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Abstract. A key constraint of particle-based methods for modeling cloud microphysics is the conservation of total particle

number, which is required for computational tractability. The process of collisional breakup poses a particular challenge to

this framework, as breakup events often produce many droplet fragments of varying sizes, which would require creating new

particles in the system. This work introduces a representation of collisional breakup in the so-called "superdroplet" method

which conserves the total number of superdroplets in the system. This representation extends an existing stochastic collisional-5

coalescence scheme and samples from a fragment-size distribution in an additional Monte Carlo step. This method is demon-

strated in a set of idealized box model and single-column warm-rain simulations. We further discuss the effects of the breakup

dynamic and fragment-size distribution on the particle size distribution, hydrometeor population, and microphysical process

rates. This representation of collisional breakup is able to produce a stationary particle-size distribution, in which breakup and

coalescence rates are approximately equal, and it recovers expected behavior such as precipitation suppression in the column10

model. Furthermore, representing breakup has potential benefits that extend beyond warm rain processes, such as the ability to

capture mechanisms of secondary ice production in the superdroplet method. The breakup algorithm presented here contributes

to an open-source pythonic implementation of the superdroplet method, ‘PySDM’, which will facilitate future research using

particle-based microphysics.

1 Introduction15

The superdroplet method (SDM) for cloud microphysics is a high-fidelity particle-based (Lagrangian) representation of aerosols

and hydrometeors that offers notable advantages over traditional bulk and bin microphysics schemes. Particle-based methods

were initially used in atmospheric simulations to represent ice nucleation (Paoli et al., 2004; Jensen and Pfister, 2004; Shir-

gaonkar and Lele, 2006; Sölch and Kärcher, 2010), and were later extended to study aerosol indirect effects with a superdroplet

approach (Andrejczuk et al., 2008) in which each "superdroplet" represents a mutliplicity of modeled particles with identical at-20

tributes, such as size and chemical properties. Later, the SDM was extended to include a stochastic representation of collisional

coalescence (Shima et al., 2009; Riechelmann et al., 2012) and ice-phase processes (Shima et al., 2020), making the SDM a

nearly-complete Monte Carlo representation of cloud microphysics. The burgeoning field of particle-based cloud microphysics
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uses SDM implementations in large-eddy simulations (LES) to understand microphysical processes that are underresolved in

traditional bulk and bin methods (e.g., Chandrakar et al., 2021; Andrejczuk et al., 2010; Morrison et al., 2019; Dziekan et al.,25

2019; Grabowski, 2020; Hoffmann, 2017). Furthermore, a growing literature of machine learning in microphysics utilizes the

SDM as a source of high-fidelity training data from which to "learn" microphysical tendencies and properties (Bieli et al., 2022;

Seifert and Rasp, 2020). However, without a complete representation of microphysical processes in the SDM, its predictive

and benchmarking power for cloud feedbacks is limited.

Many implementations of the SDM do not include the process of collisional breakup of droplets. Not only is collisional30

breakup a highly uncertain process in existing bin and bulk parameterizations (Morrison et al., 2020; Grabowski et al., 2019),

but these uncertainties have been found to impact rain rates and other macroscale quantities in bin microphysics studies (Seifert

et al., 2005). Studying collisional breakup in the SDM is not straightforward – a single breakup event is likely to produce

fragments of multiple different sizes. A naive representation of all fragments in the SDM would require the creation of new

superdroplet tracers in the system, which can lead to an explosive growth of superdroplet quantity and dramatically inhibit35

performance of the SDM. Scalability of the SDM for parallel applications such as LES requires a conservation of the total

number of superdroplets. This work proposes a superdroplet-conserving SDM algorithm for the representation of collisional

breakup, using a Monte Carlo step that samples from a fragment size distribution.

This superdroplet-conserving breakup implementation draws inspiration from an analogous "superparticle" representation

of phytoplankton (Jokulsdottir and Archer, 2016): individual phytoplankton aggregates spontaneously break uniformly into a40

number of fragments determined by a power law probability distribution. We apply a similar spontaneous breakup principle to

an intermediate coalesced state resulting from the collision of two droplets. (While spontaneous breakup of water droplets has

also been investigated (Kamra et al., 1991), it has not been observed in in-situ studies of cloud droplet collisions (Testik and

Rahman, 2017) and is widely considered insignificant for atmospheric microphysics (Rogers and Yau, 1989).) The presented

collisional breakup algorithm utilizes empirical collection/breakup efficiencies (such as Schlottke et al. (2010); Beard and45

Ochs (1995); Berry (1967)) to determine whether a colliding droplet pair is likely to break-up, and then samples from a

corresponding empirical fragment size distribution (such as Low and List (1982); Schlottke et al. (2010); Beard and Ochs

(1995); McFarquhar (2004)) to determine the properties of the resulting fragmented superdroplet. Breakup parameterizations

are typically very complex and aim to summarize multiple physical mechanisms of breakup. This work addresses how the

proposed SDM breakup algorithm samples from such complex fragment size distributions, but leaves evaluation and analysis50

of these empirical distributions to future work.

The contents of this paper proceed as follows: Section 2 begin with a conceptual description of the proposed breakup

algorithm, followed by a mathematical description of its implementation. Section 3 then presents several idealized simulations

including various parameterizations of collisional breakup to demonstrate the behavior of this implementation in the SDM.

