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Abstract. Tropical cyclones (TCs) are one of the most severe meteorological disasters, making rapid10

and accurate track forecasts crucial for disaster prevention and mitigation. Because TC tracks are11

affected by various factors (the steering flow, thermal structure of the underlying surface, and12

atmospheric circulation), their trajectories present highly complex nonlinear behavior. Deep learning13

has many advantages in simulating nonlinear systems. In this paper, we explore the movement of TCs14

in the Northwest Pacific from 1979 to 2021 based on deep-learning technology, divided into training15

(1979–2014), validation (2015–2018), and test sets (2019–2021), and create 6–72 h TC track forecasts.16

Only historical trajectory data are used as input for evaluating the forecasts of the three recurrent neural17

networks utilized: recurrent neural network (RNN), long short-term memory (LSTM), and gated18

recurrent unit (GRU) models. The GRU approach performed best; to further improve forecast accuracy,19

a model combining GRU and a convolutional neural network (CNN) called GRU_CNN is proposed to20

capture the characteristics varying with time. By adding reanalysis data of the steering flow,21

sea-surface temperatures, and geopotential height around the cyclone, we can extract sufficient22

information on the historical trajectory features and three-dimensional spatial features. The results23

show that GRU_CNN outperforms other deep-learning models without CNN layers. Furthermore, by24

analyzing three additional environmental factors through control experiments, it can be concluded that25

the historical steering flow of TCs plays a key role, especially for short-term predictions within 24 h,26

while sea-surface temperatures and geopotential height can gradually improve the 24–72-h forecast.27



2

The average distance errors at 6 h and 12 h are 17.22 km and 43.90 km, respectively. Compared with28

the 6-h and 12-h forecast results (27.57km and 59.09km) of the Central Meteorological Observatory,29

the model proposed herein is suitable for short-term forecasting of TC tracks.30

1 Introduction31

The Northwest Pacific is the most active basin for tropical cyclones (TCs) in the world, generating over32

one-third of the total number of TCs (Gray, 1968). China, located on the western side of the Pacific33

Ocean with a coastline longer than 18,000 km, is one of the countries most severely influenced by TCs.34

These storm systems are accompanied by strong winds, heavy precipitation, and storm surges, resulting35

in severe disasters that affect human lives and economic growth (Goldenberg et al., 2001). Studies have36

shown that global warming will progressively intensify TCs over time (Emanuel, 2017; Schulthess et37

al., 2019). Since disasters caused by TCs are unavoidable and potentially destructive, accurately38

predicting the movement of TCs can provide sufficient preparation time for people in affected areas to39

implement disaster mitigation strategies.40

Given the uncertainty of TC movements, the complexity and nonlinearity inherent in the41

atmospheric system, and the scarcity of ocean-based observational data, accurately predicting the42

center positions and intensities of TCs is a challenge. Currently, forecasting methods for TCs are43

mainly divided into two categories, with the primary method being numerical weather prediction44

(NWP). NWP calculates the approximate solution of partial differential equations involving45

atmospheric state variables when the initial conditions and boundary conditions of the atmosphere are46

known. In this way, some elements, such as the tracks and intensities of the TCs, can be solved47

iteratively; GRAPES-TYM (CMA), GFS (NCEP), and IFS (ECWMF) are the main NWP models.48

Although these model forecasts can provide accurate results, there are limitations in methods relying on49

high-performance computers and requiring precise initial conditions. At the same time, ensemble50

forecast methods (GRAPES-GEFS, ECMWF-EPS, NCEP-GEFS) have been used to reduce the51

influence of various uncertainties on the numerical prediction results (Goerss, 2000). The other52

forecasting method is a statistical model, which generally utilizes multiple regression. The statistical53

model is mainly based on the relationship between the movement of the TC and its specific historical54

characteristics, but it usually does not consider any physical processes. The National Hurricane Center55
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has successively adopted statistical models such as NHC64 (taking observational data and historical56

12h movements as factors), NHC67 (increasing factors based on NHC64), CLIPER (climate57

persistence factors) (Neumann and Hope, 1972), and NHC72 (a combination of NHC67 and CLIPER).58

Most traditional TC statistical models adopt a linear regression model, and it is difficult for this59

approach to address the nonlinear problems in TC track forecasting (Roy and Kovordányi, 2012). At60

the same time, manual feature selection is unable to produce accurate predictions. CLP5 had the largest61

Mean absolute error(MAE) of all models for TCs occurring from the Eastern Pacific and North Atlantic62

(Boussioux et al., 2022). Li-Min et al. (2009) used the BP neural network to predict that the average63

distance error of the 6h movement track of six typhoons in 2005 improved by 36.9km, compared with64

CLIPER.65

Deep learning is an emerging application of supercomputing that is continuously being developed;66

many researchers have tried to adopt this technology to forecast weather and meteorological elements,67

including visibility (Ortega et al., 2022), wind speeds (Liu et al., 2018), radar echoes (Klein et al.,68

2015), and precipitation nowcasting (Shi et al., 2015). Deep learning is a statistical model that solves69

nonlinear and complex relationships from historical sample data based on neural network algorithms.70

