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Referee #1: 

We are very grateful to Dr. Borduas-Dedekind for her careful reading of the manuscript and for providing 
useful comments and suggestions that we have used to improve the manuscript. Below we give replies to 
all her comments and describe the modifications implemented in the revision (highlighted in red in this 
response and in the annotated manuscript for review).  

Reviewer: General comments: 

The authors present open access Python code to estimate the subpopulations of potential ice nucleating 
substances from data obtained by drop freezing assays. They present codes that have the potential to be 
quite important in further discussing the ice-nucleating ability of ambient samples from mineral dust to 
organic aerosols. I command the others for this important detailed work and for their clear writing. I’d 
like to raise a few discussion points and point out a few minor issues to be addressed prior to publication. 

I’d first like to highlight what I thought were the most important contributions within this paper. 

1. Clearly articulated problem to be addressed when using frozen fraction data (for example lines 15-16, 
57-58, 75-80) 

2. The dilution discussion (section 3.1) is particularly valuable, and the authors can make specific 
recommendations for the community to move forward in their data analysis. 

3. The use of the HUB-forward code to estimate the presence of subpopulations. 

Authors: We thank the reviewer for the positive assessment on our work and its presentation. 

Reviewer: Here are my recommendations for improvement: 

I struggled a little with the chosen terminology of the code. Why use the term “HUB”? What does the 
“underlying-based” mean in atmospheric science and/or in statistics? The forward/backward terminology 
was also not intuitive to me, and it’s not clear why these terms pointing to a direction were used. Could 
there be better terms to be used such as “subpopulation determination” for HUB-forward? For example, 
the term could focus on the outcome of the code? 

Authors: We chose the name "HUB" for the method because is short and points to the purpose of the 
code, which is to connect experimental data with theoretical interpretations. The “underlying-based” 
words in the “HUB” acronym refer to the outcome of the code, which is the underlying distribution of 
heterogeneous freezing temperatures. We coined this “underlying distribution” term to distinguish it from 
the differential spectrum, which approximates it only when the sampling is complete. We now strive to 
make the notation clearer in the manuscript.  

Regarding the terminology "forward” and “backward", we understand that this may not be intuitive but 
hopefully is well understood after reading the manuscript and/or the manual for the code. In our code, 
"forward" refers to the determination of the fraction of frozen droplets and the cumulative freezing 
spectrum from the underlying distribution of heterogeneous freezing temperatures. "Backward" refers to 
the determination of the differential spectrum, the approximant of the underlying distribution of 
heterogeneous freezing temperatures, from experimental data.  
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Reviewer: I’d like to challenge an assumption made in the manuscript (for example on lines 138-139) 
about the role of dilutions. I think the presented data analysis method is best applied to ice nucleating 
substances that are intact. For example, mineral dust and P. Syringae proteins. However, there is literature 
on organic matter and dilution series where dilutions can potentially change the shape, form and 
composition of ice-nucleating sites. For example, (Bogler and Borduas-Dedekind, 2020) showed that 
dilutions of the macromolecule lignin influence the mass-normalized ice nucleating ability of the material. 
I would recommend that the authors expand on the idea that this dilution method is for intact ice-
nucleating ability. Alternatively, the authors could also use the open access lignin data and see how their 
code performs (that would be cool actually!). 

Authors: We concur with the reviewer and appreciate her suggestion. We now clarify this in the 
introduction of the method, page 6, lines 162-167: 

“In our model, we assume that the underlying distribution of ice nucleating temperatures 𝑃!(𝑇) does not 
change with the concentration of INs. This last condition is violated when IN are involved in chemical, 
aggregation, or solubility equilibria that alter the proportionality between their concentration and the 
dilution factor of the sample, resulting in a lack of overlap of the pieces of the cumulative spectra 𝑁!(𝑇) 
obtained from different dilutions (Bogler and Borduas-Dedekind, 2020).” 

We refer again to that the lignin data to section 3.3, lines 491-492: 

“Supp. Section S5 illustrates this approach for the analysis of droplet freezing data for a sample of lignin 
(Bogler and Borduas-Dedekind, 2020) in which the IN participate in aggregation equilibria.” 

We add a new section S5 to the supporting section, which presents an analysis of different concentrations 
of the lignin paper, The analysis suggests that all concentrations correspond to the same IN, in 
concentrations that are not proportional to the dilution factor, supporting the interpretation of Bogler and 
Borduas-Dedekind 2020 of an aggregation equilibria that sequesters active IN as the amount of lignin 
material in solution is increased. We copy here the text and figures added to the SI: 

“S5 Modeling the differential spectrum of systems with chemical or phase equilibria using the 
HUB-backward code 

In the derivation of the HUB method, we have assumed that the average number l of IN per droplet is 
proportional to the dilution of the sample. The IN, however, can be involved in chemical or phase 
equilibria that would impact the proportionality between l and dilution. The result is a mismatch between 
the actual concentration of IN in solution and the total mass concentration of the sample. Ice nucleation of 
Lignin provides such an example (Bogler and Borduas-Dedekind, 2020). This data set combines two 
challenges. First, that the nucleation from the background water used to prepare the samples produces 
fraction of ice signal that is highly overlapped with that of the samples themselves (Fig. S2-A).  This is a 
characteristic shared by all poor ice nucleants. Second, that the processing of the fraction of ice curves 
using Vali’s equation (Eq. 1.a of the manuscript) result in cumulative spectra that do not overlap (Fig. 
S2-B).  This implies that the concentration of IN is not proportional to the dilution (in this case, given by 
the total mass of organic carbon in the sample). In this example, the Nm(T) curves seem to be parallel, 
suggesting that the nature of the IN is preserved across concentrations, but there is an aggregation 
equilibrium that makes its concentration increase in a sublinear manner with sample concentration.     Fig. 
S2-C shows the differential spectrum nm obtained  with HUB-backward from the fraction of frozen 
droplets of each concentration; these fits are shown with colored lines in Fig. S2-A and faithfully 
represent each of the fice(T) curves. As expected from extreme value statistics with incomplete sampling, 
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the nm(T) depends on the concentration (see also Fig 2C of the main text). The way the peaks move seems 
to be consistent with the analysis of extreme value statistics, but it is necessary to remove the background 
in order to do a better analysis. 

 
Figure S3: A) Fraction of ice for different concentrations of Lignin (Bogler and Borduas-Dedekind, 
2020). Continuous lines represent the fitting of the fraction of frozen droplets obtained with the 
HUB-backward code using two subpopulations and Gaussian distributions as working basis. B) 
Cumulative freezing spectrum Nm obtained from Ref. (Bogler and Borduas-Dedekind, 2020). C) 
The differential freezing spectrum nm obtained from the fitting shown by continuous lines in A). D) 
Points represent scaled cumulative freezing spectrum, and magenta dashed line is the fitting of the 
cumulative spectrum using HUB-backward. 
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Figure S4: Fitting of Nm using HUB-backward with two subpopulations with a left-tail Gumbel 
(left), and log-normal (right). 

