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Abstract.

Quantifying regional water and energy fluxes much more accurately from observations is essential for assessing the capa-

bility of climate and Earth system models, and their ability to simulate future change. This study uses satellite observations to

produce monthly flux estimates for each component of the terrestrial water and energy budget over selected large river basins

from 2002 to 2013. Prior to optimisation the water budget residuals vary between 1.5 % and 35 % of precipitation by basin,5

and the magnitude of the imbalance between the net radiation and the corresponding turbulent heat fluxes ranges between 1

Wm−2 and 12 Wm−2 in the long-term average. In order to further assess these imbalances, a flux-inferred surface storage

(Sfi) is used for both water and energy, based on integrating the flux observations. This exposes mismatches in seasonal water

storage as well as important interannual variability between GRACE and the storage suggested by the other flux observations.

Our optimisation ensures the flux estimates are consistent with total water storage changes from GRACE on short (monthly)10

and longer timescales, while also balancing a coupled long-term energy budget, by using a sequential approach. All the flux

adjustments made during the optimisation are small and within uncertainty estimates using a χ2 test, and interannual variabil-

ity from observations is retained. The optimisation also reduces formal uncertainties on individual flux components. When

compared with results from previous literature in basins such as the Mississippi, Congo and Huang He river, our results show

better agreement with GRACE variability and trends in each case.15

1 Introduction

The terrestrial water cycle largely determines the Earth’s climate and causes much of the natural climate variability. Variations

and long-term changes to the water cycle can have profound impacts on regional agriculture, ecosystems and society. The

surface energy budget is a key driver of the global water cycle, as well as having large influence over atmosphere and ocean

dynamics and a variety of surface processes. Despite the fundamental importance to our understanding of climate and climate20

change, there remain some key challenges to quantifying the regional water and energy cycling rates. In particular observations

of the flux and storage terms tend to have large uncertainties and are inconsistent with budget considerations, while model

estimates are internally consistent but usually show some mismatches to observations (e.g., Dong et al., 2020).
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We assume water balance by:

P−E−Q =
dS

dt
. (1)25

This states that the precipitation (P) falling over an area, combined with the loss of water to the atmosphere through evaporation

(E), and the horizontal loss of water through runoff (Q), is balanced by the change of water storage dS
dt in the area. The

availability of GRACE satellite gravitational measurements of total water storage anomalies (S) since 2002 (Tapley et al.,

2019) has provided a valuable constraint to aid understanding of the other water budget components. Previous literature has

used the budget equation to test the accuracy of observations (Reeves Eyre and Zeng, 2021) and to validate model estimates30

(Long et al., 2015). Several studies also exist which use the budget equation to estimate one component using observations for

the other terms (Chen et al., 2020; Wang et al., 2015; Sheffield et al., 2009). For instance, Chen et al. (2020) provide a new

estimate of seasonal and yearly river runoff changes for the Amazon basin using the water budget closure method, and Rodell

et al. (2011) use budget closure to estimate evaporation.

Recent developments in satellite retrievals has meant that budget closure can be assessed purely from remotely-sensed35

data sources (Sheffield et al., 2009). However, water fluxes are still affected by considerable uncertainties, which has been

highlighted in many water budget studies when independent products are combined. For example, Sheffield et al. (2009) used

the budget equation taking Q as a reference variable and found significant errors that were larger than the observed Q taken

from in situ measurements. A common approach among previous water budget assessments is to use a range of products for

each flux component and evaluate the ability of different combinations to close the water budget. For example, Lehmann et al.40

(2022) investigated budget closure at catchment scales using 11 precipitation, 14 evaporation and 11 runoff datasets, together

with GRACE. The study concluded that no one combination of data sources can close the budget well for all regions. It was also

highlighted that regions where selected data sources did close the budget reasonably well, could be as a result of cancellation

of errors. The multi-source strategy has the potential to compensate for the limitations of each individual estimation method in

terms of its accuracy, spatial and temporal coverage. However, combining multiple sources can introduce a new challenge of45

how to allow for discrepancies between the different data products. Lehmann et al. (2022) determined uncertainties for each

flux based on the inter-product spreads, which is the common way to treat uncertainties when multiple products have been used

(e.g., Abolafia-Rosenzweig et al., 2021). Resolving the uncertainty among the various estimates for a specific variable remains

an underlying challenge in using both in situ measurements and remote sensing observations (Pan et al., 2012).

Non-closure errors can come from the complexities in deriving energy and water fluxes from remote measurements. This50

process involves independent algorithms that use distinct observations and assumptions which can be subject to both random

and systematic errors (L’Ecuyer et al., 2015). Since each flux dataset may be developed in isolation, valuable energy budget

and water cycle closure information is lost. Then reintroducing budget closure as a constraint may help to reduce biases in

these datasets.

Several studies exist which produce best estimates for all components in order to close the budget (e.g., Sahoo et al., 2011).55

Different techniques are seen to impose closure constraints; such as Kalman-filters (Pan et al., 2012; Zhang et al., 2018),

post-filtering (Munier et al., 2014; Aires, 2014), and variational methods (Rodell et al., 2015; Hobeichi et al., 2020). Abolafia-
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Rosenzweig et al. (2021) focused on human impacts on the water cycle and produced a remotely sensed ensemble of the

terrestrial water budget (REESEN) containing 60 unique realisations of the water budget for basins between 50◦ S and 50◦ N,

over Oct 2002-Dec 2014. Three different closure techniques were applied to all ensemble members in order to produce three60

ensembles of "corrected" budget estimates. Zhang et al. (2018) produced a climate data record (CDR) for the period 1984-2010

which provides monthly 0.5◦ resolution global estimates of each flux component while closing the budget using a constrained

Kalman-filter.

Typically, these methods produce new monthly estimates for each flux by adjusting input observations according to defined

errors in order to achieve complete budget closure (Aires, 2014), or to achieve a budget residual within allowed errors (Hobeichi65

et al., 2020). Errors are often based on inter-product spread Abolafia-Rosenzweig et al. (2021) or based on discrepancies with

non-satellite data (Sahoo et al., 2011). Crude approximations are also sometimes used when representing errors, for example,

Munier et al. (2014) supposed constant errors for P and E of 10 cm, and 10 % of the mean discharge for Q. Such assumptions

are made due to the absence of any comprehensive study that quantifies errors at the global or regional scales for each of the

datasets used (Munier and Aires, 2018).70

Zhang et al. (2018) adjust fluxes according to the deviation from the ensemble mean of all data sources for the same budget

variable. In a post hoc adjustment, (Zhang et al., 2018) also remove any long-term storage trend by redistributing the non zero

mean dS between the precipitation and the evaporation in a way that maintains budget closure. However, most other studies

that close the water budget on a monthly timescale fail to consider total water storage over longer timescales. The GRACE

timeseries does provide water storage information on all timescales longer than one month, and so when only using monthly75

changes as input information can be lost. Post hoc detrending (Zhang et al., 2018) is also incorrect for regions where GRACE

does detect a trend in storage, e.g. Wang et al. (2015) found significant trends in water storage in 11 out of the 19 basins studied.

