts on variability.
2.3 ARISE-SAI-1.5
The first ARISE-SAI simulations, ARISE-SAI-1.5 presented here, aim to keep the global mean temperature at ~1.5°C
above pre-industrial levels. There is uncertainty among Earth system models with regard to when Earth's global mean
surface temperature (T0) will reach 1.5°C above pre-industrial levels. The recent Intergovernmental Panel of Climate
Change (IPCC) Sixth Assessment Report (AR6) (IPCC, 2021) finds that 1.5°C over pre-industrial will very likely be
exceeded in the near term (2021-2040) under the very high greenhouse gas (GHG) emission scenario (SSP5-8.5) and
likely to be exceeded under the intermediate and high GHG emissions scenarios (SSP2-4.5 and SSP3-7.0). The IPCC
AR6 defines 1.5°C as the time at which T0 will reach 0.65°C above the historical reference period of 1995 - 2014. The
T0 between 1995 - 2014 is 0.85°C above the pre-industrial (PI) value defined as the 1850 - 1900 average in the
observational record. Using 31 global models, Tebaldi et al. (2021) found that the average across models of when
1.5°C will be reached is 2028 under the SSP2-4.5 scenario (using 1995-2014 as 0.84°C rather than 0.85°C above PI),
but with considerable variation across models. To simplify future model intercomparisons, we choose the time period
of 2020 - 2039 (or \sim 2030 levels) as our reference period of when T0 is \sim 1.5°C above PI values and make that the
target T0 in the ARISE-SAI-1.5 climate intervention simulations.
In addition to keeping T0, the ARISE-SAI simulations aim to keep the north-south temperature gradient (T1),
and equator-to-pole temperature gradient (T2) to those corresponding to the temperature target. This is achieved by
utilizing, a "controller" algorithm (MacMartin et al., 2014; Kravitz et al., 2017) that specifies the amount of SO2
injection. This approach was used in GLENS and the simulations presented in Tilmes et al. (2020). The controller
algorithm is freely available as described in the Code Availability section. Sulfur dioxide injections in the ARISE-
SAI simulations are placed at four injection locations (15°S, 15°N, 30°S, 30°N) into one grid box at ~ 21.5 km altitude.

The injection latitudes are the same as used in GLENS and in previous studies examining the model's responses to

single-point SO2 injections (Tilmes et al., 2017; Richter et al., 2017). These four injection locations are sufficient to

independently control the targets that we are trying to achieve (Kravitz et al., 2017). These four injection locations

have also been demonstrated to be sufficient to produce the optical depth patterns that independently control the targets

that we are trying to achieve in various versions of CESM(WACCM) (MacMartin et al., 2017; Zhang et al., 2022;

Formatted: Header

Moved (insertion) [3]

Moved (insertion) [4]

Moved (insertion) [5]

Moved (insertion) [6]

Formatted: Subscript

I 168 MacMartin et al., 2022). The prescribed injection altitude is estimated to be achievable by existing aircraft 169 technologies that could be adapted for climate intervention use (Bingaman et al., 2020). After each year of simulation, 170 the algorithm calculates the global mean temperature, T0, north-south temperature gradient, T1, and equator-to-pole 171 temperature gradient, T2, and based on the deviation from the goal, specifies the annual values of injections at the 172 four locations for the subsequent year. T1 and T2 were defined in Kravitz et al. (2017), Equation 1. 173 174 2.4 Recommended Output 175 Comprehensive monthly output as well as high-frequency output for analysis of high-impact events (described in 176 detail in the Data Records section) is needed for analysis of SCI impacts on the Earth System. Acknowledging 177 limitations of various modeling centers, we recommended a minimum set of monthly-mean output fields in Table A1 178 in the Data Records section and include the full comprehensive output list that was created with the CESM2(WACCM) 179 simulations based on input from the broader community. All model output for the simulations should be provided in 180 NetCDF format. All variables should be in time-series format, with one variable per file. 3-dimensional atmospheric 181 output should be on the original model levels or on standard CMIP6 levels. For monthly atmospheric output, 182 information on aerosol microphysics (which is not a standard CMIP6 output) is also very relevant for diagnostics of 183 the aerosols' behavior under SAI; for instance, CESM2(WACCM6) includes as standard output the mass and number 184 concentration for all aerosol modes and the aerosol effective radius. Other modeling centers should consider providing 185 this (model specific) information as well. In addition, higher-frequency (daily averaged, 3-hourly averaged, 3-hourly 186 instantaneous, and 1-hourly mean) output is desired for the atmospheric model that will enable analysis of extreme 187 events (e.g.: Tye et al. 2022). The atmospheric output at various time frequencies is described in Appendix A, Tables 188 A2 - A5. Daily averaged output of land model variables is shown in Tables A6 and A7, whereas 6-hourly output from 189 the land model is listed in Table A8. Tables A9 and A10 show the daily output from the ocean and sea-ice models 190 respectively. The table captions describe which output is specific to ARISE-SAI-1.5 and the new five SSP2-4.5 191 CESM2(WACCM6) ensemble members, and which is common to all simulations. An online table showing all the 192 output fields for the simulations, along with their description and units, is at: 193 https://www.cgd.ucar.edu/ccr/strandwg/WACCM6-TSMLT-SSP245/

194 <u>2.5 Additional ARISE-SAI simulations</u>

The ARISE-SAI-1.5 simulations described above are likely to be most relevant to policy makers and hence reproduction of the experiments in multiple models is desired. ARISE-SAI simulations are already being performed with the UKESM model. ARISE-SAI-1.0 simulations as well as ARISE-SAI-1.5-2045, with start of intervention delayed by 10 years, are in progress with CESM2(WACCM). A subset of simulations describing these different initial conditions and targets is discussed in MacMartin et al. (2022) using a slightly more simplified version of CESM2(WACCM6).

201

(Formatted:	Header

Moved (insertion) [7]

Moved (insertion) [8]

(Moved (insertion) [9]

Deleted: newest,

203 3. ARISE-SAI-1.5 with CESM2(WACCM6)

We present here the details of implementation of ARISE-SAI-1.5 simulations in CESM2(WACCM6).

205

I

206 <u>3.1 Model Description</u>

207 CESM2(WACCM6) is the most comprehensive version of the NCAR whole atmosphere ESM and is described in . 208 detail in Gettelman et al., 2019; Danabasoglu et al., 2020, CESM2(WACCM6) was used to contribute climate change 209 projection simulations to the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016). 210 CESM2(WACCM6). CESM2(WACCM6) is a fully coupled ESM with prognostic atmosphere, land, ocean, sea-ice, 211 land-ice, river and wave components. The atmospheric model, WACCM6, uses a finite volume dynamical core with 212 horizontal resolution of 1.25° longitude by 0.9° latitude. WACCM6 includes 70 vertical levels with a model top at 4.5 213 \times 10⁶ hPa (~ 140 km). Tropospheric physics in WACCM6 are the same as in the lower top configuration, the 214 Community Atmosphere Model version 6 (CAM6). CESM2(WACCM6) includes a parameterization of non-215 orographic waves which follows Richter et al. (2010) with changes to tunable parameters described in Gettleman et 216 al. (2019). Parameterized gravity waves are a substantial driver of the quasi-biennial oscillation (QBO) which is 217 internally-generated in CESM2(WACCM6). CESM2(WACCM6) includes prognostic aerosols which are represented 218 using the Modal Aerosol Model version 4 (MAM4) as described in Liu et al. (2016). This includes four modes, of 219 which only three are used for sulfate: Aitken, Accumulation and Coarse mode. In the stratosphere, CESM(WACCM6) 220 includes a comprehensive interactive sulfur cycle, as described for instance in Mills et al. (2016); this allows for SO₂ 221 oxidation (with interactive OH concentration) and subsequent nucleation and coagulation of H2SO4 into sulfate aerosol 222 (allowing for inter-mode transfer), which are then removed from the stratosphere through gravitational settling and 223 large-scale circulation. A more indepth analysis of the size distribution and vertical distribution of sulfate aerosols 224 under SO₂ injections has been performed in Visioni et al. (2022) (for single-point injections at the same latitudes and 225 altitudes as those described in these simulations), also compared with results from other models with similar aerosol 226 microphysics (UKESM1 and GISS), highlighting that in CESM2(WACCM6) the produced stratospheric aerosol are 227 mainly found in the Coarse mode. CESM2(WACCM6) also includes a comprehensive chemistry module with 228 interactive tropospheric, stratospheric, mesospheric and lower thermospheric chemistry (TSMLT) with 228 prognostic 229 chemical species, described in detail in Gettleman et al. (2019).

The ocean model in CESM2(WACCM6) is based on the Parallel Ocean Program version 2 (POP2; Smith et al., 2010; Danabasoglu et al., 2012; Danabasoglu et al., 2020). The horizontal resolution of POP2 is uniform in the zonal direction (1.125°) and varies from 0.64° (occurring in the Northern Hemisphere) to 0.27° at the Equator. The ocean biogeochemistry is represented using the Marine Biogeochemistry Library (MARBL), which is an updated implementation of the Biochemistry Elemental Cycle (Moore et al., 2002; 2004; 2013). CESM2 uses version 3.14 of the NOAA WaveWatch-III ocean surface wave prediction model (Tolman, 2009). Sea-ice in CESM2(WACCM6) is represented using CICE version 5.1.2 (CICE5; Hunke et al., 2015) and uses the same horizontal grid as POP2.

CESM2(WACCM6) uses the Community Land Model version 5 (CLM5) (Lawrence et al., 2019), CLM5
 includes a global crop model that treats planting, harvest, grain fill, and grain yields for six crop types (Levis et al.,

Deleted:, the Community Earth System Model, version 2 with the Whole Atmosphere Community Climate Model version 6 as its atmospheric component (CESM2(WACCM6).

Formatted: Justified, Indent: First line: 0", Space Before: 12 pt

Deleted:)

Deleted: CESM2(WACCM6) has numerous improvements to all its components, including fully interactive tropospheric chemistry and an interactive crop model as compared to CESM1(WACCM) (Mills et al., 2017). ¶

Deleted:) and use the Zhang and McFarlane (1995) convection parameterization, the Cloud Layers Unified By Binormals (CLUBB; Golaz et al., 2002; Larson, 2017) unified turbulence scheme, and the updated Morrison-Gettelman microphysics scheme (MG2; Gettelman & Morrison, 2015). A form drag parameterization of Beljaars et al. (2004) and an anisotropic gravity wave drag scheme following Scinocca and McFarlane (2000) are now used in place of the turbulent mountain stress parameterization that was used in CESM1.

Formatted: Justified

Deleted:), but contains many advances since its version in CESM1. These include a new parameterization for mixing effects in estuaries, increased mesoscale eddy (isopycnal) diffusivities at depth, use of prognostic chlorophyll for shortwave absorption, use of salinity-dependent freezing point together with the sea ice model, and a new Langmuir mixing parameterization in conjunction with the new wave model component (

Deleted:).

Deleted: In the vertical, there are 60 levels with a uniform resolution of 10 m in the upper 160m.

Deleted: The vertical resolution of sea-ice has been enhanced to eight layers, from four in CESM1. The snow model resolves three layers, and the melt pond parameterization has been updated (Hunke et al., 2013).

Deleted: As compared to CLM4, CLM5 includes improvements to soil hydrology, spatially explicit soil depth, dry surface layer control on soil evaporation, and an updated ground-water scheme, as well as several snow model updates.

Formatted: Justified, Space After: 0 pt

I

281

283

294

2018), a new fire model (Li et al., 2013; Li and Lawrence, 2017), multiple urban classes and an updated urban energy
model (Oleson & Feddema, 2019), and improved representation of plant dynamics. The river transport model used is
the Model for Scale Adaptive River Transport (MOSART; H. Y. Li et al., 2013).