 
Table S6: Mean relative error (MRE) and parameters of the differential freezing spectrum 
obtained using the HUB-backward code from lignin data at various concentrations (Bogler and 
Borduas-Dedekind, 2020). 

 MSE 𝑻𝒎𝒐𝒅𝒆,𝟏(o

C) 
𝒔𝟏 𝑻𝒎𝒐𝒅𝒆,𝟐(o

C) 
𝒔𝟐 𝒄𝟐 

2 mg 2×10-4 -21.05 2.68 -23.33 1.20 0.49 
20 mg 2×10-4 -21.46 1.20 -19.24 2.85 0.48 

200 mg 2×10-4 -19.84 1.11 -17.51 2.09 0.65 
background 2×10-4 -24.55 0.70 -22.40 2.95 0.59 

Nm fitting (Gaussian) 0.010 -22.48 0.74 -18.93 2.10 0.14 
Nm fitting (log-

normal) 
0.015 -24.64 0.79 -19.42 0.77 0.05 

 

Reviewer: I also wonder about the choice of Gaussian distributions (Eq3) for the freezing temperatures of 
populations of IN. Why not log normal? Lines 123-124 mention that other types of normalized 
distributions could be used, so it would be important to justify this choice. From my own understanding, 
ambient samples/datasets are typically log normal. See also (Andersson, 2021). 

Authors: We selected the Gaussian distribution (or normal distribution) because it is a widely used and 
well-understood distribution that describes many real-world phenomena. Additionally, it has desirable 
mathematical properties, such as being symmetric and having a defined mean and variance, which can 
simplify the analysis of the data. Additionally, we had previously tested the data with left-tailed Gumbel 
distribution and found it inadequate to represent the differential spectrum. Both Gumbel with left tail and 
log-normal are asymmetric distributions, with the tail pointing in opposite directions. These distributions 
have a lower decay towards lower temperatures and higher temperatures, respectively. 

Following the suggestion of the reviewer we now add the (right-tailed) log-normal, left-tailed Gumbel 
distributions to the HUB-forward and HUB-backward codes. We add the following additional text to the 
manuscript, after introducing the normal (Gaussian) form of the populations, page 6, lines  160-163 

“We also provide in the HUB code the option for the user to use the log-normal distribution, which has a 
tail towards higher temperatures, or the left-tailed Gumbel distribution, which has a tail towards lower 
temperatures. In our model, we assume that the underlying distribution of ice nucleating temperatures 
𝑃!(𝑇) does not change with the concentration of INs.” 

We updated the code in GitHub with these new options, that are offered to the user in the interactive 
version of the code.  

We further tested the log-normal as a basis in the HUB-backward code to fit the fungi and bacteria data 
(magenta line below shows the analysis with log-normal). In these examples, the log-normal distribution 
does not provide a better fit to the data. Likewise, the reviewer can see in the SI introduced in response to 
the previous question that the log-normal distribution performs slightly worse than the Gaussian in 
representing the data.  
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Reviewer: The manuscript is well written and well-motivated. The flow could be improved with more 
subsections to be able to find the information rapidly for the future reader. For instance, after reading the 
paragraph at lines 178-186 – I would have been interested to see this code applied in the following 
section. There could also be a Method section for the details of the math and then a Results and 
Discussion section with subsections for categories related to recommendations like dilutions series, 
subpopulations, etc. Subsections within pages 9-10-11 would also help the flow. 

Authors: We hope that the last paragraph of the introduction, which details the contents of the sections, 
serves as the guide that the reviewer is asking for. We now clarify there that Section 2 is the methods 
section.  That section provides already all the mathematical formulations used in the paper. We have 
included the methods section 2 –examples to help readers better understand the methodology, which we 
believe is a more effective pedagogical approach to present the algorithms. Section 3 is the results section, 
where we applied HUB-forward and HUB-backward to address multiple scenarios that illustrate their 
power and potential.  

Reviewer: There are additional references that I would encourage the authors to consider, and I’ve added 
them throughout my specific comments below. 

Authors: Thank you for making us aware of these studies.  

Specific comments: 

Reviewer: Title: The title might be improved by specifying the types of ice nuclei as well as either 
defining HUB or removing the acronym. 

Authors: We prefer to keep the title as initially proposed: the name of the method (HUB), and then the 
description of what it does (“a method to model and extract the distribution of ice nucleating temperatures 
from drop freezing experiments”). Keeping HUB in the title makes it easier for the readers to identify the 
manuscript with the code, which we hope will be of interest to many in the ACP community. The 
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BINARY (Budke and Koop, 2015) and CHILL+ (Nguyen and Molinero, 2015) are well-known examples 
of using backronyms in the title of a paper to identify the code or technique. 

Reviewer: Lines 32-36 has a rather random assortment of references of some drop freezing assays. I can 
refer the authors to a < 2021 comprehensive table of reported techniques: Table 1 in (Miller et al., 2021) 

Authors: We thank the reviewer for pointing out the comprehensive list of reported techniques in the 
literature. We replace the long list by (page 2, line 34):   

“A comprehensive report of various drop freezing techniques can be found in (Miller et al., 2021).”  

Reviewer: Line 36: I would also comment that many drop freezing techniques are also used for ambient 
measurements with unknown concentrations and unknown surface area like sea surface samples and 
ambient aerosols. How would the authors use their code on these types of samples? 

Authors: Our code (and Vali’s formulation, in general) can be used even when the absolute concentrations 
or areas of the IN are not known, provided that the user knows the relative concentration of the dilution 
series of the parent sample. The foundation of this is apparent in eq. 1a, where the normalizing factor X 
could have any arbitrary units (e.g. some pollen data is presented in units of grains of pollen, and then the 
cumulative spectrum would be in units of IN per grain of pollen). We now clarify this in the introduction, 
lines 70-75: 

“For soluble INs, the normalization factor is commonly defined by the mass of the ice nucleating material 
𝑋 =  𝜌 (𝑉!"#$ 𝑑), where 𝜌 is the density of the initial solution, 𝑉!"#$ is the droplet volume and 𝑑 is the 
dilution factor (Kunert et al., 2018). The IN surface area per drop, 𝑋 =  𝐴!"#$, is sometimes used as 
normalization factor for insoluble INs (e.g., dust, crystals), although it is challenging to measure the total 
IN surface area accurately (Knopf et al., 2020). We note that Eq. 1a can be used even when the absolute 
concentrations or areas of the IN are unknown, provided that the user knows the relative concentration of 
the dilution series derived from a parent sample.” 
 