The weight factor between network nodes is automatically adjusted through repeated training; thus,71

neural network algorithms have the advantages of strong adaptability and fault tolerance. TCs have72

complex dynamic mechanisms and are easily affected by many factors, including environmental73

steering flow, Beta effects, underlying surface conditions, the asymmetric structure of the inner core,74

and mesoscale circulations (Chan and Kepert, 2010). Artificial neural networks (ANNs) have been75

applied to predict TC tracks due to their strong learning ability and advantages in simulating nonlinear76

systems. Until the 2010s, ANN and back propagation (BP) networks were the mainstream neural77

network methods for forecasting TC tracks (Ali et al., 2007; Li-Min et al., 2009; Wang et al., 2011).78

Since the mid-2010s, more new methods have been introduced into TC prediction due to the79

development of deep-learning technology. Recurrent neural networks (RNNs) are suitable for TC track80

forecasting owing to their ability to handle time series data of arbitrary lengths. Moradi Kordmahalleh81

et al. (2015) applied a sparse RNN to Atlantic hurricane trajectory prediction using the dynamic time82

warping (DTW) method to measure the hurricane most similar to the target hurricane for training. Gao83

et al. (2018) used long short-term memory (LSTM) to predict typhoon tracks in the Northwest Pacific84
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Ocean; the ratio of the cyclone training set and test set was set at 8:2, and the 24-h prediction error85

could reach 105 km. Alemany et al. (2018) proposed an RNN based on a grid system to predict86

hurricanes in the Atlantic, potentially improving the 6-h prediction accuracy with a root mean square87

error (RMSE) of 0.11 for the test set. Kim et al. (2018) performed a TC identification task based on88

ConvLSTM to train WRF-simulated data, and the results show the average precision of the forecast89

was improved by 78.99% than those of a convolutional neural network (CNN). These CNNs have90

attracted attention given their suitability for processing 2D image data; they maintain spatial91

correlations by implementing convolution layers and then pooling layers for feature extraction.92

Giffard-Roisin et al. (2020) combined historical trajectory data with wind field reanalysis data as input93

to a CNN and predicted Atlantic hurricane tracks since 1979, with an average error of 32.9 km for 6-h94

predictions.95

Making full use of different types of data is essential for deep learning. TC-related data are mainly96

divided into the following three categories: observational trajectory data, remote sensing data, and97

meteorological reanalysis field data. A multi-modal approach enables more accurate predictions than98

an approach using a single data source does. Zhang et al. (2018) developed a matrix neural network99

(MNN) model that preserves the spatial information of the TC tracks, and it has demonstrated the100

ability to provide more accurate results compared with other models (GRU, LSTM, Multi-Layer101

Perceptron, and RNN). Ruttgers et al. (2019) built generation adversarial networks (GANs) adding102

satellite images to predict the coordinates of the typhoon center and generate cloud maps of future103

typhoons. Liu et al. (2022) proposed a new deep learning–based model, DBFNet, to effectively fuse the104

inherent features of cyclones and reanalyze 2D pressure field data. The above studies have shown that105

deep-learning models that incorporate multiple data types can improve the track forecast of TCs to a106

certain extent. Still, most of them have neglected to describe and analyze the meteorological factors107

that affect the movement of TCs, ignoring valuable features. The 6-hour average distance error108

between predicted and real location by the fusion network (wind+track) is 32.9 km, while the network109

prediction results without adding wind variables are 35km (Giffard-Roisin et al., 2018), which110

indicates that the addition of meteorological field variables can effectively improve the prediction111

accuracy.112
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This paper attempts to propose a new method for TC track prediction based on a combination of113

CNN and GRU models that incorporate data regarding the trajectory, steering airflow, sea-surface114

temperatures, and geopotential height as input features, aiming to improve the accuracy of TC track115

forecasts by leveraging big data. The main contents of this paper are as follows: Section 2 introduces116

the necessary data and data preprocessing. Section 3 describes the experimental design and the117

framework of the fusion model (GRU_CNN) proposed in this paper. Section 4 presents the118

experimental results and comparative analysis, and Section 5 provides a summary and discussion of119

shortcomings and directions for future work.120

2 Data and data preprocessing121

2.1 Data122

The data used in this paper are trajectory data and reanalysis environmental data. The TC track data123

come from the International Best Track Archive for Climate Stewardship (IBTrACS), which124

encompasses all TCs globally. For each TC, the latitude, longitude, central pressure, maximum wind125

speed, direction, moving speed, and other data are recorded at 3-h intervals. The IBTrACS dataset126

contains data from different basins where cyclones show different characteristics; thus, this paper only127

selects TCs that occur in the Northwest Pacific Ocean. To better mine the hidden information, 19128

movement characteristics were obtained, including the past 24-h longitude, latitude, central129

atmospheric pressure, maximum wind speed, meridional moving speed, zonal moving speed, moving130

direction/speed, the difference between those values and those at the current time, and the angle, zonal131

distance, and meridional distance formed between the data over the past 24 h and in the present132

moment. Because they are influenced by the earth’s rotation, TCs will be biased to the northwest133

(Kitade, 1981). The Coriolis parameters corresponding to the latitude of the TCs in the past 24 hours134

are also included.135

Both observational and theoretical studies have shown that TC movement is closely related to136

large-scale airflow fields (Holland, 1983), and TC movement is mainly affected by the steering flow137

(Brand et al., 1981; Chan, 1984). Interactions among weather systems, the subtropical anticyclone,138