Section 4 concludes the discussion and poses additional scientific questions which may be within reach given this novel55

implementation.
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Figure 1. Conceptual view of a real filament breakup event (left) and the tracer-conserving SDM collisional breakup dynamic described

in this work (right). The real event involves collision between two individual droplets, which may form a neck bridging each other before

fragmenting into several differently sized droplets, consisting of derivatives of the initial colliding parents, plus a set of small fragments

known as "satellites." The tracer-conserving SDM representation involves collision of two groups of droplets (each group represented as one

superdroplet, a donor and receiver), which collide and coalescence into a transition state, which then fragments uniformly. The result of the

SDM breakup is two superdroplets, or two groups of droplets, with one group corresponding to leftover donor droplets, and the other group

corresponding to a set of fragments whose size has been sampled from the overall fragment size distribution.

2 Superdroplet-conserving Collisional Breakup

2.1 Conceptual description

Two colliding liquid hydrometeors in the atmosphere can break-up via several physical pathways, including filament, sheet,

and disc breakup (Barros et al., 2008). The colliding droplets, referred to as "parents", typically lose mass to newly-formed60

tiny "satellite" droplets that result from the collision, thereby resulting in several differently sized droplet fragments (see fig-

ure 1, left). As noted previously, scaling of the SDM relies on preserving the number of tracers in the system. In order to

preserve the number of superdroplets in a binary collisional breakup event, breakup is treated as a two step process based on

superdroplet-conserving coalescence (figure 1, right). First, the two superdroplets collide and coalesce: the superdroplet of

higher multiplicity acts as a "donor“ by donating mass and multiplicity while maintaining its attributes; the other superdroplet65

acts as a "receiver“ by growing in mass and maintaining its multiplicity to form a "coalesced transition state." This unstable

coalesced transition state immediately breaks up into fragments of uniform size: the attributes and multiplicity of this frag-

mented receiver are updated, with multiplicity increasing and mass of the individual droplets represented by the superdroplet

decreasing. Uniform fragmentation is required to maintain conservation of superdroplets. Furthermore, uniform fragmentation

requires the assumption that all superparticle attributes are extensive quantities and undergo equipartitional splitting (not ap-70
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Figure 2. Diagram of the Monte Carlo decision pathway during a collision-coalescence-breakup event in the proposed algorithm.

plicable, e.g., for insoluble aerosol constituents). The product of a collisional breakup event is therefore two superdroplets: the

donor maintains its attributes but donates multiplicity, and the fragmented receiver represents (uniform) fragments that result

from the breakup event following a coalesced transition state. As in the original Monte Carlo step that determines whether a

collision occurs, the fragment size is sampled at random from a fragment size distribution, which may depend on the properties

of the colliding particles.75

2.2 Mathematical description

The superdroplet-conserving method of collisional breakup is illustrated in figure 2 and formulated below using notation

following work of Shima et al.. A single superdroplet with label i has a position xi(t) and extensive physical attributes ai(t),

such as volume or mass (Vi(t),Mi(t), respectively). Each superdroplet corresponds to a multiplicity ξi(t) of "real" droplets

which exist in the same gridbox and have identical such attributes.80

The proposed breakup algorithm unifies the representation of collisional coalescence and breakup and builds on the original

coalescence Monte Carlo steps in Shima et al.. As in this original SDM, we begin by selecting pairs of superdroplets to consider

collisions:

1. All superdroplets within a cell are randomly ordered in a list of non-overlapping pairs (jα,kα) where j and k are the

superdroplet indices, and α refers to the pair index.85

Next, we determine how many collisions, γα, occur for the pair α in the time step:
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2. The probability of collision between droplets i and j is given by

Pi,j = Ki,j∆t (1)

where Ki,j is the rate of collisions based on the properties of droplets i and j, and ∆t is the model time step. The scaled

probability of collision P
(s)
α for this pair α accounts for the multiplicities of the colliding superdroplets:90

P (s)
α = max(ξj , ξk)Pα. (2)

Only a subset
⌊
ns/2

⌋
of possible SD pairs are considered out of all possible superdroplet pairs at each time step.

Therefore, the probability is further scaled up to form the corrected probability of collision:

pα =
ns(ns− 1)

2
/
⌊ns

2
⌋
P (s)

α . (3)

The number of collisions that occur in this time step, γα, is then determined in a Monte Carlo step based on pα. Taking95

ϕα ∈ (0,1) to be a uniform random number,

γα = min(⌈pα−ϕα⌉,⌊ξjα
/ξkα

⌋). (4)

Here, we assumed the superdroplets are ordered such that ξjα
≥ ξkα

. If γα = 0, then no collisions occur.

The collision rate is then γα collisions per gridbox and per time step. Due to the constraint in equation (4) based on droplet

multiplicity, some collisions which should occur probabilistically cannot if the donor superdroplet has insufficient multiplicity100

to collide pα times. Therefore, a collision deficit pα− γα may be tracked as a tool to assess whether the model time step is

sufficiently small (elimination of the the collision deficit is used for adaptive step size control in the SDM implementation used

herein (Arabas et al., 2022)).