Reviewer: Lines 42-46 discuss the role of cooling rate which is important in data evaluation. I would 
encourage the authors to comment and reference (Wright et al., 2013). Also relevant to the discussion on 
lines 440-447. 

Authors: We now add to the introduction a discussion of stochastic modeling of ice nucleation data that 
references the work of Wright and Petters and others, and also extend the discussion of section 3.3 to 
highlight future research opportunities:  

“Our analysis of the freezing data of cholesterol monohydrate shows that even a three-fold change in the 
cooling rate can have significant impact on the differential spectrum (Fig. 11B). As expected, the modes 
of the three populations move towards warmer temperatures upon decreasing the cooling rate. We note, 
however, that the shift of the peaks is not uniform; the middle one seems to be more sensitive to the 
cooling rate. Different sensitivity of the freezing rate of subpopulations to temperature has been also 
reported in simulations of nucleation data of minerals using the stochastic and modified singular 
frameworks (Herbert et al., 2014; Murray et al., 2011) The modified singular model proposes an 
empirical correction the relation between 𝑓!"#(𝑇) and 𝑁!(𝑇) to account for the effect of the cooling rate 
on the shift of these quantities (Vali, 1994). That analysis could be extended to the analysis of the 
subpopulations of IN obtained with HUB-backward.  Moreover, it would be interesting in future studies 
to use the rate dependence of the mode of the subpopulations to extract the steepness of the nucleation 
barrier with temperature using nucleation theory (Budke and Koop, 2015), and to investigate the 
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relationship between the cooling rate dependence of the differential spectrum obtained in the singular 
approximation with the interpretation of the same data modelled with the stochastic framework, such as in 
(Wright et al., 2013; Herbert et al., 2014).” 
 

Reviewer: Eq1b and differential freezing spectra have been discussed previously in (Creamean et al., 
2019) and so this reference should be added and discussed.” 

Authors: Eq1b is the formulation presented by Vali in 1971 (we now add the citation). We now mention 
Creamean et al., 2019 in the paragraph that discusses the differential spectra in terms of populations, lines 
110-113: 

“While several studies have broadly defined populations by the range of nucleation temperatures they 
encompass(Turner et al., 1990; Creamean et al., 2019) or the origin of the sample (Steinke et al., 2020), 
there is currently no simple procedure to identify and quantify subpopulations or classes from cumulative 
freezing spectra 𝑁! 𝑇 .” 

Reviewer: Scheme 1: “I_u” is not defined. I also think this scheme could be improved by using graphics 
instead of terms. In other words, the authors could show a frozen fraction graph and show the type of 
graphs that may be generated based on their code. (especially since different research groups use different 
terms, a graphical visualization would be helpful – and could also serve as a TOC graphic) 

Authors: Thanks for pointing this out, the definition of “I_u” appeared only later in section 2.2. We now 
refer it for the first time in caption of Figure 1, and point to section 2.2. where the equation is derived: 

“The intrinsic cumulative spectrum 𝑰𝒖 𝑻  is proportional to 𝑷𝒖 𝑻′ 𝒅𝑻′
𝑻
𝑻𝒎

 (section 2.2).” 

We also follow the suggestion of the reviewer and update Figure 1 with figures that illustrate the type of 
generated graphs from our analysis: 

 

Reviewer: Lines 102-109 could be omitted entirely as these sentences are redundant (more appropriate for 
a thesis rather than a manuscript) 

Authors: We prefer to keep the paragraph about the organization of the manuscript, to allow readers to 
easily find where the methods (section 2) and applications (section 3) are discussed in this study and 
access them according to their interests and needs. 
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Reviewer: The idea of Eq2 and the sum of all parts has been nicely discussed in (Steinke et al., 2020) and 
the authors should consider mentioning this work. 

Authors: We now mention (Steinke et al., 2020) in the paragraph about populations cited above.  

Reviewer: Figure 1 – PMF should also be defined in the text. It’s also difficult to see the black line in 
figure 1. Perhaps making it bold would help? 

Authors: We update Fig. 2 B-C with a magenta dashed line to enhance the contrast and add the following 
statement to the manuscript: 

“shows the probability mass function (PMF)”  

Reviewer: Would it be worth relegating the tables to the SI? Some of the values could be added directly 
onto the graphs for instance. 

Authors: There are only two tables in the manuscript (six more are already in the Supporting 
Information). These tables provide the uncertainty in the fit of the cumulative spectra and important 
information of the populations that is relevant to the main arguments of the paper, that should be readily 
accessible to the reader.  

Reviewer: Line 330-331 – there is much value in having code now to support this claim! Well done to the 
authors. 

Authors: Thank you, we appreciate and share your enthusiasm for highlighting the importance of 
dilutions in the calculation of the freezing spectra. 

Reviewer: Lines 335-343 – excellent recommendations 

Authors: Thank you! 

Reviewer: Figure 6 – specify in the caption the difference between panels A, B, C and D. 

Authors: We thank the reviewer for pointing that out. To clarify this, we add the following statement to 
the caption of Fig. 6:  

“Panels A, B, C and D were computed with a different number of dilutions.” 

Reviewer: Line 368-369: it would be worth describing how the choice of “2 subpopulations” was made. If 
I understood correctly, it was previously optimized? Or are the authors sourcing this information another 
way? It would be worth clarifying. 

Authors: The choice of "2 subpopulations" was not sourced from any previous optimization but was 
rather determined through our analysis of the data. In our study, we performed a series of tests to 
determine the best fit for the data and found that a two-subpopulation model provided the best explanation 
of the observations. This conclusion was drawn based on a number of criteria, including the mean squared 
error, the goodness of the fit, and the simplicity of the model. Table 2 shows the mean squared error of 
each model.  
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We now add an extra column to Table 2 that indicates explicitly the number of subpopulations for each 
optimization.  

Reviewer: Figure 8 – there’s an error on the panel labels in the caption. ABC should be ACD. 

Authors: Thank you for bringing this to our attention. We have reviewed the caption of Figure 8 and 
could not find the error you have described. However, we now add the panel letters and not just left and 
right, to the caption of figures 7 and 8 to avoid misinterpretations.  

Reviewer: Line 386-387 – why were some points omitted from the optimization procedure? 

Authors: The differential spectrum obtained from the sparsely sampled black data of the original 
submission and the total (black plus gray) data points are almost identical. We now indicate this in the 
manuscript, lines 464-466: 

 “Section S4 shows that the differential spectrum optimized from the whole data set and its sparse 
sampling are almost identical, because HUB-forward interpolates and smooths the input data to produce 
an equispaced data set.   