In addition GRACE data often reveal interesting interannual variations in basin water storage which will not necessarily be

reproduced by most previous approaches (examples will be shown later). One key aim of this study will be to produce balanced

water budgets which agree with the inter-annual variability and long-term trends observed by GRACE. Since the other fluxes80

P, E and Q are linked to dS
dt via Eq. (1), the use of the additional information given by GRACE storage should also provide

more accurate constraints on these fluxes. The problem considered here involves only linear budget equations, which means

there will always be a unique monthly solution that will not depend on the choice of optimisation algorithm. The advance

we present comes from the constraints imposed and alternative optimisation algorithms should give the same results. To the

authors’ knowledge, no previous efforts have been made to fully fit flux estimates to GRACE during budget closure.85

The surface energy balance can be described by the incoming energy from downwelling shortwave and longwave radiation

(DSR and DLR respectively), and the outgoing energy from the longwave flux (ULW), reflected shortwave flux (USW) and the

turbulent heat fluxes latent and sensible heat (LE and SH respectively). Fluxes are taken to be positive when directed towards

the surface, therefore, the energy budget can be written as

DSR+DLR−USW−ULW−LE−SH = NET (2)90

3



where NET is the total energy absorbed by the surface. The water and energy cycles are coupled due to the exchanges of latent

heat that occur during precipitation and evaporation and so we will also include a regional coupled energy budget closure in

our analysis, with a particular focus on seasonal to interannual variability, and the interactions with the water cycle.

Without limitations on water availability, evaporation increases with increasing temperature which must be balanced by an

increase in precipitation. Additionally, warmer air can hold more moisture, about 7 % more water vapour for each degree95

Celsius of warming, and so, evaporation and precipitation are projected to intensify as consequence to changes in the Earth’s

energy balance (IPCC, 2013).

The coupling between the water and energy budgets enables them to provide constraints on one another, however, most

previous studies have performed water or energy budget analyses independently. The NASA Energy and Water cycle Study

(NEWS) derived an optimised coupled global-continental scale budget with Rodell et al. (2015) focusing on water and the100

parallel energy budget L’Ecuyer et al. (2015), for the period 2000–2010 focusing on satellite derived data as far as possible.

Thomas et al. (2020) extended the NEWS coupled approach focusing on improving ocean basin fluxes. Hobeichi et al. (2020)

then developed a regional coupled approach over land areas producing the Conserving Land–Atmosphere Synthesis Suite

(CLASS) which solves for monthly water and energy budgets at 0.5◦ grid scale from 2003–2009. Data-driven global flux

estimates are subject to uncertainty due to the lack of energy balance closure. In order to mitigate this, some data sources look105

to account for energy balance within their products. For example, FluxCOM products undergo three different energy balance

closure corrections for LE and SH (Jung et al., 2019).

This study aimed to produce a new optimisation methodology which is able to account for both short and long timescales.

Using this new methodology, this study produces optimised estimates for each of the the water and energy budget components,

based on observations. It aims to ensure that the estimates are consistent with GRACE on a monthly timescale, as well as110

in agreement with any interannual and long-term storage trends, and that the total energy lost or absorbed by the ground

over this time period is small. The estimates are also constrained to close the monthly water budget whilst accounting for

the uncertainties of the observations. The paper is organised as followed, Sect. 2 describes the data used as input for the

optimisation, Sect. 3 describes the methodology used in the study, results are shown in Sect. 4. Optimisation uncertainties are

included in Sect. 5 and a discussion is included in Sect. 6, before concluding in Sect. 7.115

2 Data

Each of the data sets described in this section has a monthly resolution and has been interpolated at a 0.5◦ spatial resolution,

and then masked and spatially averaged over different basins chosen in this study. Flux data sets represent the average flux over

each calendar month and therefore is considered to represent the flux mid-month. The input data sources used are summarised

in Table 1. For this study, data for each variable was downloaded for each months between October 2001 and December 2013.120

Other water budget studies have often used an ensemble of products to represent input observations in the absence of any

widely accepted “best dataset”. In this study we use only a single data product for each component, which we account for in

our uncertainty calculations. We aimed to use Earth observation data where possible and sought global gridded products to
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Data source Variable Dataset type Spatial resolution Key references

CERES EBAF_Ed4.1. Radiative fluxes Satellite 1◦ Wielicki et al. (1996)

GRACE-JPL MAS-

CON CRIv01

Water storage

anomaly

Satellite 0.5◦ Wiese et al. (2016)

FluxCOM Sensible heat

Latent heat

Merged product 0.5◦ Jung et al. (2019)

GPCPv2.3 Precipitation Merged product 2.5◦ Adler et al. (2003)

GRUNv1.0. Runoff Merged product 0.5◦ Ghiggi et al. (2019)
Table 1. Data sources

ensure uniformities of uncertainties across all basins. Overall the specific datasets chosen were not critical as our primary goal

was to evaluate our new optimisation methodology, and its ability to bring independent products into consistency.125

2.1 GRACE

Water storage data is taken from the Gravity Recovery and Climate Experiment (GRACE). GRACE measures changes in the

Earth’s gravity field, which is directly correlated to the change in surface mass and is indicative of water storage change. The

water mass anomalies are expressed in terms of equivalent water thickness and represent the deviations of mass in terms of

vertical extent of water in centimeters. All water storage compartments including snow, surface water, soil moisture, and deep130

groundwater are accounted for (GravIS, 2021).

The GRACE data were processed using an advanced mass concentration ("mascon") approach that enables improved signal

resolution relative to the standard spherical-harmonic technique (Rodell et al., 2018). It acts across coarse spatial and temporal

scales and requires filtering prior to being interpreted. The processing chain of GRACE data involves a large number of

corrections and uncertainties that introduce errors and impose restrictions on its use (Swenson and Wahr, 2006). One of the135

most important errors is the signal leakage between neighboring grid cells caused by the truncation of spherical harmonics

and Gaussian filtering (Landerer and Swenson, 2012). The version used here is the MASCON JPL RL06_v2, which uses a

Coastline Resolution Improvement (CRI) filter applied to separate the land and ocean portions of mass within each land/ocean

mascon in a post-processing step. The relative magnitude of ocean and land leakage errors is primarily a function of how the

mascon placement conforms to the coastline. The CRI filter acts to reduces leakage errors across coastlines. Wiese et al. (2016)140

quantifies the associated errors in determining mass variations for different basins. On average, measurement errors dominate

leakage errors (mean error of 8.3 mm versus 5.1 mm), particularly for larger basins, as the fraction of fully contained mascons

in the basins increases.

The data is provided with 0.5◦ resolution grids and time given as days since 2002-01-01T00:00:00Z. Storage values are

provided per calendar month but these must be converted into storage changes, dS, over each month. In the literature, several145

different methods have been used such as centred difference schemes (Zhang et al., 2018), backwards difference schemes
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(Hobeichi et al., 2020) and fourth difference schemes (Reeves Eyre and Zeng, 2021). Here we use simple centred differences,
dS[i]
dt = (S[i+1])−S[i− 1])/2t for month i.

