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Abstract. The heterogeneous nucleation of ice is an important atmospheric process facilitated by a wide range of aerosols. 

Drop-freezing experiments are key for the determination of the ice nucleation activity of biotic and abiotic ice nucleators 10 

(INs). The results of these experiments are reported as the fraction of frozen droplets 𝑓!"#(𝑇) as a function of decreasing 

temperature, and the corresponding cumulative freezing spectra 𝑁!(𝑇) computed using Vali’s methodology. The differential 

freezing spectrum 𝑛!(𝑇) is an approximant to the underlying distribution of heterogeneous ice nucleation temperatures 

𝑃!(𝑇) that represents the characteristic freezing temperatures of all IN in the sample. However, 𝑁!(𝑇) can be noisy, 

resulting in a differential form 𝑛! 𝑇  that is challenging to interpret. Furthermore, there is no rigorous statistical analysis of 15 

how many droplets and dilutions are needed to obtain a well-converged 𝑛!(𝑇) that represents the underlying distribution 

𝑃!(𝑇). Here, we present the HUB method and associated Python codes that model (HUB-forward code) and interpret (HUB-

backward code) the results of drop-freezing experiments. HUB-forward predicts 𝑓!"#(𝑇) and 𝑁!(𝑇) from a proposed 

distribution 𝑃!(𝑇) of IN temperatures, allowing its users to test hypotheses regarding the role of subpopulations of nuclei in 

freezing spectra, and providing a guide for a more efficient collection of freezing data. HUB-backward uses a stochastic 20 

optimization method to compute 𝑛!(𝑇) from either 𝑁!(𝑇) or 𝑓!"#(𝑇). The differential spectrum computed with HUB-

backward is an analytical function that can be used to reveal and characterize the underlying number of IN subpopulations of 

complex biological samples (e.g. ice nucleating bacteria, fungi, pollen), and quantify the dependence of their subpopulations 

on environmental variables. By delivering a way to compute the differential spectrum from drop freezing data, and vice-

versa, the HUB-forward and HUB-backward codes provide a hub to connect experiments and interpretative physical 25 

quantities that can be analysed with kinetic models and nucleation theory. 

1 Introduction 

Ice nucleators (INs) of biological and abiotic origins present in aerosols are responsible for facilitating the heterogeneous 

freezing of atmospheric water droplets above the homogeneous nucleation temperature (Murray et al., 2012; Demott et al., 
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2016; Demott et al., 2003). The potential of these aerosols as ice nuclei has significant implications for cloud properties and 30 

precipitation patterns (Gettelman et al., 2012; Mülmenstädt et al., 2015; Froyd et al., 2022). Freezing experiments are key 

sources of information to determine the range of temperatures over which INs promote ice nucleation. The most common 

method to characterize INs is through immersion freezing experiments, for which a wide range of assays and instruments 

have been developed. A comprehensive report of various drop freezing techniques can be found in (Miller et al., 2021). The 

assays are typically performed by placing uniformly sized water droplets with a known IN concentration or area on a 35 

substrate or in a multiwall plate that is gradually cooled from a temperature above 0oC until all droplets are frozen(Kunert et 

al., 2018; Budke and Koop, 2015). Droplet freezing is detected visually or through measurement of the latent heat release 

(Stratmann et al., 2004; Budke and Koop, 2015; Kunert et al., 2018; Reicher et al., 2018), allowing the assignment of a 

heterogeneous nucleation temperature to each droplet. Drop-freezing experiments record the fraction of frozen droplets, 

 𝑓!"# 𝑇 , as a function of decreasing temperature; for soluble or dispersible INs  𝑓!"# 𝑇  curves are typically collected at 40 

various ten-fold dilutions of the IN sample. 

Historically, there have been two interpretations of the dispersion of nucleation temperatures in heterogeneous 

freezing experiments. The first approach suggests that the stochastic nature of the nucleation process dominates the 

variability in freezing temperatures (Bigg, 1953; Carte, 1956), while the second approach assumes that the dispersion in 

temperatures mostly arises from a distribution of nucleation sites (Fletcher, 1969), each with a deterministic, singular 45 

nucleation temperature (Levine, 1950; Vali and Stansbury, 1966). Variability in the temperature, volume, and amount of ice-

nucleating particles per droplet can also contribute to the dispersion of freezing temperatures (Vali, 2019; Knopf et al., 

2020). There is consensus now that both stochastic effects and sample heterogeneities contribute to the distribution of 

freezing temperatures, and both approaches are used for the modelling of drop-freezing experiments (Vali, 1971; Marcolli et 

al., 2007; Niedermeier et al., 2011; Murray et al., 2011; Broadley et al., 2012; Wright and Petters, 2013; Herbert et al., 2014; 50 

Harrison et al., 2016; Alpert and Knopf, 2016; Vali, 2019; Fahy et al., 2022a). Stochastic modelling of the freezing curves is 

based on predicting the survival probability of liquid water containing IN as a function of supercooling, and requires a model 

for the temperature dependence of the nucleation rate of the IN components. These models have been solved numerically or 

evolved with Monte Carlo simulations to interpret or resolve the distribution of ice nucleation properties of minerals 

(Marcolli et al., 2007; Murray et al., 2011; Broadley et al., 2012; Wright and Petters, 2013; Herbert et al., 2014; Harrison et 55 

al., 2016) and organics (Zobrist et al., 2007; Alpert and Knopf, 2016) and to perform parametric bootstrapping of 

experimental data (Wright and Petters, 2013; Harrison et al., 2016). The advantage of the stochastic modelling approach is 

that it enables a direct link to microscopic properties of the nuclei and can account for the cooling rate dependence of the 

 𝑓!"# 𝑇  data. However, the requirement of a model for the freezing rates and their distribution across the sample hinder their 

interpretability and accuracy at reproducing the experimental freezing curves, particularly in complex samples containing 60 

multiple populations.  

The modelling of freezing experiments based on the singular approach is based on the framework proposed by Vali 

(Vali, 1971). He assumed that each particular IN has a characteristic ice nucleation temperature that is independent of the 
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cooling history. This implies that the IN with the highest characteristic nucleation temperature in a droplet is responsible for 

its freezing. Given a total number of droplets 𝑁!, the number of frozen droplets 𝑁!(𝑇) at a temperature T gives the range of 65 

characteristic freezing temperatures that determines the ice nucleation activity and is used to produce the cumulative freezing 

spectrum (Vali, 1971; Vali, 2014, 2019), 

𝑁! 𝑇 = !
!
[ln𝑁! − 𝑙𝑛𝑁!(𝑇)] = − !

!
ln[1 − 𝑓!"# 𝑇  ],                                                              (1a) 

where 𝑁! 𝑇 =  𝑁! − 𝑁!(𝑇) is the number of unfrozen droplets, 𝑓!"# 𝑇 =  𝑁!(𝑇)/𝑁! is the fraction of frozen droplets at 

temperature T, and 𝑋 is a normalization factor per unit volume of water, unit mass, or surface of the INs (Vali, 2019). For 

soluble INs, the normalization factor is commonly defined by the mass of the ice nucleating material 𝑋 =  𝜌 (𝑉!"#$ 𝑑), 70 

where 𝜌 is the density of the initial solution, 𝑉!"#$ is the droplet volume and 𝑑 is the dilution factor (Kunert et al., 2018). The 

IN surface area per drop, 𝑋 =  𝐴!"#$, is sometimes used as normalization factor for insoluble INs (e.g., dust, crystals), 

resulting in a cumulative spectrum per area denoted as 𝑁! 𝑇 . However, it is challenging to measure the total IN surface area 

accurately (Knopf et al., 2020). We note that Eq. 1a can be used even when the absolute concentrations or areas of the IN are 

unknown, provided that the user knows the relative concentration of the dilution series derived from a parent sample. The 75 

differential freezing spectrum 𝑛! 𝑇  is obtained by differentiation of the cumulative spectrum, (Vali, 1971) 

𝑛! 𝑇 =  
𝑑𝑁!(𝑇)
𝑑𝑇

= −
1

𝑋𝑁! 𝑇
𝑑𝑁! 𝑇
𝑑𝑇

 .       
(1b) 

The differential spectrum identifies the density of IN active at each temperature, and was identified by Vali as the central 

quantity that can be derived and interpreted from drop-freezing experiments (Vali, 1971; Vali, 2019).  

The determination of the differential spectrum from the cumulative one by finite differentiation is subject to 

significant noise, requiring a careful selection of the temperature intervals and extensive sampling (Vali, 2019). As stochastic 80 

effects are not considered in the singular temperature formalism, the cumulative and differential spectra should –in principle- 

depend on the cooling rate (Vali, 1994). The stochastic nature of ice nucleation, combined with the uncertainties associated 

with the experimental measurements (e.g., different droplet volumes, inhomogeneous samples, different detection 

efficiencies), can produce significant variations in the cumulative freezing spectra, that result in large uncertainties in 𝑛! 𝑇 . 

Parametric and nonparametric bootstrapping based on the singular approximation and Monte Carlo simulations have been 85 

used to estimate confidence intervals in freezing spectra measurements (Vali, 2019; Fahy et al., 2022a; Fahy et al., 2022b).  

A central assumption of the singular freezing approximation is that the freezing of a droplet containing multiple INs 

is promoted by the IN with the highest nucleation temperature (Levine, 1950). This results in extreme-value statistics for the 

sampling of the nucleation temperature of the droplets (Sear, 2013). The extreme-value sampling is apparent in the 

concentration dependence of 𝑓!"# 𝑇  in experiments (Marcolli et al., 2007; Budke and Koop, 2015; Kunert et al., 2018; 90 

Lukas et al., 2022). However, to our knowledge, the impact of extreme-value statistics has not been considered in the 

singular modelling of drop-freezing experiments.  
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A consequence of extreme-value sampling is that the differential spectrum 𝑛! 𝑇  represents the underlying 

distribution of ice nucleation temperatures of all INs in the sample, which we denote as 𝑃!(𝑇), only when the sampling of IN 

in the drop-freezing experiments is complete. The underlying distribution 𝑃!(𝑇) is akin to a hub that connects the 95 

experimental freezing temperatures to physical analysis based on nucleation theory or kinetic and equilibrium models that 

can elucidate the mechanisms and origins of the distributions of INs (Fig. 1). We here call the cumulative spectrum 𝑁! 𝑇  

obtained through Eq. (1a) in this complete sampling limit the intrinsic cumulative spectrum of the system, 𝐼! 𝑇  (Fig. 1). 