In the original SDM, particles coalesce as long as γα > 0, as the rate of collisions is taken to refer only to collisional

coalescence. However, when we consider collisional breakup, an additional Monte Carlo step must be taken to determine105

whether the particles coalesce or break up. This is determined based on a coalescence efficiency (or collection efficiency)

Ec, which generally depends on properties of the colliding particles such as their fall speed, mass, and surface tension. We

additionally account for the fact that in some collisions, droplets may bounce off of one another elastically by including an

optional additional parameter for the breakup efficiency, Eb. This second Monte Carlo step is summarized as follows.

3. Compute the dynamic that occurs: coalescence, breakup, or bounce (nothing). A second uniform random number ϕ′α

determines the outcome:

dynamicα =





coalescence, ϕ′α ≤ Ec(aj ,ak)

breakup, Ec(aj ,ak) < ϕ′α ≤ Eb(aj ,ak)(1−Ec(aj ,ak)) +Ec(aj ,ak)

bounce, ϕ′α > Eb(aj ,ak)(1−Ec(aj ,ak)) +Ec(aj ,ak)

(5)
110
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Once the dynamic is determined, a fragment size is sampled if necessary:

4. Sample a fragment size Mf,α (mass) from a fragment size distribution, Pf,α, with cumulative distribution function

(CDF) Cf,α(ϕ) that depends on the colliding particle attributes. A related variable, Nf,α, is taken to denote the number

of fragments that would form in a collision between droplets of mass Mj and Mk: Nf,α = Mk+Mj

Mf,α
.

Finally, updating of multiplicities and attributes proceeds based on the selected dynamic, number of collisions, and sampled115

fragment size (if applicable):

6

https://doi.org/10.5194/egusphere-2022-1243
Preprint. Discussion started: 22 November 2022
c© Author(s) 2022. CC BY 4.0 License.



(a) For coalescence:




ξ′j = ξj − γαξk

a′k = ak + γαaj

if ξj = 0, then ξ′j , ξ
′
k = ξk/2, a′j = ak

(6)

The coalescence rate is incremented by γαξk.

(b) For breakup:

In some cases, only γjk ≤ γα breakups can occur for a given superdroplet pair without encountering negative multi-

plicities. We compute this maximum possible number of breakup steps and update the superdroplet properties using a

recurrence relation (assuming γα > 0), and track a breakup deficit rate of γα− γjk. (Alternatively, one may perform

substepping of the breakup event.) The particle attributes are updated such to be consistent with the result of several

breakup steps with γα = 1 occurring in sequence, always producing fragments of size Mf,α.





γjk = 0

ξtransfer
j = ξk

ξnew
k = 0

while γjk < γα and ξtransfer
j < ξj :

ξtransfer
j = ξtransfer

j + ξnew
k

ξnew
k = ξnew

k

(
Mj

Mf,α

)
+ ξk

Mj+Mk

Mf,α

γjk = γjk + 1

(7)





ξ′j = ξj − ξtransfer
j

ξ′k = ξnew
k

a′k = ξkak+ξtransfer
j aj

ξnew
k

if ξj = 0, then ξ′j , ξ
′
k = ξk/2, a′j = ak

(8)

The breakup rate is incremented by γjkξk. The breakup deficit rate is incremented by (γα− γjk)ξk

(c) For bounce:

No update is made to droplet multiplicities or attributes, and only the collision counter is incremented.
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2.3 Additional Implementation Details

This method of breakup allows for the splitting of a coalesced transition state into a non-integer number of fragments (Nf,α =
Mk+Mj

Mf,α
need not be integer), depending on the sampled fragment size. For instances where it may be desirable to preserve120

superdroplet multiplicities as integers, we recommend rescaling the multiplicities after the breakup step by a factor of rk =

⌈ξk⌉/ξk, and the multiplicities correspondingly by 1/rk such that extensive attributes (including mass) are conserved.

The presence of a "breakup deficit" in the case where γjk < γα can be averted by substepping, though this is inadvisable

for highly parallel applications of the SDM. Furthermore, superdroplet multiplicities may increase without bound according

to the algorithm as presented above, which can lead to numerical artifacts and instability within a simulation. A set of limiters125

preventing runaway multiplicity is discussed in Appendix A. Finally, a method for sampling a fragment size from a highly

nonlinear empirical distribution, such as Straub 2010, is discussed in Appendix B.

3 Numerical Experiments and Discussion

To demonstrate the behavior and impact of the proposed breakup algorithm on particle size spectra and process rates, we

present a set of zero-dimensional box and one-dimensional rainshaft cases that include collisional breakup, implemented in the130

open-source Pythonic superdroplet code ‘PySDM’ (Bartman et al., 2022b). All simulations use a geometric collision kernel,

where the rate of collisions Kjk between droplets with the properties of superdroplets j and k is given by

Kjk = π(Rj + Rk)2|vj − vk| (9)

where Rj is the radius of particle j and vj is the terminal velocity/fall speed of particle j, computed using the parameterization

of Gunn and Kinzer. Collisions within a superdroplet (i.e. collisions between droplets represented by the same superdroplet)135

are not considered in ‘PySDM’, though the use of a geometric collision kernel results in zero collisions between equally-sized

droplets, as they have the same terminal velocity.