Westerlies, and the Tibetan High will also affect the movement of cyclones (George and Gray, 1976;139
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Chan et al., 1980). The geopotential heights of 300 hpa, 500 hpa, and 700 hpa are selected as the140

locations for the high, middle, and low-level circulation data, respectively. In addition, the underlying141

surface conditions must be considered, and, in the case of a weak guidance environment, TCs tend to142

move toward warmer sea-surface temperatures (Sun et al., 2017; Katsube and Inatsu, 2016).143

Meteorological environmental data are obtained by downloading high-resolution ERA5 reanalysis data144

from the European Centre for Medium-Range Forecasting (ECMWF). Holland (1984) noted that the145

deep mean circulation from 850 hpa to 300 hpa can better represent the direction of a TC. Therefore,146

the environmental data for the preceding 24 h were extracted as follows:147

(1) The u- and v-component data of the wind field on the four isobaric surfaces (300 hpa, 500 hpa, 700148

hpa, 850 hpa): Centered the TC, extend 10 degrees outward in the zonal and meridian direction149

respectively. Since the resolution of the selected reanalysis data is 1° × 1°, a 21 × 21 grid can be150

formed.151

(2) The sea-surface temperature (SST): 10 degrees outward in the zonal and meridian direction is again152

extended from the TC center to form a 21 × 21 grid.153

(3) The geopotential heights of 300 hpa, 500 hpa, and 700 hpa: A grid is extended +35° to the north,154

−10° to the south, −40° to the west, and +40° to the east from the center of the TC, forming a 46 × 81155

grid.156

2.2 Data preprocessing157

2.2.1 Devortexing158

Because the actual weather circulation is very complex and includes information about the TC itself,159

the surrounding airflow, and the interaction between the two, it is necessary to separate the cyclone160

vortex from the surrounding airflow to obtain the steering flow. The most commonly used method161

(Lownam, 2001; Galarneau and Davis, 2013) corrects the vorticity and divergence by solving the162

change in the velocity stream and potential functions, respectively, and then calculates the modified163

velocity field. The modified flow field can be interpreted as having a non-rotating wind and164

non-diverging wind. There must be potential velocity in the irrotational motion and a stream function165

in the non-divergent motion. The relationship between them can be expressed as follows:166
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2   (1)
167

kv   (2)
168

Where ψ is the stream function without divergence, ζ is the relative vorticity, and �� is the169

non-divergent wind (rotating wind). To define the rotating wind, the vorticity outside the vortex radius170

is set to zero, and ψ = 0 is specified on the horizontal boundary. The iterative relaxation method is used171

to solve the stream function of Eq. (1) at all layers and then to calculate �� using Eq. (2). In the case of172

divergence, Eqs. (1) and (2) are replaced by:173

2   (3)
174

v  (4)
175

Where χ is the potential velocity, δ is the divergence, and �� is the non-vorticity wind. The divergence176

outside the vortex radius is set to zero and the potential function χ = 0 on the boundary of the region.177

The velocity potential can be solved in the same manner to calculate �� . The ambient wind field with178

the vortex removed can be obtained by subtracting the rotating wind and divergent wind from the179

original wind field, V:180

( , , ) ( , , ) ( , , ) ( , , )envv x y p V x y p v x y p v x y p    (5)
181

2.2.2 Random forest182

By sorting features based on importance, random forest selects the best feature combination and
183

reduces the input feature dimensions that efficiently direct variables for machine learning models
184

(Díaz-Uriarte and Alvarez De Andrés, 2006; Genuer et al., 2010). The random forest contains N
185

decision trees, and N is generally set to 100. Since bootstrapping (random sampling with replacement)
186

is used to generate the random decision tree, all samples are not in the generation process of a tree, and
187

the unused samples are called “out-of-bag” (OOB) samples. Through OOB samples, the accuracy of
188

this tree can be evaluated.
189

Before model training, it is necessary to determine whether the 19 trajectory features all have an
190

impact on the prediction results. Figure 1(a) shows the long name corresponding to the short name of
191

19 input features and Fig 1(b) shows the 19 features’ order of importance calculated using the random
192

forest method. For forecasting the difference in longitude and latitude within the following 72 hours,
193
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characteristics like the historic longitude or the angle formed by the historical moment and the current
194

moment are significant. The decision about whether to exclude some less important features, however,
195

requires further consideration. The OOB scores under different input feature dimensions are computed,
196

with variables input in the order of importance, as shown in Fig. 1(c). In the case in which the first 11
197

features are sorted by importance, the OOB score is the highest, and the features added later will no
198

longer affect the result; in other words, the best combination is that of the first 11 features.
199

200

Figure 1: (a) Table displaying the short and long names of features, (b) the importance index of features,201

and (c) the OOB_score of different feature combinations based on the random forest (red dot indicates the202

maximum value).203

3 Experiment204

3.1 Experimental design205

Our goal is to predict the TC movements for the following 6–72 h using the trajectory data and206

surrounding environmental field from the previous 24 h. We explore TC movement in the Northwest207

Pacific from 1979 to 2021 and consider the longitudinal and latitudinal changes in the following 6–72 h208
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as the quantitative prediction variables, with the center of the TC at the current time as the reference209

point. Since the maximum forecast hour is 72 and the input sequence time length is 24 h, TCs that210

persist for longer than 96 hours are removed. All samples obtained based on the sliding window of the211

input-prediction sequence length are divided into three groups in chronological order: training set212

(1979–2014), validation set (2015–2018), and test set (2019–2021). There are 36473 samples, of which213