282 <u>3.2 Reference simulations</u>

284 A 5-member reference ensemble with CESM2(WACCM6) and the SSP2-4.5 scenario was carried out as part of the 285 CMIP6 project for years 2015 - 2100. Surface temperature evolution and equilibrium climate sensitivity in these 286 simulations are described in detail in Meehl et al. (2020). We carried out an additional 5-member ensemble of these 287 simulations from years 2015 - 2069 with augmented high-frequency output for high-impact event analysis, as well as 288 additional output for the land model to match the SCI simulations. The additional 5-member ensemble was branched 289 from the three existing historical CESM2(WACCM6) simulations in the same manner as the first 5-member ensemble, 290 but with an addition of small temperature perturbations for each ensemble member ([6, 7, 8, 9, 10] x10⁻¹⁴ K, 291 respectively), at the first model timestep. CESM2 ranks highly against other CMIP6 models in the ability to represent 292 large scale circulations and key features of tropospheric climate over the historical time period (e.g.: Simpson et al., 293 2020. al 2020 Coburn Pryor 2021). Duviver et and

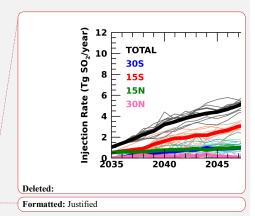
295 **3.3 ARISE-SAI-1.5 Simulations**

In CESM2(WACCM6) SO₂ injections were placed at 180° longitude and bounded by two pressure interfaces: 47.1
hPa and 39.3 hPa (approximate geometric altitude at gridbox midpoint of 21.6 km). Based on the 2020 - 2039 mean
of the SSP2-4.5 simulations with CESM2(WACCM6), the surface temperature targets for the ARISE-SAI-1.5
ensemble for T0, T1, and T2 are 288.64 K, 0.8767 K, and -5.89 K, respectively.

The first five members of ARISE-SAI-1.5 simulations were initialized in 2035 from the first five members (001 to 005) of the SSP2 4.5 simulations carried out with CESM2(WACCM6); hence, all had different initial ocean, sea-ice, land, and atmospheric initial conditions on January 1, 2035. Similarly to the SSP2 4.5 simulations, subsequent ensemble members (006 through 010) were initialized from the same initial conditions as members 001 through 005, respectively, with an addition of a small temperature perturbation to the atmospheric initial condition to create ensemble spread.

Formatted: Header

Deleted: 2.2 Reference simulations We use the


Moved up [1]: moderate Shared Socioeconomic Pathway scenario of SSP2-4.5 for our simulations, which more closely captures current policy scenarios compared to higher emission scenarios such as SSP5-8.5 (Burgess et al., 2020).

Moved up [2]: not shift markedly from historical patterns' (O'Neill et al., 2017), representing the medium range of future forcing pathways (O'Neill et al.,

Deleted: SSP2-4.5, which marks a continuation of the Representative Concentration Pathway 4.5 (RCP4.5) scenario, is a "middle-of-the-road," intermediate mitigation scenario where "the world follows a path in which social, economic, and technological trends to

Deleted: 2016).

Deleted: 2.3 Climate intervention simulations We carried out a 10-member ensemble of SAI simulations with CESM2(WACCM) designed to simulate a plausible implementation scenario of SCI using SAI for evaluation of potential climate intervention risks and impacts. These simulations are the first of a planned set of different SCI
implementation scenarios; we denote the entire planned set of simulations as "Assessing Responses and Impacts of Sola climate intervention on the Earth system," or "ARISE," with simulations of SAI denoted "ARISE-SAI". The first ARISE SAI simulations, presented here, utilize a moderate emission scenario, SSP2-4.5 (O'Neill et al., 2016), and begin intervention in 2035 by applying SAI to cool the Earth([1]
Moved up [6]: The injection latitudes are the same as used in GLENS and in previous studies examining the model's
Moved up [3]: There is uncertainty among Earth system
models with regard to when Earth's global mean surface
Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6)
Moved up [4]: The recent Intergovernmental Panel of
Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6) Moved up [5]: a "controller" algorithm (MacMartin et al.,
Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6) Moved up [5]: a "controller" algorithm (MacMartin et al., 2014; Kravitz et al., 2017) that Moved up [7]: After each year of simulation, the algorithm
 Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6) Moved up [5]: a "controller" algorithm (MacMartin et al., 2014; Kravitz et al., 2017) that Moved up [7]: After each year of simulation, the algorithm calculates the global mean temperature, T0, north-south Deleted: This injection altitude is estimated to be achievable
Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6) Moved up [5]: a "controller" algorithm (MacMartin et al., 2014; Kravitz et al., 2017) that Moved up [7]: After each year of simulation, the algorithm calculates the global mean temperature, T0, north-south Deleted: This injection altitude is estimated to be achievable by existing aircraft technologies that could be adapted ([2] Deleted: (2021) found that the average across models of
 Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6) Moved up [5]: a "controller" algorithm (MacMartin et al., 2014; Kravitz et al., 2017) that Moved up [7]: After each year of simulation, the algorithm calculates the global mean temperature, T0, north-south Deleted: This injection altitude is estimated to be achievable by existing aircraft technologies that could be adapted ([2] Deleted: (2021) found that the average across models of when 1.5°C will be reached in 2028 under the SSP2-4. ([3] Deleted: was used in GLENS and the simulations presented
Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6) Moved up [5]: a "controller" algorithm (MacMartin et al., 2014; Kravitz et al., 2017) that Moved up [7]: After each year of simulation, the algorithm calculates the global mean temperature, T0, north-south Deleted: This injection altitude is estimated to be achievable by existing aircraft technologies that could be adapted ([2 Deleted: (2021) found that the average across models of when 1.5°C will be reached in 2028 under the SSP2-4. ([3 Deleted: was used in GLENS and the simulations presented in Tilmes et al. (2020).
 Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6) Moved up [5]: a "controller" algorithm (MacMartin et al., 2014; Kravitz et al., 2017) that Moved up [7]: After each year of simulation, the algorithm calculates the global mean temperature, T0, north-south Deleted: This injection altitude is estimated to be achievable by existing aircraft technologies that could be adapted ([2] Deleted: (2021) found that the average across models of when 1.5°C will be reached in 2028 under the SSP2-4. ([3] Deleted: was used in GLENS and the simulations presented in Tilmes et al. (2020). Formatted: Subscript Deleted: Simulations are carried out for 35 years (2035 - 2006)
 Moved up [4]: The recent Intergovernmental Panel of Climate Change (IPCC) Sixth Assessment Report (AR6) Moved up [5]: a "controller" algorithm (MacMartin et al., 2014; Kravitz et al., 2017) that Moved up [7]: After each year of simulation, the algorithm calculates the global mean temperature, T0, north-south Deleted: This injection altitude is estimated to be achievable by existing aircraft technologies that could be adapted ([2 Deleted: (2021) found that the average across models of when 1.5°C will be reached in 2028 under the SSP2-4. ([3 Deleted: was used in GLENS and the simulations presented in Tilmes et al. (2020). Formatted: Subscript Deleted: Simulations are carried out for 35 years (2035 - 2069), which is sufficient for us to consider both a trar([4]

437

438

439

12 SO₂/year)

10

8

6

4

2

2035

Injection Rate (Tg

TOTAL

305

15S

15N

30N

2040

Figure 1: SO₂ injection rate as a function of time in ARISE-SAI-1.5 simulations at 30°S (blue), 15°S (red), 15°N* (green), 30°N (pink), and total (black). Thin lighter colored lines represent individual ensemble members, whereas thick lines show the 10-member ensemble mean.

Time (Years)

2050

2045

2055

2060

2065

2070

ARISE-SAI-1.5

440 The amount of SO2 injection in the ARISE-SAI-1.5 simulations chosen by the controller algorithm is shown 441 in Figure 1. The majority of SO₂ is injected at 15°S, with an approximate linear increase from 0.5 Tg SO₂ per year in 442 2035 to 6 Tg SO₂ per year in 2069. SO₂ injections at 30°S and 15°N are about ¹/₃ of that injected at 15°S. Throughout 443 all the ARISE-SAI-1.5 simulations, the amount of SO2 injection at 30°N is very small, less than 0.5 Tg SO2 per year, 444 diminishing to nearly zero by the end of the simulations. The distribution of SO2 across the four injection latitudes in 445 ARISE-SAI-1.5 is very different from that in GLENS (Tilmes et al., 2018) despite having the same goals for the 446 controller. In GLENS, the majority of SO2 was injected at 30°S and 30°N, with a significant amount at 15°N, and 447 almost none at 15°S; that is, GLENS required more injection in the Northern Hemisphere than the Southern in order 448 to maintain the interhemispheric temperature gradient T1, whereas ARISE-SAI-1.5 requires more injection in the 449 Southern Hemisphere to maintain T1. GLENS also required more SO2 injection at 30°N/30°S to maintain T2 than is 450 required in ARISE-SAI-1.5. It is unclear at this time how much of this difference is a result of the different model 451 version and how much is a result of changes in the forcing between RCP8.5 and SSP2-4.5. 452

453 4 Initial Results

454 One of the intents of ARISE-SAI simulations is to provide the broader community a data set for examining various 455 impacts of SCI on the multiple components of the Earth system. Below we present basic diagnostics that verify that 456 the SO2 injections and controller are working as intended, and we describe how well the temperature targets are being 457 met in CESM2(WACCM6). Detailed analysis of the simulations is left for future work.

459 4.1 Stratospheric Aerosols

458

Deleted: year

Moved up [8]: for the atmospheric model that will enable analysis of extreme events (e.g.: Tye et al.

Moved up [9]: show the daily output from the ocean and sea-ice models respectively. The table captions describe which output is specific to ARISE-SAI-1.5 and the new five SSP2-4.5 CESM2(WACCM6) ensemble members, and which is common to all simulations. An online table showing all the output fields for the simulations, along with their description and units, is at:

https://www.cgd.ucar.edu/ccr/strandwg/WACCM6-TSMLT-SSP245/.

Deleted: 2.

Deleted: Output

All model output for the simulations is based on community input and provided in NetCDF format. All variables are in time-series format, with one variable per file. 3-dimensional atmospheric output is on the original 70 model levels. Output consists of standard monthly mean CMIP6 output for the atmospheric, land, ocean, and sea-ice models. In addition, higher-frequency (daily averaged, 3-hourly averaged, 3hourly instantaneous, and 1-hourly mean) output is available

Deleted: 2022). The atmospheric output at various time

Deleted:

3

Deleted: The intent

Deleted:

Deleted: are

Deleted: 3

Deleted:

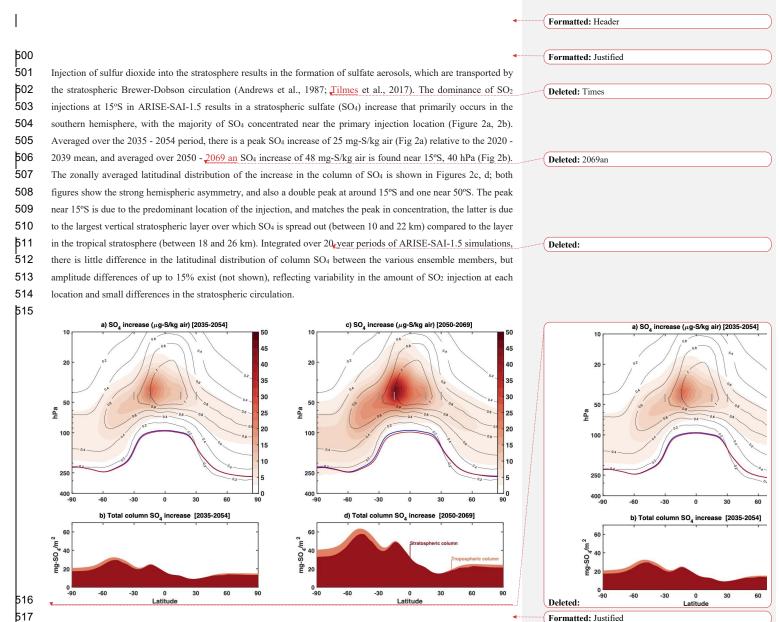


Figure 2: Zonal mean stratospheric SO₄ concentration increase (in µg-S/kg of air) in (a) 2035-2054 and (c) 2050-2069 relative to the 2020 - 2039 mean. Black contour lines show the background concentration in 2020-2039. Blue
line shows the annual mean tropopause height in the control period; the red line shows the annual mean tropopause