The coalescence efficiency is specified to be either a constant value (for sensitivity studies), or the empirical coalescence

efficiency of Straub et al. which depends on the Weber number of the colliding droplet pair. (The Weber number is a ratio of

kinetic collisional energy and surface tension, and relates to the stability of a droplet pair under collision.) We consider three140

types of fragmentation functions: (1) a constant fragment number Nf , in which the particle-size distribution (PSD) is a delta

function Pf (Mf,α) = δ(Mf,α− Mj+Mk

Nf
); (2) a normal distribution Mf,α ∼N (µ,σ) where the mean µ and variance σ2 are

specified; and (3) the empirically derived fragmentation function of Straub et al., which uses four categories of fragmentation

and lognormal or normal subdistributions.

3.1 Particle Size Distribution145

The zero-dimensional box simulations include collisional-coalescence and breakup dynamics only. The droplet size distribution

is initialized to an exponential distribution in mass x, given by N(x) = x0 exp(−x/x0) with the characteristic size x0 =

(4π/3)R3
0 set using R0 = 30.531µm as in Shima et al. (2009). The simulations employ 213 = 8192 superdroplets to represent

8
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Figure 3. Particle size distribution with varying coalescence efficiencies under a geometric collision kernel after 100s (left) and 200s (right).

The breakup fragmentation function is deterministic, with the fragment size determined as 1/8th the sum of the colliding droplet sizes.

The dashed black line represents the initial PSD, and solid lines represent various fixed values of the coalescence efficiency. The pink line

corresponds to a size-dependent coalescence efficiency from Straub et al..

a number density of 100/cm3 in a box of volume 1m3 with a fixed time step of 1s. This choice of superdroplet quantity is

sufficient to produce consistent results in the PSD across realizations using a different random seed, and was shown by Shima150

et al. to closely match the exact PSD in a similar box model simulation of collisional coalescence. All particle size distributions

are displayed as the marginal mass distribution g(R) = dm
dln(R) = 3x2n(x) where n(x) is the particle size distribution. This

mass distribution is computed by binning the resulting superdroplets into 128 logarithmically-spaced size bins between particle

radius 1µm and radius 10mm. We separate the simulations into those which use a deterministic fragmentation function, in

which breakups result in a constant number of fragments in any given collision; a stochastic fragmentation function with155

fragment sizes sampled from a specific distribution; and a size-dependent fragmentation function, where the fragment sizes are

sampled from a distribution whose parameters depend on the colliding particles. We further include experiments exploring the

use of a fixed coalescence efficiency versus a particle-attribute-derived coalescence efficiency. This separation elucidates which

aspects of the particle population behavior are attributable to stochastic stochastic sampling of the fragmentation function, or

related to particle-property-dependent parameters such as Weber number.160

3.1.1 Deterministic and Size Independent Fragmentation

First we investigate the sensitivity of the PSD evolution to the coalescence efficiency, using four values of a constant-valued ef-

ficiency Ec between 0.8 and 1.0 (Ec = 1.0 corresponds to coalescence-only) and a particle-size dependent Ec parameterization

(Straub et al., 2010). All simulations use a deterministic fragmentation function in which all single-step collisional breakups

9
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Figure 4. Sensitivity to fragmentation function of PSDs following collisions with a geometric kernel and fixed coalescence efficiency in a

deterministic and stochastic fragmentation function case. (Left) The fragment size is fixed by a divisor of the sum of colliding particle vol-

umes; (right) fragment size is sampled from a Gaussian distribution with varying means µ determined as a multiple of the initial distribution

mean, with variance σ2 = µ2/4. The initial distribution is shown as a black dashed line in each figure.

result in Nf = 8 fragments:165

Pf,α(Mf ) = δ
(
Mf −

Mj + Mk

Nf

)
. (10)

Figure 3 displays two snapshots of the PSD under this set of dynamics, demonstrating the impact of stochasticity in selecting

whether coalescence or breakup occurs, independent of sampling a fragment size. As expected, the initial PSD broadens and

shifts toward larger droplets at 100s, with the largest values of fixed Ec leading to the largest increase in average particle mass.

However, after 200s, the PSD for the Ec = 0.8 case remains approximately steady with a mean size that is smaller than the170

initial distribution mean, demonstrating that coalescence and breakup are approximately balanced in this case.

By contrast, the PSD for the Straub 2010 parameterization of Ec is initially comparable to the Ec = 0.95 simulation at

100s, but narrows without shifting toward much larger droplets after further time has elapsed, leading to a dominant mode

that is more similar to the Ec = 0.9 case. This empirical parameterization also shows evidence of approaching a steady state

distribution, in which coalescence and breakup rates are matched on average, driving the PSD to a stationary state. The Straub175

2010 parameterization decreases exponentially with the colliding particle Weber number, which is correlated with the size and

relative velocity of the colliding particles. Two colliding particles with a similar size have a low relative velocity, therefore as

the PSD shifts toward larger coalesced droplets, there is a competing effect between a larger particle size increasing the Weber

number, and decreased relative velocity reducing it. This competition produces the stationary behavior and narrowing of the

PSD observed in this case.180
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Figure 5. Initial PSD (black dashed) and PSD’s following collisions with a geometric kernel, the Straub 2010 collection efficiency, and the

Straub 2010 fragmentation function Straub et al. (2010) after several elapsed times (colors).