We here copy the new section S4: 

“S4 Effect of sparse sampling of a cumulative spectrum on the estimation of the differential 
spectrum with HUB-backward  

Figure 9E-F presents an analysis of a sample of the pollen data of (Dreischmeier, 2019). Supp. Fig. S2 
shows that the analysis of the full data set shown Fig. 9E produces an almost identical differential 
spectrum, because HUB-backward interpolates the input data to produce a smooth and equally spaced 
data set (Supp. Fig. S3).  
 

 

Figure S2: Effect of sparsely sampling a dense data set. A) cumulative spectra (black circles) of 
pollen from (Dreischmeier, 2019) and its fitting to two populations with HUB-backward fitting 

(magenta line). B) differential spectrum derived by that analysis from the analysis of all 
experimental data points (magenta line) is almost indistinguishable from the one obtained by 
sparsely sampling the data set (blue line, also shown in Fig 9F). C) cumulative spectra (black 

circles) of pollen from (Dreischmeier, 2019) used as input for HUB-backward and interpolated data 
using the default parameters of the code (magenta line).” 
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Reviewer: Figure 9 Panel A is arguably an important graph and would benefit from being highlighted 
separately (perhaps moving the other panels to the SI?). 

Authors: We find all three examples in figure 9 important, as they illustrate different aspects of the 
optimization (number and relative weights of populations, noisy data…). We appreciate your recognition 
of the importance of the data for fungi, which is our focus in a separate study, to which we now refer in 
lines 426-427: 

“We refer the reader to (Schwidetzky et al., 2023) for an interpretation of the size of the ice nucleating 
surface of F. acuminatum based on its differential spectrum and nucleation theory.” 

Reviewer: References: 

Andersson, A.: Mechanisms for log normal concentration distributions in the environment, Sci Rep, 11, 
16418, https://doi.org/10.1038/s41598-021-96010-6, 2021. 

Bogler, S. and Borduas-Dedekind, N.: Lignin’s ability to nucleate ice via immersion freezing and its 
stability towards physicochemical treatments and atmospheric processing, Atmospheric Chemistry and 
Physics, 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, 2020. 

Creamean, J. M., Mignani, C., Bukowiecki, N., and Conen, F.: Using freezing spectra characteristics to 
identify ice-nucleating particle populations during the winter in the Alps, Atmospheric Chemistry and 
Physics, 19, 8123–8140, https://doi.org/10.5194/acp-19-8123-2019, 2019. 

Miller, A. J., Brennan, K. P., Mignani, C., Wieder, J., David, R. O., and Borduas-Dedekind, N.: 
Development of the drop Freezing Ice Nuclei Counter (FINC), intercomparison of droplet freezing 
techniques, and use of soluble lignin as an atmospheric ice nucleation standard, Atmospheric 
Measurement Techniques, 14, 3131–3151, https://doi.org/10.5194/amt-14-3131-2021, 2021. 

(Steinke et al., 2020), I., Hiranuma, N., Funk, R., Höhler, K., Tüllmann, N., Umo, N. S., Weidler, P. G., 
Möhler, O., and Leisner, T.: Complex plant-derived organic aerosol as ice-nucleating particles – more 
than the sums of their parts?, Atmospheric Chemistry and Physics, 20, 11387–11397, 
https://doi.org/10.5194/acp-20-11387-2020, 2020. 

Wright, T. P., Petters, M. D., Hader, J. D., Morton, T., and Holder, A. L.: Minimal cooling rate 
dependence of ice nuclei activity in the immersion mode, Journal of Geophysical Research: Atmospheres, 
118, 10,535-10,543, https://doi.org/10.1002/jgrd.50810, 2013. 
 
Citation: https://doi.org/10.5194/egusphere-2022-1242-RC1 
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Referee #2: 
 
We thank the anonymous reviewer for their useful comments and suggestions that we have used to 
improve the manuscript. Below, we give replies to all comments and describe the modifications 
implemented in the revision (highlighted in red in this response and the annotated manuscript for review).  
 
Reviewer: The manuscript, “HUB: A method to model and extract the distribution of ice nucleation 
temperatures from drop-freezing experiments”, presents a way to simulate droplet freezing to calculate 
frozen fractios and ice active site density. As stated by the authors, their main goal is to link data to theory 
using 1 or more probability distributions. Also, they aim to described how to sufficiently sample the ice 
nucleation spectrum, which is interpreted as using a certain number of droplets in experiments and 
performing dilutions series. This will result in not too much noise in the calculated cumulative or 
differential ice nucleation spectra. They analyze previous data to show that a distribution of freezing 
events can change when solution pH changes and when cooling rate changes. 
 
Authors: We thank the reviewer for the summary. The main goal in this paper is to provide a 
methodology to generate cumulative freezing spectra and fraction of ice distributions from a proposed 
population model, and vice versa. We want to make clear here that the theoretical interpretation of these 
differential spectra (and their fully sampled underlying distribution of nucleation temperatures) is not a 
goal of the present study. We edited the wording of the goals of this study to make this clearer to the 
readers, lines 100-103 and  114-116: 
 
“The first goal of the present study is to provide a strategy to optimize the sampling of drop-freezing 
experiments to derive interpretable differential spectra that is a good approximant of the underlying 
distribution of heterogeneous ice nucleation temperatures of the sample.” 
 
“The second aim of our study is to map the cumulative freezing spectrum 𝑁!(𝑇) into the differential 
spectrum 𝑛!(𝑇), in terms of subpopulations that may correspond to different physical nucleation sites in 
the sample.” 

Reviewer: Unfortunately, I see minimal merit for publishing this study and cannot recommend 
publication, unless significant revision is made. Perhaps a complete resubmission should be done. A 
Monte Carlo simulation to predict frozen fraction and ns or nm is not new and their main goals have 
already been accomplished by other work (Vali, 1971; Wright and Petters, 2013; Knopf and Alpert, 2013; 
Herbert et al., 2014; Vali, 2019; Fahy et al., 2022a; Fahy et al., 2022b). By no means is this list of 
references complete, the authors can look up their cited references and other studies that cite these to find 
numerous other models.  

Authors: We appreciate that the use of Monte Carlo simulations to predict and interpret frozen fractions 
has been explored in previous studies, such as some of those provided by the reviewer.  