Deleted: 3

Formatted: Justified

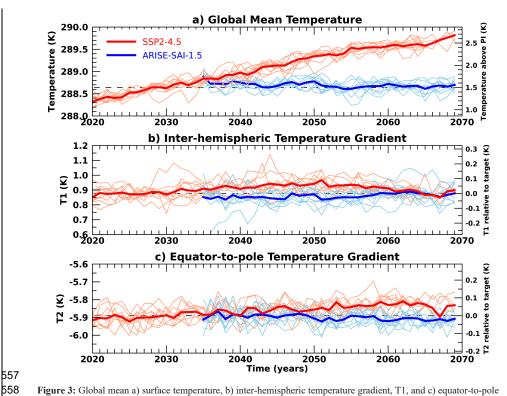
height in the ARISE simulation in 2035-2054 and 2050-2069, respectively. Gray shadings indicate the grid-boxes
where SO₂ is injected. Zonal mean total increase in the column burden of sulfate (in mg-SO₄/m²) for (b) 2035 - 2054
and (d) 2050 - 2069. The contribution to the column increase is shown in dark red, for the fraction located in the
stratosphere, and in orange for the fraction located in the troposphere.

530 **4.2** Meeting temperature targets

I

529

531


552

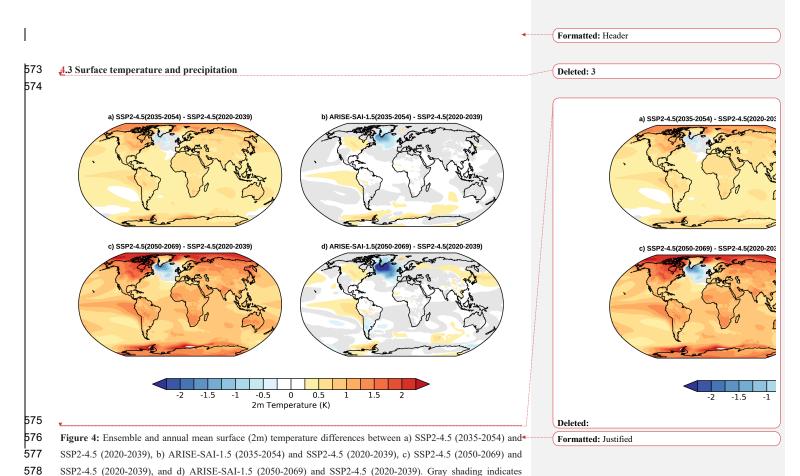
532 Global mean surface temperature, the inter-hemispheric temperature gradient, and equator-to-pole temperature 533 gradients for the SSP2-4.5 and ARISE-SAI-1.5 simulations are shown in Figure 3. There is a notable difference in 534 behavior of T1 and T2 in the SSP2-4.5 simulations as compared to the RCP8.5 simulations with CESM1(WACCM) 535 (not shown). In the CESM1(WACCM) simulations with RCP8.5, T1 and T2 were increasing steadily with time of 536 simulation, reaching a change in T1 of nearly 0.45 K, and a T2 change of 0.3 K by 2070 relative to ~ 2020 - 2039 537 mean (Tilmes et al. 2018). In contrast, T1 and T2 in the SSP2-4.5 simulation are increasing much more slowly, less 538 than 0.05 K for T1 and less than 0.1 K for T2 between the reference period (2020-2039) and 2070. The more moderate 539 (SSP2-4.5) emission scenario used in the CESM2(WACCM6) control simulations partially explains the slower 540 increase of T1 and T2 with time, however not all. Simulations with CESM2(WACCM6) and SSP5-8.5 scenarios also 541 show a much slower increase of T1 and T2 as compared to CESM1(WACCM) with RCP8.5. Differing modeling 542 physics, in particular cloud feedbacks, between CESM1 and CESM2 are key differences that could lead to the 543 differences in projected spatial patterns of surface warming between the two model configurations, as well as changes 544 in the Atlantic Meridional Overturning Circulation as discussed in Tilmes et al. (2020). Additional simulations with 545 CESM2 and RCP emissions have been performed to understand the relative role of differences in forcing and 546 differences in model physics on projected spatial patterns of global mean temperature and other variables between 547 CESM1 and CESM2. A detailed discussion of the reasons behind the model dependence in injection strategy in 548 GLENS, CESM1(WACCM) and ARISE-SAI-1.5, CESM2(WACCM6) simulations can be found in Fasullo and 549 Richter (2022). They show that the main contributors to the differences are: rapid adjustment of clouds and rainfall to 550 elevated levels of carbon dioxide, dynamical responses in the Atlantic Meridional Overturning Circulation (AMOC) 551 and differences in future climate forcing scenarios.

Deleted: most likely responsible for

Deleted: 2019). Simulations

Deleted: are currently in production

557

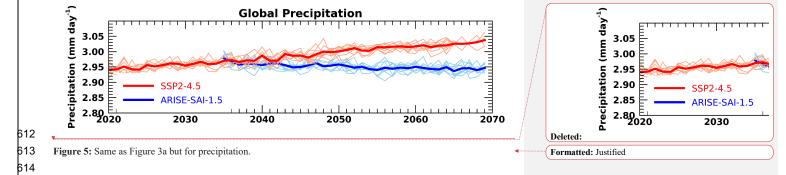

559

560

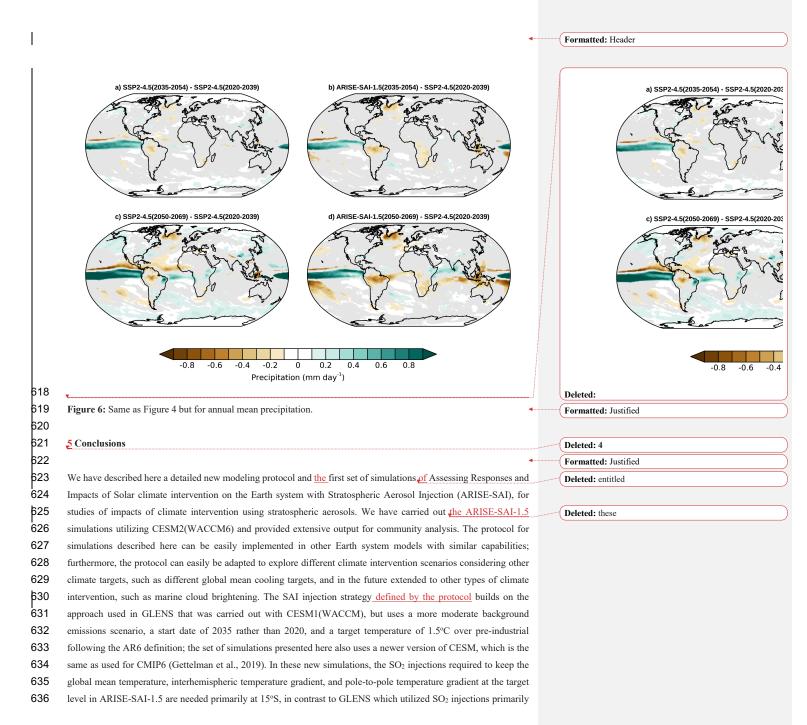
561

Figure 3: Global mean a) surface temperature, b) inter-hemispheric temperature gradient, T1, and c) equator-to-pole temperature gradient, T2, for SSP2-4.5 (red) and ARISE-SAI-1.5 (blue) simulations. Thin lines represent individual ensemble members, whereas the thick lines show the ensemble mean.

562 The differences between the projected surface temperature patterns in CESM2 as compared to CESM1 have 563 implications for climate intervention. Since the changes in T1 and T2 targets differ between the CESM1(WACCM) 564 and CESM2(WACCM6) future simulations, the controller selects different SO2 injection locations to best counteract 565 these changes. Injections needed to offset increasing T1 and T2 in CESM1(WACCM) required primarily injections at 566 30°S and 30°N, whereas a small change in T1 and T2 relative to the 2020 - 2039 period in CESM2(WACCM6), SSP2-567 4.5 requires injections primarily at 30°S. The SO2 injections applied in ARISE-SAI-1.5 do a very good job at keeping 568 the global mean temperature, T1 and T2 at the target levels. This is demonstrated by the blue lines in Figure 2. There 569 is a fair amount of variability among the individual ensemble members (thin light blue lines) in their ability to meet 570 the global mean, T1 and T2 targets, however the ensemble mean (thick blue line) shows very good agreement between 571 these variables and their target values.



578


579 regions where the differences are not statistically significant at the 95% level using a two-sided Student's t test. 580 581 Figure 4 shows the ensemble and annual mean surface temperature changes for two time periods, 2035 - 2054 and 582 2050 - 2069, during the SSP2-4.5 and ARISE-SAI-1.5 simulations relative to the 2020 - 2039 period. Fig 4 a, c show 583 the steady increase in surface temperature with time over the majority of the globe, with the largest warming occurring 584 in the Northern Hemisphere high latitudes. The North Atlantic is the only region of the globe that is cooling in the 585 21st century. This "warming hole" in the North Atlantic is a feature of several of the recent generation Earth system 586 models and is attributed to the AMOC (Drijfhout et al. 2012, Chemke et al. 2020, Keil et al. 2020). Specifically, in a 587 warming climate with a reduction in the deep water formation, the AMOC weakens. This results in less heat transport 588 into the Northern North Atlantic, producing cooler temperatures that oppose the anticipated effects of global warming. 589 Figures 4b and 4d demonstrate the success of the SAI strategy in keeping the global temperatures near the 2020 - 2039 590 average, or at ~ 1.5 K above pre-industrial values. In ARISE-SAI-1.5, near surface annual mean temperature 591 throughout the entire simulation is within 0.5 K of that goal over the majority of the globe. The largest exception to

594 that is the North Atlantic warming hole, where surface temperatures remain cooler relative to the northern North 595 Atlantic than in the present day; while AMOC strength is partially recovered under SAI relative to SSP2-4.5, it is not Deleted: or with comparison to SSP2-4.5. 596 fully restored back to present-day conditions. In addition, in the ensemble mean, ARISE-SAI-1.5 simulations show 597 residual warming over North America, as well as over Eastern South Pacific Ocean (off the coast of South America), 598 and in parts of Antarctica as compared to the 2020 - 2039 period. Residual changes relative to the target period from 599 the application of SAI are expected, as SAI can not perfectly reverse the effects of increasing greenhouse gases. 600 The precipitation changes in SSP2-4.5 and ARISE-SAI-1.5 simulations for the same time periods examined Deleted: TThe 601 for surface temperature changes are shown in Figures 5 and 6. Consistent with prior similar studies, SSP2-4.5 602 simulations show primarily an increase of precipitation in a warming climate, with the largest increases along the 603 Equatorial Pacific Ocean, and a strong drying region northward of that (Figs 5, 6a,c). In ARISE-SAI-1.5, consistent 604 with previous studies (Kravitz et al., 2017; Lee et al. 2020), restoring global mean temperature is associated with an 605 overall decrease in annual mean precipitation (Fig 5), however regionally both increases and decreases occur. In 606 ARISE-SAI-1.5, the increased precipitation across the Equatorial Pacific seen in SSP2-4.5 decreases in magnitude, 607 but is still a persistent feature. ARISE-SAI-1.5 also shows drying north and south of that region as well as intensified 608 drying over Northern South America, South Africa, Indian Ocean south of the Equator and northernmost Australia. 609 The Indian Ocean north of the Equator and India are projected to be wetter in ARISE-SAI-1.5 as compared to the 610 2020 - 2039 period of SSP2-4.5. 611

I

Formatted: Header

at 30°N and 30°S. The reasons for these differences are currently being investigated in detail, and it highlights the
need to reproduce such experiments with other climate models to understand their sources. Surface climate in ARISESAI-1.5 is very similar to that during the reference period (2020 - 2039), however residual changes still remain, in
particular in the North Atlantic, where surface temperature is cooler than in the reference period. The robustness of
these projected regional residuals in other climate models, or under different climate targets, would also be of extreme
interest. Consistent with prior studies, global mean precipitation in ARISE-SAI-1.5 is smaller than during the reference
period.