While there is consensus that the quality of the freezing spectrum increases with the number of droplets, a rigorous analysis 

of how many droplets and IN dilutions should be measured to provide accurate freezing spectra is still lacking. The first goal 100 

of the present study is to provide a strategy to optimize the sampling of drop-freezing experiments to derive interpretable 

differential spectra that is a good approximant of the underlying distribution of heterogeneous ice nucleation temperatures of 

the sample. 

 

 105 
Figure 1: Diagram illustrating the usage of the HUB code: 𝒏𝒎(𝑻) are obtained from the sparsely sampled 𝒇𝒊𝒄𝒆(𝑻) or 𝑵𝒎(𝑻) 
through the HUB-backward, the effect on 𝒇𝒊𝒄𝒆(𝑻) or 𝑵𝒎(𝑻) obtained from the complete sampling of the underlying distribution  
𝑷𝒖(𝑻) through HUB-forward. The intrinsic cumulative spectrum 𝑰𝒖 𝑻  is proportional to 𝑷𝒖 𝑻′ 𝒅𝑻′

𝑻
𝑻𝒎

 (section 2.2). 

 

The existence of subpopulations or classes in the population of INs (e.g. different classes of bacterial INs, different 110 

ice nucleating sites on complex materials like dust) (Turner et al., 1990) is common in atmospheric aerosols. While several 

studies have broadly defined populations from the cumulative spectra by the range of nucleation temperatures they 

encompass (Turner et al., 1990; Creamean et al., 2019) or the origin of the sample (Steinke et al., 2020), there is currently no 

simple procedure to identify and quantify subpopulations or classes from cumulative freezing spectra 𝑁! 𝑇 . The second 

aim of our study is to map the cumulative freezing spectrum 𝑁!(𝑇) into the differential spectrum 𝑛!(𝑇), in terms of 115 

subpopulations that may correspond to different physical nucleation sites in the sample.  

 

To reach the aims above, we develop a method we name HUB (for Heterogeneous Underlying-Based) to model and 

interpret the results of drop-freezing experiments and provide its associated Python code and user manual 
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(https://github.com/Molinero-Group/underlying-distribution). Our method relies on the singular interpretation of freezing 120 

experiments: we assume that each individual IN has a characteristic nucleation temperature independent of its cooling 

history, and that the freezing of a droplet containing multiple INs is promoted by the IN with the highest nucleation 

temperature. This second assumption allows the use of extreme value statistics (Castillo, 2005; David and Nagaraja, 2004; 

Gumbel, 2012; De Haan and Ferreira, 2006) to model and interpret the data.  

We present two implementations of the HUB analysis code. The HUB-forward code allows the user to postulate an 125 

underlying distribution of heterogeneous nucleation temperatures 𝑃!(𝑇) in the system of interest. The HUB-forward code 

uses the singular approximation and extreme-value statistics to generate an artificial IN dilution series similar to those 

obtained in experiments, from which it computes the fraction of frozen droplets 𝑓!"#(𝑇) and from these derive 𝑁!(𝑇) using 

Vali’s equation (Fig. 1). The HUB-backward code works in reverse, extracting the differential spectrum 𝑛!(𝑇) from a given 

cumulative 𝑁!(𝑇) using a stochastic optimization procedure (Fig. 1). HUB-backward allows the decomposition the total 130 

population from 𝑛!(𝑇) into subpopulations. The combination of HUB-forward and HUB-backward allows for an analysis of 

the sensitivity of 𝑁!(𝑇) to the number of droplets and dilutions, and the impact of the sampling on the closeness of the 

differential spectrum 𝑛!(𝑇) to the underlying distribution 𝑃!(𝑇). The determination of distributions obtained from the HUB-

backward code further enables the interpretation of the experimental ice nucleation spectra with size and structure of INs 

using nucleation theory, kinetic models, and molecular simulations.  135 

This paper is organized as follows: Section 2 presents the methodology: Section 2.1 discusses the details on the 

implementation of HUB-forward, while Section 2.2 describes the HUB-backward procedure to find the differential spectrum 

𝑛!(𝑇) and discusses how to determine whether or not 𝑛!(𝑇) has converged to the underlying distribution 𝑃!(𝑇). Section 3 

presents examples of applications of both HUB-forward and HUB-backward codes and their capabilities. Section 3.1 

analyses the effect of the number of droplets sampled on the cumulative freezing spectrum 𝑁! 𝑇 . Section 3.2 uses HUB-140 

backward to compute the differential spectra 𝑛!(𝑇) of various biological INs with increasing grade of complexity in their 

cumulative freezing spectra. Section 3.3 demonstrates how to extract 𝑛!(𝑇) from the experimental fraction of ice 𝑓!"#(𝑇) of 

insoluble INs and the impact of the cooling rate on 𝑛!(𝑇). We end in Section 4 with a discussion of the main conclusions 

and outlook. 

2. Numerical modeling of drop-freezing experiments 145 

2.1  HUB-forward method to compute the fraction of frozen droplets 𝒇𝒊𝒄𝒆(𝑻) and cumulative freezing spectrum 
𝑵𝒎(𝑻) from a known underlying distribution 𝑷𝒖(𝑻). 

In the HUB-forward analysis we know or assume an underlying distribution 𝑃!(𝑇) of ice nucleation temperatures in the 

sample, and generate from it an artificial IN dilution series similar to those obtained in experiments, from which we compute 

the cumulative freezing spectrum 𝑁! (T) using Vali’s equation (Eq. (1a)). Using this approach, we investigate the 150 

relationship between 𝑁!(𝑇) and 𝑃!(𝑇) (Fig. 1) and the sensitivity of 𝑁!(𝑇) with respect to the number of droplets and 
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dilutions. For generality, we represent 𝑃!(𝑇) as a linear combination of normalized continuous distributions 𝑃! 𝑇  that 

represent subpopulations of INs: 

 𝑃!(𝑇) =  𝑐!𝑃! 𝑇  +  𝑐!𝑃! 𝑇  + . . .+ 𝑐!𝑃! 𝑇 ,  (2) 

where 𝑝  is the total number of subpopulations, 𝑃! 𝑇 ,𝑃! 𝑇 , . . . ,𝑃! 𝑇  are normalized distribution functions, and 

𝑐!, 𝑐!, . . . , 𝑐!  are their weights such that 𝑐!
!
!!! = 1.  These subpopulations could correspond to different chemical, 155 

topographical or structural motifs in the IN samples. The units of 𝑃!(𝑇) are, same as for 𝑛!(T), i.e. those of the cumulative 

spectrum divided by a unit of temperature, but are generally omitted in what follows. Throughout this work we assume that 

𝑃! 𝑇  can be represented by Gaussian (i.e. normal) distributions: 

𝑃!(𝑇) =  !
!! !!

𝑒
!!!

!!!!"#$,!
!!

!

, 
(3) 

where each subpopulation 𝑃! 𝑇  is further characterized by its most likely temperature of freezing 𝑇!"#$,! and spread of 

distribution of freezing temperatures 𝑠!.We also provide in the HUB code the option for the user to use the log-normal 160 

distribution, which has a tail towards higher temperatures, or the left-tailed Gumbel distribution, which has a tail towards 

lower temperatures. In our model, we assume that the underlying distribution of ice nucleating temperatures 𝑃!(𝑇) does not 

change with the concentration of INs. This last condition is violated when IN are involved in chemical, aggregation, or 

solubility equilibria that alter the proportionality between their concentration and the dilution factor of the sample, resulting 

in a lack of overlap of the pieces of the cumulative spectra 𝑁!(𝑇) obtained from different dilutions (Bogler and Borduas-165 

Dedekind, 2020) 

The number of INs in each droplet is then given by the Poisson distribution: 

𝑝(𝑛, 𝜆) = !!

!!
𝑒!!,  (4) 

 where 𝑛 is the actual number of INs in each droplet and 𝜆 represents the average number of INs among all droplets of the 

corresponding dilution. Fig. 2A shows the probability mass function (PMF) for 𝜆 =  1, 5, and 10, computed according to 

Eq. (4) and sampling over 𝑁! = 10! droplets using the “SciPy Stats” Python framework (Virtanen et al., 2020). As 𝜆 170 

increases, the probability that any droplet nucleates homogeneously rapidly approaches zero (inset of Fig. 2A). When there 

is one IN on average per droplet (𝜆 =  1) ~37 % of the droplets do not have any IN, i.e., they are “empty” droplets that 

would nucleate at the homogeneous nucleation temperature. We note that by performing dilutions until a sizeable fraction of 

droplets nucleate homogeneously, it is possible to calibrate the absolute concentration of ice nuclei in the original, undiluted, 

sample.  175 

To illustrate how the heterogeneous ice nucleation temperatures recorded in drop-freezing experiments depend on 

the number of INs in the droplets, we start from two examples with 𝑃!(𝑇)  represented by one or two Gaussian 

subpopulations, shown with black dashed lines in Fig. 2B and C, respectively. We assign a temperature to each IN contained 

in droplets from a 10-fold dilution series of 5 solutions with 𝜆 = 1, 10, 10!, 10!, and 10! average number of IN per droplet. 

If the droplet volume is constant, 𝜆 is proportional to the concentration of INs in the droplets. We sample 𝑁! =  10! droplets 180 
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for each concentration. This 𝑁! is much higher than the ~100 droplets usually sampled in laboratory experiments; we address 

the effect of sampling in Section 3.1 below.  