We extensively revise the introduction of the revised manuscript to provide a brief account of other 
approaches. Lines 42-61: 

“Historically, there have been two interpretations of the dispersion of nucleation temperatures in 
heterogeneous freezing experiments. The first approach suggests that the stochastic nature of the 
nucleation process dominates the variability in freezing temperatures (Bigg, 1953; Carte, 1956), while the 
second approach assumes that the dispersion in temperatures mostly arises from a distribution of 
nucleation sites (Fletcher, 1969), each with a deterministic, singular nucleation temperature (Levine, 
1950; Vali and Stansbury, 1966). Variability in the temperature, volume, and amount of ice-nucleating 
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particles per droplet can also contribute to the dispersion of freezing temperatures (Vali, 2019; Knopf et 
al., 2020). There is consensus now that both stochastic effects and sample heterogeneities contribute to 
the distribution of freezing temperatures, and both approaches are used for the modelling of drop-freezing 
experiments (Vali, 1971; Marcolli et al., 2007; Niedermeier et al., 2011; Murray et al., 2011; Broadley et 
al., 2012; Wright and Petters, 2013; Herbert et al., 2014; Harrison et al., 2016; Alpert and Knopf, 2016; 
Vali, 2019; Fahy et al., 2022a). Stochastic modelling of the freezing curves is based on predicting the 
survival probability of liquid water containing IN as a function of supercooling, and requires a model for 
the temperature dependence of the nucleation rate of the IN components. These models have been solved 
numerically or evolved with Monte Carlo simulations to interpret or resolve the distribution of ice 
nucleation properties of minerals (Marcolli et al., 2007; Murray et al., 2011; Broadley et al., 2012; Wright 
and Petters, 2013; Herbert et al., 2014; Harrison et al., 2016) and organics (Zobrist et al., 2007; Alpert and 
Knopf, 2016) and to perform parametric bootstrapping of experimental data (Wright and Petters, 2013; 
Harrison et al., 2016). The advantage of the stochastic modelling approach is that it enables a direct link 
to microscopic properties of the nuclei and can account for the cooling rate dependence of the  𝑓!"# 𝑇  
data. However, the requirement of a model for the freezing rates and their distribution across the sample 
hinder their interpretability and accuracy at reproducing the experimental freezing curves, particularly in 
complex samples containing multiple populations.” 
 

We note that HUB-backwards does not use Monte Carlo sampling, but a numerical optimization 
procedure. HUB-forward approach is based on Monte Carlo as we are randomly sampling the freezing 
temperatures from a distribution. However, our method is fundamentally different to those in previous 
studies. On one hand, the HUB method does not rely on nucleation theory nor does it assume a model for 
the nucleation rates. The HUB method is based on Vali’s 1971 formulation of singular freezing, but it 
expands on Vali’s modeling approach by introducing the random sampling of IN in the droplets, the use 
of analytical functions for IN subpopulations and –most critically- the use of extreme-value statistics. The 
latter is paramount to consider the effect of dilutions on the freezing spectra and derive a relation between 
the underlying distribution of nucleation temperatures (or its approximant, the differential spectrum) and 
the cumulative spectrum and fraction of droplets crystallized as a function of temperature. 

To our knowledge, the fraction of frozen droplets and the cumulative spectra based on extreme value 
sampling have not been explored in any previous study. Our approach provides a unique perspective on 
the relationship between the underlying distribution of freezing temperatures, the fraction of frozen 
droplets, and the cumulative freezing spectra. Our method illustrates how diluting changes the sampling, 
making it a tool for a better design of experimental protocols, and enable an efficient recovery of 
analytical expressions for the differential spectrum that can be interpreted using theories and/or 
microscopic or population models. 

We now elaborate on other aspects of previous methods and note that –to our knowledge extreme-value 
statistics has not been previously used for the modeling of ice nucleation data, lines 77-93: 
 
“The differential spectrum identifies the density of IN active at each temperature, and was identified by 
Vali as the central quantity that can be derived and interpreted from drop-freezing experiments (Vali, 
1971; Vali, 2019).  

The determination of the differential spectrum from the cumulative one by finite differentiation is 
subject to significant noise, requiring a careful selection of the temperature intervals and extensive 
sampling (Vali, 2019). As stochastic effects are not considered in the singular temperature formalism, the 
cumulative and differential spectra should –in principle- depend on the cooling rate (Vali, 1994). The 
stochastic nature of ice nucleation, combined with the uncertainties associated with the experimental 
measurements (e.g., different droplet volumes, inhomogeneous samples, different detection efficiencies), 
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can produce significant variations in the cumulative freezing spectra, that result in large uncertainties in 
𝑛! 𝑇 . Parametric and nonparametric bootstrapping based on the singular approximation and Monte 
Carlo simulations have been used to estimate confidence intervals in freezing spectra measurements (Vali, 
2019; Fahy et al., 2022a; Fahy et al., 2022b).  

A central assumption of the singular freezing approximation is that the freezing of a droplet 
containing multiple INs is promoted by the IN with the highest nucleation temperature (Levine, 1950). 
This results in extreme-value statistics for the sampling of the nucleation temperature of the droplets 
(Sear, 2013). The extreme-value sampling is apparent in the concentration dependence of 𝑓!"# 𝑇  in 
experiments (Marcolli et al., 2007; Budke and Koop, 2015; Kunert et al., 2018; Lukas et al., 2022). 
However, to our knowledge, the impact of extreme-value statistics has not been considered in the singular 
modelling of drop-freezing experiments.”  

Reviewer: Furthermore, the authors provide no quantitative uncertainty and no error bars, confidence 
intervals or prediction bands of the simulated experiments, therefore, no assessment of accuracy in this 
work.  

Authors: We agree with the reviewer on the importance of error bars. In the original submission we 
provided the mean square errors (MSE) used to evaluate the goodness of the fit. We now add error bars to 
the data presented in Table 1 and Table 2 to indicate the variability of the statistical estimates.  

Reviewer: I did find simulating a dilution series and previous data with different pH interesting. The other 
new aspect is showing that the 3 probability distributions for cholesterol freezing is time dependent. For 
this paper to be acceptable, the authors should greatly expand their work. A resubmission should include a 
reproduction of other ice nucleation Monte Carlo models.  

Authors: We are happy to hear that the reviewer found the simulation of the dilution series and the 
correlation of cholesterol freezing with pH interesting and appreciate the reviewer’s recognition of the 
time-dependent nature of the three probability distributions for cholesterol freezing. We expand the 
discussion of section 3.3 to make a connection of the results of time dependence of cholesterol with other 
studies and highlight opportunities for future research, lines 512-524: 

“Our analysis of the freezing data of cholesterol monohydrate shows that even a three-fold change in the 
cooling rate can have significant impact on the differential spectrum (Fig. 11B). As expected, the modes 
of the three populations move towards warmer temperatures upon decreasing the cooling rate. We note, 
however, that the shift of the peaks is not uniform; the middle one seems to be more sensitive to the 
cooling rate. Different sensitivity of the freezing rate of subpopulations to temperature has been also 
reported in simulations of nucleation data of minerals using the stochastic and modified singular 
frameworks (Herbert et al., 2014; Murray et al., 2011) The modified singular model proposes an 
empirical correction the relation between 𝑓!"#(𝑇) and 𝑁!(𝑇) to account for the effect of the cooling rate 
on the shift of these quantities (Vali, 1994). That analysis could be extended to the analysis of the 
subpopulations of IN obtained with HUB-backward.  Moreover, it would be interesting in future studies 
to use the rate dependence of the mode of the subpopulations to extract the steepness of the nucleation 
barrier with temperature using nucleation theory (Budke and Koop, 2015), and to investigate the 
relationship between the cooling rate dependence of the differential spectrum obtained in the singular 
approximation with the interpretation of the same data modelled with the stochastic framework, such as in 
(Wright et al., 2013; Herbert et al., 2014).” 

