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Abstract. Determining reliable probability distributions for
ice sheet mass change over the coming century is critical to
refining uncertainties in sea-level rise projections. Bayesian
calibration, a method for constraining projection uncertainty
using observations, has been previously applied to ice sheet5

projections but the impact of the chosen observation type on
the calibrated posterior probability distributions has not been
quantified. Here, we perform three separate Bayesian calibra-
tions to constrain uncertainty in Greenland Ice Sheet (GrIS)
simulations of the committed mass loss in 2100 under the10

current climate, using observations of velocity change, dy-
namic ice thickness change, and mass change. Comparing
the posterior probability distributions shows that the median
ice sheet mass change can differ by 119 % for the particu-
lar model ensemble that we used, depending on the observa-15

tion type used in the calibration. More importantly for risk-
averse sea-level planning, posterior probabilities of high-end
mass change scenarios are highly sensitive to the observa-
tion selected for calibration. Furthermore, we show that us-
ing mass change observations alone may result in model sim-20

ulations that overestimate flow acceleration and underesti-
mate dynamic thinning around the margin of the ice sheet.
Finally, we look ahead and present ideas for ways to improve
Bayesian calibration of ice sheet projections.

1 Introduction 25

Probabilistic sea-level rise projections are critical for coastal
decision-making. The Sixth Assessment Report (AR6) from
the Intergovernmental Panel on Climate Change has com-
piled probabilistic projections, with the contribution from the
Greenland and Antarctic ice sheets being quantified, for the 30

first time, by higher-order numerical ice sheet models (Fox-
Kemper et al., 2021; Nowicki et al., 2020; Goelzer et al.,
2020; Seroussi et al., 2020). However, the probabilistic ice
sheet projections put forth in AR6 are not conditioned on
observations. Performing calibration of projection ensembles 35

using observations allows for refinement of the uncertainties
estimated from the ensemble. Additionally, obtaining appro-
priate probabilities of high-end scenarios is critical for risk-
averse coastal planning (Hinkel et al., 2015). For these rea-
sons, it is important to understand the impact that any cali- 40

bration approach has on the resulting central estimates of the
projections as well as on the uncertainties of high-end sea-
level rise scenarios.

One method for conditioning ice sheet projection prob-
abilities on observations is Bayesian calibration (Kennedy 45

and O’Hagan, 2001). This approach assigns a score to each
model simulation within an ensemble, based on model–
observation residuals. The scores are used to construct a like-
lihood, which quantifies the plausibility of each simulation
given the observed data. The likelihood is used to update 50

the prior probability distributions of model parameters and
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model outputs (e.g., ice sheet mass change). In this Bayesian
framework, the “calibrated” probability distribution is also
referred to as the posterior probability distribution. Past stud-
ies have used this method to calibrate the relationship be-
tween surface mass balance (SMB) and ice sheet surface el-5

evation change (Edwards et al., 2014). Bayesian calibration
has been used to constrain Antarctic Ice Sheet (AIS) mass
change projections using satellite observations (Ritz et al.,
2015) and using paleo-observations (Gilford et al., 2020).
The Bayesian calibration framework has been used to ex-10

plore specific processes, such as the marine ice cliff insta-
bility (MICI), in terms of the impact of excluding MICI from
AIS projections (Ruckert et al., 2017), and identifying the
observational constraints that are needed to assess the like-
lihood that MICI is occurring (Edwards et al., 2019). The15

aforementioned studies used observations of ice sheet mass
change for calibration; however other observations have also
been used. Surface elevation change rates were used to cal-
ibrate regional projections of mass change and grounding
line retreat in Antarctica (Nias et al., 2019). There has also20

been recent work that has used a two-step calibration ap-
proach, first using observed ice sheet surface velocity and
second using reconciled ice-sheet-wide mass change obser-
vations from the Ice Sheet Mass Balance Intercomparison
Experiment (The IMBIE team, 2018), to calibrate Greenland25

Ice Sheet (GrIS) mass change projections (Aschwanden and
Brinkerhoff, 2022). The use of mass change observations to
calibrate ice sheet model ensembles has been proposed as the
logical path forward for creating credible sea-level change
projections (Aschwanden et al., 2021). However, several dif-30

ferent types of observations can be used to calibrate ice sheet
projections and there has not yet been a study to systemat-
ically quantify the impact of the choice of observation type
on the results of the calibration.