90% are trained, and the remaining 10% are validated; 49 TCs from 2019 to 2021 are used for testing,214

and the number of test samples is 2095.215

3.2 Model framework216

3.2.1 Recurrent Neural Network217

RNNs can process sequences of any length using neurons with self-feedback, characterized by218

architectural features intentionally designed to preserve historical information, showing a remarkable219

ability to process sequential data (Graves et al., 2013; Bathla, 2020; Wang and Fu, 2020). However,220

simple RNNs have difficulty in dealing with the long-term dependence of the sequence; when the221

sequence length exceeds a certain threshold, the information may disappear during the transmission222

process, resulting in large deviations in prediction accuracy. The LSTM network proposed by223

Hochreiter and Schmidhuber (1997) can avoid the gradient disappearance and explosion phenomena224

that occur in the standard RNN. While GRU (Cho et al., 2014) is an improved and optimized neural225

network based on LSTM, it has a faster convergence speed and maintains accuracy levels close to those226

of LSTM.227

3.2.2 Convolutional Neural Network228

CNNs can extract features automatically by processing the input patterns and translating the same229

convolution kernel from top to bottom and from left to right. The spatial relationship is fixed with the230

distribution of neurons, and the local connection and weight sharing of neurons reduce the training231

complexity by reducing the number of parameters. Lecun et al. (1998) first used CNN for handwritten232

character recognition with average pooling and the tanh activation function. Krizhevsky et al. (2012)233

proposed the AlexNet model in the ImageNet competition, using the ReLU function instead of the234

traditional tanh function to introduce nonlinearity and solve the gradient disappearance problem of the235
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activation function when the network was relatively deep, employing maximum pooling to avoid the236

blurring effect of average pooling. Ioffe and Szegedy (2015) applied batch normalization to image237

classification models, which significantly accelerated the training of deep networks, and batch238

normalization helped alleviate the problem of gradient exploding or vanishing.239

3.2.3 GRU_CNN240

Due to differences in the data sources, a new model must be developed to integrate the four241

information sources into the neural network using the Keras deep-learning framework. The specific242

model structure is shown in Fig. 2. The 3D meteorological data are superimposed on the geopotential243

height (pressure level), so the input data for the CNN consist of multiple three-dimensional matrices,244

that is, the area of the light gray shaded region in Fig. 2 represents 3D tensor input layers of the CNN245

model. The gray solid arrow represents the TimeDistributed layer that is applied to a series of tensors246

in the processing of the time dimension. In addition, the CNN adopts a typical architecture with247

alternating convolution layers (Conv layers) and maximum pooling layers (Maxpool layers), The black248

hollowsolid arrow means the Flatten layer converting three-dimensional data into one-dimensional249

vectors (1D vector) at the end of the CNN network and the arrow filled with slashesthe dashed black250

arrow represents the fully connected layers (Dense layers) in the network framework. All hidden layers251

are equipped with batch normalization, and this paper employs ReLU as the activation function.252

The area of the dark gray shaded region in Fig. 2 is the two-dimensional trajectory data of the TCs253

(2D tensor input layer)For the two-dimensional trajectory data of the TCs, where ��
� represents the254

input value of the ith feature at the jth timestamp, i∈(1, n), j∈(1, t), and they are input into GRU. The255

model is based on the Adam optimizer and trained with the RMSE between the forecast and the actual256

value as a loss function. Due to the different properties among the wind field, pressure field, SSTs, and257

past trajectory data, different learning rates are required for the neural network. Therefore, the258

parameters of each branch in the model can be trained with the same task, and then the branches can be259

fused into one network (Concat layer), that is, the dashed red arrow means the merging of multiple260

vectors into one vector. It is eventually stitched with output with a fully connected layer; thereafter, the261

parameters can be adjusted slightly. Table 2 lists the input and output size of each layer in the network262

framework, including convolution kernel size, stride, and channel number.263
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264

265

Figure 2: The model framework and network structure of GRU_CNN.266
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Table 1 Each layer architecture of the GRU_CNN267

Layers Kernel Size Stride Channel Input Size Output Size

Conv_uv 7×7 2 8 21×21 8×8

MaxPool_uv 4×4 4 16 8×8 2×2

Flatten _uv - - 16 2×2 64

Dense_uv_1 - - - 64 128

Dense_uv_2 - - - 128 32

Conv_sst 7×7 2 1 21×21 8×8

MaxPool_sst 4×4 4 8 8×8 2×2

Flatten_sst - - 8 2×2 32

Dense_sst_1 - - - 32 128

Dense_sst_2 - - - 128 32

Conv_p 14×25 4 3 46×81 9×15

MaxPool_p 5x11 4 16 9×15 2×2

Flatten _p - - 16 2×2 64

Dense_p_1 - - - 64 128

Dense_p_2 - - - 128 32

GRU_1 - - - 8×11 8×128

GRU_2 - - - 8×128 128

Dense_GRU - - - 128 32

Concat_layer - - - - 128

4 Results268

Three types of recurrent neural networks (RNN, LSTM, GRU) are used to train samples with eight269

timestamps and 11 features selected by the random forest method, according to their importance; the270

results of analyzing 49 TCs in 2019–2021 are then evaluated. We set the value of the batch size to 64271

and the epoch to 100 and found that the model performed best when the number of neurons in the272

hidden layer is set to 128; this was determined via experiments using different numbers of neurons in273

the hidden layer. Early stopping is used to prevent overfitting. When the performance of the model in274

the validation set begins to decline, training is stopped to avoid overfitting due to continued training.275
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Table 2 Model performance evaluation (RMSE) for RNN, LSTM, and GRU276

