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Abstract.

The EarthCARE satellite mission will provide new insights into aerosol-cloud and radiation interactions by means of syn-

ergistic observations of the Earth’s atmosphere from a collection of active and passive remote sensing instruments, flying on a

single satellite platform. The Multi-Spectral Imager (MSI) will provide visible and infrared images in the cross-track direction

with a 150 km swath and a pixel sampling at 500 m. The suite of MSI cloud algorithms will deliver cloud macro- and micro-5

physical properties complementary to the vertical profiles measured from the ATmospheric LIDar (ATLID) and the Cloud

Profiling Radar (CPR) instruments. This paper will provide an overview of the MSI cloud mask algorithm (M-CM) being

developed to derive cloud flag, cloud phase and cloud type products, which are essential parameters for the cloud optical and

physical properties (M-COP) as well as for the aerosol optical properties (M-AOT). The MSI cloud mask algorithm has been

applied to simulated test data from the EarthCARE end-to-end simulator and Level-1 data from Moderate Resolution Imaging10

Spectroradiometer (MODIS) as well as Spinning Enhanced Visible Infra-Red Imager (SEVIRI). Verification of the MSI cloud

mask algorithm to the simulated input data and the official cloud products from SEVIRI and MODIS demonstrates a good

performance of the algorithm. The MSI cloud detection performance show for thin cirrus over bright surfaces like desert or

snow a discrepancy of detecting the clouds. This will be improved by threshold tuning once real observations are available.

1 Introduction15

Clouds cover about 70 % of our Earth’s surface and play an important role in the global radiation and energy budgets. The

influence of clouds on radiative fluxes exhibits a complex dependency on cloud type, phase, geometric height as well as their

optical and microphysical properties, potentially introducing significant radiative feedbacks in response to climate change. The

IPCC Sixth Assessment Report summarizes the current state of knowledge, concluding that clouds are expected to amplify

global warming as a result of an increase in high-level clouds, and a reduction in low-level clouds (IPCC 2021, in press). The20

report provides a best estimate of the net cloud feedback, having a positive value of 0.42 W m−2. While the uncertainty related

to cloud feedbacks has been halved compared to the previous fifth assessment report, the response of clouds to a warming Earth

remains one of the biggest challenges in our understanding of the climate system.
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The determination of cloud, atmospheric and surface properties from multi-spectral satellite imagery relies on the accurate

discrimination of cloudy and cloud-free pixels. This discrimination is typically done by a cloud mask algorithm as the first step25

in a processing chain of satellite imagery. Small errors in the cloud mask can lead to large uncertainties, misrepresentations

and misinterpretations in subsequently derived products. Many different cloud detection techniques have been developed in

the past. These techniques are mostly based on two general assumptions, namely that clouds appear brighter in solar channels

due to the strong reflection of sunlight, and colder in infrared channels relative to cloud-free surfaces, due to the decrease of

atmospheric temperature with height. In addition, discrimination of clouds from cloud-free regions is commonly based on a30

variety of spectral features, spatial structure measures, or temporal characteristics in time series, because clouds are often more

variable than the underlying surface (Saunders and Kriebel, 1988).

Operational cloud mask algorithms generally combine a variety of individual tests by means of a decision tree, as no single

test is able to achieve a sufficient accuracy for the diversity of clouds and atmospheric conditions encountered globally (e.g.

Saunders and Kriebel, 1988). An alternative is the use of fuzzy-logic based or Bayesian schemes to combine tests to yield a35

confidence value or probability for the classification (e.g. Ackerman et al., 1998; Hollstein et al., 2015). More recently, convo-

lutional neural networks have been applied to discriminate between different land surfaces, ocean, clouds and cloud shadows

(Mateo-García et al., 2017; Li et al., 2019; Hughes and Kennedy, 2019). Such cloud masking approaches are often applied to

high-resolution satellite images (e.g, Landsat, Sentinel-2), and require large training datasets. In practice, these training datasets

have to be created manually, and the significant effort required for establishing high-quality training datasets and validating40

their performance has so far not led to operational application in global-scale long-term cloud climate data records. Rossow

and Garder (1993) classify the different tests used in cloud mask algorithms into radiance threshold tests, spatial variance tests,

temporal variance tests and tests using independent datasets to estimate clear-sky radiances. The performance of these tests

strongly depends on the satellite sensor specifications including spatial, spectral and temporal resolution.

The International Satellite Cloud Climatology Project (ISCCP, Schiffer and Rossow, 1983) was the earliest effort to provide45

a comprehensive global cloud climatology from multi-spectral meteorological satellite imagers. Its cloud detection algorithm

is described in Rossow and Garder (1993), and is based on a combination of static and dynamic threshold tests for one window

channel in the visible and one window channel in the thermal infrared wavelength range. This choice was made based on the

limited availability of channels from early geostationary satellites, specifically the Meteosat, GMS (Geostationary Meteoro-

logical Satellite) and GOES (Geostationary Operational Environmental Satellite) series.50

Based on the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA’s polar-orbiting satellites since the

early 1980’s, the APOLLO (AVHRR processing scheme over clouds, land, and ocean) cloud detection scheme used both static

and dynamic threshold tests. The availability of additional spectral channels was used in particular to improve night-time cloud

detection performance. Dynamic thresholds were derived from a histogram-based scene analysis (Saunders and Kriebel, 1988;

Strabala et al., 1994).55

A new milestone in instrumental capabilities was reached by the MODerate-resolution Imaging Spectrometer (MODIS)

instrument, providing observations in 36 spectral channels from NASA’s Earth Observing System satellites Terra and Aqua

launched in 1999 and 2002, respectively. The operational cloud mask product for MODIS considers the spectral information
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from 19 of these channels (Ackerman et al., 2002; Platnick et al., 2003). While several spectral tests are similar to those used

by the APOLLO and ISCCP cloud detection schemes, the availability of channels in water vapor and CO2 absorption bands60

enabled an improved cloud detection in particular for thin high-level clouds and for polar night conditions (e.g. Liu et al., 2004;

Nakajima et al., 2011).

