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Abstract. Using a conceptual model, we examine how hydraulically-controlled exchange flows in silled fjords affect the

relationship between the basal glacier melt and the features of warm intermediate Atlantic Water (AW) outside the fjords.

We show that an exchange flow can be forced to transit into the hydraulic regime if the AW interface height decreases, the

AW temperature increases, or the production of glacially modified water is boosted by subglacial discharge. In the hydraulic

regime, the heat transport across the sill becomes a rate limiting factor for the basal melt, which is suppressed. An interplay5

between processes near the ice–ocean boundary and the hydraulically-controlled exchange flow determines the melt dynamics,

and the sensitivity of the basal melt to changes of the AW temperature is reduced. The model results are discussed in relation

to observations from Petermann, Ryder, and 79◦N glaciers in North Greenland.

1 Introduction

In response to global warming, the Greenland Ice Sheet (GIS) has lost mass over the past decades and its marine outlet glaciers10

are retreating (Mouginot et al., 2019; Straneo and Heimbach, 2013; Wood et al., 2021). The GIS holds an ice volume equivalent

to 7.4 m of sea level (Morlighem et al., 2017), and it may contribute up to 0.3 m global mean sea-level rise by the end of this

century (Aschwanden et al., 2019). Over half of the recent mass loss from the GIS is by increased discharge of ice into the

ocean from marine outlet glaciers (Mouginot et al., 2019), where calving and oceanic melt of marine ice have increased. Mass

loss from marine-terminating glaciers can cause a positive feedback: resistive stresses in grounded or floating marine glaciers15

buttress ice inland, and ice-stream flow speed and ice export across the grounding line can increase when marine glaciers retreat

(Schoof, 2007; Gudmundsson, 2013; Nick et al., 2013; Schoof et al., 2017). This accelerated ice loss contributes directly to

sea-level increase.

The subsurface melt on marine glaciers is primarily controlled by the excess ocean temperature over the (pressure dependent)

freezing temperature at the grounding line (Holland and Jenkins, 1999), the point where the ice begins to float (or for tidewater20

glaciers, the water depth at their essentially vertical fronts). The melt depends also on factors such as basal slope, subglacial

discharge, tidal currents, and water column stratification (Jenkins, 2011; Truffer and Motyka, 2016; De Andrés et al., 2020).

The ice melt mixes with ocean water, which creates a buoyant melt water plume that rises along the base of the ice tongue

(Lewis and Perkin, 1986). Turbulence in the melt water plume transports heat to the ice–ocean boundary and sustains melt

in the rising plume. Marine glaciers in Greenland terminate in fjords, and basal melt is chiefly driven by heat supplied in25
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subsurface Atlantic Water (AW) that enters the fjords (Straneo et al., 2012). In Greenland, basal melt is sensitive to the AW

temperature (Straneo and Heimbach, 2013), and increases in AW temperature and subglacial discharge have been the major

drivers of the retreat of outlet glaciers in deep Greenlandic fjords since the mid 1990s (Wood et al., 2021; Slater and Straneo,

2022). However, local features, such as fjord geometry and wind conditions, affect the sensitivity of the basal melt to changes

of the AW temperature in the open ocean (Straneo and Cenedese, 2015; Khazendar et al., 2019; Wood et al., 2021).30

The present study is motivated by recent observations of hydraulically-controlled exchange flows at sills in the Greenlandic

fjords that host the ice tongues of Ryder and 79◦N glaciers (Jakobsson et al., 2020; Schaffer et al., 2020). The hydraulic control

sets an upper limit on the exchange flow that depends on sill geometry and upstream stratification (Pratt and Whitehead, 2007).

Accordingly, hydraulic control limits the heat transport that sustains the basal melt, and has the potential to stabilise marine

glaciers. Numerous observations of sill flows demonstrate that the vertical mixing increases strongly when the flow becomes35

hydraulically controlled (Pratt and Whitehead, 2007), and Jakobsson et al. (2020) and Schaffer et al. (2020) show that as

inflowing AW passes over the sills and descends on the landward slopes, it mixes with overlaying cold glacially-modified

water. As a result, the waters reaching these glaciers’ grounding lines are colder than the AW outside the fjords. This reduces

the basal melt compared to the case when unmodified AW reaches the glacier. Thus, hydraulic control can reduce basal melt

by limiting the exchange flow as well as by decreasing the water temperature at the grounding line of the glacier.40

The feature that hydraulic control (and/or fjord geometry) can limit the heat transport suggests that there are two different

regimes of ice-tongue basal melt in fjords. First, one where the basal melt is controlled locally by turbulent processes near the

ice–ocean boundary, which determines the heat flux from the fjord water to the ice (Fig. 1a). In this scenario, the fjord-scale

circulation adjusts to deliver the heat required for the basal melt, and AW reaches the grounding line of the ice tongue. Second,

in sill fjords hydraulic control may be established, which constrains the exchange circulation in the fjord and its associated45

heat transport (Fig. 1b). In this case, the basal melt is not solely controlled by local processes near the ice–ocean boundary, as

the fjord-scale heat transport towards the glacier enters as a rate limiting factor. In the relatively narrow Greenlandic fjords, sill

geometry is likely to be a major factor constraining ocean heat transport towards marine glaciers (Zhao et al., 2021; Bao and

Moffat, 2023). For large Antarctic ice shelves, effects due to Earth’s rotation are important and the oceanic heat flux available

for basal melt may be controlled by mesoscale ocean eddies or large-scale flows constrained by conservation of potential50

vorticity (Little et al., 2008; Hattermann et al., 2014; Zhao et al., 2019).

The observations from Ryder and 79◦N glaciers (Jakobsson et al., 2020; Schaffer et al., 2020) raise the question of how

strongly hydraulic control limits basal melt, and how it affects the dependence of basal melt to the temperature and height

of the AW layer outside the fjords. Here, we examine this question using a conceptual two-layer fjord model that includes

ocean–glacier interactions. The model results are discussed in relation to observations from the Greenlandic ice tongues of55

Petermann, Ryder and 79◦N glaciers. However, with some modifications the model can be applied also to fjords with tidewater

glaciers. Before the model is presented, we give a brief overview of the oceanographic conditions at Petermann and Ryder

glaciers.
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Figure 1. Oceanographic characteristics in Greenlandic fjords with ice tongues (or tidewater glaciers), showing the two-layer model described

in section 3. Warm Atlantic Water (AW, with temperature and salinity TA and SA) is encountered at depth outside the fjord. Above the AW,

there is a layer of colder outflowing glacially-modified water (T and S), which is capped by low salinity Polar Surface Water. Two flow

regimes are shown: (a) a melt-controlled regime, where the exchange flow is unconstrained and AW reaches the grounding line; (b) a

hydraulically-controlled regime, where outflowing water mixes with inflowing AW, thereby reducing the temperature and salinity reaching

the grounding line (TC , SC ). Model variables, listed in table 1, include AW inflow (QA), the outflow of glacial water (Q), entrainment into

the inflowing AW (QE), plume flow at ice base (QP ), and basal melt (M ). The AW height above the sill (h) and the layer density difference

determine the exchange flow in the hydraulically-controlled regime.
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2 Ryder and Petermann glaciers

The model result will be discussed in relation to the ice tongues of 79◦N, Petermann, and Ryder glaciers. These glaciers have60

the three largest ice tongues in Greenland (Wilson et al., 2017; Hill et al., 2018), and are located in the northern part of the

island (Fig. 2). The geometries of the fjords in which these glaciers drain have some general features in common, including

relatively large sill depths: about 500 m for 79◦N; and about 400 m for Petermann and Ryder glaciers. Here, we will describe

fjord geometries and oceanographic conditions for Petermann and Ryder, which are located relatively close (∼200 km apart)

and drain in fjords that terminate in Lincoln Sea. The oceanographic conditions in the fjord of 79◦N Ice Tongue, which is65

Greenland’s largest and about 80 km long, are described by for example Lindeman et al. (2020) and Schaffer et al. (2020).

Figures 2 and 3 show bathymetric and temperature conditions in Sherard Osborn and Petermann fjords, where Ryder and

Petermann glaciers drain. In Petermann Fjord, which has a ∼400 m deep and ∼12 km wide sill, AW with similar features are

encountered inside as well as outside the fjord, and there are no indications of hydraulic control at the sill (Johnson et al., 2011;

Jakobsson et al., 2020).70
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Figure 2. (a) Location of Petermann, Ryder and 79◦N Glaciers in North Greenland. Bathymetry in Petermann Fjord (b) and in Sherard

Osborn Fjord where Ryder Glacier drain (c); the white lines indicate the frontal positions of the ice tongues in 2019. Petermann’s ice tongue

is about 70 km long, and about 600 (150) m thick at the grounding line (front). Ryder’s ice tongue is about 30 km long, and about 700 (150)

m thick at the grounding line (front).

Sherard Osborn Fjord has a more constrictive fjord topography, with an outer and an inner sill. The temperature in the

AW depth range decreases across the sills, with the coldest temperature in the fjord basin landward of the inner sill that is

largely capped by the ice tongue. The largest temperature drop occurs over the inner sill. Here, a strong near-bottom inflow was

observed, occurring in a∼400 m deep and∼1 km wide channel on the eastern sill, demonstrating that the inflow is hydraulically

controlled (see Fig. 4 in Jakobsson et al., 2020). Accordingly, the inner sill provides the main geometrical constraint on the75

exchange flow and heat transport to the glacier.
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Figure 3. Potential temperature profiles from Petermann Fjord (a) and Sherard Osborne Fjord (b), where Ryder Glacier drains. The observa-

tions were taken in August 2019 during the Ryder Expedition with the icebreaker Oden, see Jakobsson et al. (2020) and Stranne et al. (2021)

for further information. Sherard Osborne Fjord has two sills: progressing into the fjord, the AW temperature drops as the sills are crossed;

the red temperature profiles were taken between the two sills, and the black ones landward of the inner sill close to the ice-tongue front (Fig.