To sample independent random values for each IN, the number of random variates, which are drawn from 𝑃!(𝑇), is 

the total number of INs among 𝑁! droplets. Thereby, each droplet has a set of temperatures 𝑇!! =  (𝑇!!,𝑇!!, . . . ,𝑇!!) where 𝑗 is 

the droplet index and 𝑘 is the IN index. Since we assume that freezing occurs at the characteristic temperature of the IN with 185 

the highest freezing temperature, the nucleation temperature for each droplet is defined as the maximum i.e., the extreme 

upper value, of several independent freezing temperatures 𝑇!!",!! =  𝑚𝑎𝑥 (𝑇!!,𝑇!!, . . . ,𝑇!!). Fig. 2B-C shows the normalized 

distribution of 𝑇!!",!!  for different values of 𝜆, namely 𝑃!"#! (𝑇). Therefore, 𝑃!(𝑇) represents the underlying probability of 

heterogeneous ice nucleation temperatures independent of the concentration of INs, while 𝑃!"#! (𝑇)  represents the 

concentration-dependent distribution, and has the same units as 𝑃!(𝑇) and the differential spectrum. According to the Fisher-190 

Tippett-Gnedenko theorem, the distribution of extreme upper values of the Gaussian distribution is the right-skewed Gumbel 

distribution (Castillo, 2005; David and Nagaraja, 2004; Gumbel, 2012; De Haan and Ferreira, 2006), which has a fatter tail 

on the high-temperature side of its maximum. The shift of 𝑃!"#! (𝑇) curves in Fig. 1B-C evinces that as the number of INs in 

the droplet increases, the probability of sampling the higher temperature tail of 𝑃!(𝑇) increases significantly. This skew is 

the reason why several dilutions are needed to sample the full population of ice nucleants.  195 
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Figure 2: A) The probability mass function (PMF) of the Poisson distribution representing the number of INs per droplet using a 
bin width of 1. Colors represent different average numbers of INs per droplet: 𝝀 = 1 (blue squares), 𝝀 = 5 (purple triangles) and 𝝀 
= 10 (cyan circles). The inset shows the fraction of empty droplets as a function of 𝝀. The connecting lines are solely guides to the 200 
eye. B) and C) show the normalized underlying distributions 𝑷𝒖 𝑻  of heterogeneous ice nucleation temperatures (magenta dashed 
line), composed of two subpopulation and one subpopulations, respectively. Colors represent the concentration-dependent 
normalized distribution 𝑷𝒎𝒂𝒙𝝀 (𝑻) of heterogeneous ice nucleation temperatures: 𝝀 = 1 (blue squares), 𝝀 = 10 (cyan circles), 𝝀 = 102 

(green diamonds), 𝝀 = 103 (yellow x) and 𝝀 = 104 (red triangles) INs per droplet. A bin width of 0.1 was used for 𝑷𝒖 𝑻  and 
𝑷𝒎𝒂𝒙𝝀 (𝑻). All distributions were obtained using 104 droplets. While the HUB-Forward code explicitly accounts for 𝑵𝑭

𝝀  and 𝑵𝟎, we 205 
note that their ratio can be approximated by 𝑵𝑭

𝝀 𝑵𝟎  ≈ (𝟏 − 𝒆!𝝀) based on properties of the Poisson distribution.  

 

HUB-forward computes the fraction of frozen droplets and cumulative spectra from a proposed underlying 

distribution of freezing temperatures, using extreme-value statistics. The fraction of frozen droplets 𝑓!"#! 𝑇  can be calculated 

as a function of the concentration-dependent distribution, 210 
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𝑓!"#! 𝑇 = 𝑃!"#! 𝑇′ 𝑑𝑇′!
!!

× !!
!

!!
,  (5) 

where the integration is from the ice melting temperature 𝑇! to the temperature 𝑇. 𝑁!! is the total number of droplets that 

freeze heterogeneously and 𝑁! is the total number of droplets. We note that the approach taken in this work differs from that 

of previous studies that either start from a microscopic model for the nucleation sites and nucleation theory to predict the 

fraction of frozen droplets using Monte Carlo simulations, and also from previous modelling using the singular 

approximation which do not account for the statistics of extreme sampling. 215 

To use the HUB-Forward code, the user must define the total number of droplets “ndroplets” that serves as the total 

number of each concentration and the number of subpopulations “nsubpop”. If “nsubpop”=1, the user must provide the 

temperature of maximum likelihood 𝑇!"#$,! and the spread 𝑠!. If “nsubpop”=2, the user must provide 𝑇!"#$,!, 𝑠!, 𝑇!"#$,!, 

𝑠! and 𝑐!. If “nsubpop”=3, the user has to provide 𝑇!"#$,!, 𝑠!, 𝑇!"#$,!, 𝑠!, 𝑐!, 𝑇!"#$,!, 𝑠!, 𝑐!. To generate the cumulative 

freezing spectrum 𝑁! 𝑇 , the user needs to define the total number of concentrations “nconc”, the concentration of the 220 

parent suspension is defined in “density”, and the droplet volume in “volumedrop”. The output is composed of different data 

plots and files: the normalized 𝑃!(𝑇) and 𝑃!"#! 𝑇 , the artificially generated 𝑓!"#! (𝑇), and 𝑁! 𝑇  built from the 10-fold 

dilution series. 

Fig. 3A-B shows the fraction of ice computed using 𝑃!"#! 𝑇  of Fig. 2B-C, which correspond to 𝑃!(𝑇) with two 

and one subpopulations, respectively. The intermediate plateau in Fig. 3B indicates that no droplets freeze at those 225 

temperatures. As discussed above, only 63% of the droplets freeze heterogeneously for 𝜆 = 1. We assume droplets of 

uniform volume 𝑉!"#$ =  0.1 µl obtained through 10-fold dilution of a parent suspension with  𝜆 = 10! INs per droplet 

corresponding to a mass 𝑚 = 1 mg of IN in a volume 𝑉!"#! =  1 ml. We use Eq. (5) and the 𝑃!(𝑇) of Fig. 2B-C to generate 

𝑓!"#! (𝑇) (Fig. 3A-B) sampling of either 100 or 104 droplets per dilution. We combine the 𝑓!"#! (𝑇) using Eq. (1a) to build the 

cumulative freezing spectra 𝑁!(𝑇) shown in Fig. 3C-D (sampling 104 droplets per dilution) and Fig. 3E-F (sampling 102 230 

droplets per dilution).  
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Figure 3: A) and B) represent the fraction of ice 𝒇𝒊𝒄𝒆𝝀 𝑻  computed using Eq. (5) and artificially generated data using 104 droplets. 
C) and D) are the corresponding cumulative freezing spectra 𝑵𝒎 𝑻  computed using Vali’s equation. Colors represent different 235 
number of INs per droplet: 𝝀 = 1 (blue squares), 𝝀 = 10 (cyan circles), 𝝀 = 102 (green diamonds), 𝝀 = 103 (yellow x) and 𝝀 = 104 (red 
triangles). E) and F) represent 𝑵𝒎 𝑻   obtained using 100 droplets. The dashed black lines in C and D indicate the temperatures 
corresponding to the location of the mode(s) in the underlying distribution. The dotted magenta lines are the knee points computed 
with the Python function “kneed”.  

The ability of HUB-forward to generate the cumulative freezing spectrum 𝑁!(𝑇) from the underlying distribution 240 

𝑃!(𝑇) allows for an analysis of the sensitivity of 𝑁!(𝑇) and 𝑃!(𝑇) to the number of droplets and dilutions, as seen in the 

comparison of 𝑁! 𝑇  generated from the same underlying distributions using 100 and 104 droplets in Fig. 3. In Section 3.1 

we show that the sampling with 100 droplets for only four dilutions of a system with two subpopulations of INs results in 

distortions of the freezing temperatures and the proportions of these populations in the differential spectrum.  

The knee point in 𝑁!(𝑇) corresponds to the point of maximum curvature (Satopaa et al., 2011) and has been used 245 

to characterize the nucleation temperature of a particular subpopulation (Hartmann et al., 2022). Similar to Hartmann et al., 

we have identified in Fig. 3C-D the knee points (magenta dotted line) of the artificially generated 𝑁!(𝑇) by using a Python 

function named “kneed”. The Python function “kneed” using S=1, curve="concave" and direction="decreasing". The knee 

points 𝑇!"## are very close to the temperatures of maximum likelihood 𝑇!"#$ (dashed black lines) of the corresponding 

underlying distribution 𝑃! 𝑇 , because under these conditions the differential freezing spectrum 𝑛!(𝑇) is a very good 250 

approximant for 𝑃!(𝑇). However, we find that removal of the more dilute solutions (that eliminate the plateau in 𝑁!(𝑇)) 

results in poor estimation of the modes of 𝑃!(𝑇) from the knee of 𝑁!(𝑇).  

2.2. HUB-Backward method to recover the differential freezing spectrum 𝒏𝒎(𝑻) from the cumulative freezing 
spectrum 𝑵𝒎 𝑻  by a stochastic optimization procedure. 

The HUB-backward code implements a stochastic optimization procedure to extract the differential spectrum 𝑛!(𝑇) from a 255 

given cumulative spectrum 𝑁!(𝑇) or from an experimental 𝑓!"# 𝑇  curve. The later is useful when data is available for a 

single concentration. One possibility to obtain 𝑛!(𝑇) from 𝑁!(𝑇) would be to follow the following steps: i) propose a trial 
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function 𝑛!!"#$%(𝑇), ii) use HUB-forward to predict the concentration-dependent distributions 𝑃!"#
!,!"#$% 𝑇  for various IN 

concentrations, iii) use these in  Eq. (5) to predict the freezing fractions 𝑓!"#
!,!"#$% 𝑇 , iii) compute 𝑁!!"#$%(𝑇) from the freezing 

fractions using Eq. (1a), iv) evaluate the difference between that trial and the target (experimental) value, 260 

𝛿 𝑇 =  𝑙𝑜𝑔!" 𝑁!!"#$%(𝑇) − 𝑙𝑜𝑔!" 𝑁!
!"#$%!(𝑇) , (6) 

and then v) evolve the parameters that determine 𝑛!!"#$%(𝑇) until the difference 𝛿 𝑇  is minimized. However, the use of 

HUB-forward in steps ii) and iii) to generate and evaluate hundreds of droplets containing up to tens of millions of IN would 

require significant computations that render this optimization process inefficient.  