Ì

653 654

655 656 Appendix A

Formatted: Font: Not Bold

The output for the ARISE-SAI-1.5 simulations is extensive and includes variables from multiple Earth system
 components enabling the community analysis of changes in many variables that are crucial to making decisions about
 the implementation of SCI including weather and climate extremes, crops, ozone changes, etc. To enable broad access
 to the data, output from the ARISE-SAI-1.5 simulations is available on the Amazon Web Services Open Data portal.

Deleted: «

Variable Name	Description
AEROD_v	Total Aerosol Optical Depth in visible band
AODVIS	Aerosol optical depth 550 nm, day only
BURDENSO4dn	Sulfate aerosol burden, day night
<u>CLDHGH</u>	Vertically-integrated high cloud
<u>CLDLOW</u>	Vertically-integrated low cloud
<u>CLDMED</u>	Vertically-integrated mid-level cloud
<u>CLDTOT</u>	Vertically-integrated total cloud
CLOUD	Cloud fraction
dgnumwet1	Aerosol mode (accumulation) wet diameter
dgnumwet2	Aerosol mode (Aitken) wet diameter
dgnumwet3	Aerosol mode (coarse) wet diameter
DTCOND	<u>T tendency - moist processes</u>
<u>FLDS</u>	Downwelling longwave flux at surface
FLDSC	Clearsky Downwelling longwave flux at surface
FLNR	Net longwave flux at tropopause

<u>FLNS</u>	Net longwave flux at surface
<u>FLNSC</u>	Clearsky net longwave flux at surface
<u>FLNT</u>	Net longwave flux at top of model
<u>FLNTC</u>	Clearsky net longwave flux at top of model
FLUT	Upwelling longwave flux at top of model
FLUTC	Clearsky upwelling longwave flux at top of model
FSDS	Downwelling solar flux at surface
FSDSC	Clearsky downwelling solar flux at surface
FSNR	Net solar flux at tropopause
FSNS	Net solar flux at surface
FSNSC	Clearsky net solar flux at surface
FSNTOA	Net solar flux at top of atmosphere
FSNTOAC	Clearsky net solar flux at top of atmosphere
FSNT	Net solar flux at top of model
FSNTC	Clearsky net solar flux at top of model
LWCF	Longwave cloud forcing
<u>H2O</u>	Water vapor concentration
ICEFRAC	Fraction of sfc area covered by sea-ice
num_a1	Aerosol mode (accumulation) number concentration
num_a2	Aerosol mode (Aitken) number concentration
num_a3	Aerosol mode (coarse) number concentration
<u>O3</u>	Ozone concentration
O3_Loss	Ozone reaction rate group
O3_Prod	Ozone reaction rate group
MSKtem	Transformed Eulerian Mean diagnostics mask
<u>OMEGA</u>	Vertical velocity (pressure)
PBLH	PBL height
PHIS	Surface geopotential

PRECC	Convective precipitation rate	
PRECT	Total (convective and large-scale) precipitation rate	
PRECTMX	Maximum (convective and large-scale) precipitation rate	
<u>PS</u>	Surface pressure	
PSL	Sea level pressure	
Q	Specific humidity	
<u>QRL</u>	Longwave heating rate	
QRL_TOT	Merged LW heating: QRL+QRLNLTE	
QRS	Solar heating rate	
QRS_TOT	Merged SW heating:	
QSNOW	Diagnostic grid-mean snow mixing ratio	
RELHUM	Relative humidity	
REFF_AERO	Aerosol effective radius	
RHREFHT	Reference height relative humidity	
<u>SO2</u>	Sulfur dioxide concentration	
<u>so4_a1</u>	so4_a1 (accumulation) concentration	
<u>so4_a2</u>	so4_a2 (Aitken) concentration	
<u>so4_a3</u>	so4_a3 (coarse) concentration	
<u>SST</u>	sea surface temperature	
SWCF	Shortwave cloud forcing	
T	Temperature	
TREFHT	Reference height temperature	
TREFHTMN**	Minimum reference height temperature	
TREFHTMX**	Maximum reference height temperature	
TS	Surface temperature (radiative)	
TROP_P	Tropopause Pressure	
TROP_T	Tropopause Temperature	
TSMN	Minimum surface temperature	

<u>TSMX</u>	Minimum surface temperature
<u>U</u>	Zonal wind
<u>U10</u>	10m wind speed
V	Meridional wind
<u>Z3</u>	Geopotential Height (above sea level)
<u>Z500</u>	Geopotential height at 500 hPa pressure surface

Table A1: Minimum recommended monthly mean output for ARISE-SAI simulations and corresponding reference

660 661

simulations.

658 659

I

Variable Name	Description	
ACTNL	Average Cloud Top droplet number	
ACTREL	Average Cloud Top droplet effective radius	
bc_a4_SRF*	Black carbon in additional mode in bottom layer	
BURDENBCdn	Black carbon aerosol burden, day night	
BURDENDUSTdn	Dust aerosol burden, day night	
BURDENPOMdn	Particulate organic matter aerosol burden, day night	
BURDENSEASALTdn	Seasalt aerosol burden, day night	
BURDENSO4dn	Sulfate aerosol burden, day night	
BURDENSOAdn	SOA aerosol burden, day night	
BUTGWSPEC	Zonal wind tendency from convective gravity waves	
CDNUMC	Vertically-integrated droplet concentration	
CLDICE	Grid box averaged cloud ice amount	
CLDLIQ	Grid box averaged cloud liquid amount	
CLDTOT	Vertically-integrated total cloud	
CLOUD	Cloud fraction	
CMFMC	Moist convection (deep+shallow) mass flux	
CMFMCDZM	Convection mass flux from ZM deep	
dst_a1*	Dust concentration in accumulation mode	

Formatted: Justified
Formatted Table
Formatted: Justified
Formatted: Justified Formatted: Justified
Formatted: Justified
Formatted: Justified
Formatted. Justified

dst_a2*	Dust concentration in Aitken mode	
dst_a3*	Dust concentration in coarse mode	
dst_a2_SRF*	Aitken mode dust in bottom layer	
FCTL	Fractional occurrence of cloud top liquid	
FLDS	Downwelling longwave flux at surface	
FLDSC	Clearsky Downwelling longwave flux at surface	
FLNR	Net longwave flux at tropopause	
FLNS	Net longwave flux at surface	
FLNSC	Clearsky net longwave flux at surface	
FLNT	Net longwave flux at top of model	
FLNTC	Clearsky net longwave flux at top of model	
FLUT	Upwelling longwave flux at top of model	
FLUTC	Clearsky upwelling longwave flux at top of model	
FSDS	Downwelling solar flux at surface	
FSDSC	Clearsky downwelling solar flux at surface	
FSNR	Net solar flux at tropopause	
FSNS	Net solar flux at surface	
FSNSC	Clearsky net solar flux at surface	
FSNTOA	Net solar flux at top of atmosphere	
FSNTOAC	Clearsky net solar flux at top of atmosphere	
LHFLX	Surface latent heat flux	
MASS	mass of grid box	
03	Ozone	
MSKtem	Transformed Eulerian Mean diagnostics mask	
OMEGA	Vertical velocity (pressure)	
OMEGA500	Vertical velocity at 500 hPa	
PBLH	Planetary boundary layer height	
PDELDRY	Dry pressure difference between levels	

4	Formatted: Header	
•	Formatted: Justified	\square
-	Formatted: Justified	
•	Formatted: Justified	
•	Formatted: Justified	
4	Formatted: Justified	
4	Formatted: Justified	
	Formatted: Justified	
•	Formatted: Justified	
•	Formatted: Justified	
•	Formatted: Justified	
-	Formatted: Justified	
•	Formatted: Justified	\square
	Formatted: Justified	
-	Formatted: Justified	
•	Formatted: Justified	\square
4	Formatted: Justified	
•	Formatted: Justified	\square
•	Formatted: Justified	
-	Formatted: Justified	
4	Formatted: Justified	
•	Formatted: Justified	\square
-	Formatted: Justified	\square
-	Formatted: Justified	
•	Formatted: Justified	\square
-	Formatted: Justified	
-	Formatted: Justified	
4	Formatted: Justified	
4	Formatted: Justified	

PHIS	Surface geopotential	
PM25_SRF	PM2.5 in the bottom layer	
pom_a4_SRF*	Particulate organic matter in additional mode in bottom layer	
PRECC	Convective precipitation rate	
PRECT	Total (convective and large-scale) precipitation rate	
PRECTMX	Maximum (convective and large-scale) precipitation rate	
PS	Surface pressure	
PSL	Sea level pressure	
Q	Specific humidity	
QREFHT	Reference height humidity	
QSNOW	Diagnostic grid-mean snow mixing ratio	
RELHUM	Relative humidity	
RHREFHT	Reference height relative humidity	
SFso4_a1*	surface flux of SO ₄ in accumulation mode	
SFso4_a2*	surface flux of SO4 in Aitken mode	
SFbc_a4*	Surface flux of black carbon in additional mode	
SFpom_a4*	Particulate organic matter in additional mode	
SFdst_a1*	Surface flux of dust in accumulation mode	
SFdst_a2*	Surface flux of dust in Aitken mode	
SFdst_a3*	Surface flux of dust in coarse mode	
SHFLX	Surface sensible heat flux	
SO2	Sulfur dioxide concentration	
SOLIN	Solar insolation	
SOLLD	Solar downward near infrared diffuse to surface	
SOLSD	Solar downward visible diffuse to surface	
Т	Temperature	
T500, T700, T850	Temperature at 500, 700 and 850 hPa respectively	
TAUBLJX	Zonal integrated drag from Beljaars SGO	

-	Formatted: Header
4	Formatted: Justified
	Formatted: Justified
-	Formatted: Justified
-	Formatted: Justified
•	Formatted: Font: Bold
	Formatted: Justified
	Formatted: Justified
•	Formatted: Justified
-	Formatted: Justified
-	Formatted: Justified
-	Formatted: Justified
-	Formatted: Justified
•	Formatted: Justified
-	Formatted: Font: Bold
	Formatted: Justified
	Formatted: Justified
-	(Formatted: Justified
	Formatted: Justified
	Formatted: Justified
	For matted: Justified
4	Formatted: Justified
•	Formatted: Justified
	Formatted: Justified
	Formatted: Justified
-	Formatted: Justified
4	Formatted: Justified
•	Formatted: Justified
-	Formatted: Justified