2). The horizontal dashed grey lines show the maximum sill depths; about 440 and 390 m for Petermann and Ryder, respectively. The grey

vertical lines indicate approximately the vertical extents of inflowing Atlantic Water (AW, lower layer of the model) and outflowing glacially

modified water (GMW, upper layer of the model), as well as Polar Surface Water (PSW) on the seaward side of the sills. The PSW layer is

relatively fresh and buoyant, and prevents the GMW from reaching the sea surface. The approximate height of the AW above the sill (h) is

also indicated.

During the last six decades the ice tongues of Petermann and Ryder have evolved differently: the former retreating sig-

nificantly (∼300 m per year) and the latter advancing modestly (∼40 m per year) (Hill et al., 2018); and in 2010 and 2012

Petermann lost ∼35 km of its tongue in major calving events (Johannessen et al., 2013). The two glaciers are relatively closely

located and are expected to experience similar atmospheric conditions and to have AW of similar temperatures outside the80

fjords. Jakobsson et al. (2020) proposed that the differences in fjord bathymetry are the reason for different behaviour of

the two glaciers: Ryder Glacier has a more restrictive sill geometry, partly protecting the ice tongue from inflow of warmer

subsurface AW (Fig. 2).

6



In summary, these results suggest tentatively that the basal melt on Petermann is chiefly rate limited by processes near the

ice–ocean boundary, whereas the basal melt on Ryder is partly rate limited by large-scale heat transport towards the glacier. In85

addition to differences in sill geometry, differences in summer sea-ice conditions influence the efficiency in transporting AW

into the two fjords. Perennial land-fast sea ice outside Sherard Osborne Fjord curtail wind-driven water exchange between the

fjord and the open ocean; whereas ice-free conditions in and around Petermann Fjord allows for a more vigorous wind-driven

water exchange during summer (Shroyer et al., 2017; Jackson et al., 2018; Stranne et al., 2021). We will now go on to describe

a two-layer model that will be used to examine the interplay between basal melt dynamics and hydraulic control.90

3 A two-layer model

We consider a two layer model of glacier–ocean interaction in a fjord, with AW (TA,SA) and glacially modified water (T ,S)

(see Straneo and Cenedese, 2015; Jackson and Straneo, 2016, for a background). Figure 1 shows the model geometry for two

different circulation regimes that will be examined. The model represents near steady-state conditions, and we assume that

the time-mean exchange flow in the fjord is primarily driven by basal melting of the ice tongue, which creates a buoyant melt95

water plume raising along its base. Higher up, the plume becomes neutrally buoyant and feeds the outflow of glacially modified

water. A fresh, low density layer of polar surface water caps the two water masses represented in the model, insulating them

from surface runoff, and contact with sea ice and the atmosphere. The polar surface water is not explicitly represented in the

model.

Although subglacial discharge can have a strong impact on subsurface melt rates, we will for simplicity neglect subglacial100

discharge in the model’s freshwater budget. The reason is twofold. First, the resulting model becomes simpler and more

tractable analytically. In appendix A, we describe a more complex model version that includes subglacial discharge in the

conservation relations: this shows that the results remain qualitatively similar even when the subglacial discharge is significantly

greater than the subsurface melt. Second, observations indicate that freshwater input due to basal melt exceeds subglacial

discharge for large ice tongues such as 79◦N, Ryder, and Petermann: Schaffer et al. (2020) estimated that in the annual mean the105

subglacial discharge constitutes only about 10% of the freshwater exported from 79◦N Glacier; and the summer measurements

from Petermann of Washam et al. (2019) indicate that that the freshwater fraction due to subglacial discharge in the glacially-

modified water column below the ice tongue is less than 30% (see their figure 5). This suggests that for large ice tongues,

subglacial discharge may, as a leading order approximation, be neglected in the model’s freshwater budget; but subglacial

discharge will be allowed to affect the model’s melt rates.110

3.1 Conservation relations

In the two-layer model of the fjord, melting of the ice tongue is the only local source/sink of freshwater/heat. This can be used

to formulate conservation relations for volume, salt and heat (Jackson and Straneo, 2016; Truffer and Motyka, 2016). At the

sill, conservation of volume is given by

Q=QA +M, (1)115
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Table 1. Definition of model variables and physical constants, see Fig. 1.

TA, SA, h Atlantic Water (AW) T , S, and height

T , S Glacially-modified water T and S

TC , SC Ice cavity water T and S

Tf = Tf (SA,d) Freezing point at grounding-line depth (d)

∆T = TA−T Layer difference in T

∆S = SA−S Layer difference in S

T = TC −Tf Thermal forcing

TA = TA−Tf AW thermal forcing

Q, M Exchange flow and melt water input

QA, QP , QH AW, melt-plume, and hydraulic flows

c≈ 4 · 106, ci ≈ 2 · 106 Heat capacity of water and ice (J m−3 ◦C−1)

L≈ 3 · 108 Latent heat of fusion (J m−3 )

TG = L/c+ ci/c(Tf −Ti) Gade temperature (≈ 80 ◦C )

whereQ andQA is the volume outflow and inflow of glacially modified and Atlantic waters respectively, andM the freshwater

input due to melting. The ice consists of pure freshwater, implying that the meltwater input M does not affect the salinity

budget. Hence conservation of salt is given as

SQ= SAQA. (2)

Combining Eqs. (1, 2) yields Knudsen’s relation for salt conservation120

∆SQ= SAM, ∆S
def
= SA−S. (3)

The heat budget involves a balance between advective heat transport towards the glacier and basal melt. The advective heat

flux is

H = c(TAQA +TfM −TQ), (4)

where c is the heat capacity (per unit volume) of sea water, and the melt freshwater input M is assumed to have the salinity125

dependent freezing temperature Tf . Note that Tf will be taken as constant set by the grounding-line pressure and SA. Using

Eqs. (1,4), we obtain

H = c[∆TQ+ (Tf −TA)M ] ∆T
def
= TA−T. (5)

The heat flux is related to the ice melt (M ) as

H =M [L+ ci(Tf −Ti)], (6)130
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where L is the latent heat of freezing, ci the heat capacity of ice, and Ti the ice temperature.

By combining Eqs. (5,6), we obtain

∆TQ=M [L/c+ ci/c(Tf −Ti) + (TA−Tf )], (7)

Here, L/c≈ 75 ◦C, and in North Greenlandic fjords TA−Tf is typically 3 ◦C. Hence, the terms involving TA−Tf can to a

good approximation be neglected in Eqs. (5,7). It is convenient to define a generalised Gade temperature (Gade, 1979)135

TG
def
= L/c+ ci/c(Tf −Ti), (8)

which would be the decrease in temperature of a unit volume of water from which sensible heat is extracted to melt ice corre-

sponding to a unit volume of liquid water. [Note that the equivalent ice temperature defined by Jenkins (1999) is approximately

−TG · ρwρi , where ρw
ρi
≈ 1.1 is the density ratio between water and ice.] By using the definition of TG, Eq. (7) can be written as

∆TQ= TGM, (9)140

which gives the relation between the advective heat flux and the melt. Note that unless the ice temperature is very cold,

TG ≈ L/c.
The conservation relations of the model can be summarised as follows:

1. Volume: The melt water input M is small, implying that Q≈QA. Thus, the inflow of AW approximately equals the

volume outflow of glacially modified water. In what follows, we will denote the exchange flow simply by Q.145

2. Salt: The salt balance is given by Eq. (3). Here, M cannot be neglected since it is multiplied by SA, which is larger than

∆S: Equation (3) states that M/Q= ∆S/SA.

3. Heat: The heat budget is specified by Eq. (9), which in combination with Eq. (3) yields

∆S

SA
=

∆T

TG
. (10)

For melting of ice in sea water, heat and salt conservation yields a linear relationship between the salinity and temperature150

differences (Gade, 1979). This allows us to either use ∆T or ∆S in our analyses; we will use ∆T .

The layer density difference is calculated using a linear equation of state

∆ρ= ρ0(β∆S−α∆T ), (11)

where ρ0 is a constant seawater reference density, and where α= 4 · 10−5 K−1 and β = 8 · 10−4 are the thermal and haline

expansion coefficients, respectively. Equation (10) allows the density difference to be written155

∆ρ

ρ0
=

∆T

TG
(βSA−αTG) . (12)

Here, (αTG)/(βSA)≈ 0.1 showing that the salinity dominates the density difference.
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3.2 Basal melt parameterisation

We will use a parametrisation of the basal melt (M ), which depends on the difference between the ocean water temperature

(TC) and the freezing point temperature of sea water (Tf ) at the grounding line (Holland et al., 2008; Jenkins, 2011; Xu et al.,160

2013; Favier et al., 2019). We denote the thermal forcing as

T def
= TC −Tf . (13)

If AW reaches the grounding line, then TC = TA, and the thermal forcing is denoted

TA
def
= TA−Tf . (14)

However, mixing between in- and out-flowing waters over a sill can lower TC relative to TA, which implies that T can be lower165

than TA.

We model the area-integrated basal melt as (Xu et al., 2013)

M = γ1T n1 , (15)

where γ1 is a coefficient that depends on features such as the ice-tongue geometry and subglacial discharge, and n1 > 0 an

exponent. We assume that also the plume volume flow QP is a function of the thermal forcing T and given by170

QP = γ2T n2 , (16)

where γ2 is a constant and n2 > 0 an exponent.