The HUB-backward optimization procedure, sketched in Fig. 4, uses a shortcut for steps ii) and iii) above to 

directly predict 𝑁!!"#$%(𝑇) from 𝑛!!"#$%(𝑇) with fast convergence. The shortcut is based on the understanding that in the 265 

asymptotic limit in which the sample is extremely dilute (i.e., 𝜆⟶ 0) each droplet that nucleates heterogeneously contains a 

single IN. In such case, sampling an infinitely large number of droplets with 𝑃!"#!⟶! 𝑇  is equivalent to sampling each and 

every IN, i.e., 𝑃!"#!⟶! 𝑇 =  𝑃! 𝑇 . In agreement with this ansatz, Fig. 2B-C shows that the underlying distribution 𝑃!(𝑇) 

(black dashed line) and the concentration-dependent 𝑃!"#!!! 𝑇  (blue squares) sampled with 104 droplets per dilution are 

already very close, i.e. 𝑃!(𝑇) ≈ 𝑃!"#!!! 𝑇 . 270 

   

 
Figure 4: Flowchart of the minimization procedure to obtain the differential freezing spectrum 𝒏𝒎(𝑻) from the full cumulative 
freezing spectrum 𝑵𝒎(𝑻) or fraction of frozen droplets 𝒇𝒊𝒄𝒆(𝑻).  

 275 

With this insight and considering that the intrinsic cumulative spectrum, 𝐼! 𝑇 = 𝑃! 𝑇′ 𝑑𝑇′
!
!!

×(1 − 𝑒!!), we 

define the cumulative integral of the differential spectrum as 
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𝐼!!"#$% 𝑇 = 𝑛!!"#!" 𝑇′ 𝑑𝑇′
!

!!
×𝛽, 

(7) 

where the integration is from the ice melting temperature 𝑇! to the temperature 𝑇, and 𝛽 is and adjustable scaling factor to 

be obtained from the optimization. Likewise, a similar estimate can be made for a single fraction of ice curve 𝑓!"#!"#$% 𝑇 =

𝐼!!"#$% 𝑇  using Eq. (7) and proceed directly to evaluate the mean squared error (Fig. 4). When the target is a cumulative 280 

freezing spectrum, HUB-forward uses 𝑛!!"#$% 𝑇  to predict a trial cumulative freezing spectrum (Fig. 4),  

𝑁!!"#$% 𝑇 = −ln [1 − 𝐼! 𝑇 ]× !
!

 ,  (8) 

where  1 𝑋 corresponds to the maximum of the cumulative in the target distribution, 1 𝑋 = max 𝑁!
!"#$%! 𝑇 . With Eq. (8) 

we obtain an 𝑁!!"#$% 𝑇  that we compare with the target using Eq. (6) (Fig. 4). To do the comparison, HUB-backward uses a 

spline fit to interpolate the experimental 𝑁!
!"#$%!(𝑇) in order to have equally spaced temperature points to then compare with 

the estimates in 𝑁!!"#$%(𝑇). We use the “interp1d” algorithm, which is available in the Python SciPy library (Virtanen et al., 285 

2020) with a linear interpolation to construct new equally spaced data points within the range of the lowest and highest 

temperature values in the freezing spectrum. The cost function for the optimization is the mean squared error (MSE), 

computed from the difference 𝛿 𝑇  in Eq. (6),  

𝑀𝑆𝐸 =
1
𝑡

𝛿!, (9) 

where 𝑡 represents the total number of equally spaced points in 𝛿 𝑇 . 

We use a stochastic global optimization technique based on a simulated annealing algorithm to find the set of 290 

parameters of 𝑛!!"#$% (Eq. (2) and Eq. (3)), and 𝛽 (Eq. (7)) that globally minimizes the MSE. We use the simulated annealing 

(SA) algorithm “dual annealing” that is part of the SciPy minimize library (Virtanen et al., 2020) with its default arguments 

predefined, except for the parameters “maxfun” that sets the maximum number of the evaluation of the objective function 

(we select “maxfun” = 1,000,000 in the examples below), and the seed for the generation of random numbers (a new random 

integer is automatically generated every time the HUB-backward code is run). We show below that the optimized differential 295 

spectra, 𝑛!
!"#$%$&'( 𝑇 , are quite insensitive to the value of the seed.  

The output of HUB-backward is an optimized differential spectrum 𝑛!
!"#$%$&'((𝑇) or an optimized fraction of ice 

𝑓!"#
!"#$%$&'((𝑇). To quantify how much this optimized prediction deviates from the known underlying distribution in the 

examples of Fig. 5 where 𝑃!(𝑇) is known, we define the mean relative error (MRE) for the set of parameters 

𝑀𝑅𝐸 =
1
3𝑝

𝑇!"#$,!
!"#$%$&'( − 𝑇!"#$,!

!"#$%!

𝑇!"#$,!
!"#$%! +  

𝑠!
!"#$%$&'( − 𝑠!

!"#$%!

𝑠!
!"#$%! +

𝑐!
!"#$%$&'( − 𝑐!

!"#$%!

𝑐!
!"#$%!  

!

!!!

, 
(10) 

where 𝑝 is the number of subpopulations. 300 

We now turn our focus to how to select the input parameters required by HUB-backward to start the search for the 

underlying distribution, using the experimental 𝑁!
!"#$%!(𝑇) or 𝑓!"#

!"#$%!(𝑇) as a guide. The code requires the user to define the 
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number of distinct Gaussian subpopulations 𝑃!(𝑇) that comprise the underlying distribution (Eq. (2)) and to provide upper 

and lower bounds for the weighs 𝑐!, their modes 𝑇!"#$,!, and spreads 𝑠! of each of these populations. In general, we find that 

defining the minimum and maximum values for the weighs 𝑐!!"#  = 1 and 𝑐!!"# = 0 (see constrain in Eq. (2)), 𝑇!"#$,!!"#  and 305 

𝑇!"#$,!!"#  to be between the homogeneous nucleation temperature (about -30 oC) and the melting temperature (0 oC), and the 

bounds for the spreads 𝑠!!"# = 10 oC and 𝑠!!"# = 0.1 oC work well. However, these bounds can be tuned in order to better fit 

the data (as we find to be the case to fit the results for pollen in Section 3.2 below). If the existing experimental 

𝑁!
!"#$%!(𝑇) data is very noisy, it can be interpolated in HUB-backward using the method “interp1d” with “npoints”=100, and 

then smoothed with a Savitzky-Golay filter by changing the parameters “window_length” that is the length of the filter 310 

window and “polyorder” that is the order of the polynomial used to fit the samples (“filter” in Fig. 4). The default values are 

3 and 1, respectively. HUB-backward generates a plot that compares the original and the interpolated target data. 

 To identify the minimum number of subpopulations needed to represent a given freezing spectrum, we consider that 

every time a population is accumulated in 𝑁!(𝑇) or 𝑓!"#(𝑇), these functions display a sharp increase. We note that assuming 

a large number of subpopulations may challenge the interpretability of the optimized differential spectrum 𝑛!
!"#$%$&'((𝑇). 315 

We apply the HUB-backward procedure to the 𝑁! 𝑇  obtained in Fig. 3C-D by sampling four 10-fold dilutions 

with 100 droplets, i.e., only a total of 500 droplets.  Fig. 5 shows the comparison between the predicted (solid magenta lines) 

and the target (black dashed lines) 𝑁! 𝑇  (panels A and B) and 𝑛! 𝑇  (panels C and D). Table 1 shows the predicted 

parameters and the precision of the optimization procedure to recover the known underlying distribution 𝑃!(𝑇). The MRE 

between the underlying distribution 𝑃!(𝑇) and the optimized differential spectrum 𝑛!
!"#$%$&'((𝑇) is 2% for the system with 320 

one subpopulation and 13% for the one with two, despite the low number of droplets used to sample the cumulative freezing 

spectra in the computer-generated freezing experiments.    

 

Table 1: Mean relative error (MRE), mean squared error (MSE) and parameters of the optimized differential freezing spectra 
𝒏𝒎
𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅(𝑻) obtained using the HUB-backward code. The values shown here were calculated based on the average of n = 3 325 

independent runs. The error bars, shown in parentheses, were calculated by dividing the standard deviation of the values in these 
runs by 31/2. 

 MRE MSE 𝑻𝒎𝒐𝒅𝒆,𝟏
( oC)  

𝒔𝟏( oC)  𝑻𝒎𝒐𝒅𝒆,𝟐
( oC)  

𝒔𝟐( oC)  𝒄𝟐 𝛽 

One subpopulation 2% 1.0(2) ×10!! -7.80(2) 0.49(2)    0.63(1) 

Two subpopulations 13% 3.0(2) ×10!! -7.90(2) 0.54(2) -3.90(2) 0.49(2) 0.16(2) 0.63(1) 
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Figure 5: A) and B) show the comparison between 𝑵𝒎

𝒕𝒂𝒓𝒈𝒆𝒕(𝑻) (black circles) and the 𝑵𝒎
𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅(𝑻) computed with the optimized 330 

solution 𝒏𝒎
𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅(𝑻) (solid red line). C) and D) show the known underlying distributions 𝑷𝒖(𝑻) (black dashed line) and the 

optimized underlying distributions 𝒏𝒎
𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅(𝑻) (solid red line) based on three independent runs. The parameters of the predicted 

underlying distribution 𝒏𝒎
𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅 𝑻  are summarized in Table 1.   

We conclude that the HUB-backward code gives a good estimate of the mode, spread and weights of the 

populations of INs in a sample, and it can be applied in a situation where 𝑃!(𝑇) is unknown. In Section 3.1 we discuss how 335 

is the accuracy of the underlying distribution recovered with HUB-backward impacted by various schemes of sampling of 

number of droplets and dilutions to construct 𝑁! 𝑇 . In Section 3.2, we apply the HUB-backward procedure to obtain 

𝑛!
!"#$%$&'((𝑇) from actual 𝑁! 𝑇  of experiments with various soluble biological IN. In Section 3.3, we apply the HUB-

backward procedure to obtain 𝑛!
!"#$%$&'((𝑇) from 𝑓!"# 𝑇  of experiments of insoluble crystal IN. 