277

The performance evaluation of the three RNN models is displayed in Table 2 by calculating the278

RMSE values between the predicted longitude (latitude) and the actual longitude (latitude), including279

training, validation, and test sets; the best results are highlighted in bold font. It is clear that the280

GRU-based and LSTM-based models significantly outperformed the RNN-based model, which281

suggests that the RNN is inferior in handling the problem of long-term dependence. GRU is a variant282

of LSTM that combines the forget and input gates in LSTM into an update gate and also merges the283

cell and hidden states. Hence, the parameter amounts of GRU are less than those of LSTM, which284

results in the overall training speed of GRU being faster than that of LSTM. GRU is theoretically285

similar to LSTM and can achieve the same accuracy as LSTM (or even better), so the results of GRU286

and LSTM are close and their RMSE values are much lower than that of RNN. GRU achieves the best287

performance in all forecast hours, with the smallest RMSE in the test set. Therefore we use GRU as a288

part of the fusion network model called GRU_CNN, adding meteorological environment data289

processed with CNN.290
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Table 3 Comparison of the average absolute distance errors (km) predicted by multiple deep-learning291

models292

293

Table 3 compares the results between GRU_CNN and various deep-learning models, showing the294

forecast results in the form of the mean absolute distance error. It is evident that GRU_CNN presents295

an absolute advantage in long-term forecasting. Both LSTM and GRU retain important features296

through various gate functions, which ensures that they will not be lost during long-term propagation.297

They can better predict the medium and long-term tracks of the TCs, compared with standard RNNs298

and two traditional methods named CLIPER and BP. The GRU_CNN is more accurate than the models299

without CNN. The average distance errors at 6 h, 24 h, 48 h, and 72 h are 17.22 km, 106.16 km, 281.52300

km, and 502.71 km, respectively. The error is also reduced compared with the NMSTN method301

proposed by Huang et al. (2022). In addition, although there is a big difference between the long-term302

forecast and the numerical prediction results, the average distance prediction results are better than the303

results provided by the Central Meteorological Observatory (CMO) in the short-term forecasts,304

including the 6 h (27.57 km) and 12 h (59.09 km) forecasts.305
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306

Figure 3: The absolute average distance boxplot of the three kinds of recurrent neural networks (RNN,307

LSTM, GRU) and the method in this paper (GRU_CNN) creating 6–72 h forecasts (interval 6 h).308

As shown in Fig. 3, the maximum distance errors predicted by the three RNNs at 48 h and 72 h309

are over 500 km and 1000 km, respectively. Only considering the trajectory characteristics of the TCs310

in the RNN while ignoring the external atmospheric environmental characteristics will cause instability311

in the prediction of the TC tracks. The errors of the maximum and average values predicted by the312

GRU_CNN model are both significantly reduced. To illustrate GRU_CNN more comprehensively and313

intuitively, Fig. 4 shows a scatter plot of the predicted and actual values. The distance between the data314

points and the diagonal line represents the prediction error. The higher the wind speed, the stronger the315

intensity of the TCs, and the closer the predicted value is to the actual value. In addition, with the316

increase in the forecast time, in high latitude and longitude forecasts when the TC is moving towards317

the northwest, the predicted value is often lower than the actual value.318
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319

Figure 4: Scatter plot distributions of latitude predictions. The color bar represents the maximum wind320

speed, including the longitude and latitude forecasts at (a–b) 6 h, (c–d) 12 h, (e–f) 24 h, (g–h) 48 h, and (i–j)321

72 h.322

Data from three environmental fields are used in this paper: SST, geopotential height (pressure),323

and wind field (u- and v-component) data. Different environmental input variables show different324
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effects in the model (Table 4). GRU+SST (pressure, UV) represents only the combination of the325

trajectory characteristics and SST (geopotential height, wind field), while GRU+CNN is the result of326

the fusion of the three. The results in Table 4 indicate that GRU+UV performed best, followed by327

GRU+pressure and then GRU+SST, indicating that the steering flow plays a dominant role in TC328

forecasting, especially in the short-term < 24-h forecast. The forecasting results of adding only the329

steering flow are close to those of GRU_CNN, while the results at 48 h and 72 h illustrate that the330

influence of the SST and geopotential height on the long-term TC forecast track gradually increases.331

Table 4 Comparison of trajectory data combining different environmental features. RMSE is the root mean332

square error of latitude and longitude, and the distance is the average absolute distance error (km).333

334

To better show the model forecast of GRU_CNN, Figures 5–7 present the observed and forecast335

tracks at 6 h and 24 h of TCs FAXAI, MITAG, and IN-FA, respectively, and the forecast tracks of336

other TCs in the test set are presented in Supplementary Fig. S1-51. The blue lines represent the337

observed tracks, while the red and yellow lines indicate the 6-h and 24-h forecast tracks. In general, it338

is particularly hard to forecast unexpected turns in the TC track. The three TCs shown all exhibit a339

sudden northward or northwestern turn in the TC track. For the 6-h forecast, the predicted path is340

approximately consistent with the actual track, while the 24-h forecast has some deviations. The341

average distance predicted near the northwest turn of FAXAI is 91.35 km; the error for MITAG’s first342

turn to the north is 127.02 km, and the error for the second turn to the northwest is 121.91 km. The two343

average errors in the track forecast for In-fa are 84.27 km and 82.37 km. It can be seen that there is no344

significant deviation in the forecast around the steering point, but, for some abnormal track changes,345

such as crossing back over the same location, samples with more significant errors will be generated,346

reducing the overall average absolute distance error.347
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348
Figure 5: Forecast tracks of Tropical Cyclone FAXAI (2019) (left: 6 h, right: 24 h).349