Several studies have used models of varying complexity to examine the relationship between thermal forcing and the area-

integrated melt on Greenlandic ice tongues and Antarctic ice shelves (e.g. Jenkins, 1991, 2011; Little et al., 2009; Lazeroms

et al., 2018, 2019; Holland et al., 2008; Cai et al., 2017; Favier et al., 2019). These investigations report values of n1 in the175

range from 1 to 2, with a preference for n1 values of around 1.5 (Xu et al., 2013; Cai et al., 2017) to 2.0 (Holland et al.,

2008; Little et al., 2009). The reported range of n1 is likely to reflect both different ice–ocean interaction regimes and model

assumptions on the boundary conditions at the ice–ocean boundary. There are fewer studies that specifically comment on the

relationship between the volume transport in the plume and the thermal forcing, but Holland et al. (2008) reported a linear

dependence of QP on the thermal forcing, i.e. n2 ≈ 1.180

Primarily, the heat flux to the ice and the associated melting depend on the product of the thermal forcing and the plume

velocity (say u), which in turn is related to the plume buoyancy (Holland and Jenkins, 1999; Favier et al., 2019). If the plume

buoyancy is proportional to T , and the buoyancy force is balanced by a linear basal friction, then u∝ T . This gives n1 = 2

corresponding to a quadratic relation between melt and thermal forcing (Holland et al., 2008; Little et al., 2009). If the basal

friction is quadratic, i.e. proportional to u2, on the other hand, scaling analyses suggest that u∝ T 1/2 (Lazeroms et al., 2018),185

which gives n1 = 1.5. Jakobsson et al. (2020) applied the plume model of Jenkins (1991) to Ryder Ice Tongue, and their results

suggest that n1 ≈ 1.7 and n2 ≈ 0.7. Notably, if M ∝ uT and QP ∝ u, then M/QP ∝ T . In view of Eqs. (15,16) this implies
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that

n1−n2 = 1. (17)

This constraint on the exponents leads to some attractive simplifications of the dynamics, which will be used in the analyses.190

It is worth noting that theoretical considerations (e.g. Straneo and Cenedese, 2015; Jenkins, 2011, and referencers therein)

indicate that on marine glaciers where the buoyancy source is dominated by the subglacial discharge near the grounding line,

rather than by the distributed melt along the submerged glacier, the melt is approximately proportional to the thermal forcing,

and the plume volume transport is essentially independent of the thermal forcing. This limit of high subglacial discharge,

characteristic of summer conditions at Greenlandic tidewater glaciers (e.g. Straneo and Cenedese, 2015), is described by the195

case n1 = 1 and n2 = 0; which satisfies the constraint of Eq. (17). Some aspects of the case with high subglacial discharge is

discussed in appendix A.

In summary, the literature reports a range of values for n1 and n2. However, n1 = 2 and n2 = 1 appear as one reasonable

choice for the exponents for qualitatively examining the dynamics of large Greenlandic ice tongues such as the 79◦N, Peter-

mann and Ryder glaciers. This will be the base-line case when we examine the interplay between melt dynamics and hydraulic200

control in section 3. In section 4.2.5, we will consider how variations of the values of n1 and n2 affect the results, including

the case n1 = 1 and n2 = 0. When we derive general results below, however, we will allow n1 and n2 to be arbitrary positive

numbers, but subject to the constraint n1 > n2.

3.3 The melt-controlled exchange flow regime

Consider a situation in which the fjord geometry, via frictional resistance or hydraulic control, does not limit the exchange205

flow and its associated heat transport towards the ice tongue. We assume that unmodified AW reaches the glacier (TC = TA),

and the melt processes create a plume volume flow QP that sets the exchange flow: If TA increases also the exchange flow

increases at the rate given by Eq. (16). This regime, in which the strength of the exchange flow is controlled locally by the

glacier basal melt, will be referred to as the melt-controlled regime; and a contrasting hydraulically-controlled exchange flow

regime will be presented in section 3.4.210

In the melt-controlled regime, where Q=QP , we can use the heat-conservation relation (9) together with Eqs. (15,16) to

obtain

∆T

TG
=
γ1
γ2
T n1−n2 . (18)

This relationship, which is equal toM/Q, shows that ∆T as well as the ratioM/Q increase with T , i.e. the melt water fraction

in the plume increases with thermal forcing. Note that the condition n1−n2 = 1 yields a linear relation between ∆T as well215

as M/Q and the thermal forcing.

By dividing Eq. (18) with T /TG, we obtain

∆T

T
=
TGγ1
γ2
T n1−n2−1. (19)
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Since T = TA in the melt-controlled regime, the left-hand side in this expression equals (TA−T )/(TA−Tf ); which is less or

equal to one since T ≥ Tf . When n1−n2 = 1, the right-hand side becomes independent of T and equals220

σ
def
=
TGγ1
γ2

. (20)

This parameter is a non-dimensional measure of the temperature of the outflowing glacially-modified water (T ): when σ = 1,

T = Tf ; and when σ = 0, T = TA. (This interpretation of the Eq. (19) applies also when n1−n2 6= 1, but then ∆T/T is no

longer constant in the melt controlled regime.) As will be shown below, σ influences aspects of the hydraulically-controlled

regime.225

To summarise, the flow in the melt-controlled regime is specified by a knowledge of the AW properties TA and SA, which

determine the thermal forcing T = TA. In turn, this yields M , Q, and ∆T (Eqs. 15,16,18), and ∆S is obtained from Eq. (10).

We will now go on to examine how a hydraulically-controlled exchange flow affects the melt dynamics. For this purpose, it

is useful to write QP as a function of the temperature difference. By using Eq. (18), we obtain

QP = γ2

(
γ2∆T

γ1TG

) n2
n1−n2

. (21)230

Since n1 > 0 and n2 > 0, this shows that the melt-controlled exchange flow increases with ∆T when n1−n2 > 1.

3.4 Hydraulic control

Fjord and sill geometries may impose limits on the exchange flow, which in turn can potentially alter the basal melt dynamics.

In particular, hydraulic control of a two-layer exchange flow over a sill sets an upper bound for the exchange flow (say QH ),

which is determined by the upstream height of the AW layer above the sill (h) and the layer density difference (Pratt and235

Whitehead, 2007; Zhao et al., 2021). Exchange flow strengths below the critical value QH are unconstrained by the geometry,

and are referred to as subcritical flows. Thus, it is conceivable that a sufficiently strong melt-driven exchange flow, or a high

sill, can cause a transition from a subcritical flow to a critical, hydraulically-controlled flow (Pratt and Whitehead, 2007).

How the flow evolves as the melt-driven exchange flow (or the sill height) is gradually increased and approaches the

hydraulically-controlled limit is complex and depends on fjord and sill geometry (Armi, 1986; Pratt and Whitehead, 2007;240

Nycander et al., 2008). Observations from the Ryder and 79◦N glaciers show that the inflow at the sills in front of the ice

tongues are hydraulically controlled, and that the thickness of the inflow layer is thin compared to the upper outflowing layer

(Jakobsson et al., 2020; Schaffer et al., 2020). This implies that the flow can be approximated by a one-layer hydraulic model

representing the inflowing AW layer. Two additional features allow for simplifications of the hydraulic model. First, the depth

of AW layer on the seaward side (upstream) of the sill is much larger than at the sill, which implies that the upstream AW inflow245

velocity is negligible. Second, the inflow over the sill is confined in a channel that is small compared to the internal Rossby

radius, which allows the Earth’s rotation to be neglected. In this situation, the maximum hydraulically-controlled volume flow

is given by (Pratt and Whitehead, 2007)

QH =Wh3/2
(

2

3

)3/2(
g∆ρ

ρ0

)1/2

, (22)
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where W is the cross-sectional width of the lower layer on the sill1, h the height of the lower layer above the sill upstream250

(Fig. 1), and g the gravitational acceleration. By using Eq. (12), QH can be written as

QH = kHh
3/2(∆T/TG)1/2, (23)

where we have introduced

kH
def
= W

(
2

3

)3/2

[g (βSA−αTG)]
1/2

. (24)

In the hydraulically-controlled regime, the exchange flow is given by Eq. (23), i.e. Q=QH . By using this in the heat255

conservation relation Eq. (9), we obtain

M = kHh
3/2(∆T/TG)3/2. (25)

3.5 Steady-state regimes: melt-controlled and hydraulically-controlled exchange flows

The results presented above suggest that there can exist two different flow regimes in a fjord with basal ice-tongue melting: One

where the exchange flow Q is determined locally by the basal-melt processes on the glacier, and one where it is hydraulically-260

controlled. The two regimes have the following characteristics.

1. In the melt-controlled regime, the volume flow of the melt-water plume is smaller than the upper limit set by hydraulic

control, i.e. QP <QH . Accordingly, the sill does not constrict the exchange flow, which is specified by Eq. (16) (or 21).

The flow at the sill is subcritical (Pratt and Whitehead, 2007), and as result there is limited mixing between inflowing

and outflowing waters. Essentially unmodified AW reaches the grounding line of the ice tongue (Fig. 1a), which implies265

that the thermal forcing is given by T = TA. Since the freezing temperature (Tf ) is set by the grounding-line depth (and

SA which to a good approximation can be taken as constant here), the thermal forcing at a specific glacier is externally

determined by the AW temperature (TA).