TAUBLJY	Meridional integrated drag from Beljaars SGO
TAUGWX	Zonal gravity wave surface stress
TAUGWY	Meridional gravity wave surface stress
TAUX	Zonal surface stress
TAUY	Meridional surface stress
TGCLDIWP	Total grid-box cloud ice water path
THzm	Zonal-Mean potential temperature defined on ilevels
TGCLDLWP	Total grid-box cloud liquid water path
TMQ	Total (vertically integrated) precipitable water
TREFHT	Reference height temperature
TREFHTMN**	Minimum reference height temperature
TREFHTMX**	Maximum reference height temperature
TS	Surface temperature (radiative)
TSMN	Minimum surface temperature
TSMX	Minimum surface temperature
U	Zonal wind
U10	10m wind speed
UTGWORO	U tendency - orographic gravity wave drag
UTGWSPEC	U tendency - non-orographic gravity wave drag
UVzm	Meridional flux of zonal momentum: 3D zonal mean
UWzm	Vertical flux of zonal momentum: 3D zonal mean
Uzm	Zonal mean zonal wind defined on ilevels
V	Meridional wind
VTHzm	Meridional Heat Flux: 3D zonal mean
Vzm	Zonal mean meridional wind defined on ilevels
Wzm	Zonal mean vertical wind defined on ilevels
Z3	Geopotential Height (above sea level)
Z500	Geopotential height at 500 hPa pressure surface

-	Formatted: Header	
-	Formatted: Justified	
-	Formatted: Justified	
-	Formatted: Justified	
•	Formatted: Justified	
-	Formatted: Justified	
•	Formatted: Font: Bold	
	Formatted: Justified	——
	Formatted: Font: Bold	
•	Formatted: Justified	
-	Formatted: Justified	
4	Formatted: Justified	
	Formatted: Justified	
-	Formatted: Justified	
•	Formatted: Justified	
•	Formatted: Justified	
4	Formatted: Justified	
•	Formatted: Justified	
4	Formatted: Justified	
-	Formatted: Justified	
•	Formatted: Justified	
•	Formatted: Justified	
-	Formatted: Justified	
	Deleted: SO2	[6]

Deleted: A1

664 665

1

 Table_A2:
 Available daily averaged output from the atmospheric model in ARISE-SAI-1.5 simulations and SSP2-4.5

 CESM2(WACCM6) simulations.
 Variables marked with a '*' are not available from the first five members of

666 CESM2(WACCM6) SSP2-4.5 simulations. **indicates variables that are available (but erroneous) in the first five

members of CESM2(WACCM6) SSP2-4.5 simulations. <u>Variables in bold are used to calculate extremes indices such</u>
 as those presented in Tye et al. (2022).

668 669

Name of Variable(s)	Variable Description	•	Formatted Table
CAPE	Convective available potential energy	4	Formatted: Justified
CIN	Convective inhibition	•	Formatted: Justified
CLDLOW	Vertically-integrated low cloud	•	Formatted: Justified
FLUT	Upwelling longwave flux at top of model	4	Formatted: Justified
PRECT	Total (convective and large-scale) precipitation rate	•	Formatted: Justified
PRECC	Convective precipitation rate	•	Formatted: Justified
PRECSC	Convective snow rate (water equivalent)	•	Formatted: Justified
PRECSL	Large-scale snow rate (water equivalent)	4	Formatted: Justified
PSL	Sea level pressure	•	Formatted: Justified
Q200, Q500, Q700, Q850, Q925	Specific humidity at 200, 500, 700, 850 and 925 hPa respectively	-	Formatted: Justified
T200, T300, T500, T700, T850, T925	Temperature at 200, 300, 500, 700, 850 and 925 hPa respectively	•	Formatted: Justified
ТМQ	Total (vertically integrated) precipitable water		Formatted: Justified
U200, U300, U500, U700, U850, U925	Zonal wind at 200, 300, 500, 700, 850 and 925 hPa respectively	,	" Formatted: Justified
V200, V300, V500, V700, V850, V925	Meridional wind at 200, 300, 500, 700, 850 and 925 hPa respectively	•	Formatted: Justified
Z200, Z500, Z700, Z850, Z925	Geopotential height at 200, 500, 700, 850 and 925 hPa respectively	•	Formatted: Justified
			Formatted: Justified

670

Table A3: 3-hourly averaged output from the atmospheric model in ARISE-SAI-1.5 simulations and additional five

672 SSP2-4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five ensemble members

673 of CESM2(WACCM6) SSP2-4.5 simulations.

674

Deleted: A2

		Deleted:Page Break
IVT	Integrated water vapor transport	Formatted Table
PS	Surface Pressure	Formatted: Justified
Q*	Specific humidity	Formatted: Justified
T*	Temperature	Formatted: Justified
TS	Surface temperature (radiative)	Formatted: Justified
PSL	Sea level pressure	Formatted: Justified
RELHUM*	Relative humidity	Formatted: Justified
TMQ	Total (vertically integrated) precipitable water	Formatted: Justified
U*	Zonal wind	Formatted: Justified
U10	10m wind speed	Formatted: Justified
uIVT	Zonal water vapor transport	Formatted: Justified
vIVT	Meridional water vapor transport	Formatted: Justified
V*	Meridional wind	Formatted: Justified
Z3*	Geopotential Height	Formatted: Justified
		Formatted: Justified

I

680 five SSP2-4.5 CESM2(WACCM6) simulations. For the variables marked with a '*', only the bottom-most 22 levels

were retained, hence levels for those variables range from 1000 to 103 hPa. None of the above output is contained in 681

682 the first five ensemble members of CESM2(WACCM6) SSP2-4.5 simulations.

Deleted: A4

k	Q	7

I

Name of Variable	Variable Description	· · · · · · · · · · · · · · · · · · ·	Deleted: ¶
NO2_SRF	NO2 in bottom layer		Formatted Table
			Formatted: Justified
O3_SRF	O3 in bottom layer	-	Formatted: Justified
PM25_SRF	PM2.5 at the surface	4	Formatted: Justified
PRECC	Convective precipitation rate	4	Formatted: Justified
PRECT	Total (convective and large-scale) precipitation rate	4	Formatted: Justified
TS	Surface temperature (radiative)	-	Formatted: Justified
		-	Formatted: Justified

689 690

691

692

 A5:
 1-hourly instantaneous output from the atmospheric model in ARISE-SAI-1.5 simulations and additional

five SSP2-4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five ensemble

members of CESM2(WACCM6) SSP2-4.5 simulations.

Variable Name	Description
AR	Autotrophic respiration
COL_FIRE_CLOSS	Total column-level fire C loss
CPHASE	Crop phenology phase
DSTDEP	Total dust deposition
DSTFLXT	Total surface dust emission
DWT_CONV_CFLUX _PATCH	Patch-level conversion C flux
DWT_SLASH_CFLUX	Slash C flux to litter and CWD due to land use
DWT_WOOD_PROD UCTC_GAIN_PATCH	Patch-level landcover change-driven addition to wood product pools
EFLX_LH_TOT	Total latent heat flux
FGR	Heat flux into soil/snow including snow melt and lake / snow light transmission
FIRA	Net infrared (longwave) radiation
FIRE	Emitted infrared (longwave) radiation
FROOTC	Fine root carbon

•	¹ Deleted: ¶ ¶
-	Formatted Table
	Formatted: Justified
	Formatted: Justified
4	Formatted: Justified
4	• Formatted: Justified
-	• Formatted: Justified
4	Formatted: Justified
•	Formatted: Justified
•	Formatted: Justified
•	• Formatted: Justified
-	• Formatted: Justified
•	Formatted: Justified
4	• Formatted: Justified
4	• Formatted: Justified

FSH	Sensible heat not including correction for land use change and rain/snow conversion
FSR	Reflected solar radiation
GDDHARV	Growing degree days needed to harvest
GDDPLANT	Accumulated growing degree days past planting date for crop
GPP	Gross primary production
GRAINC_TO_FOOD	Grain carbon to food
H2OSNO	Snow depth (liquid water)
HR	Total heterotrophic respiration
НТОР	Canopy top
NPP	Net primary production
Q2M	2m specific humidity
QDRAI	Sub-surface drainage
QDRAI_XS	Saturation excess drainage
QIRRIG	Water added through irrigation
QOVER	Surface runoff
QRUNOFF	Total liquid runoff
QSNOMELT	Snow melt rate
QSOIL	Ground evaporation
QTOPSOIL	Water input to surface
QVEGE	Canopy evaporation
QVEGT	Canopy transpiration
RH2M	2m relative humidity
SLASH_HARVESTC	Slash harvest carbon
SNOWDP	Gridcell mean snow height
SOILWATER_10CM	Soil liquid water + ice in top 10cm of soil
TG	Ground temperature
TLAI	Total projected leaf area index
TOTSOILLICE	Vertically summed soil ice

-	Formatted: Header
-	Formatted: Justified
-	Formatted: Justified
•	Formatted: Justified
-	Formatted: Justified
•	Formatted: Justified
-	Formatted: Justified
•	Formatted: Justified
•	Formatted: Justified
-	Formatted: Justified
4	Formatted: Justified
•	Formatted: Justified
•	Formatted: Justified
•	Formatted: Justified
-	Formatted: Justified
	Formatted: Justified
-	Formatted: Justified
•	Formatted: Justified
•	Formatted: Justified
-	Formatted: Justified
•	Formatted: Justified
•	Formatted: Justified
-	Formatted: Justified
-	Formatted: Justified
•	Formatted: Justified

TOTSOILLIQ	Vertically summed soil liquid water
TREFMNAV	Daily minimum of average 2-m temperature
TREFMXAV	Daily maximum of average 2-m temperature
TSA	2m air temperature
TSKIN	Skin temperature
TSOI_10CM	Soil temperature in top 10cm of soil
TV	Vegetation temperature
TWS	Total water storage
U10	10-m wind
U10_DUST	10-m wind for dust model
URBAN_HEAT	Urban heating flux
WASTEHEAT	Sensible heat flux from heating/cooling sources of urban waste heat
WOOD_HARVESTC	Wood harvest carbon

		Formatted: Header
TOTSOILLIQ	Vertically summed soil liquid water	Formatted: Justified
TREFMNAV	Daily minimum of average 2-m temperature	Formatted: Justified
TREFMXAV	Daily maximum of average 2-m temperature	Formatted: Justified
TSA	2m air temperature	Formatted: Justified
TSKIN	Skin temperature	Formatted: Justified
TSOI_10CM	Soil temperature in top 10cm of soil	Formatted: Justified
TV	Vegetation temperature	Formatted: Justified
TWS	Total water storage	Formatted: Justified
U10	10-m wind	Formatted: Justified
U10_DUST	10-m wind for dust model	Formatted: Justified
URBAN_HEAT	Urban heating flux	Formatted: Justified
WASTEHEAT	Sensible heat flux from heating/cooling sources of urban waste heat	Formatted: Justified
WOOD_HARVESTC	Wood harvest carbon	Formatted: Justified
		Formatted: Justified

I

additional five SSP2-4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five ensemble members of CESM2(WACCM6) SSP2-4.5 simulations.