There were a small number of months of missing data which were filled with monthly climatology plus temporal interpola-

tion of monthly storage anomalies.150

2.2 GPCPv2.3

Precipitation data is taken from the Global Precipitation Climatology Project (GPCP) version 2.3, see Adler et al. (2016). GPCP

provides monthly precipitation data from 1979-present and aims to provide a globally coherent dataset of precipitation (Adler

et al., 2003). It combines observations and satellite precipitation data into 2.5 ◦ global grids. The product employs precipitation

estimates from the 0600 and 1800 low-orbit satellite Special Sensor Microwave Imager (SSM/I) and Special Sensor Microwave155

Imager and Sounder (SSMIS) passive microwave data to perform a calibration of infrared data from the international collection

of geostationary satellites in the latitude band 40° N-40° S. The satellites include NOAA’s Geostationary Operational Envi-

ronmental Satellites (GOES) and the calibration varies by month and location (Adler et al., 2016). Absolute magnitudes are

considered reliable and inter-annual changes are robust. Precipitation may be underestimated in mountainous area, however,

version 2.3 has improved on this compared to previous versions (Adler et al., 2016).160

2.3 GRUNv1

Runoff data is taken from the GRUN dataset. GRUN provides a global gridded reconstruction of monthly runoff covering the

period 1902-2014 at a 0.5◦ spatial resolution (Ghiggi et al., 2019). The dataset uses a global collection of in situ streamflow

observation to train a machine learning algorithm that predicts monthly runoff rates based on antecedent precipitation and

temperature from an atmospheric reanalysis. The precipitation and temperature data are obtained from the Global Soil Wet-165

ness Project Phase 3 (GSWP3) dataset version 1.05 (Kim and Oki, 2017). The in situ runoff observations are derived from

the Global Streamflow Indicies and Metadata Archive (GSIM) (Do et al., 2018), which consists of 35002 streamflow stations.

Model validation is based on cross-validation experiments using datasets such as the Global Runoff Data Centre (GDRC) Ref-

erence Dataset (GRDC, 2020) and runoff simulations from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)

(Warszawski et al., 2014). Different metrics are used to assess the skill of the runoff reconstruction. For large GRDC river170

basins, the relative bias (which has an optimal value of 0) had a median of 0.047, the squared correlation coefficient, R2, had

a median of 0.738 and the ratio of standard deviations (optimal value of 1) had a median of 1.004. Overall, the agreement is

said to be satisfactory, although there is a tendency to underestimate runoff rates when the magnitude increases (Ghiggi et al.,

2019).

2.4 FluxCOM175

Latent and sensible heat data come from FLUXCOM using the RS+METEO set up. FLUXCOM uses machine learning to

merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to
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estimate net radiation, latent and sensible heat and their uncertainties. Using three different machine learning algorithms, en-

ergy balance closure correction constraints, and climate forcing data from various sources as predictors, a large ensemble of

gridded flux products are generated (FluxCom, 2021). A lack of energy balance closure of around 20 % was observed across180

FLUXNET sites, which was addressed using three different approaches based on hypotheses regarding primary cause of the

energy balance closure gap. Closure corrections include the Bowen ratio correction, which assumes that the ratio of sensible

and latent heat is accurately measured, and a “residual approach” which reallocates missing energy to other flux components

(Jung et al., 2019). The data is provided on 0.5◦ global grids. FLUXCOM ensemble products provide uncertainties per grid

cell and time step. Uncertainties can arise from empirical upscaling, the choice of machine learning algorithm and the predictor185

variables.

2.5 CERES

This study takes radiative flux data from the Clouds and Earth Radiative Energy System (CERES); a multi-satellite measure-

ment program for monitoring radiation. CERES instruments were designed to provide accurate measurements for the long-term190

monitoring of Earth’s reflected shortwave and emitted longwave radiances as part of its radiation energy budget (Loeb et al.,

2016). Seven CERES instruments on five satellites have been launched (TRMM, Terra, Aqua, S-NPP, NOAA-20). Each CERES

instrument has three channels: a shortwave channel to measure reflected sunlight, a longwave channel to measure earth-emitted

thermal radiation in the 8 to 12 µm “window” region, and a total channel to measure all wavelengths of radiation. Onboard

calibration sources include a solar diffuser, a tungsten lamp system with a stability monitor, and a pair of blackbodies that can195

be controlled at different temperatures (Wielicki et al., 1996). The CERES record is highly stable and has twice the spatial res-

olution and improved instrument calibration compared to the ERBE record (Acker et al., 2014). Here we use the latest version

CERES EBAF Ed4.1. This version uses new clear-sky fluxes determined for the total region to determine TOA and surface

Cloud Radiative Effects (CREs). Uncertainties are primarily determined by comparing EBAF surface fluxes with observations

at surface sites over land and buoys over ocean (Kato et al., 2018).200

2.6 Initial uncertainties

Many previous water budget studies have dealt with uncertainties by solving for multiple data products for each component

and using the spreads as a measure of uncertainty. We have only used single data products here although the uncertainties

applied are based on prior studies that have taken multiple products to estimate uncertainties, in particular the NEWS analysis

(L’Ecuyer et al., 2015; Rodell et al., 2015). Product uncertainties are very hard to estimate on regional scales because of205

unknown spatial error covariances. In situ calibration based errors may be correlated on small spatial scales but are likely to

be uncorrelated on larger spatial scales. In addition many product errors may scale with flux amplitudes, and some previous

studies have therefore assigned uncertainties as a percentage of flux amplitudes.

Here, in order to give a traceable method, we have taken the continental scale uncertainty estimates from the NEWS papers

above and downscaled them to river basin scales while assuming that errors are uncorrelated between river basin scales and210
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continental scales. This leads to the following relationship between basin scale and continental scale flux uncertainties;

σf =
√
(f/F ).(A/a).ΣF (3)

where σf is the basin scale uncertainty on flux f over basin area a, and ΣF is the continental scale uncertainty on flux F

over continental area A. If the errors were assumed to correlate between scales the simpler uncertainty scaling as a % of flux

amplitudes would apply.215

However GRACE does not measure a flux but rather the strength of the gravitational field anomaly. To calculate the dS

uncertainties we use the basin values proposed by Wiese et al. (2016) for the JPL RL05M GRACE Mascon solution. Their

method combines measurement uncertainty (ϵm) and leakage uncertainty (ϵl) to produce an uncertainty for storage (σS). We

then calculate uncertainty in storage change between any two months (σdS), assuming errors are uncorrelated from one month

to another;220

σS =
√
ϵ2m + ϵ2l , σdS =

√
2σS . (4)

We show examples of both input and optimised uncertainties later in the paper.

2.7 Study area and period

Figure 1. Location of 20 selected large basins. Colouring is associated with basin size.

For this study we focus on large river basins. The Mississippi, the Amazon, the Huang He (Yellow River), the Congo and the

Amur are selected for more detailed analyses in this paper, based on storage trends seen in GRACE and overlapping regions225

with other studies to enable comparisons. Additional results for a larger range of basins are shown in the Appendix. This study

is carried out for 2002-2013 due to the availability of selected data products.
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The basins selected capture a range of imbalances in their observed budgets from the initial data, including basins with

strong interannual variability, basins from a variety of latitudes, and basins that have other optimised flux products already

in the literature. We are also restricted to larger basins, preferably with simple basin boundaries and these will have smaller230

GRACE storage errors as described in Wiese et al. (2016).

3 Methods

3.1 Inferred storage from observations

For both water and energy budgets we find it useful to calculate a surface storage anomaly which we call the flux-inferred

storage (Sfi), being a time integral of the total fluxes in and out of a region. This quantity highlights flux imbalances, seasonal235

cycles, interannual variability and trends very clearly and will also be used in developing the optimisations. For example for

water we generate Sfi,w using observations from the right hand side of Eq. (1).