350

Figure 6: Forecast tracks of Tropical Cyclone MITAG (2019) (left: 6 h, right: 24 h).351



19

352
Figure 7: Forecast tracks of Tropical Cyclone IN-FA (2021) (left: 6 h, right: 24 h).353

5 Conclusion354

The past 24-h TC trajectory and meteorological field data have been used to forecast TC tracks in the355

Northwest Pacific from hours 6–72 using deep learning methods. First, in order to eliminate data356

redundancy and reduce the complexity of the prediction model, the random forest algorithm was used357

for feature extraction of the two-dimensional movement data. Second, three kinds of recurrent neural358

networks (RNN, LSTM, GRU) were used to evaluate and compare the models based on the input of359

trajectory features, and it was concluded that GRU performed relatively better in predicting TC tracks.360

Eventually, we combined GRU with CNN by adding the pre-processed meteorological environmental361

data around the cyclones (removing the vortex to obtain the steering flow); the CNN models the362

selected meteorological variables and extracts features, while GRU processes trajectory sequences.363

GRU_CNN has better prediction results than traditional single deep-learning methods do.364

When a new TC generates in the ocean, the GRU_CNN model can quickly provide the forecast365

track within seconds. Short-term predictions within 12 h of initialization can provide better results than366

CMO can, and the average distance errors of the forecasts at 6 h and 12 h are 17.22 km and 43.9 km.367

When the forecast goes beyond 24 h, the model’s accuracy declines. The historical steering flow of368

cyclones has a significant effect on improving the accuracy of short-term forecasting, while, in369

long-term forecasting, the SST and geopotential height will have a particular impact, which is regarded370
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as a crucial way to expand and improve the application of deep-learning models in TC track forecasting,371

In addition, the model can accurately predict TCs that suddenly turn to the north or northwest, but there372

will be a considerable distance error for abnormal trajectories, possibly due to a lack of synoptic373

analysis in our study.374

Cyclone prediction has been a challenge in weather forecasting for a long time. With future375

scientific and technological advances, it is becoming increasingly convenient to obtain meteorological376

data, and the database has gradually expanded. At the same time, deep-learning models are flexible and377

can easily be expanded upon. In the future, more data can be integrated, and more valuable features can378

be extracted to improve the prediction accuracy of the deep-learning model. In addition, model379

predictor variables will be considered in future work, the inclusion of which can predict more useful380

information, such as cyclone intensity, rainfall, and wind speed.381
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Store (https://cds.climate.copernicus.eu).387

Author contributions. Liang Wang wrote the paper and conducted most of the code implementation and388

data analysis. Bincheng Wan designed the research framework. Shaohui Zhou provided the code and389

revised the paper. Haofei Sun was involved in data collation and Zhiqiu Gao was responsible for390

supervision.391

Competing interests. The authors declare that they have no known competing financial interests or392

personal relationships that could have appeared to influence the work reported in this paper.393



21

Acknowledgments. This study was supported by the National Key Research and Development Program394

of the Ministry of Science and Technology of China (2018YFC1506405), and by the National Natural395

Science Foundation of China (Grants 42175082 and 42222503). We are very grateful to anonymous396

reviewers for their careful review and valuable comments, which led to substantial improvement of this397

manuscript.398

References399

Alemany, S., Beltran, J., Perez, A., and Ganzfried, S.: Predicting Hurricane Trajectories Using a400

Recurrent Neural Network, Proceedings of the AAAI Conference on Artificial Intelligence, 33,401

https://doi.org/10.1609/aaai.v33i01.3301468, 2018.402

Ali, M. M., Kishtawal, C. M., and Jain, S.: Predicting cyclone tracks in the north Indian Ocean: An403

artificial neural network approach, Geophysical Research Letters, 34,404

https://doi.org/10.1029/2006gl028353, 2007.405

Bathla, G.: Stock Price prediction using LSTM and SVR, 2020 Sixth International Conference on406

Parallel, Distributed and Grid Computing (PDGC), 6-8 Nov. 2020, 211-214,407

https://doi.org/10.1109/PDGC50313.2020.9315800,408

Boussioux, L., Zeng, C., Guenais, T., and Bertsimas, D.: Hurricane Forecasting: A Novel Multimodal409

Machine Learning Framework, Weather and Forecasting, https://arxiv.org/abs/2011.06125, 2022.410

Brand, S., Buenafe, C. A., and Hamilton, H. D.: Comparison of Tropical Cyclone Motion and411

Environmental Steering, Monthly Weather Review, 109, 908-909,412

https://doi.org/10.1175/1520-0493(1981)109<0908:cotcma>2.0.co;2, 1981.413

Chan, J. and Kepert, J.: Global Perspectives on Tropical Cyclones: From Science to Mitigation,414

https://doi.org/10.1142/7597, 2010.415

Chan, J. C.-L.: An Observational Study of the Physical Processes Responsible for Tropical Cyclone416