3. Using the HUB code to optimize and analyse drop-freezing experiments  340 

3.1 Effect of the number of droplets and dilutions on the temperature range of the cumulative freezing spectrum 
𝑵𝒎(𝑻) 

Fig. 3D-F shows 𝑁!(𝑇) generated with HUB-forward using five dilutions from λ = 104 to 1 of a solution with 𝑃!(𝑇) 

containing two populations in a ratio of 9 to 1. The 𝑁!(𝑇) are different when the number of droplets per dilution is 100 (Fig. 

3F) or 104 (Fig. 3D). As shown in the previous section, the freezing spectrum obtained with 100 droplets and five dilutions 345 
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has enough sampling to recover this 𝑃!(𝑇) with good accuracy (Fig. 5C-D). We test different number of droplets and 

concentrations, defined by the average number of INs per droplet 𝜆, to test the sensitivity of 𝑛!(𝑇) to the number of droplets 

and dilutions when the underlying distribution is known 𝑃!(𝑇) . We use HUB-forward to build 𝑁!(𝑇)  based on a 

combination of different number of droplets and concentrations, similar to the case shown in Fig. 3F. Then, we use the 

HUB-backward to obtain 𝑛!
!"#$%$&'((𝑇), compare it to 𝑃! 𝑇  and test the accuracy of each prediction through its mean 350 

relative error (MRE) as defined in Eq. (10).  

The left panels of Fig. 6 show 𝑁!(𝑇)  generated with HUB-forward based on a combination of different 

concentrations using 100 droplets each. The magenta lines are based on the data fitting provided by the HUB-backward 

code. The right panels of Fig. 6 compare 𝑛!
!"#$%$&'((𝑇) in magenta and the known underlying distribution 𝑃! 𝑇  in black. In 

this example, 𝑛!(𝑇) is very close to 𝑃! 𝑇  if both subpopulations are sampled enough. However, if the most dilute solution 355 

with 𝜆 = 1 is not included in 𝑁!(𝑇) (second panel), the estimate of the underlying distribution is very poor. Thus, to 

improve the sampling of the lower tail of 𝑃! 𝑇 , we recommend ending the dilution series always in the immediacy of 

𝜆 = 1, which can be gleaned from the temperature range for which 𝑁! 𝑇  becomes flat and a sizeable fraction of droplets 

of the more diluted sample nucleates homogeneously (inset of Fig. 2A). We emphasize that reaching this limit allows for an 

absolute calibration of the number of INs in the initial sample. Moreover, sampling to concentrations down to about one 360 

nucleant per droplet is essential to recover a proper weight of the poorly nucleating IN populations. 
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Figure 6: Left panels represent the cumulative freezing spectra 𝑵𝒎 𝑻  sampled from the same underlying distribution 𝑷𝒖(𝑻). 
Colors represent different number of INs per droplet: 𝝀 = 1 (blue squares), 𝝀 = 10 (cyan circles), 𝝀 = 102 (green diamonds), 𝝀 = 103 365 
(yellow x) and 𝝀 = 104 (red triangles). The sampling was done using 100 droplets for each concentration. Right panels represent the 
differential freezing spectra 𝒏𝒎 𝑻  compared to the known underlying distribution 𝑷𝒖(𝑻), shown by the magenta and dashed 
black lines, respectively. Panels A, B, C and D were computed with a different number of dilutions. The mean relative error 
(MRE) was computed using Eq. (10). The parameters of 𝒏𝒎 𝑻  and 𝑷𝒖(𝑻) are shown in Table S1. 

 370 

The relative weights of class A and C populations in Pseudomonas syringae is approximately 1 to 1000 (Section 

3.2), while the ratio is 9 to 1 in the two-population system example of Fig. 6. To understand the impact of highly imbalanced 

populations on the sampling of the cumulative spectrum and recovery of the underlying distribution, we show in Fig. 7 the 

analysis of an example where the subpopulation of highly efficient INs is three orders of magnitude less likely to occur than 

the subpopulation at lower temperatures, mimicking the one of P. syringae. Our analysis confirms that it is important to end 375 

the dilution series in the immediacy of 𝜆 = 1 to fully represent the contribution of the poorer INs (Fig. 7B-F). Furthermore, 
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we find it is important to sample a high enough concentration to account for the rare INs that nucleate at the highest 

temperatures (Fig. 7D-H).  

If only 25 droplets per dilution, instead of 100, are used to construct the cumulative spectrum, the impact of 

insufficient sampling at the higher concentrations is more pronounced: compare Fig. 8C and Fig. 7D obtained with the same 380 

underlying distribution 𝑃! 𝑇  with 1000 to 1 subpopulation ratios and number of dilutions.  

We conclude that increase in the accuracy in the account of the subpopulations requires a higher number of 

dilutions and the checking of the predictions with the addition of each successive concentration, to ensure convergence of 

𝑛!
!"#$%$&'((𝑇). Measuring fewer droplets or fewer dilutions lead to poor statistics and results in incompleteness or the 

misrepresentation of the underlying distribution in samples with multiple subpopulations. In principle, increasing the number 385 

of droplets of the most concentrated solutions, or adding more ten-fold concentrated ones until there are no changes in the 

cumulative spectrum is recommended to ensure complete sampling. When that limiting scenario is not attainable, the use of 

HUB-forward to produce synthetic data from a proposed underlying distribution, followed by the recovery of the differential 

spectrum from these data sets, allows for an estimation of the errors that may be incurred for putative, proposed underlying 

distributions with the sampling scheme available in the laboratory. 390 
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Figure 7: Left panels (A-D) represent the cumulative freezing spectra 𝑵𝒎 𝑻  sampled from the same underlying distribution 
𝑷𝒖(𝑻). Colors represent different number of INs per droplet: 𝝀 = 1 (blue squares), 𝝀 = 10 (cyan circles), 𝝀 = 102 (green diamonds), 395 
𝝀 = 103 (yellow x) and 𝝀 = 104 (red triangles). The sampling was done using 100 droplets for each concentration. Right panels (E-H) 
represent the differential freezing spectra 𝒏𝒎 𝑻  compared to the known underlying distribution 𝑷𝒖(𝑻), shown by the magenta 
and dashed black lines, respectively. The mean relative error (MRE) was computed using Eq. (10) and the parameters of 𝒏𝒎 𝑻  
and 𝑷𝒖(𝑻) are shown in Table S2. 
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 400 
Figure 8: Left panels  (A-C) represent the cumulative freezing spectra 𝑵𝒎 𝑻  sampled from the same underlying distribution 
𝑷𝒖(𝑻). Colors represent different number of INs per droplet: 𝝀 = 1 (blue squares), 𝝀 = 10 (cyan circles), 𝝀 = 102 (green diamonds), 
𝝀 = 103 (yellow x) and 𝝀 = 104 (red triangles). The sampling was done using 25 droplets each concentration. Right panels (D-F) 
represent the differential freezing spectra 𝒏𝒎 𝑻  compared to the known underlying distribution 𝑷𝒖(𝑻), shown by the magenta 
full and black dashed lines, respectively. The mean relative error (MRE) was computed using Eq. (10). The parameters of 𝒏𝒎 𝑻  405 
and 𝑷𝒖(𝑻) are shown in Table S3. 

3.2 Obtaining the differential freezing spectrum 𝒏𝒎(𝑻) from the experimental cumulative freezing spectrum 𝑵𝒎(𝑻) 
of biological INs using the HUB-backward code 

In this section we use the HUB-backward code to obtain the differential freezing spectrum 𝑛!(𝑇) from the cumulative 

freezing spectra 𝑁!(𝑇) of the fungi Fusarium acuminatum strain 3-68 (Kunert et al., 2019), the bacterium P. syringae 410 

(Schwidetzky et al., 2021), and birch pollen (Dreischmeier, 2019). We select these systems because they are important 

biological INs and show increasing complexity in terms of the apparent number of underlying distributions that define their 

freezing spectra. 

The experimental 𝑁!(𝑇) obtained for F. acuminatum (black squares in Fig. 9A) was obtained by sampling six 10-

fold dilutions, each with 96 droplets (Kunert et al., 2019). Fig. 9A shows the cumulative spectra optimized assuming one 415 

(green curve) and two (cyan curve) subpopulations; Fig. 9B shows the corresponding optimized differential freezing spectra. 

The 𝑛!
!"#$%$&'((𝑇) with a single subpopulation that peaks at -5.9oC is unable to represent the cumulative density of the most 
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potent nuclei and misses the inflection around -5.9oC in the experimental data, resulting in a mean squared error MSE = 0.05. 

The 𝑛!
!"#$%$&'((𝑇) with two subpopulations has a lower MSE = 0.003 and a better fit that suggests a population that peaks at 

-7.3oC and another at -5.5oC, in comparable amounts (Table 2). Most notably, the two subpopulations do not overlap in the 420 

differential freezing spectrum, supporting that they may indeed correspond to different physical entities. The improvement in 

the fit becomes apparent in the inset of Fig. 9A, which shows 𝑁!(𝑇) on a linear scale. The significant slope of 𝑁!(𝑇) even 

at the lowest temperatures indicates that sampling of more diluted solutions is needed to capture the contribution of the less 

active INs. An attempt to represent F. acuminatum nucleation data with three different subpopulations resulted in two of 

them being almost identical. We conclude that adding a third subpopulation is unnecessary to reproduce the experimental 425 

cumulative freezing spectrum of F. acuminatum. We refer the reader to (Schwidetzky et al., 2023) for an interpretation of the 

size of the ice nucleating surface of F. acuminatum based on its differential spectrum and nucleation theory.  