2. In the hydraulically-controlled regime, the plume volume flow exceeds the hydraulic limit, i.e. QP >QH . The exchange

flow is now determined by Eq. (23), and the flow at the sill crest is critical, and it accelerates down the landward slope270

of the sill (Pratt and Whitehead, 2007). Here the flow becomes supercritical, and inflowing AW mixes with colder

outflowing water (Price and O’Neil Baringer, 1994; Pratt and Whitehead, 2007; Jakobsson et al., 2020; Schaffer et al.,

2020). This lowers the temperature of the water reaching the grounding line (Fig. 1b), i.e. T < TA. Importantly, this

implies that the thermal forcing is no longer directly set by TA: TA is the external forcing, but the local thermal forcing

T is determined by dynamics in the fjord. The relationship between T and TA can be expressed as275

T =R · TA, (26)

where R=R(TA,h) is a reduction factor which arises when the exchange flow is hydraulically controlled. Note that

R< 1 in the hydraulic regime; in the melt-controlled regime R= 1.
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Figure 4. Regime boundaries between melt-controlled and hydraulically-controlled flows in the TA–h plane (Eq. 27). The AW variables are

non-dimensionalised by selecting an arbitrary scale for TA, and then define a non-dimensional h that is one when the non-dimensional TA
is one; see Eq. (28). Hydraulically-controlled (melt-controlled) flows are found below (above) the lines, showing that the hydraulic regime

is approached as h is decreased. When 3n2−n1 is positive (negative), the transition height hL increases (decreases) with TA; and in the

limiting case 3n2−n1 = 0, hL is independent of TA = TA−Tf .

At the transition between the two flow regimes T = TA and QP =QH , which implies that the transports given by Eqs. (21)

and (23) are equal. By using this and Eq. (18), which applies at the transition, we obtain after some rearrangements280

γ
1/3
1 k

2/3
H h

γ2T
3n2−n1

3

= 1. (27)

This represents the condition QP /QH = 1, and gives the relationship between T and h at the regime transition. The height of

the AW above the sill at the transition (say hL) as a function of TA is given by

hL = k
−2/3
H γ

−1/3
1 γ2T

3n2−n1
3

A . (28)

1For simplicity, we assume a rectangular cross section, which implies that W does not depend on h. Note that the lower-layer width W may be smaller

than the fjord width if the inflow is confined in a deeper channel crossing the sill, which is the case for Ryder; see Fig. 1 in Jakobsson et al. (2020).
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When h > hL, the flow is in the melt-controlled regime, and when h < hL, the exchange flow becomes hydraulically controlled.285

Alternatively, Eq. (27) gives the thermal forcing at the regime transition as a function of h

TL =

(
k2Hh

3γ1
γ32

) 1
3n2−n1

. (29)

Using this and Eq. (18), the temperature difference at the regime transition can be written as

∆TL
TG

=
γ1T n1−n2

L

γ2
. (30)

If n1−n2 = 1, then ∆TL = σTL; see Eq. (20).290

Lowering the AW height always brings the flow towards the hydraulic regime. If h is fixed then TL is also fixed, which

implies that changes of the AW temperature can cause a transition between the melt-controlled and the hydraulically-controlled

regimes. As illustrated in Fig. 4, the nature of the transition depends on the value of the exponent 3n2−n1 in Eq. (27). If

3n2−n1 > 0 increasing TA will bring the flow towards the hydraulically-controlled regime. On the other hand if 3n2−n1 < 0,

decreasing TA will brings the flow towards the hydraulically-controlled regime. This behaviour follows from the fact that295

QP ∝∆T
n2

n1−n2 and QH ∝∆T 1/2. In the case 3n2−n1 = 0, the regime transition height hL is independent of TA. This is

because QP and QH then have the same dependence on ∆T .

Figure 5 illustrates the relation between exchange flow and temperature difference (Eqs. 21,23) for the case n1 = 2 and n2 =

1, which implies that QP ∝∆T . Here, the flow is in the melt-controlled regime if ∆T <∆TL, or from Eq. (18) equivalently

if TA < TL. By increasing ∆T , the flow increases and is shifted towards and into hydraulic control.300

In the case where 3n2−n1 < 0, hydraulic control – for a fixed h – occurs for weak thermal forcing and exchange flow. In

a real fjord, additional exchange flows driven by winds and tides may be larger than a model predicted weak hydraulic flow

(Jackson and Straneo, 2016). This can prevent establishment of hydraulic control and in effect yield an exchange flow in the

melt-controlled regime. We will briefly discuss this case in section 4.2.5 .

It is possible that transitions between melt- and hydraulically-controlled regimes can also be caused by seasonal variations305

in subglacial discharge, even if the AW features remain unchanged. The reason is that the basal melt M increases with the

subglacial discharge (Jenkins, 2011; Xu et al., 2013), which has pronounced seasonal cycle that tracks the surface melt on the

glaciers (e.g. Truffer and Motyka, 2016; Cai et al., 2017; Slater and Straneo, 2022). Thus, it is possible that in some fjords the

exchange circulation can be stronger and hydraulically-controlled in summer when the subglacial discharge peaks, and weaker

and melt-controlled in winter. The details of such seasonal regime transitions will depend, among other things, on how the ratio310

between exchange flow and melt (M/Q) depends on the subglacial discharge. However, we will not pursue this topic further.

4 The dynamics in the hydraulic regime

In the hydraulic regime, the volume flow of the melt plume is predicted to exceed the exchange flow at the sill (Fig. 5). This

would cause an imbalance in production and export of glacially-modified waters in the fjord, preventing a steady state to be

established. Therefore, changes of the flow are expected when hydraulic control is established.315
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Figure 5. The hydraulically-controlled flow QH and the plume volume flow QP as functions of the layer temperature difference ∆T , for a

fixed AW height (h). The case n1 = 2 and n2 = 1 is shown, and ∆T is normalised by ∆TL (Eq. 30). The flowQH (blue lines) is proportional

to ∆T 1/2 (Eq. 23), and QP (red lines) is proportional to ∆T (Eq. 21). The solid lines show the actual exchange flow, which is set by the

lower value of the two flows.

To examine some of the new features emerging when the flow becomes hydraulically controlled, it is instructive to consider

a thought experiment in which the sill height is suddenly increased and hydraulic control is established. Initially, the production

of glacially-modified water will be larger than the exchange flow across the sill. As a result, the layer of glacial water inside

the sill will thicken and possibly extend below the sill crest (Fig. 1). This has two important consequences for the basal melt.

First, the inflowing AW will entrain glacial water, causing the temperature of water reaching the grounding line to decrease.320

Second, the melt-water plume will rise partly through ambient waters that are colder and lighter than the displaced AW. This

reduces the buoyancy and speed of the plume, which now also will entrain colder water. Theses changes of the stratification in

the ice cavity act to reduce the basal melt. Thus, we expect that the temperature and salinity distributions inside the sill evolve

such that a new steady state, compatible with the hydraulically-constrained exchange flow, is established.

The reasoning above suggests that, in the hydraulic regime, the interface height of (pure or modified) AW is no longer the325

same on the seaward and landward side of the sill. Thus additional variables, such as a fjord interface height, may be needed to

model flow- and melt-features in the hydraulic regime. However, we will not introduce additional model variables. Instead, we

consider two idealised scenarios for how the interplay between melt dynamics and hydraulic control can determine the steady
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state flow. In these scenarios, the features of the fjord stratification (i.e. interface height and layer difference of temperature and

salinity) can be viewed as hidden model variables that influence the flow. In Scenario 1, we implicitly assume that no glacially-330

modified water is entrained into the inflowing AW near the sill. This is an extreme and less likely scenario as observations and

modelling show that entrainment generally occurs (Schaffer et al., 2020; Jakobsson et al., 2020; Hager et al., 2022; Bao and

Moffat, 2023). In Scenario 2, on the other hand, entrainment plays a key role for closing the volume budget in the ice cavity.

4.1 Scenario 1: Hydraulically constrained plume volume flow

4.1.1 Physical assumptions335

Here, we assume that the steady-state flow and stratification inside the sill adjust such that:

1. The plume volume flow (Eq. 16) and the exchange flow (Eq. 23) are equal, which implies that QP (T ) =QH(h,∆T ).

2. The relationship between basal melt M and thermal forcing (Eq. 15) still applies and equals the formula for M in the

hydraulically-controlled regime (Eq. 25). This gives a relationship of the form T = T (h,∆T ).

From these assumptions, we obtain the following expressions for the thermal forcing and temperature difference340

T = (k2Hh
3γ1γ

−3
2 )

1
3n2−n1 , (31)

∆T/TG = γ1γ
−1
2 (k2Hh

3γ1γ
−3
2 )

n1−n2
3n2−n1 . (32)

Note that T and ∆T depend both on the features of the melt representation and the hydraulic constant kH . In the reference

case (n1 = 2 and n2 = 1) the exponents in the expressions above simplify, and the hydraulic exchange flow (Eq. 23) becomes345

QH = k2Hh
3γ1γ

−2
2 . (33)

Notably, the flow is independent of the AW temperature TA: The strength of the hydraulically-controlled flow is determined

by h and the parameters γ1, γ2, and kH , which control ∆T that is proportional to layer density difference.

4.1.2 Dynamical features

Figure 6 shows the dependence of the thermal forcing and the reduction factor on the AW forcing (TA and h) in the case n1350

and n2. The flow is in the hydraulic regime when TA > TL and h < hL, and the opposite applies in the melt-controlled regime.

In the melt-controlled regime, T is equal to TA, and is independent of h. An increase in TA or a decrease in h brings the

flow towards the hydraulically-controlled regime. In this regime, the flow features become (in this scenario) independent of

the AW temperature. As a result, the R factor decreases with increasing TA at a fixed h. This provides a negative feedback on

the basal melt. The flow features are sensitive to changes of h: when n1 = 2 and n2 = 1, one finds that T ∝ h3 and M ∝ h6.355

Accordingly, the basal melt drops sharply with decreasing AW height.