If we have an initial storage anomaly we can generate a storage by integrating dS
dt with respect to time. For water we take S[0]

to equal to GRACE storage anomaly from 1st January 2002 and use this to initialise the Sfi,w time series.240

Sfi,w[t] =

t∫
0

(
dS

dt

)
dt+S[0] =

t∫
0

(P−E−Q)dt+S[0]. (5)

If the initial fluxes were consistent with GRACE this should produce the GRACE time series, which prior to optimisation it

does not. Also, if there are any persistent imbalances in the fluxes this shows up as a strong trend in Sfi,w. We also produce a

detrended flux inferred storage (SD
fi,w), in order to help emphasis imbalances in the seasonal storage cycle relative to GRACE.

A similar energy flux inferred storage anomaly can also be generated from the energy balance (Eq. 2).245

Sfi,e[t] =

t∫
0

(NET)dt=

t∫
0

(DSR+DLR−USW−ULW−LE−SH)dt. (6)

Again the Sfi,e will show up any seasonal cycle in surface warming, interannual variations, and long-term imbalances

very clearly. A detrended flux inferred energy storage (SD
fi,e) which assumes long-term NET to be zero is also used in the

optimisation to implement the long-term constraint.

3.2 Optimisation250

Through an optimisation approach we produce monthly estimates of the water and energy budget components aiming to satisfy

the following; 1.) minimise the distance from observed fluxes according to their relative uncertainties 2.) close the monthly

water budget and long-term energy budget 3.) ensure the water and energy components are consistent 4.) ensure the total water

storage implied from our optimised fluxes is with good agreement to total water storage from GRACE. The reasoning behind
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4.) and methods to achieve this are described in detail section 3.2.1.255

When combining observations from independent data products described in Sect. 2 we see an imbalance in the monthly water

budget (Eq. 1). For the energy budget (Eq. 2) we generally do not have a monthly estimate of NET against which to assess

imbalances, although we do have an expectation that the long-term mean NET = 0, however consider for the moment that

monthly NET is also constrained. If we write the monthly water and energy budget variables in a column vector Fobs, where260

subscript ‘obs’ denotes observed values, then Eq. (1) and (2) can be expressed as a linear function of Fobs. Let A and B

represent the water and energy budgets respectively

AFobs = rw ̸= 0 (7)

BFobs = re ̸= 0 (8)

rw represents the water budget residual and re represents the energy budget residual, which we will also write together as265

residual vector R appearing later. The optimisation acts to adjust the observed fluxes to close the budgets by redistributing rw

and re to get R = 0. We aim to find a new column vector F containing the optimised estimates we seek,

F = Fobs +a (9)

Where a is a vector of the same size as F containing adjustments, such that Aa = -rw and Ba = -re. In order to calculate F

for month k, a cost function is setup as follows270

J [k] =
1

2
(F −Fobs)S

−1
obs(F −Fobs)

T +λAF +µBF . (10)

Closure constraints are imposed via Lagrange multipliers (λ and µ). Sobs is a covariance matrix containing flux variances on

the diagonals. The off-diagonal elements would represent error covariance between input fluxes. In nearly all previous literature

(Sheffield et al., 2009; Abolafia-Rosenzweig et al., 2021; Hobeichi et al., 2020) the covariance matrix is assumed to be diagonal

as shown in (Eq. 11), although correlated errors may well be present due to the structural assumptions used for deriving Earth275

Observation (EO) based surface fluxes. We will discuss the potential impact of such error covariances in Sect. 6.

Sobs =


σ2
P 0 . . . 0

0 σ2
Q . . . 0

...
...

. . .
...

0 0 . . . σ2
NET

 (11)
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The cost function is minimised by setting the derivative with respect to each variable (F, λ,µ) to zero. This results in the

following constraints280

(F −Fobs)S
−1
obs +λA+µB = 0 (12)

AF = 0 (13)

BF = 0. (14)

These constraints are then used to calculate values for µ and λ, and solve for F via the least squares method.

285

The equations above allow to balance water and energy budgets each month and can be solved independently every month,

as has been done in previous literature (Pan et al., 2012; Abolafia-Rosenzweig et al., 2021; Hobeichi et al., 2020). However

the resulting solutions will not necessarily give sensible longer timescale water or energy budgets. The optimised values of dS

would not integrate to give a sensible trend or follow the observed variations of GRACE on longer timescales. Similarly there

is nothing to ensure that the integrated NET energy flux would remain realistically small, even if a monthly NET flux prior290

were available to use in the optimisation.

3.2.1 Sequential method for water budgets

One approach to imposing longer timescale constraints on the solution would be to make a single optimisation over all months

together simply by extending the F vector, and including additional constraints on the sum of all the monthly water and energy

storage changes. This may work well for energy where the only long-term constraint is on the NET energy flux, and is the295

approach used by NEWS (L’Ecuyer et al., 2015), however it would still not allow to follow seasonal to interannual water

storage information present in the GRACE data.

Instead we opt for a sequential monthly approach. The monthly budget solutions are then not independent but take stock of

previous optimisations as well as the observed GRACE storage change from the start of the period up to the present time. The

optimisation acts to minimise the distance of the Sfi,w generated from optimised fluxes with GRACE storage change at the300

end of each month, according to GRACE uncertainties. This constraint requires a term in the cost function of the form;

(Sfi,w[k]−S[k])2σ−2
dS , (15)

which must be adapted in order to solve for dS
dt . For an arbitrary month k the optimised Sfi,w will be equal to the optimised

Sfi,w for month k− 1 plus the optimised dS
dt for month k

Sfi,w[k] = Sfi,w[k− 1]+
dS

dt
[k]. (16)305

By using Eq. (16) to rewrite Sfi,w[k], we produce a term compatible with our cost function (Eq. 10) in order to impose the

constraint described by Eq. (15) whilst solving for dS
dt [k]

(
dS

dt
[k]− (S[k]−Sfi,w[k− 1])

)2

σ−2
dS . (17)
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Note that implementing this constraint only requires adapting the Fobs vector in the cost function. This requires Sfi,w[k− 1]

to be known when solving for month k, which is only possible when solving sequentially. The optimisation is performed for310

all months between January 2002 and October 2013. Figure 2 gives an overview of these steps.

Figure 2. Overview figure of methodological steps.

The optimised fluxes are then integrated to produce the surface storage anomalies they would imply, as described in Sect.

3.1, labelled as “Our Optimised Storage” in the figures below.

3.2.2 Sequential method for energy budgets

Returning to Eq. (2) we note that generally we have no monthly constraints on either the surface energy storage or on the NET315

energy flux which could be used in a monthly optimisation. Although local measurements of ground heat flux are available

from some flux tower sites, which have been used in previous energy budget studies (Hobeichi et al., 2020), these NET fluxes

are very poorly observed, are associated with large uncertainties even locally, and are not available at basin scales. We have

chosen not to use any independent NET prior and will comment on the consequent variability in surface energy storage results.