Next we consider the PSD evolution when the coalescence efficiency is held fixed at a constant value and the fragmentation

function is varied. In figure 4(a), we consider a deterministic fragmentation function where the number of fragments from

a single breakup event is fixed (as in figure 3), as well as a Gaussian fragment size distribution with mean µ specified as a

multiple of the initial mean particle mass x0, and variance σ2 = µ2/4. When the number of fragments is fixed, results using

the largest number of fragments display the smallest mean particle size and broadest spectra. The first behavior is expected,185

as a larger value of Nf results in smaller typical fragment sizes. The broadening of the spectrum can be attributed to a wider

range of collision rates between very small droplets (which result from fragmentation), and is generally an expected outcome

of including collisional breakup.

When the fragment size is sampled from a normal distribution (figure 4(b)), the resulting spectra are bimodal, with a large-

droplet mode that is similar between different choices of the mean µ, and a narrow small-droplet mode that depends on the190

distribution parameters. The appearance of a second mode occurs when the fragment size is sampled from the left tail of the

fragment size distribution, whereas the large mode corresponds to a droplets undergoing coalescence only, as in the Nf = 1

case. This behavior indicates that through stochastic sampling of the dynamic and fragment size together, the droplet population

splits into one mode which fragments into smaller droplets, and a second mode which primarily undergoes coalescence and

grows in size. Because larger droplets collide at much quicker rates than small droplets, the fragmented mode is less likely195

to collide and re-coalesce to form medium-sized droplets, while the coalesced-mode retains some probability of colliding and

either growing (coalescing), or breaking up into smaller droplets. Thus we observe that the small-droplet-mode grows in this

instance, with particles effectively become "stuck" in this dynamical regime due to the separation of scales in collision rates.
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3.1.2 Stochastic Size-Dependent Fragmentation

Finally, we consider an empirically derived coalescence efficiency (Straub et al., 2010, as above) in conjunction with a complex200

empirical fragmentation function whose parameters depend on the colliding droplet properties. In figure 5, we consider the

evolution of the PSD under the Straub 2010 efficiency and fragmentation dynamics, beginning from the same initial distribution

as previous experiments. At first, the PSD broadens and shifts towards larger droplet sizes, as in figure 3, but the PSD after

540s is virtually unchanged from the PSD at 180s. These results indicate the stationarity of the particle size distribution

after sufficient time has elapsed: coalescence and breakup are balanced, as in the previous example. Contrasted with figure205

3, which used a deterministic size-independent fragmentation function, the stationary PSD resulting from the Straub et al.

(2010) parameterization of fragmentation is broader and less symmetric. This difference reflects the use of sampling from a

distribution of fragment sizes, contrasting with the symmetric PSDs found from using a fixed number of fragments.

3.2 Cloud and Precipitation Properties

Next we consider the impact of collisional breakup in a one-dimensional warm rain setting that includes condensation/evapora-210

tion (including aerosol activation/deactivation), collisions, and transport of particles within the column through advection and

sedimentation/precipitation. These 1D simulations are based on the kinematic framework of Shipway and Hill, using a fixed

profile of dry-air potential temperature and dry-air density ρd(z), and a resolved budget of water vapor (advection and coupling

with vapor uptake and release by particles). The vapor advection is solved using the MPDATA algorithm on a columnar grid

with spatial grid step of 25m (employing the PyMPDATA implementation Bartman et al., 2022a). An aerosol population with215

hygroscopicity κ = 0.9 is initialized throughout the vertical domain with 210 = 1024 superdroplets per gridbox. This choice

of 1024 superdroplets per gridbox reflects the higher computational demands of the one dimensional simulation compared

to the box model, and still produces statistically convergent results in the mesoscale quantities investigated across simulation

instances. For the first 600s of spin-up, condensation-evaporation (including aerosol activation) and particle advection are the

only active dynamics, with a time-varying updraft momentum flux of ρdw(t) = 3kgm−3ms−1 sin(πt/600s). After this spin-up220

time, the updraft velocity is set to 0, particle displacement due to sedimentation is enabled, and collision-coalescence-breakup

is allowed to occur. The time step is fixed at 1s throughout the simulation.

The test cases demonstrated here include a no-breakup case, a property-independent breakup case where the coalescence

efficiency is fixed and fragment sizes are sampled from a fixed distribution, and the particle-property-dependent empirical

coalescence efficiency and fragmentation parameterizations from Straub et al.. All simulations use a geometric collision rate225

(equation 9) and the Gunn and Kinzer terminal velocity parameterization. In the no-breakup case, all collisions result in coales-

cence. In the property-independent breakup case, we fix Ec = 0.95 for all superdroplet collisions based on the correspondence

in figure 3 to the empirical coalescence efficiency. This case samples fragment sizes from a Gaussian distribution in particle

volume with mean radius 30µm and standard deviation 15µm. In contrast to the property-independent case, in which the frag-

mentation parameters are hand-selected, the property-dependent setting is based on empirical evidence, and is expected to be230

more reflective of the variability of real clouds. In both the property-independent and -dependent cases, the breakup efficiency
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Figure 6. Hydrometeor concentrations without breakup (left column), with breakup using a property-independent coalescence efficiency

(middle column), and with breakup following the property-dependent Straub et al. (2010) parameterizations (right column). Included are

cloud water mixing ratio (top row), rain water mixing ratio (middle row), and aerosol number concentration (bottom row).

is set to Eb = 1 such that all collisions result in either coalescence or breakup. To contrast the behavior of the three cases,

we consider the hydrometeor population at various altitudes throughout the simulation, as well as collision process rates and

aerosol processing rates.