17



Figure 6. The dependence of the thermal ice-cavity forcing T (a) and the reduction factor R (b) on the AW thermal forcing (TA) and

height (h) in scenario 1; see section 4.1. Here, T = TC −Tf and R= T /TA (Eqs. 13, 26), implying that R= 1 in the melt-controlled

regime. The non-dimensional variables are selected such that T = 1 when TA = 1 and h= 1. The white line shows the boundary between

the melt-controlled (above the line) and hydraulically-controlled regime (below the line). The case n1 = 2 and n2 = 1 is shown.

In this hypothetical scenario, one should view T as an effective thermal forcing, which can have an implicit dependence on

features such as the fjord stratification, rather than the actual thermal forcing near the grounding line (i.e., TC−Tf ). We expect

that a a sudden increase of the inflowing AW temperature at the sill would initially cause warmer water to reach the grounding

line and increase QP and M . However, adjustments of the temperature and stratification in the ice cavity are assumed to re-360

establish a state with the TA independent melt rate determined by Eqs. (31) and (15). Since ∆T = TA−T is constant, the

outflow temperature T mirrors TA.

4.2 Scenario 2: Unconstrained plume volume flow

4.2.1 Physical assumptions

We will now consider another hypothetical scenario in which the plume volume transport is determined by the thermal forcing365

via Eq. (16) and is not set directly by the hydraulic constraints. This implies that QP >QH , and additional physical processes

need to be invoked to balance the production and export over the sill of glacially-modified water. Entrainment of some glacially-

modified water into the inflowing AW, will help to achieve this balance: The entrained glacially-modified water is, in effect,
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re-circulating in the basin inside the sill. This can allow a steady state to develop even if QP exceeds QH . Specifically, in this

scenario, we assume that:370

1. The excess volume flow in the plume is supplied by entrainment of glacially-modified water (QE) into the inflow of AW

on the landward side of the sill:

QP =QE +QH . (34)

By introducing the entrainment fraction (Price and O’Neil Baringer, 1994)

Φ
def
=

QE
QH +QE

= 1− QH
QP

, (35)375

we can relate the plume volume flow and the exchange flow as

QP =
QH

1−Φ
. (36)

The parameter Φ ranges from 0 (no entrainment) to 1 (in the limit of strong entrainment). We note that Φ is essentially

equal to the re-flux factor used by Hager et al. (2022).

2. The relationship between basal melt M and thermal forcing (Eq. 15) still applies and equals the formula for M in the380

hydraulically-controlled regime (Eq. 25).

The second assumption yields the following relationship

∆T

TG
=

(
γ1T n1

kHh3/2

)2/3

. (37)

By using this result in Eq. (23), we obtain

QH =
(
k2Hh

3γ1T n1
)1/3

. (38)385

These formulas, which depend on features of the basal melt as well as h and kH , specify the flow dependence on the thermal

forcing in this hydraulic-regime scenario. However, T is a function of the AW forcing TA and h that remains to be determined.

This is obtained by considering how the grounding-line temperature is affected by entrainment of glacially-modified waters as

outlined below.

The entrainment is controlled by local conditions on the landward side of the sill, where the denser inflowing AW accelerates390

down the sill slope (Price and O’Neil Baringer, 1994; Pratt and Whitehead, 2007). However, we assume for simplicity that QE

adjusts to satisfy Eq. (34). By using Eqs. (16,38), we can after some manipulations express the entrainment rate Φ as

Φ = 1−Z, (39)

where

Z
def
=

(
γ
1/3
1 k

2/3
H h

γ2T
3n2−n1

3

)
. (40)395
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Here Φ is given by Eq. (39) when Z ≤ 1, and when Z > 1 Φ = 0. Note that Z = 1 yields the condition (Eq. 27) that defines

the flow-regime transition.

Next, we consider the relationship between the AW (SA, TA) and the water properties in the ice cavity (SC , TC), which are

affected by the entrainment: Conservation of heat in the cavity (see Fig. 1) yields

TAQH +TQE = TC(QH +QE). (41)400

By using the entrainment parameter Φ (Eq. (35), this yields the following expression for the temperature in the ice cavity

TC = TA−∆TΦ. (42)

Conservation of salt yields an analogous expression for SC . Finally by using Eqs. (13,42), we obtain

T = TA−∆TΦ. (43)

This relation and Eqs. (37,39) determine the functional relationship T = T (TA,h) in this scenario. Note that since ∆T and Φ405

are specified as functions of T and h, Eq. (43) also yields the function TA(T ,h) = T + ∆TΦ, which is algebraically easier to

use when constructing graphical solutions. This is because the function T (TA,h) cannot, generally, be obtained on a closed

analytical form; see appendix B.

4.2.2 Dynamical features: general aspects

Figure 7 shows, for scenario 2, the dependence of the thermal forcing and the reduction factor on the AW forcing (TA and410

h). Again, the case n1 = 2 and n2 = 1 is illustrated, which is qualitatively representative for melt representations satisfying

3n2 > n1. Qualitatively, the behaviour is similar to that of scenario 1 (Fig. 6). A difference is that the thermal forcing now

increases with TA in the hydraulic regime. However, the rate of increase is weaker than linear ( dTdTA < 1).

For the hydraulically-controlled flow, entrainment of colder glacially-modified waters into the inflowing water lowers the ice

cavity temperature relative to TA. This decreases the thermal forcing and thereby the melt rate: T decreases with decreasing415

h and increases more slowly with TA than in the melt-controlled regime. Figure 7b shows the reduction factor R (Eq. 26). By

definition R= 1 in the melt-controlled regime. In the hydraulic regime, R< 1, and the sensitivity of the thermal forcing to

changes in TA is reduced: the isolines of constant R becomes shallower with increasing TA. In the present scenario 2, the flow

response depends also on the parameter σ, a non-dimensional measure of the outflow temperature T at the regime transition,

which will be discussed below.420

4.2.3 Dynamical features: dependence on AW height

Here, we examine the flow and melt response to changes in the AW height h for a fixed TA, i.e. moving vertically in Fig. 7.

Specifically, we consider how the parameter σ affects the response. Recall that σ is a non-dimensional measure of the outflow

temperature T in melt-controlled regime where ∆T/TA= σ; see Eq. (20). We will consider the whole range of possible σ

values (0≤ σ ≤ 1), but our observationally-based estimates indicate that σ is about 0.1 (Table 2).425
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Figure 7. The dependence of the thermal ice-cavity forcing T (a) and the reduction factor R (b) on the AW thermal forcing (TA) and height

(h) in scenario 2; see section 4.2. Here, T = TC −Tf and R= T /TA (Eqs. 13, 26), implying that R= 1 in the melt-controlled regime.

The white line shows the boundary between the melt-controlled (above the line) and hydraulically-controlled regime (below the line). The

non-dimensional variables are defined as in Fig. 6. The case n1 = 2 and n2 = 1 is shown for σ = 0.5; see Eq. (20) and the text.

Figure 8 illustrates how Q, entrainment fraction Φ, ∆T , T and M vary with the AW height h. (In the figures, we have

normalised Q, T and M to be unity at the regime transition; but ∆T is normalised equal to σ.) If h is decreased, either by an

increase in the sill height or by lowering the upper boundary of the AW, the flow is unchanged until h= hL, the point at which

the flow becomes hydraulically controlled. By further reducing h, Q, T and M decline but ∆T grows (implying decreasing

T ). In the limiting case σ = 1, where ∆T is constant, Q is proportional to h3/2; see Eq. (23). When σ < 1, Q falls less steeply430

with h because the layer density difference (proportional to ∆T ) increases with decreasing h.

In the hydraulic regime, outflowing glacially-modified water is entrained into inflowing AW, thereby reducing T (Fig. 8c).

This effect is most pronounced for larger values of σ, which correspond to colder outflow temperatures of the glacially-

modified water. In the limiting case σ = 1, M ∝ h 3
2 because ∆T = TA is constant; see Eq. (25). The dependence of M on h in

this limiting case describes the response for all values of σ when h/hL becomes small. Here, ∆T/TA approaches its maximum435

value of one. By using that ∆T ≈ TA in Eq. (25), the melt rate becomes

M ≈ kH(hTA/TG)3/2. (44)

21



0 0.25 0.5 0.75 1 1.25
0

0.25

0.5

0.75

1

(n
on

-d
im

)

(a) Q and 

Q
Q

0 0.25 0.5 0.75 1 1.25
0

0.25

0.5

0.75

1

T
 (

no
n-

di
m

)

(b) Temperature Diff.

0 0.25 0.5 0.75 1 1.25
AW Height, h (non-dim)

0

0.25

0.5

0.75

1

T
C

-T
f (

no
n-

di
m

)

(c) Thermal Forcing

=1.0
=0.8
=0.5
=0.2

0 0.25 0.5 0.75 1 1.25
AW Height, h (non-dim)

0

0.25

0.5

0.75

1

M
 (

no
n-

di
m

)

(d) Melt Rate

Figure 8. The flow dependence on the AW height h for a fixed value of TA. The case n1 = 2 and n2 = 1 is shown for different values of the

non-dimensional parameter σ (Eq. 20); dotted, solid, dashed, and dash-dotted lines show results for σ = 1.0, σ = 0.8, σ = 0.5, and σ = 0.2,

respectively. All variables are non-dimensional: the AW height h/hL (Eq. 28) is smaller (greater) than one in the hydraulic (melt-controlled)

regime. (a) Exchange flow Q (blue and red lines) and entrainment fraction Φ (black lines), and (b) the temperature difference ∆T . (c) and

(d) shows the thermal forcing (T /TA) and melt rate. The melt rates are normalised to be unity in melt-controlled regime; dimensional melt

rates are proportional to σ3/2 (see the text).