In this study, we explore the effect of different observation35

types on Bayesian calibrations by using velocity change, dy-
namic ice thickness change, and mass change observations to
perform separate calibrations of a Greenland Ice Sheet (GrIS)
ensemble, which simulates Greenland’s committed contribu-
tion to sea-level change over the current century, from 201540

to 2100. Our study builds upon the work of Nias et al. (2023),
which presents Bayesian calibration of this ensemble using
mass change observations. Here, we use the same calibra-
tion approach but perform additional calibrations using ob-
served velocity and thickness changes and compare the re-45

sults from all three calibrations. Our focus in this study is
on how the choice of observation type affects the posterior
probability distributions of (1) ice sheet mass change and (2)
model parameters and forcings that result from the calibra-
tion. We make an effort to be as consistent as possible in the50

setup of each of the three calibrations, in order to achieve a
straightforward comparison. We describe the ice sheet model
ensemble in Sect. 2.1 and the observations in Sect. 2.2. Our
procedure for the Bayesian calibration is described in Sect. 3.
We present results in Sect. 4 and a discussion in Sect. 5.55

2 Data

2.1 Ice sheet model ensemble

We use an ensemble of model simulations that project the
committed contribution from the GrIS to sea level over the
coming century. The committed contribution captures the 60

mass change of the GrIS in response to current atmospheric
and oceanic forcings, independent of future atmospheric or
oceanic warming. The committed response can be thought
of as the change that is already locked into the ice sheet,
which will play out over the coming century. We summarize 65

the model ensemble here and details can be found in Nias
et al. (2023). The ice sheet simulations are performed us-
ing the Ice-sheet and Sea-level System Model (ISSM; Larour
et al., 2012). The simulations are initialized to the year 2007
by inverting for a basal friction coefficient field using sur- 70

face topography from the Greenland Ice Mapping Project
(GIMP; Howat et al., 2014), bed topography from BedMa-
chine v3 (Morlighem et al., 2017a; Morlighem et al., 2017b),
and surface velocity from Interferometric Synthetic Aperture
Radar (InSAR) satellite data (Joughin et al., 2015b), follow- 75

ing the methods of Morlighem et al. (2010). To reduce spu-
rious thickness changes at the start of the simulation, a 30-
year relaxation is performed using the 1960–1989 mean sur-
face mass balance (SMB) from the Regional Atmospheric
Climate Model (RACMO2.3p2; Noël et al., 2019) and keep- 80

ing the ice extent fixed to the initial state. From this relaxed
initial state in 2007, an ensemble of 137 forward runs is per-
formed for the time period 2007–2100 by using Latin hyper-
cube sampling (McKay et al., 1979; Eglajs and Audze, 1977)
from a multidimensional uniform distribution of uncertainty, 85

which defines the prior distributions of basal friction, ice vis-
cosity, and surface mass balance. Basal friction is varied by
applying a spatially constant factor sampled from a uniform
distribution with bounds of ±50 % to the field obtained from
the inversion procedure, and this field is kept fixed through 90

time. Ice viscosity is varied by applying a spatially constant
offset sampled from a uniform distribution with bounds of
±10 K to the initial temperature field, which is then con-
verted to ice viscosity (Cuffey and Paterson, 2010), and this
field is kept fixed through time. The SMB field is varied 95

by (1) adding an offset and (2) changing the seasonal am-
plitude of the mean 2001–2015 SMB from RACMO2.3p2
(Noël et al., 2019). The SMB offset is varied by applying a
spatially constant factor sampled from a uniform distribution
with bounds of ±30 %, and the seasonal amplitude is varied 100

by applying a spatially constant factor sampled from a uni-
form distribution with bounds of 0 to 2, where a factor of 2
represents a doubling of the seasonal amplitude of SMB, and
a factor of 0 represents elimination of the seasonal ampli-
tude. The variations in SMB offset and seasonal amplitude 105

are applied spatially uniformly across the entire ice sheet,
and the annual SMB pattern is repeated yearly. From 2007
to 2015, the ice front in the model is specified using observa-
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tions of outlet glacier terminus positions (Moon and Joughin,
2008; Joughin et al., 2015a) via a level-set method (Bondzio
et al., 2016). From 2015 onward, the terminus positions are
held fixed in their 2015 locations, allowing the ice sheet to
adjust to the 2007–2015 terminus perturbations and, thus,5