CPHASE	Crop phenology phase
CROPPROD1C	1-yr grain product carbon
CWDC_vr	Coarse woody debris carbon, vertically resolved)
CWDN_vr	Coarse woody debris nitrogen (vertically resolved)
EFLX_LH_TOT	Total latent heat flux
FGR	Heat flux into soil/snow including snow melt and lake / snow light transmission
FPSN	Photosynthesis
FROOTC	Fine root carbon
FSH	Sensible heat not including correction for land use change and rain/snow conversion
FSNO_ICE	Fraction of ground covered by snow

•	Formatted Table
-	Formatted: Justified
	Formatted: Justified
	Formatted: Justified
4	Formatted: Justified
•	Formatted: Justified
4	Formatted: Justified
-	Formatted: Justified
•	Formatted: Justified
•	Formatted: Justified

GDDHARV	Growing degree days needed to harvest
GDDPLANT	Accumulated growing degree days past planting date for crop
GPP	Gross primary production
GRAINC	Grain carbon
H2OSOI	Volumetric soil water
НТОР	Canopy top
LEAFC	Leaf carbon
LEAFN	Leaf Nitrogen
LITR1C_vr, LITR2C_vr, LITR3C_vr	Amount of carbon in litter in different decomposition pools vertically resolved
LITR1N_vr, LITR2N_vr, LITR3N_vr	Amount of nitrogen in litter in different decomposition pools vertically resolved
LIVESTEMC	Live stem carbon
PCT_CFT	% of each crop on the crop landunit
PCT_GLC_MEC	% of each GLC elevation class on the glc_mec landunit
PCT_LANDUNIT	% of each landunit on grid cell
PCT_NAT_PFT	% of each PFT on the natural vegetation (i.e., soil) landunit
QICE_FORC	Surface mass balance of glaciated grid cells forcing sent to the glacier model
QIRRIG	Water added through irrigation
RAIN	Atmospheric rain, after rain/snow repartitioning based or temperature
Rnet	Net radiation
SMINN	Soil mineral N
SMP	Soil matric potential
SOILC_vr	SOIL C (vertically resolved)
SOILN_vr	SOIL N (vertically resolved)
TLAI	Total projected leaf area index
TOPO_FORC	Topographic height sent to glacier model

	Formatted: Header)
•	Formatted: Justified)
-	Formatted: Justified)
•	Formatted: Justified)
•	Formatted: Justified)
•	Formatted: Justified)
•	Formatted: Justified)
4	Formatted: Justified)
4	Formatted: Justified)
•	Formatted: Justified)
•	Formatted: Justified)
		~
	Formatted: Justified	
•	Formatted: Justified)
	Formatted: Justified)
	Formatted: Justified)
		1

Total litter carbon
Total soil organic matter carbon
Total vegetation carbon, excluding cpool
Total wood product carbon
Daily minimum of average 2-m temperature
Daily maximum of average 2-m temperature
2m air temperature
Skin temperature
Surface temperature sent to glacier model
Vegetation temperature

4	Formatted: Header
4	Formatted: Justified
4	" Formatted: Justified
-	• Formatted: Justified
•	Formatted: Justified
-	• Formatted: Justified
•	Formatted: Justified
•	Formatted: Justified
4	Formatted: Justified
4	Formatted: Justified
-	Formatted: Justified
-	Formatted: Justified
nd	Deleted: A6

706 707

I

Table <u>A7</u>: Available daily averaged output from the land model at gridcell-level in ARISE-SAI-1.5 simulations and

additional five SSP2-4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five
 ensemble members of CESM2(WACCM6) SSP2-4.5 simulations.

Name of Variable	Variable Description	•(Formatted Table
EFLX_LH_TOT	Total latent heat flux	•(Formatted: Justified
FSH	Sensible heat not including correction for land use change and rain/snow conversion	•(Formatted: Justified
H2OSNO	Snow depth (liquid water)	•(Formatted: Justified
H2OSOI	Volumetric soil water	· · · · · · ·	Formatted: Justified
QDRAI	Sub-surface drainage	· · · · ·	Formatted: Justified
QDRAI_XS	Saturation excess drainage	•(Formatted: Justified
QOVER	Surface runoff	•(Formatted: Justified
QRUNOFF	Total liquid runoff	•(Formatted: Justified
QSNOMELT	Snow melt rate	•(Formatted: Justified
QSOIL	Ground evaporation	•(Formatted: Justified
QTOPSOIL	Water input to surface	•(Formatted: Justified
QVEGE	Canopy evaporation	•(Formatted: Justified
QVEGT	Canopy transpiration	•(Formatted: Justified
SOILICE	Soil ice	•(Formatted: Justified
SOILLIQ	Soil liquid water	•(Formatted: Justified
SOILWATER_10CM	Soil liquid water and ice in top 10cm of soil	•(Formatted: Justified
TOTSOILICE	Vertically summed soil cice	•(Formatted: Justified
TOTSOILLIQ	Vertically summed soil liquid water	•(Formatted: Justified
TWS	Total water storage		Formatted: Justified

713 714 715

I

Table <u>48</u>: 6-hourly averaged output from the land model in ARISE-SAI-1.5 simulations and additional five SSP2-

716 4.5 CESM2(WACCM6) simulations. None of the above output is contained in the first five ensemble members of

717 CESM2(WACCM6) SSP2-4.5 simulations.

718 719

720

721

722

Deleted: A7

Name of Variable	Variable Description	_	Deleted:
CaCO3_form_zint_2	Total CaCO3 formation vertical integral		
diatChl_SURF	Diatom chlorophyll surface value		Formatted Table
diatC_zint_100m	Diatom carbon 0-100m vertical integral		Formatted: Justified
diazChl SURF	Diazotroph chlorophyll surface value		Formatted: Justified
diazC_zint_100m	Diazotroph carbon 0-100m vertical integral	-	Formatted: Justified
DpCO2_2	Atmosphere-ocean difference in the partial pressure of CO2	•	Formatted: Justified Formatted: Justified
ECOSYS_IFRAC_2	Ice fraction for ecosystem fluxes	-	Formatted: Justified
ECOSYS_XKW_2	Gas transfer velocity computed based on wind speed squared for ecosys fluxes	•	Formatted: Justified
FG_CO2_2	Dissolved inorganic carbon surface gas glux	•	Formatted: Justified
photoC_diat_zint_2	Diatom carbon fixation vertical integral		Formatted: Justified
photoC_diaz_zint_2	Diazotroph carbon fixation vertical integral	•	Formatted: Justified
photoC_sp_zint_2	Diatom carbon fixation vertical integral	-	•• Formatted: Justified
spCaCO3_zint_100m	Small Phyto CaCO3 0-100m vertical integral	•	Formatted: Justified
spChl_SURF	Small phyto chlorophyll surface value	4	Formatted: Justified
spC_zint_100m	Small phyto carbon 0-100m vertical integral	4	Formatted: Justified
STF_O2_2	Dissolved oxygen surface flux	•	Formatted: Justified
zooC_zint_100m	Zooplankton carbon 0-100m vertical integral	•	• Formatted: Justified
HMXL_DR_2	Mixed-Layer depth	•	Formatted: Justified
SSS	Sea surface salinity	•	Formatted: Justified
SST	Surface potential temperature	4	Formatted: Justified
SST2	Surface potential temperature**2	•	Formatted: Justified
XMXL_2	Diazotroph carbon fixation vertical integral	•	• Formatted: Justified
	•	•	Formatted: Justified

CESM2(WACCM6) simulations.

Name of Variable	Variable Description	Formatted Table
aice_d	cce area (aggregate)	Formatted: Justified
aicen_d	ice area, categories	Formatted: Justified
apond_ai_d	melt pond fraction of grid cell	Formatted: Justified
congel_d	congelation ice growth	Formatted: Justified
daidtd_d	area tendency dynamics	Formatted: Justified
daidtt_d	area tendency thermodynamics	Formatted: Justified
dvidtd_d	volume tendency dynamics	Formatted: Justified
dvidtt_d	volume tendency thermodynamics	Formatted: Justified
frazil_d	frazil ice growth	Formatted: Justified
fswabs_d	snow/ice/ocn absorbed solar flux	Formatted: Justified
fswdn_d	down solar flux	Formatted: Justified
fswthru_d	shortwave through the sea ice to ocean	Formatted: Justified
hi_d	grid cell mean ice thickness	Formatted: Justified
hs_d	grid cell mean snow thickness	Formatted: Justified
ice_present_d	fraction of time-avg interval that ice is present	Formatted: Justified
meltb_d	basal ice melt	Formatted: Justified
meltl_d	lateral ice melt	Formatted: Justified
melts_d	top snow melt	Formatted: Justified
meltt_d	top ice melt	Formatted: Justified
sisnthick_d	sea ice snow thickness	Formatted: Justified
sispeed_d	ice speed	Formatted: Justified
sitemptop_d	sea ice surface temperature	Formatted: Justified
sithick_d	sea ice thickness	Formatted: Justified
siu_d	ice x velocity component	Formatted: Justified
siv_d	ice y velocity component	Formatted: Justified
vicen_d	ice volume, categories	Formatted: Justified
vsnon_d	snow depth on ice, categories	Formatted: Justified

737

	۹	Formatted: Header
738 739	Table A10: Daily averaged output from the sea-ice model in ARISE-SAI-1.5 simulations and all SSP2-4.5 CESM2(WACCM6) simulations.	Deleted: A9
740		
741 742	Code Availability	
743	CESM2(WACCM6) is freely available from https://www.cesm.ucar.edu/. CESM tag cesm2.1.4-rc.08 was used to	
744	carry out the simulations. Python scripts to generate the case directories with appropriate model tags and output can	
745	be found at https://zenodo.org/record/6474201. The code for the SO ₂ injections controller can be downloaded from	
746	https://zenodo.org/record/6471092#.Y176rPPMKQc.	
747		
748		
749	Data Availability	
750	All the data presented in this manuscript are available at https://zenodo.org/record/6473954#.YmCAwy-B3qA	
751	from the CESM2(WACCM6) SSP2-4.5 simulations and at https://zenodo.org/record/6473775#.YmCAdy-B3qA	
752	from the ARISE-SAI-1.5 simulations. Complete output from all 10 members of CESM2(WACCM6) SSP2-4.5	
753	simulations and ARISE-SAI-1.5 simulations is freely available the NCAR Climate Data Gateway at	
754	https://doi.org/10.26024/0cs0-ev98 and https://doi.org/10.5065/9kcn-9y79 respectively. The ARISE-SAI-1.5 and	
755	SSP-4.5 datasets are additionally available for free download through the Amazon/AWS Open Data program. These	
756	can be accessed at https://registry.opendata.aws/ncar-cesm2-arise/. We anticipate community analysis of various	
757	aspects of the Earth system of the ARISE-SAI-1.5 simulations. There is no obligation to inform the project authors	Deleted: lead
758 759 760	about the analysis you are performing, but it would be helpful <u>to reach out to DV</u> in order to coordinate analysis and avoid duplicate efforts.	
761	Author contribution	
762	JR designed and carried out simulations, compiled output requests, created most of the figures, and drafted the	
763	manuscript. DV set-up the injection controller, carried out simulations, created a figure, and wrote parts of the	
764	manuscript. DM co-designed the simulations and helped with interpretation of results. DB created the time series of	
765	and archived all the data. NR created namelists with desired output and scripts to easily set-up the simulations. BD set	
766	up the AWS data hosting site and transferred all the output there. WL analyzed the control simulations and provided	
767	targets for the controller. MT and JL gave input to simulation design and data output requests. All authors reviewed	
768	the manuscript.	
769		

Competing interests

Acknowledgements

770 771 The authors declare that they have no conflict of interest.

772 773 Formatted: Justified

Formatted: Justified

32

4

776 This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility 777 sponsored by the National Science Foundation under Cooperative Agreement no. 1852977 and by SilverLining 778 through its Safe Climate Research Initiative. The Community Earth System Model (CESM) project is supported 779 primarily by the National Science Foundation. Computing and data storage resources, including the Cheyenne 780 supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory 781 (CISL) at NCAR. Cloud storage support is provided through the Amazon Sustainability Data Initiative. We thank two 782 anonymous reviewers for their comments that improved the manuscript (https://doi.org/10.5194/egusphere-2022-125-783 RC1, https://doi.org/10.5194/egusphere-2022-125-RC2). 784

786 References

785

I

Formatted: Justified

Deleted:

787 Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics. San Diego, CA: Academic Press.,
788 1987.

Beljaars, A. C. M., Brown, A. R., and Wood, N.: A new parameterization of turbulent orographic form drag. Quarterly Journal of the Royal Meteorological Society, 130, 1327–1347. https://doi.org/10.1256/qj.03.73, 2004.