Notably, the melt rate is independent of the features of the melt representation in this limit. From the melt rate formula (15), it

follows that the thermal forcing is approximately given by

T ≈
(
kHh

3/2

γ1

) 1
n1
(
TA
TG

) 3
2n1

. (45)440

Thus, the thermal forcing still depends on the melt parameterisation, but in such a way that the melt itself only depends on kH ,

h and TA.

To summarise, in scenario 2 hydraulic control constrains the exchange flow and induces entrainment, which acts to lower

the water temperature at the grounding line relative to TA. Notably, when h/hL becomes sufficiently small, the flow enters a

regime where the exchange flow and the basal melt become independent of the physical processes near the ice–ocean interface445

that govern the local melt rates. A partly analogous situation is an over-mixed estuary, where hydraulic control at a sill or a
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fjord mouth sets the exchange flow rate and vertical salinity difference independently of the nature of the mixing processes in

the estuary (Stommel and Farmer, 1953; Timmermans, 1998).

4.2.4 Dynamical features: dependence on AW temperature

Next, we consider how the melt and flow features depend on the AW temperature when h is fixed. Figure 9 a and b show how450

the exchange flow Q (normalised to be unity at the regime transition), temperature difference ∆T , the entrainment fraction

Φ varies with the TA. In the melt-controlled regime, Q and ∆T depend linearly on TA (when n1 = 2 and n2 = 1), and a

larger σ is associated with a larger ∆T . If TA is increased, the flow enters the hydraulically-controlled regime, where Q is

proportional to ∆T 1/2. This constrains the exchange flow, and increasing entrainment lowers the temperature at the grounding

line. In response, the outflow temperature decreases, which causes ∆T to increase with TA at rate that is slightly higher than455

linear. In the limiting case σ = 1, ∆T = TA in both regimes and hence Q is proportional to T 1/2
A in the hydraulic regime. The

entrainment rate depends only weakly on σ and increases relatively slowly with TA.

Figure 9 c and d show the dependence of the thermal forcing and basal melt on TA, which both are normalised to be unity

at the regime transition. In the hydraulic regime, T and M are for a given TA lower than they would have been in a melt-

controlled regime. Since M ∝∆TQ, the hydraulic-regime melt rate is proportional to T 3/2
A when σ = 1. Note that in Fig. 9,460

the melt rates have been normalised to be unity at the regime transition for visual clarity. The actual melt rates are proportional

to σ3/2, implying that σ = 1 corresponds to the highest melt rate of a hydraulically-controlled exchange flow for a given TA.

4.2.5 Dynamical features: dependence on the melt parameterisation exponents n1 and n2

So far we have considered the case 3n2−n1 > 0, where increasing TA brings the flow towards the hydraulic regime (Fig. 4).

The large 79◦, Petermann and Ryder ice tongues should be described by this case. However, some qualitatively different flow465

features emerge if 3n2−n1 < 0, and this case may be relevant for tidewater glaciers with high glacial discharge: theoretical

considerations suggest that the exponents n1 = 1 and n2 = 0 describe the melt processes in this limit (Jenkins, 2011; Straneo

and Cenedese, 2015). Therefore, we consider briefly two cases for which 3n2−n1 ≤ 0 in the context of scenario 2.

Figure 10 shows flow features for the cases 3n2−n1 = 0 and 3n2−n1 =−1. In the former case, the flow has the same

dependence on T and ∆T in both regimes; see Eqs. (16,38). As a result, the boundary between the flow regimes depends only470

on h. Further the R factor, the suppression of the thermal forcing due to hydraulic control, is independent of TA.

Also in the case where 3n2−n1 < 0, a hydraulically-controlled exchange flow suppresses the thermal forcing and basal

melt. However, here the R factor – for a fixed h – increases with increasing TA. Thus, as the AW temperature increases the

hydraulic suppression of the melt decreases. The reason is that the hydraulically-determined upper bound on the exchange flow

QH (Eq. 38) now increases faster with the thermal forcing than the plume volume transport QP (Eq. 16). Figure 10 (b) and (d)475

illustrate the case n1 = 1 and n2 = 0 where QP is independent of the thermal forcing, but capture the qualitative features for

the general case 3n2−n1 < 0.
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Figure 9. The flow dependence on the AW thermal forcing TA for a fixed value of h. The case n1 = 2 and n2 = 1 is shown for different values

of the non-dimensional parameter σ (Eq. 20); solid, dashed, and dash-dotted lines show results for σ = 1.0, σ = 0.8, σ = 0.5, and σ = 0.2,

respectively. All variables are non-dimensional: the AW thermal forcing TA/TL (Eq. 29) is greater (smaller) than one in the hydraulic (melt-

controlled) regime. (a) Exchange flow Q and (b) temperature difference ∆T (red and blue lines), and entrainment fraction Φ (black lines);

note that for clarity 2Φ is graphed. (c) Thermal forcing T and (d) and melt rate M ; the grey lines show T and M in the melt-controlled

regime extrapolated into the hydraulic regime. Note that M have been normalised to be unity at the regime transition; dimensional melt rates

are proportional to σ3/2 (see the text).

4.3 Applications to Ryder, 79◦N, and Petermann glaciers

To examine some concrete aspects of the model, we will now apply it in a qualitative way to the ice tongues of Ryder, 79◦N,

and Petermann glaciers. We consider scenario 2, assuming n1 = 2 and n2 = 1, and try to crudely estimate model parameters480

charactering the melt–flow dynamics. We use observations of flow- and melt-rates (Q and M ) and hydrography from the three

glaciers reported in the literature (Johnson et al., 2011; Wilson et al., 2017; Jakobsson et al., 2020; Schaffer et al., 2020).

We recall that observations show that the sill exchange flows of Ryder and 79◦N glaciers are hydraulically controlled, but

that the exchange flow over the relatively deep and wide sill in Peterman Fjord is not. Note that there are uncertainties in the

observations and in model assumptions, and the present exercise is primarily an illustration of how the model can be applied.485
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Figure 10. The dependence of the thermal ice-cavity forcing T (a,b) and the reduction factor R (c,d) on the AW thermal forcing (TA)

and height (h) in scenario 2; see section 4.2. The non-dimensional variables are defined as in Fig. 6, and σ = 0.5. The white line shows

the boundary between the melt-controlled (above the line) and hydraulically-controlled regime (below the line). (a) and (c) show the case

n1 = 1.5 and n2 = 0.5, for which 3n2−n1 = 0; and (b) and (d) show the case n1 = 1 and n2 = 0, for which 3n2−n1 =−1. The latter

case may be relevant for tidewater glaciers, but for large ice tongues the case 3n2−n1 > 0 shown in Fig. 7 is more likely.

Guided by the model physics, we estimate model variables and parameters as follows: The hydrographic observations give

TC as the near-bottom temperatures inside the sill, and TA as the sill-depth temperature outside the sill. Note that the outside

the sills, the temperatures are nearly constant below the sill depths; see Fig. 3. The outflow model temperature T , which

represents a flow-weighted mean over of an outflow distributed vertically over a range of temperatures, is less straightforward

to determine from hydrography. Here, we use the relation M/Q= ∆T/TG = ∆S/SA [which follows from Eqs. (3,9)] to find490

values of T and S that roughly satisfy these conditions, and at the same time characterise outflowing water. This allows Φ to

be determined from Eq. (42).

The model parameters γ1, γ2, and kH are estimated as follows: From Eq. (15), we obtain γ1 ≈M/T 2. By using Eqs.

(15,16,36), we obtain γ2 ≈Q/[T (1−Φ)]. This provides the estimate

σ =
TGγ1
γ2
≈ TGM

T Q
(1−Φ). (46)495

By using Eqs. (23,25), we obtain kHh
3/2 ≈Q3/2/M1/2; and an estimate of h then gives kH . Note that kH can also be

determined from a knowledge of the cross-sectional sill width W .
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Table 2. Observational features and estimated model parameters in scenario 2 (section 4.2) for Ryder, 79◦N, and Petermann glaciers. See the

text for details. In the model fit, it is assumed that n1 = 2 and n2 = 1. Note that the AW temperature TA is the measured temperature on the

seaward side of the sill closest to the ice tongue.

Ryder Glacier 79◦N Glacier Petermann

A area (km2) 300 1700 1000

M (m3 s−1) 60 600 300

Q (103 m3 s−1) 10 46 50

M/Q (%) 0.6 1.3 0.6

TA, TC (◦C) 0.3, 0.2 1.8, 1.2 0.3, 0.3

TA, T (◦C) 2.8, 2.7 4.2, 3.6 2.8, 2.8

R= T /TA 0.96 0.86 1

∆T (◦C) 0.5 1.0 0.5

∆S (g/kg) 0.2 0.5 0.2

Φ 0.3 0.6 0.0

γ1 (m3 s−1 ◦C−2) 8 46 40

γ2 (m3 s−1 ◦C−1) 5 · 103 3 · 104 2 · 104

kHh
3/2 (m3 s−1) 1.3 · 105 4 · 105

hL (m), h/hL 100, 0.7 220, 0.4 40, 3.4

σ 0.1 0.1 0.2

The estimates ofQ from Ryder and Petermann are more uncertain than the ones from 79◦N reported by Schaffer et al. (2020),

which are based on a one-year moored time series of velocity. The Ryder estimate of Q is based on a single instantaneous

current measurement on the inner sill in Sherard Osborn Fjord (Jakobsson et al., 2020). Our Petermann estimate of Q is based500

on hydrography and geostrophic velocities presented by Johnson et al. (2011): using their Fig. 7, we estimate the outflow of

glacially modified water (in the depth rage from 150 to 250 m) to be on the order of 50 · 103 m3 s−1.