EarthCARE, the Earth Clouds Aerosols and Radiation Explorer, is a joint European and Japanese mission and part of ESA’s

Living Planet Program (Illingworth et al., 2015; Wehr et al., 2022). The mission objective is to improve our understanding

of cloud-aerosol-radiation interactions, and the role of aerosols and clouds in the Earth radiation budget. While observa-65

tion of clouds have gradually improved over the past decades, the launch of the EarthCARE satellite is expected to bring a

breakthrough by means of its novel observational capabilities. To achieve the mission objective, accurate and simultaneous

measurements of microphysical and optical properties of aerosol and clouds together with solar and infrared radiation fluxes

are crucial. EarthCARE will offer the unique opportunity to collect these observations at global scale due to its polar orbit.

The satellite will carry an exceptional collection of active and passive remote sensing instruments, flying on a single satellite70

platform in an orbit at an altitude of 393 km. The instruments include the ATmospheric LIDar (ATLID), the Cloud Profiling

Radar (CPR), the Multi- Spectral Imager (MSI) and the BroadBand Radiometer (BBR).

This manuscript describes the algorithm used to produce the cloud flag, type and phase products based alone on MSI

observations. The approaches selected for EarthCARE’s MSI cloud mask (M-CM) products relies on the research on and

experience with cloud masking approaches during the past 40 years since the start of the satellite era. It exploits the full spectral75

information content of the MSI instrument, and also includes a histogram-based scene analysis. It is, however important to

realize that its performance is also determined by the selection of 4 solar and 3 infrared channels for MSI, having central

wavelengths of 670nm (VIS), 865nm (NIR), 1650nm (SWIR-1), 2210nm (SWIR-2), 8.8 µm (TIR-1), 10.8 µm (TIR-2), and

12.0 µm (TIR-3). Given this specification, MSI’s capabilities and sensitivity is more similar to that of AVHRR than of MODIS.

In particular, no channels within absorption bands of atmospheric gases are available. Reflectances in the solar channels are80

used to detect clouds by means of a visible reflectance test and a reflectance ratio test. The visible reflectance test assumes that

the reflectance of clouds exceeds the reflectance of cloud-free surfaces, with the exception of highly reflective surfaces. The

reflectance ratio test compares the ratio of the reflectances of two shortwave channels to thresholds. Complementing the solar

channel tests, a brightness temperature test uses information from the thermal infrared (TIR) channels to detect clouds based

on the assumption that the brightness temperature of clouds is significantly lower than the brightness temperature of cloud-free85

pixels.

The estimation of the expected difference in cloud-free brightness temperatures for the three infrared channels is an important

aspect for the accuracy of cloud detection. This difference depend on differences in atmospheric absorption (water vapor) and

surface emissivity. Therefore, scene-dependent look-up tables or online radiative transfer simulations have to be elaborated to

determine suitable thresholds. All tests yield a probability that a pixel is cloud-free. Some of the individual tests are however90

not independent from each other, because they rely on similar channels and principles. Hence, the resulting probabilities of

those tests are combined.
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For every 500 m resolution pixel of the 150 km-wide MSI swath, the M-CM products provide a classification whether it is

cloud-covered or cloud-free as final output. Additionally, for the cloudy pixels, the cloud type and cloud phase of the uppermost

cloud layer will be reported.95

This paper is structured as follows. Section 2 describes the algorithms for deriving the operational Level 2 M-CM products,

which comprise a binary cloud flag, cloud phase, cloud type and confidence statistics. The verification of the algorithm using

MODIS and MSG SEVIRI scenes as well as synthetic test data from the EarthCARE End-to-End simulator (Donovan et al.,

2022) is provided in section 3. Comprehensive comparisons between the operational M-CM product and the synthetic test

fields are presented in the appendix. The data processing chain including the role of M-CM is explained in more detail in100

Eisinger et al. (2022).

2 M-CM algorithm description

Figure 1. Schematic of the main components of the M-CM algorithm.

The MSI cloud product processor (M-CLD) provides algorithms for calculation of the cloud flag, cloud phase, cloud type,

cloud optical depth, cloud particle size, cloud water path and cloud top temperature/pressure/height. The processor consists
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of two main parts, which are sequentially processed. First is the cloud mask (M-CM) which is mandatory for the other cloud105

optical and physical properties (M-COP). The present manuscript describes the cloud mask processor (M-CM), which is

schematically shown in Fig. 1.

The algorithm starts with the calculation of the reflectances at the top of the atmosphere in the shortwave channels. The

reflectances (ρi) of each channel i are obtained from the measured radiance (L) and the solar irradiance E0 as

ρi(θ0,θ,φ) =
πLi(θ0,θ,φ)

E0cos(θ0)
, i= 0.6,0.8,1.6,2.2 (1)110

with the sun zenith angle θ0, the viewing zenith angle θ and the relative azimuth angle φ.