3.2.1 Hydrometeor and Cloud Quantities235

The mixing ratio of cloud droplets (activated droplets of no more than 50µm radius), rain droplets (radius greater than 50µm),

and the number concentration of unactivated aerosols are displayed for the three test cases in figure 6. The no-breakup simu-

lation forms a cloud due to activation of aerosols between 500m and 2200m altitude until the updraft is terminated after 600s.
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Larger rain-range droplets form from collisional coalescence and begin to sediment out of the system in clusters, visible as

distinct streaks in the (t,z) plane, with surface precipitation beginning around 1200s into the simulation, depleting the cloud240

droplet population.

When property-independent breakup is included, a higher concentration of cloud-sized droplets persists at cloud base, and

the surface precipitation is delayed and spread out relative to the case with no breakup. This behavior indicates that rain

droplets favorably break up within the cloud and especially near cloud base, fragmenting into smaller cloud droplets (the mean

of the fragment size distribution is 30µm radius, only slightly lower than the rain size range) with a lower sedimentation rate.245

Furthermore, the aerosol population below cloud base is not depleted as quickly in this property-independent case, indicating

a reduction in aerosol scavenging and washout that is consistent with the lower precipitation rates. These phenomena are

consistent with documented impacts of collisional breakup such as suppressed surface precipitation (Seifert et al., 2005), and

show that the proposed algorithm can meaningfully represent the breakup process.

The empirical property-dependent breakup case using the Straub et al. parameterizations displays hydrometeor populations250

that are more similar to the no-breakup case, indicating that the choice of Ec = 0.95 in the property-independent case likely

overestimates the rate of collisional breakup when condensation and evaporation are present (contrasted with figure 3). As in

the no-breakup case, the property-dependent empirical case displays distinct streaks of precipitation, with surface precipitation

initiated around 1200s.

The 3m/s updraft velocity used in this setup leads to a relatively shallow cloud, with drizzle-range precipitable hydrometeors255

which are less likely to undergo collisional breakup than very large droplets in a deeper convective setting. The likelihood of

breakup in the Straub parameterization is strongly correlated with the size of the colliding droplets, therefore we expect to see

a stronger impact of including SDM breakup in a strongly precipitating convective case. Due to challenges and complexity of

representing mixed-phase hydrometeors in the superdroplet method, we do not present any such deep convective experiment.

However, it has been noted that collisional breakup of supercooled liquid droplets upon impact with ice is a potentially impor-260

tant secondary ice production mechanism (Zhao and Liu, 2022; James et al., 2021; Phillips et al., 2018), thus we suggest that

the novel SDM breakup representation presented in this work could be an instrumental tool in further research on secondary

ice production and mixed-phase processes.

3.2.2 Process Rates

Figure 7 displays the local rates of superdroplet collision (scaled by multiplicity), as well as distinguishing between rates265

of coalescence and rates of breakup. We see an expected correlation between the time and location of collisions in all three

cases with the location of hydrometeors (outlined in black for cloud and red for rain)–as expected, a higher concentration of

hydrometeors, particularly large rain-range hydrometeors corresponds to higher rates of all collisional dynamics. The rate of

collisions increases throughout the simulation time, particularly near cloud base where the largest droplets are sedimenting and

colliding at higher rates. The property-independent case is consistent with the other cases in displaying higher collision rates270

at cloud base, even though the droplets in this region are slightly smaller and fall in the cloud category.

14

https://doi.org/10.5194/egusphere-2022-1243
Preprint. Discussion started: 22 November 2022
c© Author(s) 2022. CC BY 4.0 License.



0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

Co
lli

si
on

 R
at

e 
[s

1  
kg

1 ]

No Breakup

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

Property-Independent Breakup

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

Property-Dependent Breakup

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

Co
al

es
ce

nc
e 

Ra
te

 [
s

1  
kg

1 ]

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

Br
ea

ku
p 

Ra
te

 [
s

1  
kg

1 ]

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

0 500 1000 1500 2000 2500 3000 3500
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z [
km

]

102 103 104 105 106
collision rate [s 1 kg 1]

102 103 104 105 106
coalescence rate [s 1 kg 1]

100 101 102 103 104
breakup rate [s 1 kg 1]

102 103 104 105 106
collision rate [s 1 kg 1]

102 103 104 105 106
coalescence rate [s 1 kg 1]

100 101 102 103 104
breakup rate [s 1 kg 1]

102 103 104 105 106
collision rate [s 1 kg 1]

102 103 104 105 106
coalescence rate [s 1 kg 1]

100 101 102 103 104
breakup rate [s 1 kg 1]