Regarding the request by the reviewer that we “include a reproduction of other ice nucleation Monte 
Carlo models”, we note that the HUB-backward optimization that recovers the differential spectrum is not 
based on Monte Carlo sampling. Only HUB-forward uses Monte Carlo, in the form of random sampling 
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of a proposed underlying distribution, and its use is for the study of the role of dilutions and number of 
droplets on the cumulative spectrum. We are not aware of other Monte Carlo studies that have performed 
an analysis of the role of dilutions on the prediction of the differential spectrum that we could compare 
with.  

Reviewer: To relate data and theory, they should derive a mathematical link between their model and 
theory as this is only discussed in a few sentences in passing despite being a main goal.  

Authors: The focus of this manuscript is not deriving a relation between the distribution of nucleation 
temperature and nucleation theory, but to present a method to extract the differential spectrum and assess 
the quality of the sampling (as indicated by the two explicit goals in the introduction section of the 
manuscript).  

For a connection between HUB results and theory we now refer in the paper the reader to our recent study 
of ice nucleation by F. acuminatum, where we connect the differential spectrum obtained with HUB-
backward analysis of droplet freezing experiments with the prediction of classical nucleation for finite 
surfaces, to predict the size of the ice nucleating complex responsible for the exceptional ice nucleation 
ability of this fungus, lines 426-427: 

“We refer the reader to (Schwidetzky et al., 2023) for an interpretation of the size of the ice nucleating 
surface of F. acuminatum based on its differential spectrum and nucleation theory.”  
 
that manuscript includes also extensive physico-chemical characterization that allows us to determine the 
size of the ice nucleating protein (INP), which we combine with the predictions of the theory to derive the 
number of INP involved in the nucleating complex of F. acuminatum. 

Reviewer: Finally, they should include an uncertainty analysis of both model and experimental results and 
provide new data to test their model. new data could be droplet freezing experiments and dilution series 
data where they know exactly what the subpopulations are before they start an experiment. 

Authors: As it is not possible to know the subpopulations before starting an experiment, we use synthetic 
data to perform the validation and examples of the use of the model in section 2 and 3.1, and only use 
experimental data in sections 3.2 and 3.3 to illustrate the use of the methodology.  All experimental 
results in this paper are taken from the literature, we are not providing new experimental data but rather a 
numerical methodology to analyze the data.  Other methods in the literature, e.g. bootstrapping can be 
used to complement the analysis and derive error bands for the data that can be used to produce 
independent HUB-backward optimizations that would give a more complete account of the uncertainties 
in the estimations. HUB is not meant to replace other methods already available in the literature, but to be 
used synergistically with them.     

Reviewer: Major Comments 

1) l. 18 “first available code”. This is not the first available code to predict frozen fraction or cumulative 
ice nucleation spectra from a probability distribution. In addition, many of other authors have made their 
code available, as it is a requirement for data and code availability in most journals and research grants. 
Therefore, this phrase or anything else similar must be removed from the manuscript. 

More generally, it is likely the first time something has been done when a manuscript is published. Yes, 
how the authors define their probability distribution is unique, but it is distracting and unnecessary to say 
it is the “first time”. 
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Authors: We understand the reviewers’ point and remove all claims of first from the manuscript.. 
However, we would like to emphasize here that our code is the first to utilize Vali's approach and extreme 
value statistical analysis without making any physical assumptions about the system. This is a unique 
contribution and sets our code apart from other available codes. We have revised the manuscript to 
accurately make clearer the differences between our approach and previous ones. 

Reviewer: l. 15-16 “no rigorous statistical analysis…to obtain a well-converged nm that represents the 
underlying distribution Pu(T).”. This is not true. Uncertainty are calculated by the previously mentioned 
studies as well, and with them one can know what is or is not in agreement, what is representative or 
converged or not. What the authors considers as well-converged is their opinion as there is no uncertainty 
estimation to claim agreement or not. 

Authors: We acknowledge that previous studies have calculated uncertainties, but we would like to clarify 
that our statement refers to the lack of a rigorous statistical analysis to determine the number of dilutions 
necessary to adequately sample the entire freezing temperature spectrum. This information is crucial in 
order to obtain a well-converged estimate of the underlying distribution.  

In our view, the issue is not the absence of uncertainty estimation, but rather the absence of a systematic 
approach to determine the number of dilutions required to achieve a representative sample.  

Reviewer: 2) l. 13 “Underlying distribution” The word underlying has the meaning of something that is 
real or fundamental to nature. Defining probability distribution of different populations whether this is 
one, two or ten populations is not demonstrated here to be anything fundamental or real. “Underlying 
distribution” also has the meaning of something that is not immediately obvious. Whether there is one or 
more than one distribution (subpopulation) of freezing temperatures is always pre-defined by the authors. 
In other words, they authors no not derive the number of subpopulations, it is always prescribed for their 
forward and backward code. This is assumed not underlying. 

Authors: “Underlying” means that is the one from which the freezing data is generated, and we hope that 
the revisions in the manuscript make this clearer.  

The reviewer is correct: the subpopulations used for the analysis are assumed, and as such the differential 
spectrum is always an approximant of the underlying distribution. The distinction between the underlying 
distribution (that is known in the synthetic data sets we prepare to assess the method, but not in the case 
of real experimental data) and the differential spectrum is central to our study.  Based on the comment by 
the reviewer, we have revised the abstract –where Pu is first introduced- to make this distinction clear: 

“The differential freezing spectrum 𝑛!(𝑇)  is an approximant to the underlying distribution of 
heterogeneous ice nucleation temperatures 𝑃!(𝑇) that represents the characteristic freezing temperatures 
of all IN in the sample.” 

Reviewer:  3) Units. I cannot understand the units in Eqn 5. I know the units of nm as Mass-1, and the units 
of the differential spectrum Nm as Mass-1 Temperature-1. In Eqn 5, the unit of Pmax then has to be 
Temperature-1 for the frozen fraction to be dimensionless? Would the authors include an equation of 
Pmax in the manuscript, and check units throughout. 

Authors: Yes, the reviewer is correct and we thank them for pointing out that we had not indicating the 
units. We now clarify the this in lines 156-157:  
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“The units of 𝑃!(𝑇) are, same as for 𝑛!(T), i.e. those of the cumulative spectrum divided by a unit of 
temperature, but are generally omitted in what follows.” 