An important input for the algorithm is the day/night flag. Day time condition is considered for a certain pixel of the sun

zenith angle θ0 < 80°. Additionally, the sun glint angle θr is calculated over ocean as

cos(θr) = sin(θ) ∗ sin(θ0) ∗ cos(φ)+ cos(θ) ∗ cos(θ0) (2)

If θr < 36°, the pixel is flagged as sun glint provided in the surface flag.115

2.1 M-CF: Binary cloud flag

The algorithm derives a cloud mask by applying individual threshold tests to brightness temperatures and reflectances of

individual channels. The threshold tests and the way how results are combined are adopted from the MODIS cloud mask

algorithm (Ackerman et al., 2002). The thresholds rely on the assumption that spectral signatures of cloud-free pixels and

pixels covered by different cloud types differ. As the thresholds varying globally only the upper (cloudy) and lower (cloud-120

free) limits of the thresholds are defined and a linear function is used to determine the probability how close the observation is

to the limits. Further the probability of being cloud-free from the applied tests is combined to an overall probability which may

provide in combination with the number of applied tests a measure of the confidence of the result. From the overall probability a

binary cloud mask indicating if a pixel is cloudy or not is derived with four levels of confidence: clear, probably clear, probably

cloudy and cloudy.125

2.1.1 Visible reflection tests

The visible reflectance test compares the reflectance in the 0.67µm channel or the reflectance in the 0.865µm channel with

surface dependent thresholds (Fig. 2). If the reflectance exceeds the upper threshold pixels are assumed to be very likely cloudy.

Pixels with reflectances below the lower threshold are with high confidence cloud-free. The pixels in-between are classified by

calculating probability functions, as described in section 2.1.3.130

The upper and the lower thresholds differ for land, desert, ocean pixels outside the sun glint region and ocean pixels in

the sun glint region (Fig. 2). Whereas the thresholds are fixed for the first three classes, they depend on the sun glint angle

in the sun glint region. Over land the test applies the reflectance in the 0.67µm-channel, while over desert the reflectance in

the 0.865µm-channel is used. Ocean pixels located outside the sun glint region are classified by using the reflectance in the

0.865µm-channel. Ocean pixels affected by sun glint also apply thresholds based on the 0.865µm-channel, but the thresholds135
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Figure 2. Flow chart of visible reflectance test.

are calculated dependent on the sun glint angle (see Eq. 2). The lower and upper thresholds of the 0.865µm-tests depend on

predefined limits of sun glint angles between 0°–10°, 10°–20° and 20°–36° (Fig. 2).

2.1.2 Reflectance ratio test

The reflectance ratio test is applied to daytime pixels over oceans and land surfaces with low reflectivities. Therefore, the land

pixels are classified in surfaces with high reflectivity like desert, polar and semi-arid region and low reflectivity.140

Over ocean the reflectance ratio test can be applied as well in the sun glint region. The test score is the ratio of the reflectance

in the 0.865µm-channel and the reflectance in the 0.67µm-channel. If the test score is smaller than the lower threshold the

pixel is high confidentially cloud-free. A test score larger than the upper threshold labels the pixel as high confidential cloudy.

For pixels with values in-between, the confidence level is calculated in a linear way. Upper and lower thresholds are defined

for ocean pixels outside and inside the sun glint region, respectively.145

For land pixel indicated by the application mask as appropriate, the test score is a modified GEMI (Global Environmental

Monitoring Index) first described by Pinty and Verstraete (1992). It is calculated as

m_gemi = η(1− 0.25 · η)− ρ0.6− 0.125

1− ρ0.6
(3)

with

η =
2(ρ0.8− ρ0.6)+ 1.5 · ρ0.8 +0.5 · ρ0.6

ρ0.8 + ρ0.6 +0.5
(4)150

6



If m_gemi is greater than m_gemiclear, the pixel is high confidentially clear and if m_gemi is lower than m_gemicloudy, the

pixel is assumed to be high confidentially cloudy. If values in-between appear, then confidence level of being clear is calculated

by a linear approach.

2.1.3 Brightness temperature tests

We use two different approaches for the brightness temperature tests, one using simple thresholds and the other one applying155

brightness temperature differences between different infrared channels for the separation between cloudy and cloud free pixels.

The first simple threshold test is applied on the 10.85µm-channel for all surface types during night-time.

The pixels identified as cloudy if

T10.8 < T10.8_cs (5)

where the clear sky brightness temperature, T10.8_cs at top of the atmosphere, is calculated with the IR radiative transfer160

model (RTTOV, (Saunders et al., 1999)) on the grid of the auxiliary meteorological (X-MET) data and then interpolated to the

geolocation and measurement time of the MSI pixel. The X-MET dataset provides additional meteorological model parameters

required for the processing (Eisinger et al., 2022).

The details about the RTTOV forward simulation is described in Hünerbein et al. (2022). If T10.8cs is larger than T10.8, the

pixel is assumed to be cloudy.165

The probability of being cloud-free is calculated by assuming a linear probability function.

The tri-spectral window brightness temperature difference test (at 8.8µm, at 10.8µm and at 12.0µm) is only applied to

water surfaces during day time. The brightness temperatures at 10.8µm and at 12.0µm are used to detect thin cirrus clouds

and cloud edges, which are characterized by a higher brightness temperature difference (10.8µm - 12.0µm) than cloud free

surface. The pixel is detected as cloudy if:170

T10.8−T12.0 > Tdiff1_cs (6)

where Tdiff1_cs is calculated with RTTOV for each pixel for clear sky conditions.