 

 
Figure 9: Cumulative freezing spectra 𝑵𝒎(𝑻) obtained from drop-freezing experiments for A) F. acuminatum strain 3-68 (Kunert 430 
et al., 2019), B) P. Syringae (Schwidetzky et al., 2021), and C) birch pollen (Dreischmeier, 2019) (black circles). The solid green, 
long dashed cyan and short dashed red lines represent 𝑵𝒎

𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅(𝑻) computed with the optimized differential freezing spectra 
𝒏𝒎
𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅(𝑻) obtained with the HUB-backward code considering one, two and three subpopulations, respectively. B), D) and E) 

show 𝒏𝒎
𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅(𝑻). The gray circles are experimental data points in the measurement of the birch pollen ice nucleation spectrum 

that were not considered in the optimization procedure. Inset in A) and C) show 𝑵𝒎(𝑻) in normal scale. 435 
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 440 

 

Table 2: Mean squared error (MSE) and parameters of the differential freezing spectra 𝒏𝒎 𝑻  obtained using the HUB-backward 
code and experimental data as input. The values shown here were calculated based on the average of n = 3 independent runs. The 
error bars, shown in parentheses, were calculated by dividing the standard deviation of the values in these runs by 31/2. 

 Number of 
populations 

MSE 𝑻𝒎𝒐𝒅𝒆,𝟏 

( oC) 

𝒔𝟏 
( oC) 

𝑻𝒎𝒐𝒅𝒆,𝟐 

( oC) 

𝒔𝟐 
( oC) 

𝒄𝟐 𝑻𝒎𝒐𝒅𝒆,𝟑 

( oC) 

𝒔𝟑 
( oC) 

𝒄𝟑 𝛽 

F. 
acuminatu

m 

1 2.0% -5.90(1) 0.36(1)       0.54(1) 

F. 
acuminatu

m 

2 0.5% -7.30(2) 0.62(3) -5.50(1) 0.31(1) 0.35(1)    0.58(2) 

P. syringae 2 2.0% -9.40(2) 0.77(2) -4.20(2) 0.41(3) 7.0 2  

×10-4 

   0.87(1) 

P. syringae 3 1.1% -9.10(2) 0.70(2) -5.20(1) 0.53(2) 1.0 1  

×10-3 

-3.70(1) 0.27(2) 3.0 1  

×10-4 

0.57(1) 

birch 
pollen 

3 5.0% -20.00(2) 0.79(3) -15.60(2) 0.58(1) 9.0(1) 

×10-6 
-8.40(1) 0.69(2) 6.0 2  

×10-8 
0.39(3) 

 445 

Next, we apply the HUB-backward code to analyse the experimental freezing spectrum of Snomax®, i.e., 

inactivated P. syringae. The cumulative spectrum suggests the presence of two distinct subpopulations, usually called class 

A (at warmer temperatures) and class C (at colder ones). We first assume the differential freezing spectrum 𝑛!(𝑇) of Ps. 

syringae is a combination of two Gaussian populations. The parameters of the optimized differential spectrum with two 

subpopulations are listed in Table 2, and the curve is shown with in Fig. 9D with a cyan line. Note that we use a logarithmic 450 

scale to represent this 𝑛!
!"#$%$&'((𝑇) because the population corresponding to class A accounts for less than 0.1% of the total 

(Table 2). While the fit with two subpopulations results in a good overall account of the target data, we note that there is 

some difference in the region between classes A and C (Fig. 9C). The fitting for P. syringae achieves an excellent agreement 

between optimized and target cumulative spectra (Fig. 9C), through the prediction of an additional peak located between 

classes A and C (the elusive class B), with a population comparable to class A (Table 2 and red curve in Fig. 9D). However, 455 

more measurements and analyses are needed to establish whether this “class B” peak at -5.2 oC is reproducible and truly 

distinct from the one of class A at -3.7 oC to warrant a physical interpretation. Overall, both the analyses with two and three 

subpopulations agree with previous ones (Govindarajan and Lindow, 1988; Warren, 1987) that concluded that over 99% of 

the IN active P. syringae bacteria in Snomax® belongs to class C. The analysis presented here for fungal and bacterial INs 

illustrates how HUB-backward can be used to reveal and characterize the underlying number of IN subpopulations of 460 

complex biological samples.  
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To further test the methodology, we model the cumulative freezing spectrum of birch pollen. Given that the original 

𝑁!(𝑇) data for pollen in Fig. 3.1 of (Dreischmeier, 2019) consists of multiple independent curves, we took one of the many 

presented in this graph as target 𝑁!
!"#$%!(𝑇) (black curve in Fig. 9E) and present some of the additional data -not used in the 

optimization- with gray circles in Fig. 9E. Supp. Section S4 shows that the differential spectrum optimized from the whole 465 

data set and its sparse sampling are almost identical, because HUB-forward interpolates and smooths the input data to 

produce an equispaced data set.  the  𝑁!
!"#$%!(𝑇) seems to contain three quite separated subpopulations; which is confirmed 

by the accuracy of the optimized cumulative spectrum in Fig. 9E. The parameters of the optimized differential freezing 

spectrum 𝑛!
!"#$%$&'((𝑇) and the MSE are shown in Table 2.  Our analysis indicates that the two subpopulations that nucleate 

ice above -16oC constitute less than 0.01% of the active nucleating sites in pollen (Fig. 9E), consistent with drop-freezing 470 

assays that only measured solutions with low concentrations of birch pollen and did not observe freezing at higher 

temperatures (Augustin et al., 2013; Pummer et al., 2012; Felgitsch et al., 2018), where the more extensive data of 

(Dreischmeier, 2019) reveals two more active subpopulations of IN. 

To further illustrate the use of HUB-backward, Fig. 10 shows the effect of pH on the subpopulations in the modes, 

spread and weighs that contribute to the nucleation spectrum of P. syringae (Snomax®), using data from (Lukas et al., 475 

2020).  Freezing in the temperature range of class A drops about 3 orders of magnitude when the pH is lowered from 6.2 to 

4.4, (Fig. 10B). However, we note cumulative number of IN is preserved in the experimental data that the cumulative 

freezing spectrum (Lukas et al., 2020), indicating that the change in pH did not impact the number of nucleants.  Fig. 10C-D 

demonstrates that the distributions associated with both subpopulations shift to lower temperatures when the pH decreases, 

and the range of freezing temperatures in class A becomes broader. An attempt to fit the cumulative spectra of Snomax at 480 

different pH with the same subpopulations, allowing only for adjustment of their weights, resulted in a poor fit to the 

experimental 𝑁!(𝑇), supporting the conclusions of (Lukas et al., 2020) of a central role of electrostatic interactions in the 

assembly of the bacterial ice nucleating proteins and their ability to bind to ice. This analysis exemplifies how HUB-

backward can be applied to quantify the dependence of IN on environmental variables. 

 485 
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Figure 10: Effect of changing the pH on the subpopulations of P. Syringae (Lukas et al., 2020). A) The differential freezing spectra 
𝒏𝒎 𝑻  obtained using the HUB-backward code. Colors represent different pH: 6.5 (black long dashed line), 5.6 (blue short dotted 
line), and 4.4 (solid magenta line). B) The ratio between the weights, C) the modes, and D) the spreads of each subpopulation as a 
function of pH. The fitting of 𝑵𝒎 𝑻  and the parameters of 𝒏𝒎 𝑻  are shown in Fig. S1 and Table S4. 490 

3.3. Obtaining the differential freezing spectrum 𝒏𝒎(𝑻) from the experimental fraction of ice 𝒇𝒊𝒄𝒆(𝑻) of insoluble ice 
nucleators using the HUB-backward code 

Sections 3.1 and 3.2 discuss how to obtain the differential spectrum from a target cumulative one. However, there 

are many cases where the results are presented as fraction of frozen droplets as a function of temperature, 𝑓!"#(𝑇). In these 

cases, the HUB-backward code can be used to obtain the optimized differential freezing spectrum 𝑛!
!"#$%$&'((𝑇) directly 495 

from 𝑓!"#
!"#$%!(𝑇). Supp. Section S5 illustrates this approach for the analysis of droplet freezing data for a sample of lignin 

(Bogler and Borduas-Dedekind, 2020) in which the IN participate in aggregation equilibria. Here we exemplify the 

optimization the differential spectrum of cholesterol from experimental freezing data obtained at two cooling rates with 

droplets sampled from a single dilution.  

The triangles and squares in Fig. 11A display the experimental 𝑓!"#(𝑇) obtained by sampling the freezing of 500 

hundreds of 120𝜇𝐿 droplets pipetted from a suspension of cholesterol monohydrate crystals in contact with Teflon walls 

cooled at 0.18 K/min (triangles) and 0.06 K/min (squares) (Zhang and Maeda, 2022). The tripling of the cooling rate has a 

significant effect on the freezing of the droplets. In the analysis of drop-freezing experiments, it is assumed that each IN has 

a singular freezing temperature, independent of the cooling rate. However, ice nucleation is a stochastic process, and the 
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underlying distribution of freezing temperatures 𝑃! 𝑇  strictly depends on both temperature and cooling rate, as slower rates 505 

give more time for the system to cross the nucleation barrier at warmer temperatures.  

 

 

Figure 11: Use of HUB-backward code to estimate the optimized differential freezing spectra  𝒏𝒎
𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅(𝑻) based on the fraction 

of frozen droplets 𝒇𝒊𝒄𝒆
𝒕𝒂𝒓𝒈𝒆𝒕(𝑻) of cholesterol (Zhang and Maeda, 2022) at different cooling rates. Black circles and squares are 510 

experimental data, and cyan dashed and solid red lines represent the fit given by the HUB-backward code. The parameters of 
𝒏𝒎 𝑻  are shown in Table S5. 

Our analysis of the freezing data of cholesterol monohydrate shows that even a three-fold change in the cooling rate 

can have significant impact on the differential spectrum (Fig. 11B). As expected, the modes of the three populations move 

towards warmer temperatures upon decreasing the cooling rate. We note, however, that the shift of the peaks is not uniform; 515 

the middle one seems to be more sensitive to the cooling rate. Different sensitivity of the freezing rate of subpopulations to 

temperature has been also reported in simulations of nucleation data of minerals using the stochastic and modified singular 

frameworks (Herbert et al., 2014; Murray et al., 2011) The modified singular model proposes an empirical correction the 

relation between 𝑓!"#(𝑇) and 𝑁!(𝑇) to account for the effect of the cooling rate on the shift of these quantities (Vali, 1994). 