And in lines 188-190:  

 “𝑃!"#! 𝑇  also have the same units as the differential spectrum 𝑛!(T) similarly to 𝑃!(𝑇), but we have 
chosen to omit the units for simplicity in our analysis.”  

Reviewer: 4) There are no uncertainty estimate in this manuscript. 

Authors: We have included error bars for the modes, widths, and weights of the subpopulations in Table 1 
and Table 2.  

Reviewer: Minor Comments 

1) It is common practice, that the cumulative spectra is a lower case n(T). When normalized to mass, it is 
nm and when normalized to surface area it is ns. Please change this accordingly. 

Authors: All the experimental data we use presents data per mass. We have seen various notations in the 
literature. We here use lower case n for the differential spectrum and upper case N for the cumulative. We 
now clarify in the introduction, lines 72-75, that the spectra normalized per area has a different name:  

 “The IN surface area per drop, 𝑋 =  𝐴!"#$, is sometimes used as normalization factor for insoluble INs 
(e.g., dust, crystals), resulting in a cumulative spectrum per area denoted as 𝑁! 𝑇 . However, it is 
challenging to measure the total IN surface area accurately (Knopf et al., 2020). We note that Eq. 1a can 
be used even when the absolute concentrations or areas of the IN are unknown, provided that the user 
knows the relative concentration of the dilution series derived from a parent sample.” 

Reviewer: 2) l. 55-60 How a probability distribution connects ice nucleation experiments and theory 
needs to be cited and derived. This statement is unsupported. The number of freezing events defines 
uncertainty, and how many droplets is or is not good enough is opinion without a rigorous definition. 

Authors: The sentence highlighted by the reviewer “The underlying distribution 𝑃!(𝑇) is akin to a hub 
that connects the experimental freezing temperatures to physical analysis based on nucleation theory or 
kinetic and equilibrium models that can elucidate the mechanisms and origins of the distributions of INs 
(Fig. 1).” is to motivate the importance of the underlying distribution, and extracting good approximants 
of it from well-sampled experiments. The analysis of the differential spectrum (as approximant for Pu) in 
terms of theories is outside the scope of this work. However, an integration of the results of HUB and 
nucleation theory can be found in (Schwidetzky et al., 2023). 

Regarding your statement that the number of freezing events defines uncertainty and that the appropriate 
number of droplets is opinion without a rigorous definition, we respectfully disagree. The number of 
freezing events, which directly relates to the concentration of ice nucleating particles, and the optimal 
number of droplets are a fundamental metric in ice nucleation experiments, and our code explores that, 
and the results of the analysis are detailed in the paper.  

Reviewer: 3) l. 70 “based on empirical bootstrapping” What was the most important in (Fahy et al., 
2022a) is the non-parameteric bootstrapping was used, i.e. without any prior probability distributions 
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needed. Here, the authors need to assume a distribution (l. 121) and already puts in bias to their methods. 
They have to define the number of subpopulations (l. 171), again biasing their model. 

Authors: We agree that non-parametric bootstrapping is a powerful statistical tool and appreciate your 
comment that it assumes the sample is representative of the population and that the observations are 
independent and identically distributed. However, we would like to clarify that our method is distinct 
from non-parametric bootstrapping, and that it addresses the issue of identically distributed data in a 
completely different way. Specifically, our method is based on the extreme value statistics approach, 
which allows us to model the fraction of frozen droplets data for a given concentration as a function of the 
tail of the underlying distribution.  

We indeed expect the user to define the number of populations and make judgement on the quality of the 
result. The good agreement between the input cumulative spectra and the ones obtained from our 
simulations (same for the fraction of ice vs temperature), supports that the analysis with subpopulations is 
not only conceptually simple but also quite effective.  

We would also like to note that the quality of results obtained through non-parametric bootstrapping may 
indeed depend on the size and distribution of the original sample, as well as the number of resamples 
generated, as discussed by Fahy et al.   

Reviewer: 4) l. 77 The authors are not the first with a way to quantify subpopulations or different types of 
ice active sites or multi-component freezing to put it another way. There are too many studies to cite 
about mineral dust, pollen, bacteria, sea spray aerosol particles, washing water etc… A method to 
quantify subpopulations was done as early as 4 decades ago (Yankofsky et al., 1981). 

Authors: Thank you for bringing up previous studies on quantifying subpopulations; we now add more 
references to some of these in the manuscript. Yet, our method fundamentally differs from previous 
methods in that it quantifies subpopulations in terms of sampling weights. Sampling weights are a 
statistical technique used to adjust for the fact that different members of a population may have different 
probabilities of being sampled. In our method, we use sampling weights to account for the fact that 
different ice active sites or multi-component freezing events may have different probabilities of being 
measured, due to differences in their size, composition, or other factors. This allows us to estimate the 
relative abundance of different subpopulations within a sample, and to make inferences about the overall 
population of ice active sites or multi-component freezing events. 

The use of analytical functions for the populations also allows to determine the differential spectrum from 
the cumulative one without the need of binning or coarsening of the data. Vali 2019 presents an excellent 
discussion of the effect of coarsening on the calculation of the differential spectrum.  

Reviewer: 5) l. 99 What is the difference between an underlying distribution and a true underlying 
distribution. Is there a false or untrue underlying distribution? 

Authors: No, there is only “underlying distribution” for which the differential spectrum is an 
approximant. We remove the confusing “true” wording from the manuscript, and thank the reviewer for 
bringing this up.  

Reviewer: 6) l. 121 Why Gaussian and why not something else? I think any distribution could be 
assumed. If I assumed subpopulations to exist, perhaps a Gaussian is not the best when the mean is 
centered on a relatively high temperature. There may be chance of sampling freezing temperatures > 0C? 
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Of course these can be simply removed, but this would imply a bias in the subpopulation freezing 
behavior. 

Authors: While other distributions could be considered, the Gaussian distribution is a commonly used and 
well-understood distribution in statistics, making it a good starting point for modeling. Based on our 
fitting of experimental data, we have not observed any cases in which a Gaussian distribution resulted in 
the sampling of freezing temperatures above 0°C. We have now also included in the HUB code the 
possibility of using log-normal or left-tailed Gumbel distributions for the populations, lines 160-162: 

“We also provide in the HUB code the option for the user to use the log-normal distribution, which has a 
tail towards higher temperatures, or the left-tailed Gumbel distribution, which has a tail towards lower 
temperatures.” 

However, in all the cases we tested, we find that Gaussians subpopulations results in the smallest error in 
the prediction of the cumulative spectra (this is shown in the response to reviewer 1 and the new Supp. 
Section S5).  

Reviewer: 7) Too often in a section, the authors refer to later sections. Please minimize these instances, as 
it is distracting. 