Figure 7. Collisional dynamic rates for the 1-dimensional case with (left) no breakup, (middle) breakup with a fixed coalescence efficiency,

and (right) breakup with the Straub 2010 parameterizations. The dynamics shown include (top to bottom): collision rate, coalescence rate,

and breakup rate. Dashed contour lines represent the level of qc = 0.2g/kg (black) and qr = 0.2g/kg (red), representing a cloudy and rainy

region of the time-space domain, respectively.
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All three cases display similar rates of collision and coalescence, with the highest of these rates occurring in the cloud among

rain droplets, and below cloud base among precipitating rain droplets. In the no-breakup case, every feasible collision results

in a coalescence, and the breakup rate is zero. When property-independent breakup is included, the time-space distribution of

the breakup rate is nearly identical to that of the collision rate. This trend is consistent with the use of a uniform coalescence275

efficiency Ec = 0.95, which is agnostic to the size of the colliding particles. In contrast, the empirical property-dependent case

sees collisional breakup primarily where larger rain droplets are present, consistent with the Straub et al. parameterization based

on Weber number. In this case, breakup events are much less frequent, and thus breakup plays less of a role in determining

the hydrometeor populations of this simulation case. These results demonstrate that the SDM breakup algorithm can produce

expected process behavior in both a property-independent setting, where the collision dynamics result in strong breakup, and280

in an empirically parameterized setting.

As noted in the discussion of figure 6, the property-independent breakup case experiences a persistent population of aerosols

below cloud base, while the no-breakup and property-dependent cases demonstrate washout upon the onset of precipitation.

Collision breakup resulting in very small droplet fragments could potentially introduce cloud droplets so small that they deac-

tivate in their environment. In figure 8, we investigate differences in aerosol processing rates under these collisional breakup285

scenarios, looking at rates of aerosol activation, deactivation, and ripening.

The property-independent and no-breakup cases have nearly identical behavior in aerosol processing, consistent with the

correspondence between their hydrometeor concentrations and collision process rates. In all three cases, a few superdroplets at

cloud top encounter humidity close to their critical supersaturation, which results in the "ripening" processes of fluctuation be-

tween an activated and deactivated state due to competition when the supersaturation is insufficient to activate all aerosols (e.g.,290

Arenberg, 1939; Wood et al., 2002). (We define ripening rate as the number of activated droplets growing through condensation

per unit of time within a grid cell in which deactivation simultaneously occurs on other particles). Several instances of ripening

occur within the extended cloud base of the property-dependent case, indicating that breakup events in this time-space domain

produce fragments whose critical supersaturation is close to the environment supersaturation (i.e., hinting breakup-induced de-

activation, conceptually analogous to collision-induced activation discussed in Hoffmann, 2017). Aerosols activate primarily295

at the start of the simulation when an updraft is present, defining the altitude boundaries of the cloud. No additional activation

is seen in either instance including collisional breakup. Deactivation occurs among a few aerosols which activate and then rise

in altitude beyond cloud top initially, and more strongly below cloud base as droplets sediment out of the cloud and evaporate.

The property-independent case experiences much stronger deactivation at cloud base, which corresponds to the higher rate of

fragmentation of droplets at this altitude.300

The more realistic property-dependent case shows a close match in aerosol processing rates to the no-breakup case, indicating

that collisional breakup is not a significant process for shallow clouds such as this kinematic one-dimensional setting. However,

the enhanced rates of ripening and deactivation in the property-independent case indicate that collisional breakup could be a

relevant process for future studies of aerosol-cloud effects, particularly in deeper-convective cases where collision rates are

likely to be higher. The SDM representation of collisional breakup presented in this work can capture such potential effects,305

making it a useful tool for future studies of microphysics processes.
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Figure 8. Aerosol processing rates for (left to right) no breakup, property-independent breakup, and Straub et al. (2010) parameterizations.

Included are (top to bottom): ripening rate, activating rate, and deactivating rate. Dashed contour lines represent the level of qc = 0.2g/kg

(black) and qr = 0.2g/kg (red), representing a cloudy and rainy region of the time-space domain, respectively.
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4 Conclusions

This work presents a superdroplet algorithm for collisional breakup that is both scalable in avoiding creation of new super-

droplets, and physical in its ability to produce results in a box and one-dimensional setting that are consistent with the expected

suppression of rain. Furthermore, the algorithm produces hydrometeor populations and process rates that differ between a310

property-independent approach (with a fixed coalescence efficiency and fixed fragment size distribution), and a property-

dependent approach using empirical parameterizations. These differences indicate the importance of random, stochastic events

in warm rain microphysics, a trait which has also been documented in other microphysical phenomena such as giant CCN

(Feingold et al., 1999; Yin et al., 2000). Without such a scalable representation, the superdroplet method has heretofore been

unable to capture these additional stochastic impacts of breakup, nor has it been applied to compare empirical parameterizations315

of coalescence and breakup, which contribute uncertainties to operational process, weather, and climate models.

This work provides the basis for a more complete representation of microphysical processes in particle-based simulations.

For instance, when combined with collisional breakup, a superdroplet representation of ice-phase hydrometeors could probe

processes of secondary ice production. For instance, when supercooled water droplets collide with solid phase hydrometeors,

they could break up, with small fragments freezing following impact or freezing onto the surface of the colliding ice crystal320

(Phillips et al., 2018; James et al., 2021). Similarly, collisional breakups between two ice crystals can lead to splintering and

the formation of many smaller ice crystals, which then grow by vapor deposition (Harris-Hobbs and Cooper, 1987). These and

other mixed-phase processes are poorly understood due to challenges in obtaining direct observational or laboratory measure-

ments, thus a high-fidelity particle-based representation such as the superdroplet method provides an ideal means for studying

these phenomena. While the collisional breakup representation presented here does not address underlying uncertainties in pa-325

rameterization of processes such as collision rates and phase change, it provides a path forward for more rigorous and complete

studies of cloud microphysics.