That analysis could be extended to the analysis of the subpopulations of IN obtained with HUB-backward.  Moreover, it 520 

would be interesting in future studies to use the rate dependence of the mode of the subpopulations to extract the steepness of 

the nucleation barrier with temperature using nucleation theory (Budke and Koop, 2015), and to investigate the relationship 

between the cooling rate dependence of the differential spectrum obtained in the singular approximation with the 

interpretation of the same data modelled with the stochastic framework, such as in (Wright et al., 2013; Herbert et al., 2014). 
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4 Conclusions 525 

In this study, we present the HUB method and associated Python codes that model (HUB-forward code) and 

interpret (HUB-backward code) the results of droplet freezing experiments under the assumptions that each ice nucleating 

site in the sample has a characteristic nucleation temperature that is time-independent. The use of the singular approximation 

is the same as used by Vali (Vali, 1971; Vali, 2014, 2019) in his derivation of the ice nucleation spectra from data of fraction 

of frozen droplets. Different to previous implementations of the singular model, HUB accounts for the distribution of the 530 

number of IN in droplets at a given concentration, and uses extreme-value statistics to represent the effect of dilutions in the 

frozen fraction and freezing spectra.  Our method and codes allow users to obtain an analytical differential freezing spectrum 

𝑛!(𝑇) from the experimental distribution of freezing temperatures, and vice versa. The differential freezing spectrum 𝑛!(𝑇) 

is an approximant to the underlying distribution of ice nucleating temperatures 𝑃! 𝑇 , which provides a hub to connect the 

experimental freezing temperatures with interpretative physical analyses using kinetic models or nucleation theory that can 535 

be used to elucidate the mechanisms of nucleation and origins of these distributions. 

HUB-forward predicts the cumulative ice nucleation spectrum 𝑁!(𝑇) and fractions of frozen droplets 𝑓!"#(𝑇) from 

a known (or assumed) underlying distribution 𝑃!(𝑇) of nucleation temperatures for the IN in the sample. The HUB-forward 

code can be used to investigate the effect of the number of droplets and dilutions on the temperature range of the cumulative 

freezing spectrum 𝑁!(𝑇). Our analysis shows that the differential freezing spectrum 𝑛!(𝑇) is identical to the underlying 540 

distribution of heterogeneous ice nucleation temperatures 𝑃!(𝑇) only when sampling is complete. Measuring fewer droplets 

or fewer dilutions can result in a biased representation of the differential and cumulative spectra. HUB-forward predicts 

𝑓!"#(𝑇) and 𝑁!(𝑇) from a proposed distribution of IN temperatures, allowing its users to test hypotheses regarding the role 

of subpopulations of nuclei in the freezing spectra and providing a guide for a more efficient collection of freezing data. 

HUB-backward uses a non-linear optimization method to find the differential freezing spectrum 𝑛!(𝑇) that best 545 

represents the experimental target cumulative freezing spectrum 𝑁!(𝑇)  or fraction of frozen droplets 𝑓!"#(𝑇)  in the 

experiments. The analytical form of the differential freezing spectrum 𝑛!(𝑇) obtained from HUB-backward offers an 

interpretable physical basis. The interpretability of the results in terms of subpopulations provides an advantage over 

polynomial fitting and differentiation of 𝑁!(𝑇). Indeed, we show that the HUB-backward code can be used to reveal and 

characterize the underlying number of IN subpopulations of complex biological samples (Snomax®, fungi Fusarium 550 

acuminatum, and birch pollen) and quantify the dependence of their subpopulations on environmental variables. 

Interestingly, our analysis evinces subpopulations that are not obvious to the eye and have not previously been identified in 

these samples. The robustness of the signals that correspond to these populations and their physical nature require further 

investigation.  

We illustrate the use of HUB-backward to obtain the differential freezing spectrum 𝑛!(𝑇) from the fraction of 555 

frozen droplets 𝑓!"#(𝑇) collected at a single concentration. We apply that analysis to demonstrate that 𝑛!(𝑇) depends on the 

cooling rate. The shift of the peaks of the subpopulations to higher temperatures upon decreasing the cooling rate is not 
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unexpected, as longer waiting times allow for the surmount of the same nucleation barrier at warmer temperatures. By 

providing the temperature dependence of the mode spread and weight of the subpopulation peaks, HUB-backward can be 

combined with nucleation theory and other theoretical analyses to extract the steepness, and may even the distribution, of 560 

nucleation barriers that control the freezing process. 

Code availability 

All codes, a user manual, and input files used in this project can be accessed at https://github.com/Molinero-

Group/underlying-distribution 

Data availability 565 

All data used in this project can be accessed by request to the authors. 

Author contribution 

V. M., I. de A. R. and K. M. designed the project. I. de A. R. developed the model code and performed the simulations. I. de 

A. R. and V.M. prepared the manuscript with contributions from K.M. 

Competing interests 570 

The authors declare that they have no conflict of interest. 

Acknowledgements 

I. de A. R. and V. M. gratefully acknowledge support by AFOSR through MURI Award No. FA9550-20-1-0351. K. M. 

acknowledges support by the National Science Foundation under Grant No. (NSF 2116528) and from the Institutional 

Development Awards (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health 575 

under Grants #P20GM103408, P20GM109095.  

References 

Alpert, P. A. and Knopf, D. A.: Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice 
nucleation model, Atmospheric Chemistry and Physics, 16, 2083-2107, 2016. 



 
 

27 

Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and 580 
Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, 10.5194/acp-13-10989-2013, 
2013. 

Bigg, E.: The formation of atmospheric ice crystals by the freezing of droplets, Quarterly Journal of the Royal Meteorological Society, 79, 
510-519, 1953. 

Bogler, S. and Borduas-Dedekind, N.: Lignin's ability to nucleate ice via immersion freezing and its stability towards physicochemical 585 
treatments and atmospheric processing, Atmos. Chem. Phys., 20, 14509-14522, 10.5194/acp-20-14509-2020, 2020. 

Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L.: Immersion mode 
heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287-307, 
10.5194/acp-12-287-2012, 2012. 

Budke, C. and Koop, T.: BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice 590 
nucleation, Atmos. Meas. Tech., 8, 689-703, 10.5194/amt-8-689-2015, 2015. 

Carte, A.: The freezing of water droplets, Proceedings of the Physical Society. Section B, 69, 1028, 1956. 

Castillo, E.: Extreme value and related models with applications in engineering and science,  

Creamean, J. M., Mignani, C., Bukowiecki, N., and Conen, F.: Using freezing spectra characteristics to identify ice-nucleating particle 
populations during the winter in the Alps, Atmos. Chem. Phys., 19, 8123-8140, 10.5194/acp-19-8123-2019, 2019. 595 

David, H. A. and Nagaraja, H. N.: Order statistics, John Wiley & Sons2004. 

De Haan, L. and Ferreira, A.: Extreme value theory: an introduction, Springer2006. 

DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M., Thomson, D. S., Borys, R., and Rogers, D. C.: 
Measurements of the concentration and composition of nuclei for cirrus formation, Proceedings of the National Academy of Sciences, 100, 
14655-14660, doi:10.1073/pnas.2532677100, 2003. 600 

DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D. B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., 
Lee, T., Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S., Lewis, E. R., Wentzell, J. J. B., Abbatt, J., Lee, C., 
Sultana, C. M., Ault, A. P., Axson, J. L., Martinez, M. D., Venero, I., Santos-Figueroa, G., Stokes, M. D., Deane, G. B., Mayol-Bracero, 
O. L., Grassian, V. H., Bertram, T. H., Bertram, A. K., Moffett, B. F., and Franc, G. D.: Sea spray aerosol as a unique source of ice 
nucleating particles, Proceedings of the National Academy of Sciences, 113, 5797-5803, doi:10.1073/pnas.1514034112, 2016. 605 

Dreischmeier, K.: Heterogene Eisnukleations- und Antigefriereigenschaften von Biomolekülen, Bielefeld University, 
https://doi.org/10.4119/unibi/2907691, 2019. 

Fahy, W. D., Shalizi, C. R., and Sullivan, R. C.: A universally applicable method of calculating confidence bands for ice nucleation spectra 
derived from droplet freezing experiments, Atmos. Meas. Tech. Discuss., 2022, 1-26, 10.5194/amt-2022-141, 2022a. 

Fahy, W. D., Maters, E. C., Giese Miranda, R., Adams, M. P., Jahn, L. G., Sullivan, R. C., and Murray, B. J.: Volcanic ash ice nucleation 610 
activity is variably reduced by aging in water and sulfuric acid: the effects of leaching, dissolution, and precipitation, Environmental 
Science: Atmospheres, 2, 85-99, 10.1039/D1EA00071C, 2022b. 

Felgitsch, L., Baloh, P., Burkart, J., Mayr, M., Momken, M. E., Seifried, T. M., Winkler, P., Schmale Iii, D. G., and Grothe, H.: Birch 
leaves and branches as a source of ice-nucleating macromolecules, Atmos. Chem. Phys., 18, 16063-16079, 10.5194/acp-18-16063-2018, 
2018. 615 

Fletcher, N. H.: Active sites and ice crystal nucleation, Journal of Atmospheric Sciences, 26, 1266-1271, 1969. 



 
 

28 

Froyd, K. D., Yu, P., Schill, G. P., Brock, C. A., Kupc, A., Williamson, C. J., Jensen, E. J., Ray, E., Rosenlof, K. H., Bian, H., Darmenov, 
A. S., Colarco, P. R., Diskin, G. S., Bui, T., and Murphy, D. M.: Dominant role of mineral dust in cirrus cloud formation revealed by 
global-scale measurements, Nature Geoscience, 15, 177-183, 10.1038/s41561-022-00901-w, 2022. 

Gettelman, A., Liu, X., Barahona, D., Lohmann, U., and Chen, C.: Climate impacts of ice nucleation, Journal of Geophysical Research: 620 
Atmospheres, 117, https://doi.org/10.1029/2012JD017950, 2012. 

Govindarajan, A. G. and Lindow, S. E.: Size of bacterial ice-nucleation sites measured <i>in situ</i> by radiation inactivation analysis, 
Proceedings of the National Academy of Sciences, 85, 1334-1338, doi:10.1073/pnas.85.5.1334, 1988. 