Authors: The structure and flow of our paper require us to reference later sections. These references serve 
as a guide for readers to understand the context and build up to the conclusions of the paper. We believe 
that minimizing these instances could potentially disrupt the coherence and clarity of our argument. 

Reviewer: 8) l. 299-301 This is circular reasoning. The authors will test the droplets and IN 
concentrations, to test the sensitivity of Nm to the droplets and IN concentrations? 

Authors: Our objective is to investigate the sensitivity of Nm to the number of droplets and IN 
concentrations by testing the droplets and IN concentrations, measuring the freezing data, and then using 
the extreme value approach to compute the fraction of frozen droplets. The cumulative freezing spectra 
are then determined based on different combinations of number of droplets and dilutions. We then use the 
HUB-backward code to compare the differential spectrum of the generated Nm with the underlying 
distribution. We believe that this approach providse valuable insights into the relationship between Nm 
and droplets/IN concentrations. There is no circular reasoning. 

Reviewer: 9) l. 313 What is the authors definition of an “absolute calibration”. How does this differ from 
a “calibration”. 

Authors: Our definition of "absolute calibration" refers to the process of determining the exact number of 
active ice nucleators present in the parent sample. In our study, we use the fraction of frozen droplets that 
freeze homogeneously to estimate this value. Based on Poisson statistics, we can infer that there is 
approximately 1 active ice nucleator per droplet when this fraction is 0.6 (Figure 2A), as determined by 
the equation (1-e^(-x))=0.6, where x is approximately 1. With this information and the dilution factor 
from the parent sample, it is possible to determine the absolute concentration of IN in the parent. This is 
different from a general "calibration," which may refer to any process of setting or adjusting measurement 
parameters. We hope this clarifies the terminology used in our manuscript. 

Reviewer: 10) l. 374-375 What is important about looking at a log or linear scale for the y-axis of a graph. 
If a graph looks better or worse on either scale, what is this telling the reader? This should be clarified. 
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Authors: Both representations have (of course) the same information. We had indicated in the manuscript 
the purpose of this dual representation in this example, lines 450-452: 

“Note that we use a logarithmic scale to represent this 𝑛!
!"#$%$&'((𝑇)  because the population 

corresponding to class A accounts for less than 0.1% of the total (Table 2).” 

Reviewer: 11) l. 377-379 What is the authors quantitative criteria for “almost identical” and 
“unnecessary”? How much data variability is explained when two, three or more subpopulations are 
included? Is the number of subpopulations sufficient when 99% of the variability is explained? 

On the other hand, could two different types of ice nucleating particles exist (different populations) in the 
same drop, but have the same distribution? This code then would mistake these 2 subpopulation as a 
single subpopulation. This would then misrepresent the ice nucleating subpopulations? 

Authors: We are not using a quantitative criterion here for “almost identical”, only that the differential 
spectra retrieve does not show new peaks or a shift in the existing peaks. The users of the HUB-backward 
code can decide from the results and the purpose of the optimization whether it is worth adding more 
populations (if they do not decrease the mean square error, there is no doubt that the addition of new 
populations is unnecessary). Our purpose in this manuscript is not to address the details of the population 
spectra in the examples selected but to illustrate how the method can be used for the analysis.  

The HUB code does not identify the microscopic origin of the populations, only their freezing signatures. 
If two distinct (chemical, biological) populations of IN have the same distribution of freezing 
temperatures, they are considered a single population from the point of view of the analysis. However, 
they may be separated by changing the cooling rate (as seen in the increasing separation of the first and 
second peak of the cholesterol sample with decreasing cooling rate in Figure 10b), or by processing of the 
data (e.g. filtration, chemical treatment, etc).  

Reviewer: 12) l. 424-425 Here, is it assumed that pH can change the position, width and amplitude of the 
distributions. This is certainly important, but I am wondering how valid is the assumption that pH only 
changes the amplitude, but keeping the mean and standard deviation the same? As the authors prepare 
their resubmission and include an uncertainty analysis, I would highly recommend the authors to fit the 
ice nucleation data for all pH for a common mean and standard deviation, allowing only the amplitude to 
be a function of pH. Then evaluate if the result is somehow within the predicted and experimental error. 
One could surmise that a surfaces ability to nucleate ice may or may not be pH dependent, but perhaps pH 
would destroy active sites instead. 

Authors: Thank you for your feedback and suggestions. We agree that it is important to rigorously test the 
assumption that pH only changes the amplitude, while keeping the mean and standard deviation the same. 
Below wee show the results of fitting the ice nucleation data for all pH values using a common mean and 
standard deviation, allowing only the amplitude to be a function of pH. We find a poorer agreement 
between this set of fits and the experimental data than the one used in the manuscript.  

Keeping Tmode,1 = -9.3, s1 = 0.93, Tmode,2 = -4.1, s2 = 0.43 for the three ice nucleation spectra, we obtain c2 = 
1.31 x 10-3 for pH = 6.2, c2 = 1.01 x 10-5 for pH = 5.6 and c2 = 1 x 10-10 for pH=4.4. 
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We now comment on this result on the manuscript and also clarify that the experimental data indicates 
that the pH does not change the number of IN sites, lines 474-484: 

“To further illustrate the use of HUB-backward, Fig. 10 shows the effect of pH on the subpopulations in 
the modes, spread and weighs that contribute to the nucleation spectrum of P. syringae (Snomax®), using 
data from (Lukas et al., 2020).  Freezing in the temperature range of class A drops about 3 orders of 
magnitude when the pH is lowered from 6.2 to 4.4, (Fig. 10B). However, we note cumulative number of 
IN is preserved in the experimental data that the cumulative freezing spectrum (Lukas et al., 2020), 
indicating that the change in pH did not impact the number of nucleants.  Fig. 10C-D demonstrates that 
the distributions associated with both subpopulations shift to lower temperatures when the pH decreases, 
and the range of freezing temperatures in class A becomes broader. An attempt to fit the cumulative 
spectra of Snomax at different pH with the same subpopulations, allowing only for adjustment of their 
weights, resulted in a poor fit to the experimental 𝑁!(𝑇), supporting the conclusions of (Lukas et al., 
2020) of a central role of electrostatic interactions in the assembly of the bacterial ice nucleating proteins 
and their ability to bind to ice. This analysis exemplifies how HUB-backward can be applied to quantify 
the dependence of IN on environmental variables.” 
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Reviewer: 13) Please check references for consistency with doi format, URLs, use of italics, use of the 
correct journal and journal abbreviations. 

Authors: Thank you for your feedback. We have reviewed our references and made the necessary updates 
to ensure consistency with the doi format, URLs, use of italics, and correct journal and journal 
abbreviations. 

Reviewer:  (list of references provided by reviewer 2) 
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