yielding the committed contribution from the GrIS, indepen-
dent of future terminus position change. While the relaxation
removes initial spurious model behavior, some model drift
inevitably remains at the start of the simulation. The goal
of the Bayesian calibration approach is to calibrate the pro-10

jections such that the true drift of the GrIS over 2007–2015
is captured by the ensemble. However, initial model drift
is caused both by the true imbalance of the GrIS in 2007
and by erroneous model inconsistencies, and these two con-
tributions are not separated. To provide examples of simu-15

lated model states, we show modeled velocities and surface
elevations from the lowest-weighted (Fig. S1) and highest-
weighted (Fig. S2) ensemble members from the mass change
calibration (Nias et al., 2023).

2.2 Observations20

2.2.1 Velocity change

The first observation type that we use for calibration is veloc-
ity change. Velocity change observations are computed using
the Making Earth System Data Records for Use in Research
Environments (MEaSUREs) Greenland Ice Sheet Velocity25

Map from Interferometric Synthetic Aperture Radar (InSAR)
Data, Version 2 (Joughin et al., 2015b). This dataset uses
several sources of InSAR measurements to compile winter
ice-sheet-wide velocity maps on an annual basis. We use the
maps from 2007 and 2015 to obtain velocity change over30

these years. We calculate velocity change as the difference
between the 2015 and 2007 velocity maps, and uncertainty
is calculated as the root sum of squares of the two associated
uncertainty maps.

2.2.2 Dynamic ice thickness change35

The second observation type that we use for calibration is
dynamic ice thickness change. This quantity is a useful mea-
sure of how out of balance the ice dynamics are with the
climate, and, thus, it is a good metric for evaluating the en-
semble. Ice sheet surface elevation change time series are40

obtained from airborne and spaceborne laser altimetry using
the Surface Elevation Reconstruction and Change (SERAC)
method (Schenk and Csatho, 2012; Shekhar et al., 2020).
To obtain dynamic surface elevation change, we account
for thickness change anomalies due to both surface and firn45

processes by applying the Institute for Marine and Atmo-
spheric research Utrecht (IMAU) Firn Densification Model
(FDM), which simulates thickness change of the firn, forced
by RACMO2.3p2 (Ligtenberg et al., 2018), which simulates
thickness changes due to SMB. We subtract the firn thickness50

change anomalies from the SERAC surface elevation change,
with anomalies referenced to the average over the time period
1960–1979 (Fig. S3). We then fit a continuous function to the
discrete SERAC estimates through time. We assume that the
dynamic surface elevation change from SERAC is equiva- 55

lent to the dynamic ice thickness change because glacial iso-
static adjustment rates around the margin of the GrIS are or-
ders of magnitude smaller than the dynamic surface eleva-
tion change rate signal (Wake et al., 2016). Time series with
a magnitude of dynamic ice thickness change greater than 60

5 m over the entire SERAC time series are typically char-
acterized by complex temporal behavior; at these locations,
we use the Approximation by Localized Penalized Spline
(ALPS) method (Shekhar et al., 2020) to approximate a con-
tinuous function through time. Time series with a magnitude 65

of dynamic ice thickness change less than 5 m over the en-
tire SERAC time series exhibit less complex behavior, and
we fit a cubic polynomial to the discrete SERAC estimates at
these locations. Our dynamic ice thickness change estimates
represent the thickness change of the ice that are caused by 70

changes in flux divergence at each SERAC measurement lo-
cation and time.