Table 2 summarises observational features and estimated model parameters. Notably, the estimates of σ, around 0.1–0.2,

are similar for the three glaciers. This reflects that the cooling due to ice melt of the melt-water plume is small compared to

the upper limit (σ = 1), in which the outflow temperature (T ) approaches the freezing point. For Ryder and 79◦N glaciers,505

which have hydraulically-controlled exchange flows, the estimated h/hL is 0.7 and 0.4, respectively. The lower value of

h/hL at 79◦N Glacier implies a higher sensitivity of the melt to changes of h/hL; see Fig. 8. Further, the reduction factors

(R= T /TA), which are directly inferred from the hydrography, are only slightly below unity: R is 0.96 and 0.86 at Ryder

and 79◦N, respectively. If as assumed here M ∝ T 2, this implies that, relative the situation where unmodified AW reaches the

grounding line, the melt rates are reduced by about 10 and 30 % at Ryder and 79◦N, respectively. Taken together, this suggests510

that hydraulic control and associated entrainment reduce the basal melt on both ice tongues, but that currently this effect is

more pronounced at 79◦N Glacier.

26



0 1 2 3 4 5 6
0

0.5

1

1.5

2

M
 (

no
n-

di
m

.)

a) Melt Rate versus TA-Tf

Ryder

79°N
Transition

0 1 2 3 4 5 6

TA-Tf (
°C)

0.8

0.85

0.9

0.95

1

R
 (

no
n-

di
m

.)

b) R Factor versus TA-Tf

Figure 11. Model-based estimates of non-dimensional melt rate M (a) and R factor (b), for observed values of h, as a function of the AW

thermal forcing TA for Ryder (black lines) and 79◦N (grey lines) glaciers. Red lines shows the melt-controlled regime, and dashed lines in

(a) shows M if AW would reach the grounding line (T = TA). The estimate is based on the model scenario 2 (see 4.2 and with n1 = 2 and

n2 = 1). The melt rates are normalised to be unity for the present observed values; see table 2 and section 4.3. The squares mark the observed

values of TA, and the red dots mark the model-predicted transition between the melt-controlled and the hydraulically-controlled regimes.

Figure 11 shows model-predicted melt rates M and R factors as a function of TA for Ryder and 79◦N glaciers when h is

kept at observed values. The figure also shows the melt rates that would occur if unmodified AW reached the grounding lines:

the melt rates in the hydraulically-controlled regime are lower and their dependence on TA are weaker. The model results show515

that a 1 ◦C increase of TA from present values increases M with about 75 % and 50 % at Ryder and 79◦N, respectively. The

basal melt is more sensitive to the same change in TA at Ryder than at 79◦N simply because TA is larger at 79◦N. For fractional

changes of TA, the response in basal melt is more similar: a 10 % increase of TA yields an increase in M of about 15 % at

both glaciers. (Note that a 10 % increase of TA corresponds to an increase of ∼ 0.3 and ∼ 0.4 ◦C of TA at Ryder and 79◦N,

respectively.) In the absence of hydraulic control, where M ∝ T 2
A , the corresponding increase in M would be 20 %. Figure 12520

shows the model-predicted dependence of Ryder basal melt on TA and h. Currently, the AW interface is about 30 m below the

transition depth hL at which hydraulic control ceases, i.e. a lifting of AW interface by about 30 m would bring the flow into

the melt controlled regime.
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Figure 12. Estimated Ryder Glacier basal melt per unit area (M/A given in meters per year) as a function of the AW temperature (TA) and

height (h) in model scenario 2; see section 4.2. Here, n1 = 2 and n2 = 1 and M ∝ T 2. The square indicates Ryder’s present state, and the

white line shows the transition between the melt- and hydraulically-controlled regimes. In the white section in the lower right-hand side of

the figure, the temperature of water leaving the glacier (T ) is below the freezing point, and refreezing is expected to occur: in this regime our

melt representation needs to be modified.

At Petermann Glacier, the exchange flow is not hydraulically controlled because the height of the AW above the sill is larger

than the transition height hL (Eq. 28). Note that hL decreases with the cross-sectional width of the sill (hL ∝W−2/3). Ryder525

and Petermann have similar values of TA, and it is primarily the wide sill in Petermann Fjord that yields a small value of hL

(see Fig. 5 in Jakobsson et al., 2020).

5 Conclusions

To analyse the impact of hydraulic control on basal glacier melt, we have developed a two-layer fjord model that includes simple

representations of melt and exchange-flow dynamics. Despite model idealisations, we believe that Figs. 6 and 7 qualitatively530

illustrate how the interplay between near-ice melt processes and hydraulic control affects the relationship between basal ice-

tongue melt and AW features2. Our results suggest that there are two flow regimes, with different relationships between basal

melt and AW features. To begin with, a melt-controlled flow regime, in which the fjord geometry and sills do not restrict the

2Figure 10 may be more representative for tidewater glaciers with subglacial discharge that exceeds subsurface ice melt.
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exchange flow, and unmodified AW reaches the grounding line (Fig. 1). In this regime, the basal melt is rate limited by near-ice

processes, rather than by the heat flux carried by the horizontal exchange flow in the fjord. Accordingly, the thermal forcing535

is set by the AW temperature and the basal-melt processes determine the strength of the exchange flow. In this regime, the

dependence of the basal melt on the AW height is weak and neglected here.

In a sill fjord, hydraulic control can set an upper bound on the exchange flow, which depends on the height of the AW above

the sill crest and the density difference between the in- and out-flowing waters. If hydraulic control is established, the outflow

of glacially-modified water created by the basal melt must be compatible with the hydraulically-determined exchange flow at540

the sill to ensure volume conservation. In a hydraulically-controlled flow regime, accordingly, the heat transport supplied by

the fjord circulation enters as a rate-limiting factor for the basal melt (Fig. 1). The flow can transit from a melt-controlled to a

hydraulically-controlled regime if the AW height is decreased or the AW temperature is increased (Figs. 6,7). Such transitions

can also occur when increasing subglacial discharge enhances the basal melt and the production of glacially-modified water.

In the hydraulic regime, decreasing AW height causes the exchange flow and its associated heat flux to decrease. As a545

result, the basal melt decreases. The hydraulic constraint also reduces the sensitivity of the basal melt to changes of the AW

temperature. We have examined this effect using a simple representation of the melt processes (Eqs. 15,16), and considered

two idealised scenarios for how the flow adjusts to satisfy the hydraulic constraint; see sections 4.1 and 4.2. In these scenarios

changes of the fjord stratification or entrainment of glacially-modified water into the inflowing AW are assumed to regulate

the thermal forcing such that the hydraulic constraint is satisfied. In scenario 1 (Fig. 6), the thermal forcing is completely blind550

to the AW temperature, but sensitive to the AW height. Scenario 2 (Fig. 7) is less extreme, and here the thermal forcing has

a muted response to changes of the AW temperature, i.e. dT
dTA < 1. These scenarios involve some fairly ad hoc assumptions,

and further studies are needed to more accurately quantify the suppression of the thermal forcing in hydraulic flow regimes.

Nevertheless, the qualitative features shown in Figs. 6 and 7 are expected to be robust. We note that scenario 2, which assumes

entrainment and recirculation in the ice cavity, is more consistent with observations and modelling (Schaffer et al., 2020;555

Jakobsson et al., 2020; Bao and Moffat, 2023) than scenario 1.

The suppression of basal melt due to hydraulic control can be quantified by the reduction factor R (Eq. 26): the melt relative

to the case when AW reaches the grounding line is proportional to Rn1 . At an ice tongue or tidewater glacier in a specific fjord,

R is a function of the AW features, i.e. R=R(TA,h). This feature could be used to parametrise effects of hydraulic control

in simulations of marine-glacier response to changes of AW forcing, which is crucial for the evolution of Greenlandic marine560

glaciers on decadal and centennial timescales (Straneo and Heimbach, 2013; Aschwanden et al., 2019; Wood et al., 2021).