Code and data availability. Implementation of this breakup algorithm in the SDM is available at https://doi.org/10.5281/zenodo.7306034.

The simulations presented in this work (and all necessary input information) are available in the folder ’deJong_Mackay_2022’ at https:

//doi.org/10.5281/zenodo.7308668. The notebooks in this folder reproduce all results and figures presented in this study, with no external330

datasets required. The scripts run the relevant model configuration in a matter of minutes and plot the resulting output. All results presented

in this paper can be reproduced by one of two means: (1) downloading and installing ’PySDM’ and ’PySDM-examples’ (e.g. using ’pip

install’), and running the notebooks locally; (2) accessing the PySDM-examples repository online and running the examples notebooks in

the folder ‘deJong_Mackay_2022’ on Google Colab. These codes, PySDM and PySDM-examples, are continuously under development at

https://github.com/atmos-cloud-sim-uj/PySDM and https://github.com/atmos-cloud-sim-uj/PySDM-examples, and are further documented335

in a software publication (Arabas et al., 2022).
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Appendix A: Limiters

In implementing collisional breakup for superdroplets, we suggest imposing a few limiters to enforce physical constraints

and maintain stability of the code. If the user-selected time step for the SDM implementation is too large, collisional breakup

may quickly become a runaway process with superdroplet multiplicities increasingly rapidly and unphysically, leading to340

numerical overflow. As an example, suppose a droplet of multiplicity 102 should undergo 6 collisional breakups (γα = 5)

into 5 fragments each time (Nf,α = 5): then γjk = 3906 and its new multiplicity is 15,525 =O(104). Successive collisional

breakups between droplets whose multiplicities have grown so rapidly would then lead to exponentially booming multiplicities,

and could quickly exceed the maximum representable quantity for the computing machine (overflow). One solution is to set a

maximum allowable multiplicity for any superdroplet, and to reject any collisional breakups that would produce a superdroplet345

exceeding this multiplicity.

In addition, the process of collisional breakup is physically constrained such that the resulting superdroplet (the "fragment“)

volume should not exceed the volume of either colliding droplets, nor should it drop below a realistic size for a liquid wa-

ter droplet (molecule scale, for instance). These physical constraints can be imposed by setting a minimum and maximum

allowable fragment size resulting from breakup.350

The first of these constraints can then be imposed during computation of γjk within the while loop in equation 7:

ξnew
k ≤ ξmax (A1)

where ξmax is a maximum multiplicity set to prevent overflow. The second two constraints are imposed during the sampling of

a fragment size:

Mmin ≤Mf,α ≤max(Mj ,Mk) (A2)355

where Mmin is a minimum physically allowed fragment size, and the final constraint restricts the resulting fragment to be no

larger than either colliding droplet.

Appendix B: Sampling from empirical fragment size distributions

Sampling a fragment size Mf,α requires the CDF of the fragment size distribution Pf (ϕ), which can be challenging for an em-

pirical fragmentation function that is piecewise and lacks a closed form CDF. For instance, the commonly-used fragmentation360

function of Low and List partitions the fragment size distribution into three categories of distinct functional form, correspond-

ing to filament, sheet, and disk breakup. Similarly, Straub et al. distinguish four categories of fragmentation, with the fragment

size distribution within each category following a lognormal or normal distribution. We will demonstrate how a uniform ran-

dom number ϕ′′α can be used to sample a fragment size from such complex distributions, following the notation of Straub

et al..365
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Suppose the unnormalized fragment size distribution Pf (D) in droplet diameter D is described as a sum of k subdistribu-

tions:

Pf (D) =
k∑

r=1

Nrpr(D) (B1)

where Nr is the expected number of fragments from mode r, and pr(D) is the normalized fragment size distribution for mode

r. Note that
∫∞
0

Pf (D)dD =
∑k

r=1 Nr ̸= 1 is the expected total number of fragments, and thus sampling a fragment size from370

the distribution requires normalization.

To sample a single fragment size Df , we first use the random number ϕ′′α to determine which mode of fragmentation occurs

by finding s such that
∑s−1

r=1 Nr∑k
r=1 Nr

≤ ϕ′′α <

∑s
r=1 Nr∑k
r=1 Nr

. (B2)

The fragment size is then chosen by sampling at random from the CDF of ps(D), which is assumed to be approximable by a375

closed form equation (as in the case of a Gaussian or lognormal distribution). This second step of sampling can be accomplished

by selecting a new random number, reusing the random number from a different colliding droplet pair, or simply rescaling ϕ′′α

to the selected mode s:

ϕ̃′′α =
ϕ′′α−

∑s−1
r=1 Nr∑s

r=1 Nr −
∑s−1

r=1 Nr

. (B3)

The fragment size Df is then chosen such that380

ϕ̃′′α = ps(Df ). (B4)
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