Motion, Journal of Atmospheric Sciences, 41, 1036-1048,417

https://doi.org/10.1175/1520-0469(1984)041<1036:aosotp>2.0.co;2, 1984.418



22

Chan, J. C. L., Gray, W. M., and Kidder, S. Q.: Forecasting Tropical Cyclone Turning Motion from419

Surrounding Wind and Temperature Fields, Monthly Weather Review, 108, 778-792,420

https://doi.org/10.1175/1520-0493(1980)108<0778:FTCTMF>2.0.CO;2, 1980.421

Cho, K., Merriënboer, B. v., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.:422

Learning Phrase Representations using RNN Encoder--Decoder for Statistical Machine423

Translation, In Proceedings of the 2014 Conference on Empirical Methods in Natural Language424

Processing (EMNLP), https://doi.org/10.3115/v1/D14-1179, 2014.425

Díaz-Uriarte, R. and Alvarez de Andrés, S.: Gene selection and classification of microarray data using426

random forest, BMC bioinformatics, 7, 3, https://doi.org/10.1186/1471-2105-7-3, 2006.427

Emanuel, K.: Will Global Warming Make Hurricane Forecasting More Difficult?, Bulletin of the428

American Meteorological Society, 98, 495-501, https://doi.org/10.1175/bams-d-16-0134.1, 2017.429

Galarneau, T. J. and Davis, C. A.: Diagnosing Forecast Errors in Tropical Cyclone Motion, Monthly430

Weather Review, 141, 405-430, https://doi.org/10.1175/mwr-d-12-00071.1, 2013.431

Gao, S., Zhao, P., Pan, B., Li, Y., Zhou, M., Xu, J., Zhong, S., and Shi, Z.: A nowcasting model for the432

prediction of typhoon tracks based on a long short term memory neural network, Acta433

Oceanologica Sinica, 37, 8-12, https://doi.org/10.1007/s13131-018-1219-z, 2018.434

Genuer, R., Poggi, J.-M., and Tuleau-Malot, C.: Variable selection using random forests, Pattern435

Recognition Letters, 31, 2225-2236, https://doi.org/10.1016/j.patrec.2010.03.014, 2010.436

George, J. E. and Gray, W. M.: Tropical Cyclone Motion and Surrounding Parameter Relationships,437

Journal of Applied Meteorology and Climatology, 15, 1252-1264,438

https://doi.org/10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2, 1976.439

Giffard-Roisin, S., Yang, M., Charpiat, G., Kégl, B., and Monteleoni, C.: Fused Deep Learning for440

Hurricane Track Forecast from Reanalysis Data, Climate Informatics Workshop Proceedings 2018,441

Boulder, United States, 2018-09-19, https://hal.science/hal-01851001, 2018.442

Giffard-Roisin, S., Yang, M., Charpiat, G., Kumler Bonfanti, C., Kégl, B., and Monteleoni, C.:443

Tropical Cyclone Track Forecasting Using Fused Deep Learning From Aligned Reanalysis Data,444

Front Big Data, 3, 1, https://doi.org/10.3389/fdata.2020.00001, 2020.445



23

Goerss, J. S.: Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical Models, Monthly446

Weather Review, 128, 1187-1193,447

https://doi.org/10.1175/1520-0493(2000)128<1187:tctfua>2.0.co;2, 2000.448

Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., and Gray, W. M.: The Recent Increase in449

Atlantic Hurricane Activity: Causes and Implications, Science, 293, 474-479,450

https://doi.org/doi:10.1126/science.1060040, 2001.451

Graves, A., Jaitly, N., and Mohamed, A.: Hybrid speech recognition with Deep Bidirectional LSTM,452

2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 8-12 Dec. 2013,453

273-278, https://doi.org/10.1109/ASRU.2013.6707742,454

Gray, W. M.: Global View of the Origin of Tropical Disturbances and Storms, Monthly Weather455

Review, 96, 669-700, http://dx.doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2,456

1968.457

Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural computation, 9, 1735-1780,458

https://doi.org/10.1162/neco.1997.9.8.1735, 1997.459

Holland, G. J.: Tropical Cyclone Motion: Environmental Interaction Plus a Beta Effect, Journal of the460

Atmospheric Sciences, 40, 328-342,461

https://doi.org/10.1175/1520-0469(1983)040<0328:tcmeip>2.0.co;2, 1983.462

Holland, G. J.: Tropical Cyclone Motion. A Comparison of Theory and Observation, Journal of463

Atmospheric Sciences, 41, 68-75,464

https://doi.org/10.1175/1520-0469(1984)041<0068:tcmaco>2.0.co;2, 1984.465

Huang, C., Bai, C., Chan, S., and Zhang, J.: MMSTN: A Multi‐Modal Spatial‐Temporal Network466

for Tropical Cyclone Short ‐ Term Prediction, Geophysical Research Letters, 49,467

https://doi.org/10.1029/2021gl096898, 2022.468

Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing469

Internal Covariate Shift, Proceedings of the 32nd International Conference on International470

Conference on Machine Learning, 37, 448-456, https://doi.org/10.48550/arXiv.1502.03167, 2015.471

Katsube, K. and Inatsu, M.: Response of Tropical Cyclone Tracks to Sea Surface Temperature in the472

Western North Pacific, Journal of Climate, 29, 1955-1975,473

https://doi.org/10.1175/jcli-d-15-0198.1, 2016.474



24

Kim, S., Kang, J.-S., Lee, M., and Song, S.-k.: DeepTC: ConvLSTM Network for Trajectory Prediction475

of Tropical Cyclone using Spatiotemporal Atmospheric Simulation Data, In Spatiotemporal476