By use of the temperature differences on 8.8µm -10.8µm thin cirrus clouds over all surface conditions can be detected. In

addition to equation 6 if the difference is relatively high compared to the clear sky condition then the pixel is classify as cloudy

if:175

T8.8−T10.8 > Tdiff2_cs (7)

The probability of being cloud-free is calculated by assuming a linear probability function. The same applies for the tri-spectral

brightness temperature difference test. Further investigation is needed to define the base threshold, which is strongly dependent

on surface and water vapor.
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Figure 3. Four groups of cloud tests to make cloudy confidences.

2.1.4 Estimation of confidence level180

The results of all tests are combined in a two-step procedure for determination of the confidence level (Fig. 3). In the first step

the overall probability for each pixel from the tests applying reflectances is derived because these tests are not independent.

This is accomplished by finding the minimum probabilityGi of being cloudy in both tests. In the next step the probability from

the brightness temperature test and the intermediate result from the reflectance tests are combined by calculation of the square

root of the multiplied values if multiple valid test results are available:185

Q= n

√√√√ N∏
i=1

Gi (8)

Otherwise the final result consists of the valid test result or is undefined. The square root of the multiplied probabilities of

a pixel being clear ensures that the overall result does not tend to cloudy pixels as it would be the case if results where solely

multiplied. This approach is considered clear-sky conservative.

2.2 M-Ctype: Cloud types190

The algorithm applies a Maximum-Likelihood-Classifier to reflectances and brightness temperatures at VIS, SWIR-2 and TIR-

2.

Before the algorithm assigns a specific cloud type for a certain pixel, the dataset needs to be trained to acquire statistics for

predefined cloud classes. This procedure is described in the following section.
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Figure 4. Observed reflectances and brightness temperatures at VIS, SWIR-2 and TIR-2 (MODIS) for the 9 ISCCP cloud classes (cirrus,

cirrostratus, deep convection, altocumulus, altostratus, nimbostratus, cumulus, stratocumulus and stratus) and seasonal separation.

2.2.1 Cloud type training using MODIS195

A large number of MODIS scenes are used to learn statistics for nine predefined cloud classes (from thin to thick clouds, high,

medium and low clouds) and one cloud free class, either over sea, land or desert covers and separated into stripes of 15 degree

latitude. Nine cloud classes are categories by using the MODIS cloud top height and cloud optical thickness based on the

ISCCP cloud classification schemes (Rossow and Schiffer, 1999). From these scenes, the mean vector and covariance matrix

are calculated for all cloud classes and one cloud free class from the visible channel, the shortwave-infrared channel and the200

infrared channel and saved in a look up table.

The region, season and surface are identified for each pixel. The regions are defined by circle of latitude in 15° steps.

The pixels are separated in four seasons (winter, spring, summer and autumn) based on the month (Fig. 4). The surfaces are

separated with the land sea mask in land, water and desert pixel. The nine ISCCP cloud classes can be clearly distinguished

between cirrus, cirrostratus, deep convection, altocumulus, altostratus, nimbostratus, cumulus, stratocumulus and stratus. Also205

a clear sky class is defined for the different surface types, regions and seasons (not shown in Fig. 4).

The statistics are then used to assign each pixel in the measured scene to a certain class by applying a Maximum Likelihood

Classifier. The algorithm assumes either a completely cloud covered or completely cloud-free pixel and does not take sub-pixel

clouds into account.
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2.2.2 Maximum Likelihood classifier210

The probability is computed for each MSI pixel to all individual classes by means of a Maximum Likelihood classifier. A pixel

is assigned to class j if the likelihood of class j is the greatest among the 9+1 classes which are relevant for the respective

surface. The maximum likelihood is found by

j = argmax

[
f(x|mi

∑
i

)

]
(9)

215

f(x|mi,
∑
i) =

1√
(2π)p

∣∣∣∑i

∣∣∣exp
[
−1
2 (x−mi)

T
∑−1
i (x−mi)

]
(10)

with x the vector of properties (reflectances and brightness temperature) in the considered channels, mi the mean vector of

class i and
∑
i the covariance matrix and p the number of Maximum Likelihood classes for the respective surface.

Though also Maximum-Likelihood-Classifier exist that does not assign a class when the maximum probability value falls

below a certain probability, the classifier applied here is a hard classifier assigning a class to every pixel with valid radiation220

data independent of the magnitude of the maximum probability.

The reliability of a maximum likelihood classification result depends on the probability pi = f(x|mi,
∑
i) for the assigned

class i and the probability for the next class j derived as pj = f(x|mi,
∑
j). The next class is determined by minimizing

argmin= [|pj − pi|] = j.

The assignments to the nine cloud classes and the clear sky class are determined for all pixels.225

2.3 M-CP: Cloud phase

The discrimination of the thermodynamic phase at cloud top is based on the spectral absorption differences in ice and water

clouds between the visible (0.67µm) and the shortwave infrared (1.65µm) as well as the brightness temperatures at 8.8, 10.8

and 12.0µm. The cloud phase categories of the M-CP algorithm include liquid water, ice, supercooled mixed-phase and cloud

overlap (e.g. multi-layer clouds). The M-CP retrieval closely follows the approach applied to AVHRR and VIIRS (Pavolonis230

et al., 2005; Pavolonis and Heidinger, 2004) as well as for MODIS (Strabala et al., 1994).

The algorithm consists of several spectral threshold tests applied to the reflectances from the VIS, SWIR and TIR channels.

The thresholds are adapted from the corresponding AVHRR channels based on Pavolonis et al. (2005). The fine tuning of these

thresholds will be done with the whole measurements suite of EarthCARE at nadir.