We have considered a situation where the sill is seaward of the ice-tongue front, which is presently the case for Ryder and

79◦N glaciers. However, if an ice tongue extends above the sill, the ice draft will contribute to the geometrical constraints that

determine the hydraulic exchange flow: the ice reduces the water-column depth over the sill. We will not explore this problem

here. However, we note that in the early 1900s Ryder Ice Tongue was some 40 km longer than today, and covered the inner sill;565

its front reached roughly to the 82◦12’N mark in Fig. 2c; see Jakobsson et al. (2020) and O’Regan et al. (2021) for additional

information. This should have strongly restricted the water exchange over the inner sill, resulting in very low basal melt on the

inner part of the ice tongue.
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Ryder Glacier has been relatively stable in recent decades (Hill et al., 2018). In contrast, Petermann Glacier, located∼200 km

southwest of Ryder, has been retreating and lost 35 km of its ice tongue in 2010 and 2012 (Johannessen et al., 2013; Hill et al.,570

2018). Jakobsson et al. (2020) proposed that Ryder Glacier has been stable because of its more restrictive sill geometry, which

partly protects the ice tongue from inflow of warmer subsurface AW (Fig. 2). The present study suggests that Ryder has a

relatively high R value (R≈ 0.9), implying that despite the double sill geometry in Sherard Osborne Fjord, the modified AW

reaching the grounding line is currently weakly cooled as its flows through the fjord. However, the sensitivity of basal melt to

thermal forcing depends on local conditions such as ice-tongue geometry, subglacial discharge and tidal currents. Notably, our575

simple model fit (Table 2) suggests that the thermal sensitivity of basal melt per unit area (γ1/A) is 40 % higher for Petermann

than for Ryder and 79◦N glaciers, which have comparable sensitivities. Further, remote sensing analyses show that the basal

melt per unit area (M/A) is about 50 % higher on Petermann than on Ryder (Wilson et al., 2017). Even if our model fit is quite

uncertain, this indicates that Ryder and 79◦N glaciers, which are shielded by hydraulically-controlled sill flows, also have basal

melt processes characterised by lower thermal sensitivity coefficients (γ1/A) than Petermann.580

We emphasise that the oceanic conditions at Ryder have only been observed a single time in the summer of 2019, and may

not give a representative view of the melt–flow dynamic. As documented in the observations of Schaffer et al. (2020) at 79◦N,

variations of the AW height on monthly to annual timescales cause significant variations in exchange flow and basal melt. Thus,

in hydraulically-controlled fjords, long-term melt variations may be strongly controlled by the evolution of the AW height, a

quantity that has received less attention than the AW temperature for the evolution of marine glaciers in Greenland (Straneo and585

Heimbach, 2013; Wood et al., 2021). Central Arctic Ocean observations document changes, on decadal timescales, of the AW

height that are up to 100 m (Polyakov et al., 2004). If similar height changes would occur along the arctic coast of Greenland,

significant changes in basal glacial melt would result: the present model (scenario 2) suggests that a lowering of the AW height

of ∼40 m would halve the basal melt on Ryder Ice Tongue.

Data availability. Data presented in the paper (multibeam bathymetry and oceanographic stations) are available in the Bolin Centre for Cli-590

mate Research database. Multibeam bathymetry: https://doi.org/10.17043/ryder-2019-bathymetry. LADCP (current measurements): https://doi.org/10.17043/ryder-

2019-ladcp. CTD stations: https://doi.org/10.17043/ryder-2019-ctd.

Appendix A: Subglacial discharge and conservations relations

In the conservation relations of section 3.1, subglacial discharge (say D) is neglected, whereas it is allowed to affect the melt

rate; see Eq. (15). Neglecting D in the conservation relations is genrally not a valid approximation for tidewater glaciers, and595

we show here how to generalise the results to cases where the subglacial discharge is not small compared to the freshwater

input due to subsurface ice melt (M ). Essentially, this is accomplished by replacing M by M +D in the derivations presented

in section 3.1, and this is outlined below.
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When including D, conservation of volume is given by

Q=QA +M +D, (A1)600

but salt conservation is still given by Eq. (2). This yields the modified Knudsen’s relation

∆SQ= SA(M +D). (A2)

The advective heat flux (Eq. 5) becomes

H = c[∆TQ+ (Tf −TA)(M +D)]. (A3)

The advective heat flux determines the melt rate (Eq. 6), which in combination with Eq. (A3) yields605

∆TQ= TGM + (TA−Tf )(M +D), (A4)

where the Gade temperature TG is defined in Eq. (8). This equation is the modified form of Eq. (7). For conditions in North

Greenland (TA−Tf )/TG ≈ 0.05, implying that the last term in Eq. (A4) can be neglected unless D�M . This approximation

is made in section 2.1, where D is taken to be zero.

By combining Eqs. (A2,A4) and eliminating Q, we obtain the counterpart of Eq. (10):610

∆S

SA
=

∆T

TG
Γ; (A5)

where we have introduced

Γ
def
=

(
1

1 +D/M
+
TA−Tf
TG

)−1
. (A6)

Since (TA−Tf )/TG < 1, it follows that Γ≥ 1. The density difference (Eq. 12) as function of ∆T becomes

∆ρ

ρ0
=

∆T

TG
(βSAΓ−αTG) . (A7)615

Thus for a given ∆T , the primary effect of subglacial discharge is to increase the associated ∆S and ∆ρ.

Figure A1 shows that depending on the value of D/M , there are two limiting regimes:

1. When D/M � 1, Γ≈ 1. Formally, this is the limit considered in section 2.1, where D/M is taken to be zero. However,

Fig. A1 indicates that this limit may serve as a leading order approximation also when D/M ≈ 1.

2. WhenD/M � 1, Γ≈ TG/(TA−Tf ) (≈ 20 for conditions in North Greenland). This implies that ∆S/SA ≈∆T/(TA−620

Tf ), which is the relationship between salinity and temperature changes when freshwater at the freezing temperature

is mixed with AW. Here, βSAΓ� αTG, and from Eqs. (A5,A7) it follows that the density difference becomes ap-

proximately controlled by the salinity difference alone: ∆ρ/ρ0 ≈ β∆S. This limit is approached when D/M is large

compared to TG/(TA−Tf ), and can be appropriate for tidewater glaciers with high subglacial discharge.
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Figure A1. The factor Γ (Eq. A6) as a function of the ratio between subglacial discharge and subsurface ice melt (D/M ). The x-axis

shows the logarithm (log10) ofD/M , and the dashed black line shows Γ = 1. The blue line shows a case with TG/(TA−Tf ) = 20, which is

representative for conditions in northern Greenland, and the red line shows TG/(TA−Tf ) = 10, characterising a case with warmer subsurface

AW.

As long as the volume flux of subglacial discharge and basal melt is small compared to the fjord exchange flow (the generally625

valid case for Greenlandic fjords where Q�M+D) the inclusion of the factor Γ in the generalised Eqs. (A5,A7) are the only

model modification needed for treating cases where the subglacial discharge is not small compared to the melt. The flow in the

melt-controlled regime (sec. 3.3) does not depend ∆S and ∆ρ and is therefore not dependent on the value of Γ. To describe

the flow hydraulically-controlled regime (sec. 3.4), it is convenient to define a modified hydraulic coefficient

k̃H
def
= kH

(
βSAΓ−αTG
βSA−αTG

)1/2

, (A8)630

where kH is defined in Eq. (24) and we note that k̃H ≥ kH . By replacing kH with k̃H in section 3.4 allow us the describe cases

with high subglacial discharge.

For given AW features associated with a specific ∆T , the primary effect of subglacial discharge (besides increasing the sub-

surface melt) is to enhance the layer density difference. Essentially, this causes the transition into the hydraulically-controlled
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regime to occur for somewhat greater sills heights (or lower height of the AW layer) than when D/M is taken to be zero. The635

regime transition is still defined from the condition that QP =QH [see Eq. (27)], which yields the equivalent of Eq. (28):

hL = k̃
−2/3
H γ

−1/3
1 γ2T

3n2−n1
3

A , (A9)

where kH is replaced k̃H . This shows that hL (the height of the AW layer above the sill for which the flow becomes hydrauli-

cally controlled) decreases when Γ increases k̃H . In the limits whenD/M � 1 orD/M � 1, Γ and therefore k̃H are constants

independent of M and D. Accordingly, the results for the limit of small subglacial discharge (D/M � 1) of the present paper640

are qualitatively similar to those in the limit of high subglacial discharge (D/M � 1).

The situation is slightly more complicated between these two limits, where D ∼M . This is because Γ and k̃H in this regime

depend both on M and D, which yields a model that is more complex algebraically. However, the main effect of finite values

of D/M is still to decrease the transition height hL. Thus, the model results should qualitatively describe also cases where

D ∼M .645

Appendix B: Mathematical relationships for scenario 2

Here, we derive a few mathematical relationships that can be used to construct graphs for scenario 2. We assume that n1−n2 =

1, which simplifies the algebra but is not strictly necessary.

When TA is fixed, it is convenient to put Eq. (43) in non-dimensional form using the variables

T̃ def
=
T
TA

, h̃
def
=

h

hL
, (B1)650

where hL is defined in Eq. (28). Note that T̃ =R; see Eq. (26). By using these non-dimensional variables and Eqs. (37,35),

we obtain

T̃ = 1−σ T̃
2n1
3

h̃

[
1− h̃T̃ −(n2−n1/3)

]
. (B2)

Here, the term in the square brackets on the right-hand side is Φ, and σ is defined by Eq. (20). From Eq. (B2), we can obtain h̃

as a function of T̃655

h̃=
σT̃

2n1
3

1− T̃ +σT̃
. (B3)

It is generally not possible to find the inverse function T̃ = T̃ (h̃) in a closed analytical form, but Eq. (B3) allow us examine it

graphically by plotting T versus h. By using Eqs. (37,B3), we can after some manipulations find the dependence of ∆T and Φ

on T̃ :

∆T

TA
= 1− T̃ +σT̃ , (B4)660

Φ =
1− T̃

1− T̃ +σT̃
. (B5)
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To examine the melt dynamics when h is fixed, it is useful to rewrite Eq. (43) as

TA = T + ∆TΦ, (B6)

where now the terms on the right-hand side are known functions of T and h specified by Eqs. (37,35). We put Eq. (B6) in665

non-dimensional form using the definitions of TL, ∆TL, and hL:

TA
TL

=
T
TL

+σ

(
T
TL

) 2n1
3

[
1−

(
TL
T

) 3n2−n1
3

]
. (B7)

By using Eq. (B7), we obtain after some straightforward calculations(
dT
dTA

)
T =TA

=
1

1 +σ(3n2−n1)/3
, (B8)

which applies at the regime transition in the hydraulically-controlled regime. In the melt-controlled regime, dT
dTA

= 1. Thus,670

the suppression of T relative to the AW thermal forcing (TA) is governed by the exponents n1 and n2, and σ. An inspection of

Eq. (35) shows that (3n2−n1)/3 determines how fast the entrainment increases with T .
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