We sum the annual dynamic ice thickness change over the
time period 2007–2015, only considering those SERAC lo-
cations that have an estimate for each year between 2007 75

and 2015. This results in a set of more than 16 000 data
points over the ice sheet in irregularly distributed locations,
with higher density around the ice sheet margin where air-
borne altimetry provides increased spatial sampling beyond
the spaceborne altimetry (Csatho et al., 2014). 80

To assign uncertainties, we combine the approximation er-
rors of ice thickness change from the ALPS and polynomial
fits and inflate them to account for errors in the FDM and
SMB estimates. We investigate fit errors from ALPS at loca-
tions where the magnitude of dynamic ice thickness change 85

is> 5 m and find errors to be∼ 1 m over the calibration time
span. Similarly, fit errors from the cubic polynomial at loca-
tions where the magnitude of dynamic ice thickness change
is < 5 m are ∼ 0.1 m. We conservatively inflate these to ac-
count for uncertainty in the SMB and FDM and use 1.4 and 90

0.14 m as the uncertainties in dynamic ice thickness change
where dynamic ice thickness change is > 5 and < 5 m, re-
spectively. This achieves an expected spatial pattern in un-
certainties, with larger uncertainties around the GrIS margin,
where dynamic ice thickness change is relatively large, and 95

smaller uncertainties in the GrIS interior, where dynamic ice
thickness change is relatively small (Fig. 1).

2.2.3 Mass change

The third observation type we use for calibration is mass
change observations. Mass change observations of the GrIS 100

are derived from the high-spatial-resolution NASA God-
dard Space Flight Center (GSFC) global mascon trend so-
lution (release 06), obtained from the Gravity Recovery and
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Climate Experiment (GRACE) and the Gravity Recovery
and Climate Experiment Follow-On (GRACE-FO) (Loomis
et al., 2021). These observations provide mass change trends
globally within 1 arcdeg equal area cells. Mass change over
the calibration time span of 2007–2015 is calculated from the5

observed trends per mascon over the GrIS. Mass change un-
certainties are calculated from statistics of the differences be-
tween the GSFC high-spatial-resolution mascon trend solu-
tion (Loomis et al., 2019) and the Gravity Observation Com-
bination release 06 (GOCO-06) spherical harmonic model10

(Kvas et al., 2021). The mass change uncertainties were as-
sessed separately over the margin and the interior of the GrIS,
and the resulting uncertainties are 4 cm w.e. yr−1 for the mas-
cons around the GrIS margin and 1 cm w.e. yr−1 for the mas-
cons in the GrIS interior (Fig. S4). This results in a spatial15

pattern of mass change uncertainties that is similar to that for
dynamic ice thickness change, with relatively higher uncer-
tainties around the GrIS margin and relatively lower uncer-
tainties in the GrIS interior.

3 Methods20

3.1 Observation preprocessing

In our Bayesian calibration approach (described in Sect. 3.3),
we assume that the model–observation residuals are indepen-
dent from one another. In other words, we assume no spatial
correlation between residuals. In order to use this assump-25

tion for velocity and thickness change, we coarsen the input
observation datasets by establishing a regular polar stereo-
graphic grid with 50 km by 50 km grid cells and calculating
the mean observed quantity and uncertainty in each grid cell.
Additionally, we discard gridded velocity change observa-30

tions for grid cells with less than 75 % coverage. We trans-
form the coordinates of the dynamic ice thickness change
time series locations from their native projection of Univer-
sal Transverse Mercator (UTM) zone 24N (EPSG coordi-
nate system 32624) to a polar stereographic north projec-35

tion (EPSG coordinate system 3413). The mass change ob-
servations are aggregated within drainage basins using the
delineations described in Rignot et al. (2011). Calculating
model–observation residuals at the drainage basin scale helps
to ensure that they are independent (Nias et al., 2023). Grid-40

ded observations and their uncertainties are shown in Fig. 1.
Note that an improved method for computing basin-scale un-
certainties for observed mass change is presented in Loomis
et al. (2021), and uncertainties calculated with this method
are slightly lower than the ones used in Nias et al. (2023)45

(Fig. S4).

3.2 Model output preprocessing

To calculate model–observation residuals, we must calculate
model quantities that match the observed quantities. Velocity
is a model state variable and we can compare modeled ve-50

locity change directly with observations. Modeled dynamic
ice thickness change is calculated by subtracting the SMB
anomaly (in units of ice thickness equivalent) from the mod-
eled ice thickness change over 2007–2015. SMB anomaly is
calculated by subtracting the mean 1960–1979 SMB from the 55

prescribed SMB forcing for each simulation in the ensem-
ble. The prescribed SMB forcing for the model simulations
is obtained from RACMO2.3p2 (Noël et al., 2019) and the
mean 1960–1979 SMB is calculated from this same model
dataset. Our calculation of modeled dynamic ice thickness 60