The algorithm starts with a series of threshold tests based on TIR-2, which follows the physical assumption that the cloud235

top phase depends on the cloud top temperature. The liquid water category includes clouds of liquid water droplets that have a

temperature greater than 273.16 K measured by TIR-2. Only non opaque cirrus clouds can also fall in that category. To detect

semitransparent cirrus clouds over optically thick water clouds, a cloud overlap test is done. The cloud overlap detection uses

the VIS, TIR-2 and TIR-3 channels. This method is adapted from the AVHRR algorithm explained by Pavolonis and Heidinger

(2004). The underlying physical theory is that the VIS reflectance will not change much when having an overlapping thin240
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cirrus cloud over a thick water cloud, while the temperature difference between both clouds results in a brightness temperature

difference of the IR window channels that is larger than predicted by radiative transfer calculations. A certain pixel is defined

as ice cloud, if the BT at 10.8µm < 233.16 K and the overlap test fails. Supercooled mixed-phase cloud pixels are assumed

based on threshold tests with the BT at 10.8µm between 233.16 K and 273.16 K.

During daytime conditions, additional tests are applied using the SWIR-1 channel, which improves the detection of overlap-245

ping and cirrus clouds.

2.4 Surface flag

The surface flag distinguishes between water, land, desert, vegetation, snow, sea ice, sun glint and undefined. While the surface

types water, land, desert and sun glint are used as input for the M-CM algorithm, the types vegetation and snow are calculated

for the cloud free pixels only, by using the Normalized Differenced Vegetation Index (NDVI) and the Normalized Different250

Snow Index (NDSI)

The NDVI is the normalized ratio of the difference in reflectance at NIR and VIS based on the red edge feature of the

vegetation.

NDV I = (ρ0.8− ρ0.6)/(ρ0.8 + ρ0.6) (11)

The NDSI is the normalized ratio of the difference in reflectance at VIS and SWIR-1. The atmosphere is transparent at both255

wavelengths, while snow is very reflective at VIS and not reflective at SWIR-1.

NDSI = (ρ0.6− ρ1.6)/(ρ0.6 + ρ1.6) (12)

The algorithm distinguishes between sparse vegetation/ocean and dense vegetation with the NDVI and identifies snow surfaces

with the NDSI.

2.5 M-CM Quality flags260

The M-CM quality flags provide pixel-based quality information for the cloud flag, the cloud type and the cloud phase products.

The quality flags distinguish between high, medium, low and poor quality. These measures do not represent probabilities, but

rather the number of tests which have been executed for the associated pixel, the consistency among the products or the surface

flag. The definitions of the individual quality flags are provided in table 1.

The results of the M-CF and M-Ctype are also combined to a final cloud mask quality flag. A high-quality flag means that265

both results are consistent.

3 Verification of the M-CM algorithm performance

The algorithm performance and processing chaining has been tested by applying the M-CM processor to scenes from the

MODIS and MSG SEVIRI instruments and atmospheric test scenes created synthetically with the EarthCARE End-to-End

simulator (Donovan et al., 2022).270
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Quality status Cloud flag Cloud type Cloud phase

High
All tests executed and results con-

sistent with M-Ctype
Results consistent with M-CF

Results consistent with BT thresh-

olds for water (BT<233.16 K) and

ice (BT>273.16 K)

Medium
All tests executed and results incon-

sistent with M-Ctype
Surface flag is ocean Surface flag is ocean

Low
Less than 50 % of the tests were ex-

ecuted
Surface flag is land Surface flag is desert

Poor
Only one test executed (e.g. for

night)
Surface flag is desert Only night tests performed

Table 1. Definitions of pixel-based quality flags (high, medium, low, poor) for the cloud flag, the cloud type and the cloud phase products.

3.1 Verification against synthetic test scenes

Three specific synthetic test scenes have been created based on forecasts from the Global Environmental Multiscale Model (Qu,

2022) to test the full chain of EarthCARE processors (Donovan et al., 2022). These test scenes cover a variety of atmospheric

situations over ocean, land and ice surface during day and night time. The natural colour RGB images of the three test scenes

are provided in the appendix A.275

It seems very appealing to verify our cloud algorithm against the test scenes, however, the results should be handled with

care because they strongly depend on the assumptions made in the model. But since no observational EarthCARE-like dataset

exists, the synthetic model dataset provides the best available proxy for testing the EarthCARE processing chain and synergistic

products (Donovan et al., 2022).

The most prominent one is the HALIFAX scene covering a 6000 km long frame starting over Greenland, crossing the eastern280

end of Canada and ending in the Caribbean (Fig. 5). The scene starts over the Greenland ice sheet with mixed-phase clouds

at night-time, transitioning from deeper clouds with tops up to 6 km around 65◦N to mixed-phase clouds with tops around

3 km at temperatures as cold as −30◦C over the eastern edge of Canada. Below there is a high ice cloud regime followed by a

low-level cumulus cloud regime embedded in a marine aerosol layer below an elevated dirty dust layer around 5 km altitude.