We do apply a minimal constraint on the prior monthly energy fluxes aimed only to give a small long-term NET energy320

storage change during optimisation. To do this we make use of the Sfi,e. When combining the observed energy fluxes to obtain

NET and averaging over the whole time period we see large imbalances, varying by basin, shown in Fig. 3. Therefore when

integrating NET over time to infer the Sfi,e, large trends are generally found, see Fig. 9. First we detrend the Sfi,e, which
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Figure 3. NET downward energy flux derived from CERES radiative fluxes and latent and sensible heat fluxes from FluxCOM, averaged

over 2002-2013.

is equivalent to removing the mean NET flux, to close the long-term energy budget, while preserving any interannual and

seasonal variability. This detrended Sfi,e (SD
fi,e) is then used as a sequential monthly energy storage constraint in the same325

approach used to constrain the long-term water storage changes to GRACE in the previous section, using a cost function term

during month k on NET[k];(
NET[k]− (SD

fi,e[k]−Sfi,e[k− 1])
)2

σ−2
NET . (18)

This SD
fi,e based on the original fluxes, plays a similar role as the GRACE water storage change observations from the start

to the current month, and ensures that the optimisation removes the NET energy trend over 2002-2013 without providing any330

further constraints on monthly to interannual variability for any of the component fluxes. The σNET uncertainty we use here

can be large and we chose a value equivalent to the combined component flux uncertainties expressed in Eq. (2). This has

the advantage to ensure the optimised energy fluxes do not lead to any divergence in surface energy storage. However, it does

assume there is no change in energy storage in this time period, which is not backed by any additional data, such as land surface

temperature that might give more information about energy storage anomalies.335

3.2.3 Goodness of fit

The consistency of the optimisations with the uncertainties provided are expressed by the χ2 measure. This represents the value

of the cost function (Eq. 10) and is calculated using the following formula,

χ2 =
n∑

i=1

(F [i]−Fobs[i])
2

σ2
F [i]

(19)

where n is the number of fluxes contained in vector F . Generally χ2 should be smaller than the number of independent variables340

being constrained (n).
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3.2.4 Temporal smoothing

Tight closure constraints imposed during the optimisation can result in high-frequency oscillations in the optimised flux so-

lutions (Pellet et al., 2019), particularly for the water budget. Therefore we applied some temporal smoothing to the input

observations to de-noise the time series, although this may also suppress some information. Pellet et al. (2019) use a similar345

(although slightly smoother), filter and concludes after comparison with other filters that it is a good compromise between

these two affects of smoothing.

GRACE and energy storage are smoothed with weights 1
8 ,

3
8 ,

3
8 ,

1
8 which is equivalent to smoothing monthly changes, dS,

NET, with the central weights ( 18 ,
1
4 ,−

1
4 ,−

1
8 ) used by Eicker et al. (2015). P, Q, E and energy fluxes are smoothed using

weights 1
22 ,

1
4 ,

9
22 ,

1
4 ,

1
22 . This choice of weights ensures that the amplitude of a sinusoidal signal would be damped in exactly350

the same way as is being applied to storage changes, so that the right and left sides of Eq. (1) and Eq. (2) would be treated the

same, (Eicker et al., 2015).

At the time of this study, all data were available to us from January 2001 until December 2013. As this selected method

of smoothing requires values from two preceding and two following months, our smoothed time series ends October 2013.

Averages seen later in results include only complete years (January 2002-December 2012).355

4 Results

4.1 Water fluxes

Figure 4 shows both the input and optimised water fluxes over 3 large basins, the Amazon, Congo and Mississippi, on a

monthly (right) and as a mean seasonal cycle (left). The adjustments made by the optimisation in order to balance the water

budget are always small and usually within 1 standard deviation (SD) of initial uncertainties. To give an idea of the imbalance,360

monthly residuals are also shown, and the root mean square (RMS) of these residuals is around 40-45 % of the RMS of the

GRACE storage changes and around 5-15 % of the RMS of precipitation, for each basin. Any interannual variability present

in the observations is retained by the optimised fluxes.

Over the Amazon the seasonal cycle in precipitation largely converts directly into storage variations, with a smaller seasonal

runoff signal lagging by around 3 months reflecting the large basin size and slow runoff. Evaporation is almost constant through365

the year reflecting the constantly moist rain forest conditions, with the very small adjustments making E even more uniform.

The residual in the water budget also shows a regular seasonal cycle, but anti-correlated to precipitation. The optimisation acts

to increase P and decrease Q from November-March when precipitation peaks, while the adjustment is mainly an increase in

Q from June-August, which has the effect of prolonging the runoff peak. where the adjustment occasionally exceeds 1 SD. For

these months there are lower uncertainties on P and E, hence most of the residual has been distributed to Q.370

The Congo’s precipitation is characterised by biannual peaks as the Intertropical Convergence Zone (ITCZ) migrates across

the Equator. The primary maxima occurs towards the end of the year and the secondary maxima occurs in May. The bimodal
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Figure 4. Water budget fluxes. Observed values are shown by the dashed lines and optimised values from our study are shown by the solid

lines. The shaded regions show uncertainty of the observed values. Observed fluxes and derived products shown here and later plots are all

temporally smoothed as described in Sect. 3.2.4. Mean seasonal cycles are shown left.

peaks are also seen in the Q and E fluxes. There is also considerable interannual variability in the precipitation. The small

optimisation adjustments are not easily summarised in a regular seasonal pattern.

Unlike the other two basins, over the Mississippi the storage changes are almost out of phase with the precipitation. This375

reflects the dominance of storage in snow as a key controlling mechanism. The maximum runoff then occurs before the peak

precipitation, indicative of snowmelt followed by early summer rains. Much of the seasonal Precipitation peak is balanced by

evaporation which exceeds precipitation in July and also coincides with the largest reductions in storage. There are some very

low precipitation years such as 2006 and 2012. Due to the larger role of evaporation in this basin, the optimisation also shows
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a consistent E increase from July-December each year. We will look at this in more detail when considering the coupling to the380

energy budget.

It can be seen that monthly adjustments remain small relative to the uncertainties, and these flux products are not therefore

being independently “validated” on these timescales. However the benefit of our approach is shown over longer timescales

below.

4.2 Total water storage385

Greater insight into the fitting process and the changes involved are illustrated best by plotting the time history of surface water

storage for a number of basins (Fig. 5). This quantity is very sensitive to flux imbalances, as small monthly imbalances accu-

mulate and can cause unrealistic long-term storage changes. The left hand plots show the GRACE storage "target" variability

in orange and the flux-inferred storage (Sfi,w) from raw observations, dashed purple. For some basins these already match

reasonably well e.g. Congo, but for others the raw observations show large trends and the (Sfi,w) disappears off plot. Further390

details can be seen when looking at the (SD
fi,w), solid purple. Here the NET water fluxes have been detrended (D) to be con-

sistent with the GRACE changes over the whole period, but are otherwise unaltered, which allow the plot to show differences

in the seasonal storage cycles. Over the Amazon it is clear that the seasonal storage cycle from the original fluxes is too weak

when compared with GRACE. Over the Amur the flux derived seasonal cycle is in contrast too large compared to GRACE.

Several of the basins also show significantly different interannual variability. A larger set of basin imbalances can be seen in395

Appendix Fig. A1.

The plots on the right show that the storages based on the optimised fluxes (‘Our Optimised Storage’) now sit very clearly

on top of the GRACE storage anomaly data, fitting both seasonal amplitudes and interannual variability in all basins very well.

The storage differences compared to GRACE data are also shown and these are always smaller than the 1 SD uncertainties

applied to GRACE during optimisation. The associated optimised fluxes in Fig. 4 are also consistently within the uncertainty400

limits of the original flux data and therefore can be considered an improved, GRACE-consistent, product for describing water

cycle variability on both short and longer timescales.