- Burgess, M. G., J. Ritchie, J. Shapland and Pielke R. Jr.: IPCC baseline scenarios have over-projected CO2 emissions and economic growth. Env. Res. Lett., 16, 014016, https://doi.org/10.1088/1748-9326/abcdd2, 2021.
- Carlson, C. J., and Trisos, C. H.: Climate engineering needs a clean bill of health. Nature Climate Change, 8(10),
 843–845, <u>https://doi.org/10.1038/s41558-018-0294-7</u>, 2018.
- Chemke, R., Zanna, L., and Polvani, L. M.: Identifying a human signal in the North Atlantic warming hole. Nature
 Communications, 11(1), 1–7, 2022.
- Coburn, J., and Pryor, S. C.: Differential Credibility of Climate Modes in CMIP6, J. Climate, 34(20), 8145-8164,
 2021.
- Bingaman D. C, Christian V. Rice, Wake Smith and Patrick Vogel: A Stratospheric Aerosol Injection Lofter Aircraft
 Concept: Brimstone Angel, AIAA 2020-0618, AIAA Scitech 2020 Forum, January 2020.
- B02 Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock S., Yeager S. G.:
 B03 The CCSM4 ocean component. Journal of Climate, 25, 1361–1389. <u>https://doi.org/10.1175/JCLI-D-11-</u>
 B04 <u>00091.1</u>, 2012.

 β06 807 808 809 810 811 812 813 	 Danabasoglu, G., Lamarque, JF., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons L. K., Fasullo J., Garcia R., Gettelman A., Hannay C., Holland M. M., Large W. G., Lauritzen P. H., Lawrence D. M., Lenaerts J. T. M., Lindsay K., Lipscomb, W. H., Mills, M. J., Neale R., Oleson K. W., Otto-Bliesner B., Phillips A. S., Sacks W., Tilmes S., van Kampenhout L., Vertenstein M., Bertini A., Dennis J., Deser C., Fischer C., Fox-Kemper B., Kay J. E., Kinnison D., Kushner P. J, Larson V. E., Long M. C., Mickelson S., Moore J. K., Nienhouse E., Polvani L., Rasch P. J., and W. G. Strand: The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001916. https://doi.org/10.1029/2019MS001916, 2020. 	
814 815	Deser, C., Phillips, A., Bourdette, V., Bourdette V., and Teng H.: Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38, 527–546 (2012), <u>https://doi.org/10.1007/s00382-010-0977-x</u> , 2020.	
β16 817 818 819	Drijfhout, S., van Oldenborgh, G. J., and Cimatoribus, A.: Is a Decline of AMOC Causing the Warming Hole above the North Atlantic in Observed and Modeled Warming Patterns?, Journal of Climate, 25, 8373–8379, https://doi.org/10.1175/JCLI-D-12-00490.1, http:// journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12- 00490.1, 2012.	
820 821 822 823	DuVivier, A. K., Holland, M. M., Kay, J. E., Tilmes, S., Gettelman, A., and Bailey, D. A.: Arctic and Antarctic sea ice mean state in the Community Earth System Model Version 2 and the influence of atmospheric chemistry. Journal of Geophysical Research: Oceans, 125, e2019JC015934. https://doi.org/ 10.1029/2019JC015934, 2020.	
824 825 826	Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.	
827 828	EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-779, 2022.	
829 830 831 832 833	 Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Times, S., Vitt F., Bardeen C. G., McInerny J., Liu HL., Solomon S.C., Polvani L. M., Emmons L. K., Lamarque JF., Richter, J. H., Glanville A. S., Bacmeister J. T., Philips A. S., Neale R. B., Simpson I. R., DuVivier A. K., Hodzic A., and Randel W. J.: The whole atmosphere community climate model version 6 (WACCM6). Journal of Geophysical Research: Atmospheres, 124, 12,380–12,403. https://doi.org/ 10.1029/2019JD030943, 2019. 	Formatted: Justified
834 835 836	Gettelman, A., and Morrison, H.: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. Journal of Climate, 28, 1268–1287, <u>https://doi.org/10.1175/JCLI-D-14-00102.1</u> , 2015.	

I

<u>00102.1</u>, 2015.

- 838 Golaz, J.-C., Larson, V. E., and Cotton, W. R.: A PDF-based model for boundary layer clouds. Part I: Method and 839 model description. Journal of the Atmospheric Sciences, 59, 3540-3551, 2002. 840 Hausfather, Z. and G. P. Peters: Emissions - 'business as usual' story is misleading. Nature 577, 618-620 (2020), doi: 841 https://doi.org/10.1038/d41586-020-00177-3, 2020. 842 Hunke, E. C., Hebert, D. A., and Lecomte, O.: Level-ice melt ponds in the Los Alamos sea ice model, CICE. Ocean 843 Modelling, 71, 26-42, https://doi.org/10.1016/j.ocemod.2012.11.008, 2013. 844 Hunke, E. C, Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: CICE: The Los Alamos Sea Ice Model. 845 Documentation and Software User's Manual. Version 5.1. T-3 Fluid Dynamics Group, Los Alamos National 846 Laboratory, Tech. Rep. LA-CC-06-012, 2015. 847 IPCC: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-848 industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the 849 global response to the threat of climate change, sustainable development, and efforts to eradicate poverty 850 [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-851 Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T.
- B53 IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment
 Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L.
 855 Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy,
 856 J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge
 857 University Press. 2021.

Maycock, M. Tignor, and T. Waterfield (eds.)]. 2018.

- Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G.,
 Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz,
 E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM)
 Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal
 Climate Variability, Bulletin of the American Meteorological Society, 96(8), 1333-1349, 2015.
- Keil, P., Mauritsen, T., Jungclaus, J. Hedemann C., Olonscheck D., and Ghosh R.:Multiple drivers of the North
 Atlantic warming hole. Nat. Clim. Chang. 10, 667–671, <u>https://doi.org/10.1038/s41558-020-0819-8</u>, 2020.
- Kravitz, B., Caldeira K., Boucher O., Robock A., Rasch P. J., Alterskjær K., Karam D. B., Cole J. N. S., Curry C. L.
 , Haywood J. M., Irvine P. J., Ji D., Jones A., Kristjánsson J. E., Lunt D. J., Moore J. C., Niemeier U., Schmidt
 H., Schulz M., Singh B., Tilmes S., Watanabe S., Yang S., and Yoon J-H.: Climate model response from the
 Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res. Atmos., 118, 8320–8332,
 doi:10.1002/jgrd.50646, 2013.

Kravitz, B., MacMartin, D. G., Visioni, D., Boucher, O., Cole, J. N. S., Haywood, J., Jones, A., Lurton, T., Nabat,
 P., Niemeier, U., Robock, A., Seferian, R., and Tilmes, S.: Comparing different generations of idealized solar
 geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric
 Chemistry and Physics, 21, 4231-4247, https://doi.org/10.5194/acp-21-4231-2021, 2021.

- Kravitz, B., MacMartin, D. G., Mills, M. J., Richter, J. H., Tilmes, S., Lamarque, J.-F., J. J. Tribbia, and Vitt, F.:
 First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous
 climate objectives. Journal of Geophysical Research: Atmospheres, 122, 12,616–12,634,
 https://doi.org/10.1002/2017JD026874, 2017.
- B78 Larson, V. E., CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere. arXiv:1711.03675v2
 B79 [physics.ao-ph], 2017.
- 880 Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier N., Ghimire B., 881 van Kampenhout L., Kennedy D., Kluzek E., Lawrence P. J., Li F., Li H., Lombardozzi D., Riley W. J., 882 Sacks W. J., Shi M., Vertenstein M., Wieder W. R., Xu C., Ali A. A., Badger A. M., Bisht G., van den Broeke 883 M., Brunke M. A., Burns S. P., Buzan J., Clark M., Craig A., Dahlin K., Drewniak B., Fisher J. B., Flanner 884 M., Fox A. M., Gentine P., Hoffman F., Keppel-Aleks G., Knox R., Kumar S., Lenaerts J., Leung L. R., 885 Lipscomb W. H., Lu Y., Pandey A., Pelletier J. D., Perket J., Randerson J. T., Ricciuto D. M., Sanderson B. 886 M., Slater A., Subin Z. M., Tang J., Thomas R. Q., Val Martin M., and Zeng Z: The Community Land Model 887 Version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of 888 Advances in Modeling Earth Systems, 11, 4245-4287. https://doi.org/10.1029/2018MS001583, 2019.
- Lee, W. , D. MacMartin, D. Visioni, and Kravitz B.: Expanding the design space of stratospheric aerosol geoengineering to include precipitation-based objectives and explore trade-offs. Earth Syst. Dynam.,11, 1051-1072, <u>https://doi.org/10.5194/esd-11-1051-2020</u>, 2022.
- Levis, S., Badger, A., Drewniak, B., Nevison, C., and Ren, X. L.: CLMcrop yields and water requirements: Avoided
 impacts by choosing RCP 4.5 over 8.5. Climatic Change, 146, 501–515, <u>https://doi.org/10.1007/s10584-016-</u>
 1654-9, 2018.
- Li, H. Y., Wigmosta, M. S., Wu, H., Huang, M. Y., Ke, Y. H., Coleman, A. M., & Leung, L. R.: A physically based
 runoff routing model for land surface and Earth system models. Journal of Hydrometeorology, 14, 808–828,
 <u>https://doi.org/10.1175/Jhm-D-12-015.1</u>, 2013.
- Li, F., Levis, S., and Ward, D. S.: Quantifying the role of fire in the Earth system—Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 10, 2293–2314.
 https://doi.org/10.5194/bg-10-2293-2013, 2013.

901 902	Li, F., and Lawrence, D. M.: Role of fire in the global land water budget during the twentieth century due to changing ecosystems. Journal of Climate, 30, 1893–1908. <u>https://doi.org/10.1175/JCLI-D-16-0460.1</u> , 2017.	
903 904 905	Liu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al.: Description and evaluation of a new four- mode version of the Modal Aerosol Module (MAM4) within Version 5.3 of the Community Atmosphere Model. Geoscientific Model Development, 9, 505–522. <u>https://doi.org/10.5194/gmd-9-505-2016</u> , 2016.	
906 907	MacMartin, D. G., Kravitz, B., Keith, D. W., and Jarvis, A.: Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering. Climate Dynamics, 43, 243–258. 2014.	
908 909 910	MacMartin, D. G., Wang, W., Kravitz, B., Tilmes, S., Richter, J. H., and Mills, M. J.: Timescale for detecting the climate response to stratospheric aerosol geoengineering. Journal of Geophysical Research: Atmospheres, 124, 1233–1247. https://doi.org/10.1029/2018JD028906, 2019.	
911 912 913	MacMartin, D. G., D. Visioni, B. Kravitz, J. H. Richter, T. Felgenhauer, W. Lee, D. Morrow, M. Sugiyama, 2022: Scenarios for modeling solar geoengineering, <i>Proc. Natl. Acad. Sci. U.S.A.</i> , 119 (33) e2202230119, <u>https://doi.org/10.1073/pnas.2202230119</u>	
914	Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and	Formatted: Justified
915	future prospects for utilising multiple types of large ensemble, Earth Syst. Dynam., 12, 401-418,	
916	https://doi.org/10.5194/esd-12-401-2021, 2021.	
917	Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al.: Characteristics of future	
917 918	Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al.: Characteristics of future warmer base states in CESM2. Earth and Space Science, 7, e2020EA001296. https://doi.	
917 918 919 920 921 922	 Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al.: Characteristics of future warmer base states in CESM2. Earth and Space Science, 7, e2020EA001296. https://doi.org/10.1029/2020EA001296, 2020. Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan, S. J., Gettelman, A. (2016). Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research: Atmospheres, 121, 2332–2348. https://doi.org/10.1002/2015JD024290 	
917 918 919 920 921 922 923	 Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al.: Characteristics of future warmer base states in CESM2. Earth and Space Science, 7, e2020EA001296. https://doi.org/10.1029/2020EA001296, 2020. Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan, S. J., Gettelman, A. (2016). Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research: Atmospheres, 121, 2332–2348. https://doi.org/10.1002/2015JD024290 Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., Tribbia J. T, Lamarque J.+ 	Formatted: Justified
917 918 919 920 921 922 923 924	 Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al.: Characteristics of future warmer base states in CESM2. Earth and Space Science, 7, e2020EA001296. https://doi.org/10.1029/2020EA001296, 2020. Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan, S. J., Gettelman, A. (2016). Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research: Atmospheres, 121, 2332–2348. https://doi.org/10.1002/2015JD024290 Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., Tribbia J. T, Lamarque JF., Vitt F., Schmidt A., Gettelman A., Hannay C., Bacmeister J. T., and Kinnison, D. E.: Radiative and 	Formatted: Justified
917 918 919 920 921 922 923	 Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al.: Characteristics of future warmer base states in CESM2. Earth and Space Science, 7, e2020EA001296. https://doi.org/10.1029/2020EA001296, 2020. Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan, S. J., Gettelman, A. (2016). Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research: Atmospheres, 121, 2332–2348. https://doi.org/10.1002/2015JD024290 Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., Tribbia J. T, Lamarque J.+ 	Formatted: Justified
917 918 919 920 921 922 923 924 925	 Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al.: Characteristics of future warmer base states in CESM2. Earth and Space Science, 7, e2020EA001296. https://doi.org/10.1029/2020EA001296, 2020. Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan, S. J., Gettelman, A. (2016). Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research: Atmospheres, 121, 2332–2348. https://doi.org/10.1002/2015JD024290 Mills, M. J., Richter, J. H., Tilmes, S., Kravitz, B., MacMartin, D. G., Glanville, A. A., Tribbia J. T, Lamarque J.+ F., Vitt F., Schmidt A., Gettelman A., Hannay C., Bacmeister J. T., and Kinnison, D. E.: Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM). Journal 	Formatted: Justified