The original model outputs are generated for 7 December 2015 using the Canadian GEM model (Qu, 2022).285

While the binary cloud flag and cloud phase product provide results for the high-latitude part of the Halifax scene, the cloud

type product does not show results there. This is due to the night-time conditions. The Maximum-Likelihood classifier requires

also information in the visible bands, which makes it impossible to classify cloud types during night-time. For the cloud flag,

only brightness temperature tests have been applied. For this reason, the cloud mask quality flag indicates only poor quality

there.290
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Figure 5. M-CM processor applied to the Halifax scene including the binary cloud flag (M-CF) and cloud mask quality flag (upper row), the

cloud phase (M-CP) and quality flag (middle row) and cloud types (M-Ctype) and quality flag (bottom row). The light grey shaded region

indicates pixels, labeled as undefined by the processor.
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Figure 6. Reference cloud flag based on the 3D extinction fields at 680 nm for the Halifax scene. Cloud-free and cloudy areas are identified

by applying three different thresholds on the column integrated cloud optical thickness, COT≥0.01 (left), COT≥0.1 (middle) and COT≥1

(right). The resulting cloud fraction is 72 % (COT≥0.01), 61 % (COT≥0.1) and 37 %(COT≥1).

3.1.1 Verification of the M-CF cloud flag with 3D model input fields

The M-CF cloud flag is verified against the input from the 3D model fields (Donovan et al., 2022). The model cloud flag is

calculated based on the extinction profiles at 680 nm from the model input, which we consider as the reference. In the first step,

we have calculated the cloud optical thickness (COT) as the extinction of radiation along the path from the earth surface to the

top of atmosphere at 680 nm. The second step defines a certain profile as cloudy applying three different threshold, COT≥0.01,295

COT≥0.1 and COT≥1.

Figure 6 shows the reference cloud flag, based on the 3D extinction profiles for three different thresholds applied to the

COT. When assuming pixels with COT≥0.01 to be cloudy, the overall cloud fraction of the scene would be 72 %. The cloud

fraction decreases to 61 % for COT≥0.1 and to 37 % for COT≥1. This demonstrates that the reference cloud mask is very

sensitive to the choice of the COT threshold. The cloud fraction computed from the M-CF amounts to 50 %. (see Figure 7)300

The best agreement between the cloud fraction of the reference cloud flag and the M-CF cloud flag is achieved when applying

a threshold of COT≥0.1. The cloud detection sensitivity of the M-CF algorithm is clearly better than COT≥1, but in contrast

to COT≥0.1, a few cloudy pixels with probably optically thin clouds are not detected by the M-CF cloud flag.

Figure 7 illustrates the confusion matrix between the M-CF cloud flag and the reference cloud flag based on the 3D model

input considering a threshold of COT≥0.1, which is assumed to be the best choice. Both cloud flags are in good agreement305

for most parts of the scene. Only a few false cloudy pixels are visible over the ocean which are most likely thin clouds with

COT≤0.1 that are detected by MSI, but not in the cloud flag for COT≥0.1. The orange pixels in the centre of the scene show
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Figure 7. M-CF cloud flag (left) and confusion matrix between the binary M-CF and the reference cloud flag for the Halifax scene (right).

The M-CF cloud fraction is 50 %, while the reference cloud flag results in a cloud fraction of 61 %.

pixels that are detected as clear-sky by M-CF, while the reference cloud flag defines them as cloudy. This can be explained by

the fact that different thresholds are applied for snow and land surface types, but there are inconsistencies between the surface

types in the M-CF algorithm and the model data. The M-CF algorithm uses surface information from the X-MET data as input,310

while the model data uses slightly different surface specifications. The scattered false clear pixels in the lower part of the scene

are due to edge pixels of low level clouds, which are not detected by the M-CF cloud flag.

3.2 Verification against MODIS

Algorihm M-CF M-Ctype M-CF + M-Ctype MODIS

Cloud fraction (%) 52 41 69 80
Table 2. Comparison of the scene cloud fraction between M-CF, M-Ctype, the combination of M-CF and M-Ctype and MODIS.

The M-CM cloud mask algorithm has also verified against MODIS scenes. In contrast to the synthetic scenes, the MODIS

scenes do not rely on the assumptions made in the background model. We have used the MODIS Terra L1b calibrated radiances315

(MOD021KM) seven similar channels to MSI as well as global forecast data from the Copernicus Atmosphere Monitoring

Service (CAMS) as input for the M-CLD processor. Although the standard MODIS L2 cloud product are used for comparison.

Figure 8 shows the MSI M-CM cloud flag and the MODIS cloud flag for an example over West Africa on 11 September

2021 at 11:50 UTC. Both cloud flags discriminate between clear-sky, cloudy, probably cloudy and probably clear. The false

color RGB image uses the MODIS bands 1 (620-670 nm), band 4 (545-565 nm) and band 3 (459-479 nm). The MSI surface320
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Figure 8. M-CM algorithm applied to satellite data from MODIS over West Africa on 11 September 2021 at 11:50 UTC. The MODIS false

color RGB composite (using MODIS bands 1,4 and 3) is shown on the top left, the MSI surface flag on the top right, the MODIS cloud flag

on the lower left and the MSI cloud flag on the lower right. The MSI surface types 5, 6 and 7 are snow and sea ice flags, which are not present

in the present case study. While 1 (water), 2 (land), 3 (desert) and 8 (sun glint) are inputs for the processor, type 4 (vegetation) is based on

the NDVI and only calculated for clear-sky pixels in the M-CF flag.

flag separates between water (1), land (2), desert (3), vegetation (4), snow (5,6), sea ice (7), sun glint (8) and undefined (0), the

scene over West Africa has no snow or sea ice pixels. Both types, desert and sun glint represent difficulties for cloud masking

algorithms, which is why the largest differences between the MODIS and MSI cloud flag are found over these surface types.