4.3 Storage comparison with other products

We found that the total water storage anomaly is also a useful metric to compare against other products from the literature,

because it brings out low frequency variations that would not be seen by comparing monthly fluxes, which will all lie within405

uncertainty bounds of each other. We take the monthly water storage change, dS
dt , products from three different recent budget

closure studies and calculate the total water storage anomaly that these imply. The CLASS product (Hobeichi et al., 2020)

provides a complete set of balanced coupled water and energy budget components on a global grid for the period 2003-2009,

and we will later also compare with the energy budget from this solution. The CDR (Zhang et al., 2018), provides grid-point

estimates of monthly closed water budget components from 1984-2010, which includes a GRACE constraint over the later410

period. The REESEN product (Abolafia-Rosenzweig et al., 2021) used three different closure methods, and for this comparison

we take the ensemble mean from the combined "proportional distribution" (PR) method, which was described to give the best
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Figure 5. GRACE storage compared with Flux inferred storage. Left: The unadjusted Sfi,w is dashed red line and the detrended SD
fi,w is the

solid purple line, generated directly from observed fluxes. Right: The "Optimised storage" based on the the new fluxes from our study is seen

to closely follow the GRACE storage which is shown in orange on the same axes in both plots.
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results. Each of these three products consist of optimised estimates which are consistent with GRACE on a monthly timescale,

but in this section we aim to assess consistency with GRACE over longer timescales. Hence, we do not show a comparison of

monthly P, E and Q fluxes but rather show the storage anomalies inferred from the fluxes.415

We calculate the total water storage anomaly for the period 2003-2009, based on the overlap of these three products, and

plot these against GRACE and our optimised solution in Fig. 6. Each storage has been initialised with GRACE for January

2003. It is clear that while the other products have quite similar storage variability over each year, they all show some degree

of divergence from GRACE storage over longer timescales. In the corrected REESEN dataset, mean product corrections show

that the closure constraints act to increase observed dS
dt around 3 mm per month on average. This adjustment may result in420

an upward trend in storage not observed by GRACE in some regions. For example, the REESEN product shows an upward

storage trend over the Mississippi and Huang He basins, although over the Congo the storage fits GRACE quite well. The

CLASS product shows an upward trend in water storage in all 3 basins and therefore shows storage differences at the end,

reaching 14 cm equivalent over the Congo. The CDR product probably does best in fitting the 7 year trends for all 3 basins

as a long period water balancing correction is applied, (Zhang et al., 2018), however it shows anomalously weak seasonal425

variability in some years over the Mississippi and the Huang He, and also misses some of the interannual variability over the

Congo. The constraint we apply of fitting GRACE storage on all timescales can again be clearly seen. Although these other

studies may have used different choices of GRACE product as constraints, after comparison we find that all GRACE products

are very similar and the differences shown here are coming from the optimisation approach.

For the Mississippi the CDR shows good agreement with GRACE, although it shows reduced seasonal cycles after 2008.430

CLASS and REESEN show a slight positive bias compared to GRACE after 2005 but generally agree well with the size of the

seasonal cycle. Over the Huang He GRACE shows a large peak in water storage followed by a decrease in storage, amounting

to around 10 cm of water loss by 2009 since the peak in 2003. All products capture the initial peak to some extent but fail

to detect the downwards trend. The interannual variability of the seasonal cycle observed by GRACE is represented well by

the REESEN product. Such as the reduced seasonal cycle between 2006 and 2007, and the larger seasonal cycle in 2003. The435

timing of the seasonal cycle also shows good agreement. REESEN is able to detect the decline in storage 2004-2007 well,

however does not capture the decline 2008-2009. The CLASS product does not show good agreement with the overall trend in

water storage. By 2009 there is over 6 cm difference between GRACE and the CLASS storage since the downwards trend of

GRACE was not captured nor accounted for. The CDR consistently shows reduced seasonal cycles. Some of the interannual

variability is captured but it does not agree with the long-term trend. Since the CDR imposes a constraint which ensures dS =440

0 over 1984-2010, it means that the storage in 2010 must be the same as 1984, hence limiting the ability to detect trends.

Overall, from Fig. 6 we can conclude that although each of the other products are consistent with GRACE on a monthly

timescale, all show inconsistencies with GRACE storage anomalies on longer timescales. Whereas our optimisation approach

is able to guarantee consistency on all timescales.
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Figure 6. Water storage product comparisons from 2003-2009 inclusive. The “Our Optimised Storage” line is the result from our study.
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Figure 7. Energy budget fluxes. Observed values are shown by the dashed lines and optimised values are shown by the solid lines. The

shaded regions show uncertainty of the observed values. Mean seasonal cycles are shown left.

4.4 Energy fluxes445

The optimised energy components in Fig. 7 show only small differences from the observed fluxes used as input, although the

long-term NET energy budget is now closed through the constraint coming from SD
fi,e. To see the adjustments more clearly

Fig. 8 shows the seasonal mean adjustments to the NET downward flux and the component fluxes in 3 of the basins. The

energy closure clearly requires a reduction of the NET downward energy flux in each of these basins in all months. Most flux

components contribute fairly uniformly to the NET change except for some variations responding to LE adjustments imposed450

through the water cycle. In all 3 basins the adjustments to LE modulate NET changes through the year. In both the Amazon and
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the Mississippi the adjustments through the water cycle are having a small dampening effect on the seasonal cycle in NET flux,

as can be seen in Fig. 7. If any independent data on monthly NET flux or storage were to be available this would potentially

change these monthly flux adjustments considerably, as we will discuss later.

Figure 8. Optimisation adjustments for the energy components. Optimised values - observed values. Amazon (left), Congo (centre), Missis-

sippi (right).

4.5 Total energy storage455

Total energy storage anomalies are used to demonstrate the impact of our long-term constraint. We found, similarly to the case

for water storage, that this is a useful metric because small imbalances are not apparent when looking the monthly NET fluxes,

but over longer periods these small imbalances can be significant, which is captured by the total energy storage metric. For

comparison, we use results from the CLASS product (Hobeichi et al., 2020), which is the only other study to provide coupled

regional water and energy budgets at a monthly timescale. We compare both the interannual NET ground heat flux and the460

implied surface energy storage for several basins in Fig. 9. The assessment period covers January 2003 to December 2009,

which is the time frame used in the CLASS study. The energy storage plots (right) include the Sfi,e before the fluxes were

detrended as well as our optimised solution, and the CLASS solution. One key difference between our optimisation method

and the method used in CLASS, is that CLASS enforce monthly closure by using estimates of ground heat flux (equivalent to

NET) as input. Whereas, in our optimisation we choose only to implement a long-term closure constraint which avoids using465

ground heat flux observations as input.

In all basins our initial NET energy fluxes are unbalanced and result in a strong storage trend (also seen in a wider range of

basins in Fig. A2). The CLASS solutions also show smaller, but still potentially unrealistic, energy storage trends in all basins

apart from the Mississippi, because CLASS does not account for energy imbalances on timescales longer than 1 month. Both470

CLASS and our optimised fluxes show clear seasonal cycles of warming and cooling in the mid latitude basins of Mississippi,

Amur and Huang He rivers. There is much more variability in our NET fluxes while the CLASS fluxes are similar every

year, presumably reflecting the dampening effect of a ground heat flux constraint in CLASS. Our optimised solutions show

more interannual flux and storage variability than CLASS, although this does not amount to any trend when the timeseries are
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extended to 2013, over which time we have used the detrending energy constraint. This interannual variability is inherent in the475

initial energy fluxes, in particular from the radiation components, and is not in general being introduced through water cycle

coupling. We will return to discuss this seasonal and interannual energy storage variability later.