Workshop at 31st Conference on Neural Information Processing Systems, 2018.477

Kitade, T.: A Numerical Study of the Vortex Motion with Barotropic Models, Journal of the478

Meteorological Society of Japan. Ser. II, 59, 801-807, https://doi.org/10.2151/jmsj1965.59.6_801,479

1981.480

Klein, B., Wolf, L., and Afek, Y.: A Dynamic Convolutional Layer for short rangeweather prediction,481

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June 2015,482

4840-4848, https://doi.org/10.1109/CVPR.2015.7299117,483

Krizhevsky, A., Sutskever, I., and Hinton, G.: ImageNet Classification with Deep Convolutional484

Neural Networks, Neural Information Processing Systems, 25, https://doi.org/10.1145/3065386,485

2012.486

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-Based Learning Applied to Document487

Recognition, Proceedings of the IEEE, 86, 2278-2324, https://doi.org/10.1109/5.726791, 1998.488

Li-min, S., Gang, F. U., Xiang-chun, C., and Jian, Z.: Application of BP neural network to forecasting489

typhoon tracks, Journal of Natural Disasters, 18, 104-111,490

https://doi.org/0.3969/j.issn.1004-4574.2009.06.018, 2009.491

Liu, H., Mi, X., and Li, Y.: Smart multi-step deep learning model for wind speed forecasting based on492

variational mode decomposition, singular spectrum analysis, LSTM network and ELM, Energy493

Conversion and Management, 159, 54-64, https://doi.org/10.1016/j.enconman.2018.01.010, 2018.494

Liu, Z., Hao, K., Geng, X., Zou, Z., and Shi, Z.: Dual-Branched Spatio-Temporal Fusion Network for495

Multihorizon Tropical Cyclone Track Forecast, IEEE Journal of Selected Topics in Applied Earth496

Observations and Remote Sensing, 15, 3842-3852, https://doi.org/10.1109/JSTARS.2022.3170299,497

2022.498

Lownam, C.: The NCAR-AFWA tropical cyclone bogussing scheme. A report prepared for the Air499

Force Weather Agency (AFWA), National Center for Atmospheric Research, 2001.500

Moradi Kordmahalleh, M., Gorji Sefidmazgi, M., Homaifar, A., and Liess, S.: Hurricane Trajectory501

Prediction Via a Sparse Recurrent Neural Network, 2015.502



25

NEUMANN, C. J. and HOPE, J. R.: Performance Analysis of the HURRAN Tropical Cyclone503

Forecast System, Monthly Weather Review, 100, 245-255,504

https://doi.org/10.1175/1520-0493(1972)100<0245:paotht>2.3.co;2, 1972.505

Ortega, L. C., Otero, L. D., Solomon, M., Otero, C. E., and Fabregas, A.: Deep learning models for506

visibility forecasting using climatological data, International Journal of Forecasting,507

https://doi.org/10.1016/j.ijforecast.2022.03.009, 2022.508

Roy, C. and Kovordányi, R.: Tropical cyclone track forecasting techniques ― A review, Atmospheric509

Research, 104-105, 40-69, https://doi.org/10.1016/j.atmosres.2011.09.012, 2012.510

Ruttgers, M., Lee, S., Jeon, S., and You, D.: Prediction of a typhoon track using a generative511

adversarial network and satellite images, Sci Rep, 9, 6057,512

https://doi.org/10.1038/s41598-019-42339-y, 2019.513

Schulthess, T. C., Bauer, P., Wedi, N., Fuhrer, O., Hoefler, T., and Schär, C.: Reflecting on the Goal514

and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,515

Computing in Science & Engineering, 21, 30-41, https://doi.org/10.1109/MCSE.2018.2888788,516

2019.517

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W. K., and Woo, W.-c.: Convolutional LSTM518

Network: A Machine Learning Approach for Precipitation Nowcasting, Proceedings of the 28th519

International Conference on Neural Information Processing Systems, 1, 802-810,520

https://doi.org/10.48550/arXiv.1506.04214, 2015.521

Sun, Y., Zhong, Z., Li, T., Yi, L., Camargo, S. J., Hu, Y., Liu, K., Chen, H., Liao, Q., and Shi, J.:522

Impact of ocean warming on tropical cyclone track over the western north pacific: A numerical523

investigation based on two case studies, Journal of Geophysical Research: Atmospheres, 122,524

8617-8630, https://doi.org/10.1002/2017JD026959, 2017.525

Wang, C. and Fu, Y.: Ship Trajectory Prediction Based on Attention in Bidirectional Recurrent Neural526

Networks, 529-533, https://doi.org/10.1109/isctt51595.2020.00100, 2020.527

Wang, Y., Zhang, W., and Fu, W.: Back Propogation(BP)-neural network for tropical cyclone track528

forecast, Proceedings - 2011 19th International Conference on Geoinformatics, Geoinformatics529

2011, 1-4, https://doi.org/10.1109/GeoInformatics.2011.5981095, 2011.530



26

Zhang, Y., Chandra, R., and Gao, J.: Cyclone Track Prediction with Matrix Neural Networks, 2018531

International Joint Conference on Neural Networks (IJCNN), 1-8,532

https://doi.org/10.1109/IJCNN.2018.8489077, 2018.533

534