The MSI cloud flag yields a cloud fraction of 52 %, while MODIS results in 80 %. When converting the M-Ctype cloud classes
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in a binary cloud class results in a cloud fraction of 41 %. The product is independent from M-CF, because it uses a Maximum325

Likelihood classifier. When combining both binary M-CM cloud flags into one, the cloud fraction increases to 69 % (Tab.2).

This result demonstrates that the combination of both independent M-CM cloud products leads to a better agreement with

MODIS than just using one of them. The MSI algorithm misses large parts of clouds over desert, but also over the ocean in the

upper part of the scenes there are clear differences. These differences are expected because the MODIS cloud tests are based

on much more spectral channels. For the majority of clouds, which are visible on the RGB image, the agreement between the330

MODIS and MSI cloud flag is very good.

To get more robust statistics, the cloud mask comparison has been done for the full month of September 2021. The MSI

cloud flag systematically shows a lower cloud fraction than the MODIS cloud flag. Only in cases with a strong sun glint effect,

the combined M-CF and M-Ctype cloud mask shows a higher cloud fraction than MODIS.

For assessing the overall agreement between the MSI and MODIS cloud mask, we have calculated the percentage of consis-335

tency for both clear sky and cloudy for all 45 MODIS scenes in September 2021. The results are shown in table 3.

Algorithm M-CF vs. M-Ctype M-CF vs. MODIS M-Ctype vs. MODIS M-CF + M-Ctyp vs. MODIS

full scene 80 % 76 % 65 % 79 %

no sunglint 92 % 90 % 87 % 91 %
Table 3. Comparison of the two M-CM cloud flags and the MODIS cloud flag. The agreement in % is calculated for a binary cloud flag only,

where confident cloudy and probably cloudy is merged to cloudy and for clear sky the same. For M-Ctype, all cloud types 1–9 are considered

as cloudy.

We have intercompared the M-CF versus M-Ctype products, M-CF versus MODIS, M-Ctype versus MODIS and M-CF

combined with M-Ctype versus MODIS. The overall agreement between M-CF and MODIS is 76 %. This results increases

to 79 % when combining M-CF and M-Ctype (Tab. 3). When excluding all pixels that are labelled as sun glint by the M-

CM surface flag, the agreement increases to 91 %. This finding demonstrates that large parts of the discrepancies are due to340

differences in the handling of the algorithms in scenes effected by sun glint, which will be further investigated by tuning the

thresholds with real measurements.

3.3 Verification against MSG SEVIRI

The M-CM cloud mask was also part of a cloud retrieval intercomparison study in the framework of the International Cloud

Working Group (ICWG). The ICWG supports the assessment of cloud retrievals applied to passive imagers onboard of geosta-345

tionary satellites (Hamann et al., 2014; Wu et al., 2017). Therefore, the M-CM algorithm has been applied to images from the

SEVIRI instrument onboard Meteosat Second Generation (MSG). As in the comparison with MODIS, also SEVIRI provides

similar channel characteristics like the MSI imager. Nevertheless, one should be aware that this leads to uncertainties through

the adaptation to SEVIRI due to differences in central wavelength and spectral response function, radiative transfer simulations

and generated look-up-tables.350
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Figure 9. Differences between the cloud masks of 12 algorithms for the MSG SEVIRI disk on 13 April 2008. A value of 0 means, that all

algorithms for this particular pixel set it as cloudy. The grey values mean that all algorithm agree set this pixel as cloud free. In total the

disagreement measure is normalized to 1, if the half of the algorithm classifies a pixel as cloudy and the other half as cloud free.

Different scientific institutions (e.g., EUMETSAT central facility, the Nowcasting SAF and the Climate Monitoring SAF))

provided cloud mask data for the SEVIRI disk for the intercomparison study. The individual input data has been transformed

into a binary cloud mask separating between cloudy and cloud-free. The M-CM cloud mask was with a cloud fraction of 52%

in the range of the other results ranging from 31% to 64%. Figure 9 shows the discrepancies of the different cloud masks

results. A pixel value of 0 means, that all algorithms are in agreement that it is cloudy. Grey values indicate that all algorithms355

consistently label the pixel as clear sky. A disagreement value of 1 shows that half of the algorithms classified a pixel as cloudy

and the other half as cloud free. The main discrepancies between the different cloud masks are found to be over Northern

Africa, caused by different detection thresholds for thin cirrus clouds over bright surface like desert in this case. It could also

be biomass burning aerosol that is classified as clouds by some algorithms. Another area of disagreements is the southern part

of the Arabian Peninsula and the adjacent sea.360

4 Conclusions

In this paper, the algorithms used by the cloud mask processor (M-CM) for the MSI imager onboard EarthCARE are described.

The algorithms provide the cloud flag (M-CF), cloud phase (M-CP) and cloud type (M-Ctype) products. The cloud flag and
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cloud phase at the cloud top are based on spectral threshold tests for the visible and infrared channels, while the cloud type

product is based on a maximum likelihood classifier. While the cloud type product is only available during day-time, the cloud365

flag and cloud phase products are also retrieved during night-time, although with a reduced number of tests (Fig. 1). The M-CM

products are an important input for the subsequent retrieval of the cloud optical and physical products (M-COP) (Hünerbein

et al., 2022) and the aerosol optical properties (M-AOT) (Docter et al., 2022).

In order to test the algorithm performance and to get a better impression of the products before the EarthCARE launch, the

M-CM algorithm has been verified in this study against synthetic test scenes from the EarthCARE end-to-end simulator and370

satellite data from MODIS and MSG SEVIRI.