5 Optimisation Uncertainties

5.1 Goodness of fit

The χ2 values are summarised in Table 2. Each month the 4 water variables expressed in Eq. (1) are required to balance.480

Although the energy budget Eq. (2) is coupled and must also balance in the long-term, without an independent constraint on

the NET monthly flux or energy storage change, these variables contribute very little to χ2, and the Total χ2 are only marginally

larger than the Water only values. It can be seen that the average values are always much less than 4, and remain smaller for the

maximum value in any individual month. We conclude that all the sequential optimisations are providing solutions consistent

well within the given uncertainties.485

Basin Total χ2 mean Total χ2 max Water χ2 mean Water χ2 max

Amazon 0.98 3.09 0.92 2.94

Congo 0.21 1.18 0.18 1.10

Mississippi 0.28 1.74 0.26 1.73

Amur 0.18 0.68 0.14 0.68

Yellow River 0.11 0.39 0.08 0.36

Table 2. The χ2 values for the optimisation include the Total values, including all the water and energy flux terms, and with only the 4 Water

adjustment terms which are more strongly constrained at monthly timescales. The time mean χ2 over all months, and the largest value for

any individual month, are also shown.

5.2 Uncertainty estimates

By using multiple datasets to constrain each other through budget closure, the uncertainty of the optimised estimates will be

less than the uncertainty of the raw observations. The uncertainties on the new estimates are calculated using the same methods

as the NEWS study, given by SF = (KTS−1
R K+S−1

Fobs)
−1. Where K is the Jacobian of R with respect to F, and SR is the

uncertainty on residual constraint R = 0. Since we use a strong constraint to impose budget closure the uncertainty SR is small.490

The uncertainties in the water budget terms before and after optimisation are now shown in Table 3.

It can be seen that uncertainties reduce typically by 10 % for precipitation but by substantially larger amounts for runoff and

evaporation where initial errors are larger. The uncertainties in storage change are only marginally affected. Of course formally,

post optimisation uncertainties are correlated reflecting a closed water budget with no residual.
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Figure 9. NET fluxes (left) and total energy storage Sfi,e anomalies (right) 2003-2009. The CLASS solutions are compared with our

optimised solutions, with the Sfi,e also shown prior to optimisation, right.
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Basin σPobs σP σQobs σQ σEobs σE σdSobs σdS

Amazon 0.47 0.40 0.77 0.46 0.37 0.34 0.29 0.28

Congo 0.45 0.37 0.29 0.26 0.51 0.38 0.28 0.26

Mississippi 0.31 0.27 0.41 0.31 0.39 0.30 0.22 0.21

Amur 0.49 0.44 0.58 0.50 0.88 0.57 0.23 0.22

Yellow River 0.65 0.60 0.79 0.70 1.35 0.84 0.32 0.31

Table 3. Average monthly water budget component uncertainties in mmday−1 before (obs) and after the optimisation.

6 Discussion495

The initial imbalances in the water and energy budgets vary by basin. We found water budget residuals ranging between 1.5

% and 35 % of precipitation, which is comparable to Abolafia-Rosenzweig et al. (2021) who found that residual errors varied

between 0.7 % and 30 % of precipitation. These initial imbalances are dependent on the quality of the input data, which differ

according to the geophysical characteristics of the basins.

The Amazon has the largest absolute water budget residual prior to optimisation, averaging 0.86 mmday−1, which is equiv-500

alent to 14 % when expressed as a percentage of precipitation. Sahoo et al. (2011) also identified the Amazon as having the

largest non-closure error and suggested this could be as a result of the sparseness of in situ precipitation measurements over

the basin which are required for the calibration of satellite estimates. The Congo showed the lowest initial imbalance of these

basins, normalised with respect to P, with an monthly average of 6 %. However, this result is not necessarily due to good mea-

surement coverage in this region. Low water budget residuals can also occur from cancellation of errors or other characteristics505

of the basin. Further investigation would be required to better understand the factors determining these imbalances.

The similarities in our results compared to previous budget studies emphasise that our adjustments are of a similar size to

other studies and within the observational errors. However, our results achieve an improved long-term consistency of water

storage changes with GRACE, wherein lies the difference in our results. In previous budget closure studies longer timescale

constraints on the water budget have often been applied (e.g., Abolafia-Rosenzweig et al., 2021; Hobeichi et al., 2020), or510

generalised assumptions about total water storage anomalies have been made (Zhang et al., 2018). This can result in substantial

misfits against the GRACE storage timeseries, particularly for regions which show significant trends and interannual variability.

These previous studies have failed to match the low frequency variations of GRACE storage anomalies which are important to

understand through hydrological modelling. The sequential optimisation approach used here is beneficial as it enables dS
dt to

be constrained by GRACE on all timescales and guarantees that the total water storage anomaly implied from the optimised515

fluxes will track the interannual variability of GRACE as well as avoiding any unrealistic trends.

However the sequential solution method does not permit flux adjustments across more than one month at a time. It is possible

to make a whole period adjustment, closing the water budget every month while imposing a small or zero trend in the water

storage from beginning to end of the timeseries. This would allow adjustments across months to fit longer term changes, and
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has been used in solving the seasonal cycle in the NEWS solution of Rodell et al. (2015) for example. However this still does520

not guarantee a fit to the interannual variability information present in the GRACE timeseries. We made some comparisons

optimising for all months together (results not shown) and this worked well for some basins (e.g. Mississippi) and is then very

similar to the sequential solution results, but it works much less well for other basins (e.g. Congo) when interannual variations

are seen in the GRACE timeseries.

Our method also allows the optimised energy fluxes to be in good agreement with the initial energy flux observations525

whilst also balancing the monthly water budget and removing long-term energy trends. However, the lack of a monthly NET

energy constraint means that the energy budget is only very weakly constrained on short timescales. Further observational

information such as land surface temperatures, along with a heat capacity, could be used to constrain the energy storage on

these timescales. Liu et al. (2017) propose NET heat flux estimates from ECMWF reanalyses based on surface temperatures

and some land surface modelling. Alternatively some estimate of monthly NET ground heat flux upscaled from flux tower530

measurements could be imposed, as in Hobeichi et al. (2020). While we made some comparisons here, we have preferred to

leave the monthly energy budget fairly unconstrained as other monthly NET energy flux products have not been adequately

validated for use as independent data. This also allows surface variability inferred from other flux products to be clearly seen,

such as in Fig. 9.