Gumbel, E.: Statistics of Extremes, Courier Corporation,  2012. 

Harrison, A. D., Whale, T. F., Carpenter, M. A., Holden, M. A., Neve, L., O'Sullivan, D., Vergara Temprado, J., and Murray, B. J.: Not all 625 
feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals, Atmos. Chem. Phys., 16, 10927-10940, 
10.5194/acp-16-10927-2016, 2016. 

Hartmann, S., Ling, M., Dreyer, L. S. A., Zipori, A., Finster, K., Grawe, S., Jensen, L. Z., Borck, S., Reicher, N., Drace, T., Niedermeier, 
D., Jones, N. C., Hoffmann, S. V., Wex, H., Rudich, Y., Boesen, T., and Šantl-Temkiv, T.: Structure and Protein-Protein Interactions of 
Ice Nucleation Proteins Drive Their Activity, bioRxiv, 2022.2001.2021.477219, 10.1101/2022.01.21.477219, 2022. 630 

Herbert, R. J., Murray, B. J., Whale, T. F., Dobbie, S. J., and Atkinson, J. D.: Representing time-dependent freezing behaviour in 
immersion mode ice nucleation, Atmos. Chem. Phys., 14, 8501-8520, 10.5194/acp-14-8501-2014, 2014. 

Knopf, D. A., Alpert, P. A., Zipori, A., Reicher, N., and Rudich, Y.: Stochastic nucleation processes and substrate abundance explain time-
dependent freezing in supercooled droplets, NPJ climate and atmospheric science, 3, 2, 2020. 

Kunert, A. T., Lamneck, M., Helleis, F., Pöschl, U., Pöhlker, M. L., and Fröhlich-Nowoisky, J.: Twin-plate Ice Nucleation Assay (TINA) 635 
with infrared detection for high-throughput droplet freezing experiments with biological ice nuclei in laboratory and field samples, Atmos. 
Meas. Tech., 11, 6327-6337, 10.5194/amt-11-6327-2018, 2018. 

Kunert, A. T., Pöhlker, M. L., Tang, K., Krevert, C. S., Wieder, C., Speth, K. R., Hanson, L. E., Morris, C. E., Schmale Iii, D. G., Pöschl, 
U., and Fröhlich-Nowoisky, J.: Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing, 
Biogeosciences, 16, 4647-4659, 10.5194/bg-16-4647-2019, 2019. 640 

Levine, J.: Statistical explanation of spontaneous freezing of water droplets, 1950. 

Lukas, M., Schwidetzky, R., Eufemio, R. J., Bonn, M., and Meister, K.: Toward Understanding Bacterial Ice Nucleation, The Journal of 
Physical Chemistry B, 126, 1861-1867, 10.1021/acs.jpcb.1c09342, 2022. 

Lukas, M., Schwidetzky, R., Kunert, A. T., Pöschl, U., Fröhlich-Nowoisky, J., Bonn, M., and Meister, K.: Electrostatic Interactions 
Control the Functionality of Bacterial Ice Nucleators, Journal of the American Chemical Society, 142, 6842-6846, 10.1021/jacs.9b13069, 645 
2020. 

Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B.: Efficiency of immersion mode ice nucleation on surrogates of mineral dust, Atmos. 
Chem. Phys., 7, 5081-5091, 10.5194/acp-7-5081-2007, 2007. 

Miller, A. J., Brennan, K. P., Mignani, C., Wieder, J., David, R. O., and Borduas-Dedekind, N.: Development of the drop Freezing Ice 
Nuclei Counter (FINC), intercomparison of droplet freezing techniques, and use of soluble lignin as an atmospheric ice nucleation 650 
standard, Atmos. Meas. Tech., 14, 3131-3151, 10.5194/amt-14-3131-2021, 2021. 

Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds 
derived from A-Train satellite retrievals, Geophysical Research Letters, 42, 6502-6509, https://doi.org/10.1002/2015GL064604, 2015. 



 
 

29 

Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice nucleation by particles immersed in supercooled cloud droplets, 
Chemical Society Reviews, 41, 6519-6554, 10.1039/C2CS35200A, 2012. 655 

Murray, B. J., Broadley, S., Wilson, T., Atkinson, J., and Wills, R.: Heterogeneous freezing of water droplets containing kaolinite 
particles, Atmospheric Chemistry and Physics, 11, 4191-4207, 2011. 

Niedermeier, D., Shaw, R. A., Hartmann, S., Wex, H., Clauss, T., Voigtländer, J., and Stratmann, F.: Heterogeneous ice nucleation: 
exploring the transition from stochastic to singular freezing behavior, Atmos. Chem. Phys., 11, 8767-8775, 10.5194/acp-11-8767-2011, 
2011. 660 

Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation 
activity of birch and conifer pollen, Atmos. Chem. Phys., 12, 2541-2550, 10.5194/acp-12-2541-2012, 2012. 

Reicher, N., Segev, L., and Rudich, Y.: The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application 
for ambient dust, Atmos. Meas. Tech., 11, 233-248, 10.5194/amt-11-233-2018, 2018. 

Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B.: Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior, 665 
2011 31st International Conference on Distributed Computing Systems Workshops, 20-24 June 2011, 166-171,  
10.1109/ICDCSW.2011.20,  

Schwidetzky, R., Sudera, P., Backes, A. T., Pöschl, U., Bonn, M., Fröhlich-Nowoisky, J., and Meister, K.: Membranes Are Decisive for 
Maximum Freezing Efficiency of Bacterial Ice Nucleators, The Journal of Physical Chemistry Letters, 12, 10783-10787, 
10.1021/acs.jpclett.1c03118, 2021. 670 

Schwidetzky, R., Ribeiro, I. d. A., Bothen, N., Backes, A., DeVries, A. L., Bonn, M., Frhlich-Nowoisky, J., Molinero, V., and Meister, K.: 
E Pluribus Unum: Functional Aggregation Enables Biological Ice Nucleation, 10.26434/chemrxiv-2023-63qfl, 2023. 

Sear, R. P.: Generalisation of Levine's prediction for the distribution of freezing temperatures of droplets: a general singular model for ice 
nucleation, Atmos. Chem. Phys., 13, 7215-7223, 10.5194/acp-13-7215-2013, 2013. 

Steinke, I., Hiranuma, N., Funk, R., Höhler, K., Tüllmann, N., Umo, N. S., Weidler, P. G., Möhler, O., and Leisner, T.: Complex plant-675 
derived organic aerosol as ice-nucleating particles – more than the sums of their parts?, Atmos. Chem. Phys., 20, 11387-11397, 
10.5194/acp-20-11387-2020, 2020. 

Stratmann, F., Kiselev, A., Wurzler, S., Wendisch, M., Heintzenberg, J., Charlson, R. J., Diehl, K., Wex, H., and Schmidt, S.: Laboratory 
Studies and Numerical Simulations of Cloud Droplet Formation under Realistic Supersaturation Conditions, Journal of Atmospheric and 
Oceanic Technology, 21, 876-887, 10.1175/1520-0426(2004)021<0876:Lsanso>2.0.Co;2, 2004. 680 

Turner, M. A., Arellano, F., and Kozloff, L. M.: Three separate classes of bacterial ice nucleation structures, J Bacteriol, 172, 2521-2526, 
10.1128/jb.172.5.2521-2526.1990, 1990. 

Vali, G.: Quantitative Evaluation of Experimental Results an the Heterogeneous Freezing Nucleation of Supercooled Liquids, Journal of 
Atmospheric Sciences, 28, 402-409, 10.1175/1520-0469(1971)028<0402:Qeoera>2.0.Co;2, 1971. 

Vali, G.: Freezing rate due to heterogeneous nucleation, Journal of Atmospheric Sciences, 51, 1843-1856, 1994. 685 

Vali, G.: Interpretation of freezing nucleation experiments: singular and stochastic; sites and surfaces, Atmos. Chem. Phys., 14, 5271-
5294, 10.5194/acp-14-5271-2014, 2014. 

Vali, G.: Revisiting the differential freezing nucleus spectra derived from drop-freezing experiments: methods of calculation, applications, 
and confidence limits, Atmos. Meas. Tech., 12, 1219-1231, 10.5194/amt-12-1219-2019, 2019. 



 
 

30 

Vali, G. and Stansbury, E. J.: TIME-DEPENDENT CHARACTERISTICS OF THE HETEROGENEOUS NUCLEATION OF ICE, 690 
Canadian Journal of Physics, 44, 477-502, 10.1139/p66-044, 1966. 

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, 
J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., 
Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., 
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloeckner, 695 
A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., 
Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen, G. 
E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., 
Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., 
Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., 700 
Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., 
Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. 
O., Vázquez-Baeza, Y., and SciPy, C.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Methods, 17, 261-
272, 10.1038/s41592-019-0686-2, 2020. 

Warren, G. J.: Bacterial Ice Nucleation: Molecular Biology and Applications, Biotechnology and Genetic Engineering Reviews, 5, 107-705 
136, 10.1080/02648725.1987.10647836, 1987. 

Wright, T. P. and Petters, M. D.: The role of time in heterogeneous freezing nucleation, Journal of Geophysical Research: Atmospheres, 
118, 3731-3743, https://doi.org/10.1002/jgrd.50365, 2013. 

Wright, T. P., Petters, M. D., Hader, J. D., Morton, T., and Holder, A. L.: Minimal cooling rate dependence of ice nuclei activity in the 
immersion mode, Journal of Geophysical Research: Atmospheres, 118, 10,535-510,543, https://doi.org/10.1002/jgrd.50810, 2013. 710 

Zhang, X. and Maeda, N.: Nucleation curves of ice in the presence of nucleation promoters, Chemical Engineering Science, 262, 118017, 
https://doi.org/10.1016/j.ces.2022.118017, 2022. 

Zobrist, B., Koop, T., Luo, B., Marcolli, C., and Peter, T.: Heterogeneous ice nucleation rate coefficient of water droplets coated by a 
nonadecanol monolayer, The Journal of Physical Chemistry C, 111, 2149-2155, 2007. 
 715 

 