Using synthetic test data, it is found that the M-CM products are in good agreement with the products from other processors

within the EarthCARE instrument suite and with the 3D model fields used as input to the simulator which can thus be consid-

ered as the truth. One should keep in mind that in contrast to ATLID or CPR which provide vertical profile information, MSI is

a passive instrument that retrieves cloud properties at cloud top or for aerosol and optically thin clouds, total column integrated375

information. The synergistic products using data from MSI and ATLID will help to better understand some of the uncertainties

of the MSI products (Haarig et al., 2022).

An overall agreement of 79 % was found between the MSI and the MODIS cloud flag using one month MODIS data

over Cape Verde in September 2021. The agreement significantly improves to 91 % when excluding the sun glint areas from

the comparison. Ocean areas characterized by sun glint represent some of the most challenging scenes for cloud masking380

algorithms. This indicates that further adjustments are needed for the thresholds of the M-CM cloud flag for sun glint conditions

to improve the performance. However, the MSI images are less affected by sun glint in comparison to MODIS due to the fact

that the MSI imager is tilted sideways, with 35 km of the full 150 km swath on the sun-facing side and 115 km on the other

side of the nadir track.

The M-CM algorithm has also been applied to measurements from MSG SEVIRI, and the results have been compared385

against other cloud mask algorithms in the frame of the international cloud working group. The comparison has demonstrated

that the M-CM performance lies in the range of the other cloud masks.

Planned improvements of M-CM will include dynamic thresholds for the threshold tests for the cloud flag. We propose that

this tuning should be done post-launch once real observations will be available. A tuning of the M-CM thresholds towards better

agreement with MODIS is not optimal in the current state, because of the spectral differences between MSI and MODIS. While390

MSI features 7 spectral bands, MODIS has 36 spectral bands allowing a better cloud detection performance. The advantage of

the MSI observations are in contrast to MODIS, that MSI is flying together with active instruments (e.g. ATLID and CPR) on

the same platform which will allow unique synergies of cloud products from different instruments.

The algorithm verification in the present study uses synthetic test scenes and data from other satellite platforms as basis.

During the validation phase after the EarthCARE launch, dedicated campaigns will be conducted using ground-based and395

airborne instruments, which will offer the opportunity for a more comprehensive validation of the MSI cloud products. Also

geostationary satellites will be used for the validation to support the selection of suitable validation datasets and to provide

complementary reference datasets on a global scale. Meteosat Third Generation (MTG) will be launched in 2022 in the geo-
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stationary orbit (Holmlund et al., 2021) offering with its flexible combined imager (FCI) with 16 spectral channels and up to

500 m spatial sampling excellent opportunities for the validation and synergies with the MSI products.400

Further improvements of the M-CM product are expected once real observations are available due to its flexible design based

on configuration files, which allows easy adjustment e.g. of cloud mask thresholds without modifying the source code of the

whole algorithm chain.

In contrast to the pre-launch MSI test data presented in this study, the MSI spectral bands are affected by a shift of the central

wavelength depending on the instrument viewing angle. This effect is caused due to imperfections in the bandpass filters on405

the curved optical lenses (Wehr et al., 2022; Wang et al., 2022, e.g.). Investigations are ongoing to mitigate this effect in the

Level 2 M-CLD and M-AOT retrievals. During the validation phase, aircraft measurements with high-spectral resolution will

further help quantifying the impact of the central wavelength shift on the MSI cloud and aerosol products.

Data availability. The EarthCARE Level-2 demonstration products from simulated scenes, including the MSI cloud mask products discussed

in this paper, are available from https://doi.org/10.5281/zenodo.7117115 (van Zadelhoff et al., 2022).410

Appendix A: Natural colour RGB images of the synthetic test scenes

For the three test scenes a natural colour RGB images are generated to visualise several types of atmospheric and surface

features. The natural colour RGB is composed of the VIS, NIR and the SWIR-1 channel data. The images have been linearly

stretched within the reflectance ranges to the full range of display values from 0-255 bytes to improve the contrast.

The benefit is the easy interpretation because most of the colours of the image are very similar to a true colour image of the415

Earth. Figure A1 shows the RGB images for the three test scenes, which includes clouds, snow, vegetation, sun glint and clear

skies. Snow on the ground as well as ice over mountains, frozen lakes and sea ice appear cyan in the RGB images (Fig. A1, b).

The more homogeneous the snow/ice cover is, the brighter the cyan colour will be. Snow and ice on mountains will therefore be

depicted in a stronger cyan colour than snowy surfaces on ground which are often disrupted by vegetation. In addition, clouds

with ice crystals appear as well cyan in the RGB images (Figure A1, a) as the ice crystals reflected at 0.67-µm and 0.865-µm420

and absorb solar radiation at 1.65-µm. Further the different cloud heights, ice crystal habits and sun zenith angles lead to

inhomogeneous colour pattern. The ocean and lakes in the RGB images appear in dark-black colour (Fig. A1, c). Vegetation is

indicated by green colours because of the stronger reflection of solar radiation at 0.865-µm than at 0.67-µm (Fig. A1, a, e.g.

Halifax Caribbean island). For detailed information how to interpret RGB images see the RGB-color-guide (Eumetrain, 2022).

Author contributions. The manuscript was prepared by AH, SB and HD. The M-CM code was developed by AH and SH. AW generated the425

dataset and created the plots for the ICWG results.
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Figure A1. Natural colour RGB images generated from the MSI VIS, NIR and SWIR-1 channels for (a) HALIFAX, (b) BAJA and (c)

HAWAII (Donovan et al., 2022).
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