We have noted above that the differences between our NET energy fluxes, and those report by the CLASS product, is likely535

due to the CLASS product including a ground heat flux, G, product in its formulation. G is the least well observed of all the

energy balance fluxes, with typical measurements covering only very small areas. Consequently, large scale gridded products

tend to contain high levels of uncertainty due to errors of representivity in the underlying data, and hence rely on modelling

assumptions that can have a strong influence on the resulting flux estimates. Consequently we chose not to include a data set

of G in our budget modelling.540

Results shown have all assumed initial errors are uncorrelated. However, due to the procedures required to derive some of

the flux products, it is likely that not all fluxes are fully independent. For example, the GRUN product partly predicts runoff

based on antecedent precipitation conditions and so any error in P may also be present in Q. Specifying an error covariance

(off-diagonal elements in Eq. 11) impacts how the fluxes are adjusted during the optimisation, and also reduces the effective

number of independent variables. We performed some sensitivity tests applying error covariances through the covariance matrix545

(Sobs). To give an example, consider the P and Q errors to be correlated. Adjustments needed to close the water budget Eq. (1)

would normally require P and Q to be adjusted in opposite directions e.g. a smaller P and larger Q would both reduce a positive

budget residual. However correlated P and Q errors would tend to inhibit an opposite adjustment of this sort. In consequence,

imposing correlated P, Q errors will lead to smaller adjustments in both P and Q and require the other budget terms, E and dS
dt ,

to have larger adjustments in order to close the budget. This is demonstrated in the results.550

The same arguments apply for correlated errors in the energy fluxes. If upward and downward radiation flux errors are posi-

tively correlated this will reduce the degrees of freedom, reduce the adjustments in those fluxes and increase budget balancing

adjustments to other fluxes. Correlating sensible and latent flux errors (both upward fluxes) however, as implied by eddy covari-

ance studies, e.g. Twine et al. (2000), will increase their adjustment contributions by reducing their joint cost function impacts.
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As all adjustments we found were well within error bounds in these regional solutions we did not find any inconsistencies when555

imposing realistically correlated initial errors. However it is worth commenting that if flux component error correlations are

present they may be quite pervasive and would then imply larger or smaller adjustments to large scale energy fluxes; changing,

for example, the relative adjustments to radiation compared with turbulent fluxes in global inverse budgets such as described

in L’Ecuyer et al. (2015).

560

7 Conclusion

This study has introduced a sequential optimisation approach which is used to produce coupled estimates for the components of

the terrestrial water and energy budgets based on observations. The focus has been on several large river basins over the period

2002 to 2013. The optimisation approach differs from other studies which have used GRACE to constrain hydrological models

as it acts to close the monthly water budget while at the same time matching the water budget on longer timescales. This then565

achieves a good fit with the GRACE surface water storage timeseries in each basin when the optimised fluxes are integrated,

whereas previous studies have failed to match low frequency variations of GRACE which are important to understand through

hydrological modelling. The coupled energy budget is also solved sequentially while still guaranteeing a long-term energy bal-

ance. This is achieved using a detrended monthly energy storage target SD
fi,e based on the original fluxes, as a weak constraint.

Solving for the water and energy budgets simultaneously has allowed us to provide more observational constraints and ensure570

consistency in our final estimates, which has only been done in a limited number of studies. All the flux adjustments made

during the optimisation are small and within uncertainty estimates, and interannual variability from observations is retained.

The optimisation also has the benefit of reducing formal uncertainties on the individual flux components.

We produce Sfi by using the observed fluxes in and out of a region to infer the water and energy storage over time. This

gives a sensitive measure of the imbalances, seasonal cycles, and interannual variability amplitudes implied by the fluxes that575

can then also be compared with GRACE and with several other products from the literature. For several basins, the input water

fluxes show weaker of stronger seasonal amplitudes than is suggested by GRACE, which are then corrected during the optimi-

sations.

The current study has focused on methods for budget balancing adjustments. We have not used a selection of different input580

data products to test the relative imbalance from different choices. Also budgets are only balanced on a selection of larger land

hydrological basins. Figures relevant to more basins are included in the Appendix. We have not produced a gridded product of

optimised fields although this could be done at some resolution consistent with the resolution of the input products, in particular

the GRACE data.

Although the energy budget is coupled the current solutions are only constrained on long timescales. Flux components adjust585

to a long-term surface energy balance, accounting for any mean changes in latent losses imposed through the water cycle, but

otherwise monthly energy components are relatively unconstrained. Further work could seek to constrain the surface energy
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fluxes on shorter timescales by introducing additional energy storage data e.g. using land surface temperatures either from EO

or reanalysis products (Liu et al., 2017).

Another direction of work could seek to include a coupled water and energy budget for the atmosphere. This could be build590

into a global solution as in NEWS (Rodell et al., 2015; L’Ecuyer et al., 2015) or else would need to include regional boundary

transport estimates in the atmosphere for both energy and water (Mayer et al., 2022).

Overall, this study has presented a methodological advancement in fully utilising the GRACE water storage observations

to constrain regional water fluxes from monthly to decadal timescales. The constraints imposed as part of this study and the

direction of future work are aimed at improving the accuracy of water and energy cycle components, which can ultimately help595

us gain a better understanding of climate processes and improve the skill of climate models in predicting future change.

Code and data availability. The observational data used as input is available from several different sources. GRUNv1 runoff data can

be obtained from https://www.bafg.de/GRDC/EN/04_spcldtbss/43_GRfN/refDataset_node.html, GPCPv2.3 precipitation data can be ob-

tained from https://doi.org/10.7289/V56971M6, turbulent heat flux data from FluxCOM can be obtained from ftp://ftp.bgc-jena.mpg.de/pub/

outgoing/FluxCom/EnergyFluxes/ , and CERES radiative flux data are available at https://ceres.larc.nasa.gov/data/. The CLASS product used600

as comparison in this study is available from https://doi.org/10.25914/5c872258dc183, and the REESEN and basin scale CDR product are

archived on Mendeley Data and available at http://dx.doi.org/10.17632/r24rdxt73j.3 (Abolafia-Rosenzweig and Livneh, 2020).

The optimisation code developed in this study and optimised data for several basins is available at https://doi.org/10.5281/zenodo.7682197

(Petch, 2023). Data for additional basins can be made available upon request.
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Appendix A

The following figures illustrate the results for a wider selection of basins across the globe, with varying initial imbalances.
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Figure A1. Monthly water storage variability in a selection of basins Jan 2002-Oct 2013. GRACE data is shown (orange) with the optimised

water storage solution (blue dashed) overlaying it closely. The optimised differences to GRACE are also shown along with the GRACE

uncertainties, σS , varying near zero. The figure also shows two versions of Flux Inferred Storage (Sfi,w) from the input data. The original

Sfi,w (red) is the storage implied by integrating the input (P-E-Q) in time. This often diverges rapidly demonstrating strong initial imbalances

(the basins are coloured according to this initial imbalance). The Detrended SD
fi,w (mauve) simply detrends those original fluxes to fit the

mean GRACE storage trend. This reveals interesting details of the initial mismatch between water fluxes and GRACE, for example showing

an underestimate in seasonal SD
fi,w in the Amazon and a strong overestimate in seasonal storage in the high latitude rivers. Many basins also

show mismatches in interannual variations compared to GRACE, which are all removed in the optimisation process.
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Figure A2. Monthly surface energy storage variability in a selection of basins Jan 2002-Oct 2013. The original Flux inferred storage Sfi,e (in

red) is the storage implied by integrating the input (NET) in time. This always diverges rapidly demonstrating strong initial energy imbalances

(the basin map is coloured according to these initial imbalances). The Detrended SD
fi,e (green line) simply detrends the original NET flux

to give a zero energy storage trend. This retains details of both seasonal and interannual surface energy variability. The implied interannual

variability in surface storage is large compared to seasonal variations and can mostly be traced to variations in surface radiation fields. Such

interannual variability may be unrealistic but without reliable observations of Ground NET heat flux or a measure of surface storage e.g. from

Land surface temperatures, we have chosen to retain it during optimisation (see text for details). The optimized energy storage is also shown

(blue dashed), and this broadly tracks the SD
fi,e which is used as a monthly constraint. Any divergence is confined to the first few months so

that the energy budget is closely balanced throughout the period. The difference in the optimized storage is also shown, along with the large

uncertainty limits used, σe (see text for details).
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