929 <u>0645(01)00108-4</u>, 2002.

930 Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and iron cycling in a global three-931 dimensional model. Global Biogeochemical Cycles, 18, GB4028. https://doi.org/10.1029/2004GB002220, 932 2004. 933 Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., & Misumi, K. Marine Ecosystem Dynamics and 934 Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s 935 with the 2090s under the RCP4.5 and RCP8.5 scenarios. Journal of Climate, 26, 9291-9312. 936 https://doi.org/10.1175/JCLI-D-12-00566.1, 2013. 937 National Academies of Sciences, Engineering, and Medicine. Reflecting Sunlight: Recommendations for Solar 938 Geoengineering Research and Research Governance. Washington, DC: The National Academies Press. 939 https://doi.org/10.17226/25762, 2021. 940 O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti R., Kriegler E., 941 Lamarque J-F., Lowe J., Meehl G. A., Moss R., Riahi K., and Sanderson B. M.: The Scenario Model 942 Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482, 943 https://doi.org/10.5194/gmd-9-3461-2016, 2016.

- Brian C. O'Neill, Elmar Kriegler, Kristie L. Ebi, Eric Kemp-Benedict, Keywan Riahi, Dale S. Rothman, Bas J. van Ruijven, Detlef P. van Vuuren, Joern Birkmann, Kasper Kok, Marc Levy, William Solecki: The roads ahead:
 Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environmental Change, 42, 169-180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
- Oleson, K. W., and Feddema, J. : Parameterization and surface data improvements and new capabilities for the
 Community Land Model Urban (CLMU). Journal of Advances in Modeling Earth Systems., 12,
 https://doi.org/10.1029/2018MS001586, 2019.
- Pitari, G., Aquila V., Kravitz B., Robock A., Watanabe S., Cionni I., De Luca N., Di Geonva G., Mancini E., and Tilmes S.: Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model
 Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 119, 2629–2653, https://doi.org/10.1002/2013JD020566, 2014.
- P55 Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a Physically Based Gravity Wave Source Parameterization in a
 956 General Circulation Model. Journal of the Atmospheric Sciences, 67(1), 136–156,
 957 <u>https://doi.org/10.1175/2009JAS3112.1</u>, 2010.
- P58 Richter, J. H., Tilmes, S., Mills, M. J., Tribbia, J., Kravitz, B., MacMartin, D. G., Vitt, F., and Lamarque J-F.:
 959 Stratospheric dynamical response and ozone feedbacks in the presence of SO2 injections. Journal of
 960 Geophysical Research: Atmospheres, 122, 12,557–12,573, https://doi.org/10.1002/2017JD026912, 2017.

961 Scinocca, J., and Mcfarlane N.: The parametrization of drag induced by stratified flow over anisotropic orography. 962 Meteorological 2353-2394, Quarterly Journal of the Royal Society, 126. 963 https://doi.org/10.1256/smsqj.56801, 2000. 964 Simpson, I. R., Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J., Fasullo J. T., and Pendergrass 965 A. G.: The regional hydroclimate response to stratospheric sulfate geoengineering and the role of 966 stratospheric heating. Journal of Geophysical Research: Atmospheres, 124, 12587- 12616, 967 https://doi.org/10.1029/2019JD031093, 2019. 968 Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A., Garcia, R. R., Lauritzen P. H., March D. R., 969 Mills M. J., Medeiros B., and Richter J. H.: An evaluation of the large-scale atmospheric circulation and its 970 variability in CESM2 and other CMIP models. Journal of Geophysical Research: Atmospheres, 125, 971 e2020JD032835, https://doi.org/ 10.1029/2020JD032835, 2020. 972 Smith, R., Jones P., Briegleb B., Bryan F., Danabasoglu G., Dennis J., Dukowicz J., Eden C., Fox-Kemper B., Gent 973 P., Hecht M., Jayne S., Jochum M., Large W., Lindsay K., Maltrud M., Norton N., Peacock S., Vertenstein 974 M., Year S.: The Parallel Ocean Program (POP) reference manual, Ocean component of the Community 975 Climate System Model (CCSM), LANL Technical Report, LAUR-10-01853, 141 pp., 2010. 976 Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O'Neill, B., 977 Sanderson, B., van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Tokarska, K. B., Hurtt, G., Kriegler, 978 E., Lamarque, J.-F., Meehl, G., Moss, R., Bauer, S. E., Boucher, O., Brovkin, V., Byun, Y.-H., Dix, M., 979 Gualdi, S., Guo, H., John, J. G., Kharin, S., Kim, Y., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., 980 Rong, X., Rosenbloom, N., Schupfner, M., Séférian, R., Sellar, A., Semmler, T., Shi, X., Song, Z., Steger, 981 C., Stouffer, R., Swart, N., Tachiiri, K., Tang, Q., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K., Xin, X., 982 Yang, S., Yu, Y., and Ziehn, T.: Climate model projections from the Scenario Model Intercomparison Project 983 (ScenarioMIP) of CMIP6, Earth Syst. Dynam., 12, 253-293, https://doi.org/10.5194/esd-12-253-2021, 2021. 984 Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J., Simpson, I. R., Glanville, A. S., Fasullo, J. T., 985 Phillips, A. S., Lamarque, J., Tribbia, J., Edwards, J., Mickelson, S., and Ghosh, S.: CESM1(WACCM) 986 Stratospheric Aerosol Geoengineering Large Ensemble Project, Bulletin of the American Meteorological 987 Society, 99(11), 2361-2371, 2018.

- Tilmes, S. Mills, M. J., Niemeier, U., Schmidt, H., Robock, A., Kravitz, B., Lamarque, J.-F., Pitari, G., and English,
 J. M.: A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and
 chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, 2015.
- Tilmes S., Richter J. H., Mills M. J., Kravitz B., MacMartin D. G., Vitt F., Tribbia J. T., Lamarque J-F.: Sensitivity
 of aerosol distribution and climate response to stratospheric SO₂ injection locations, Journal of Geophysical
 Research: Atmospheres, 122, 12,591–12,615. https://doi.org/10.1002/2017JD026888, 2017.

I.		
I		Formatted: Header
994	Tilmes, S., MacMartin, D. G., Lenaerts, J. T. M., van Kampenhout, L., Muntjewerf, L., Xia, L., Harrison, C. S.,	
995	Krumhardt, K. M., Mills, M. J., Kravitz, B., and Robock, A.: Reaching 1.5 and 2.0 °C global surface	
996	temperature targets using stratospheric aerosol geoengineering, Earth Syst. Dynam., 11, 579–601,	
997	https://doi.org/10.5194/esd-11-579-2020, 2020.	
998	Tolman, H. L.: User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note,	Formatted: Justified
999	MMAB Contribution, 276, p.220., 2009.	
1000	Tye, M. R., Dagon, K., Molina, M. J., Richter, J. H., Visioni, D., Kravitz, B., and Tilmes, S.: Indices of Extremes:	Deleted: Tebaldi, C.,
1001	Geographic patterns of change in extremes and associated vegetation impacts under climate intervention,	Formatted: Justified, Indent: Left: 0.06", Hanging: 0.44"
1002	Earth Syst. Dynam., 13, 1233-1257, , https://doi.org/10.5194/csd-13-1233-2022, 2022	Deleted: EGUsphere [preprint],
1002	Latar 5 (6). D'Jaam, 10, 1255 (257, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	Deleted: EddSplice [preprint],
1003	Visioni, D., MacMartin, D. G., and Kravitz B.: Is Turning Down the Sun a Good Proxy for Stratospheric Sulfate	Deleted: -1
1004	Geoengineering?, Journal of Geophysical Research: Atmospheres, 126, e2020JD033952, 2021a.	Formatted: Justified
4bor		
1005	Visioni, D., MacMartin, D. G., Kravitz, B., Boucher, O., Jones, A., Lurton, T., Martine, M., Mills, M. J., Nabat, P.,	
1006	Niemeier, U., Séférian, R., and Tilmes, S.: Identifying the sources of uncertainty in climate model simulations	
1007	of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison	
1008	Project (GeoMIP) simulations, Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-	
1009	10039-2021, 2021b.	Formatted: Highlight
1010	Visioni, D., Bednarz, E. M., Lee, W. R., Kravitz, B., Jones, A., Haywood, J. M., and MacMartin, D. G.: Climate	
1011	response to off-equatorial stratospheric sulfur injections in three Earth System Models – Part 1: experimental	
1012	protocols and surface changes, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-401, 2022	
1010		
1013	Zhang, G. J., and McFarlane, N. A.: Sensitivity of climate simulations to the parameterization of cumulus convection	Formatted: Justified
1014	in the Canadian Climate Center general circulation model. Atmosphere-Ocean, 33, 407-446, 1995.	
1015	Zhang, Y., MacMartin, D. G., Visioni, D., and Kravitz, B.: How large is the design space for stratospheric aerosol	
1016	geoengineering?, Earth Syst. Dynam., 13, 201-217, https://doi.org/10.5194/esd-13-201-2022, 2022.	
1017		Formatted: Justified

Page 7: [1] Deleted Yaga Richter 9/8/22 10:28:00 AM Page 7: [2] Deleted Yaga Richter 9/8/22 10:28:00 AM Page 7: [3] Deleted Yaga Richter 9/8/22 10:28:00 AM Page 7: [4] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [3] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [3] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [3] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [3] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [3] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [3] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [4] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [4] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [4] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [4] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 7: [4] Deleted Yaga Richter 9/8/22 10:28:00 AM
<
Page 8: [5] Deleted Yaga Richter 9/8/22 10:28:00 AM
age 0. [5] Detectu 1 aga Menter 7/0/22 10.20.00 MM
Page 21: [6] Deleted Yaga Richter 9/8/22 10:28:00 AM