change corresponds to the method used to calculate observed
dynamic ice thickness change, which uses an FDM to esti-
mate the thickness change associated with surface and firn
processes and removes this from the observed surface eleva-
tion change to obtain dynamic ice thickness change. Modeled 65

mass change is calculated by multiplying the modeled vol-
ume change, which is also a model state variable, by a con-
stant ice density (917 kg m−3) to obtain mass change. Mod-
eled mass change is defined at the resolution of model ele-
ments and this is then converted to GRACE mascon space 70

using the GRACE resolution operator. Details on this con-
version can be found in Nias et al. (2023), and the resolu-
tion operator is described in Loomis et al. (2019). Note that
the mass loss due to the imposed ice front retreat is not in-
cluded in the modeled mascon equivalents because it is com- 75

puted from ice thickness change at model nodes where ice is
present throughout the calibration time period (2007–2015).
However, this unaccounted for mass loss in the modeled mas-
cons is negligible compared to the basin-scale ice sheet mass
change over this time period used in the calibration. 80

The modeled quantities are regridded spatially to match
the observational quantities. Mean modeled velocity change
and dynamic ice thickness change are calculated within the
grid cells defined by the same 50 km by 50 km grid used for
the observational datasets. Modeled mass change is aggre- 85

gated within the same drainage basins as used for aggregat-
ing the observed mass change (Nias et al., 2023).

3.3 Bayesian calibration

We use a Bayesian calibration approach to refine the spread
in simulated GrIS mass change and the uncertainty in model 90

parameters and forcings from our ice sheet model ensem-
ble. A thorough treatment of this approach can be found in
Kennedy and O’Hagan (2001), and we summarize the rele-
vant steps here. In this approach, we calibrate the prior proba-
bility distributions of (1) ice sheet mass change and (2) model 95

parameters and forcings using observations of the ice sheet to
obtain posterior probability distributions of these quantities.
Bayes’ theorem states that

p(m|d)∝ p(m)p(d|m), (1)

where p(m) is the prior probability distribution of model pa- 100

rameters, forcings, or simulated outputs (e.g., mass change);
p(d|m) is the likelihood function of m given observations;
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Figure 1. Gridded observations and their uncertainties for the 2007–2015 calibration time period. Panels (a)–(c) show velocity change (a)
and dynamic ice thickness change (b), which are gridded on a regular polar stereographic grid with 50 km by 50 km grid cells, and mass
change (c), which is aggregated by basin (Rignot et al., 2011). Panels (d)–(f) show velocity change uncertainty (d), dynamic ice thickness
change uncertainty (e), and mass change uncertainty (f), with the same gridding as the observations in the top row (a, b, and c). TS1

and d and p(m|d) are the posterior probability distribution
of m.

To construct the likelihood, we use model–observation
residuals to assign a likelihood score for each ensemble
member. We assume that the residuals are independent, are5

identically distributed, and follow a normal (Gaussian) dis-
tribution. Under these assumptions, the score for the j th en-
semble member is calculated as

sj = exp

[
−

1
2

∑
i

(f
j
i − z

j
i )

2

(σi)2

]
, (2)

where f is the modeled quantity, z is the observed quantity, 10

σ 2 is the variance of the residual, and i is a spatial index.
Note that the multiplicative constant that typically appears in
the equation for a normal distribution has been discarded be-
cause of the normalization of the scores, sj , that is done later.
For the velocity and thickness change calibrations, the spa- 15

tial index, i, represents each 50 km by 50 km grid cell within
which observations are defined, and for the mass change cal-
ibration, the spatial index represents each basin within which
mass change observations are aggregated. Uncertainty in the
residual includes both the observational uncertainty, σo,i , and 20

the model (also called structural) uncertainty, σm,i , both of
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Table 1. Values for the multiplier k used to calculate structural
model uncertainty from observational uncertainty.

Observation type k

Velocity change 75
Thickness change 150
Mass change 8

which vary in space as indicated by the spatial index i:

σi =

√
σ 2

o,i + σ
2
m,i . (3)

The observational uncertainty for each observation type, σo,i ,
is shown in Fig. 1. Values for σm,i are typically specified in
an ad hoc manner as a multiple of σo,i (e.g., Edwards et al.,5

2014; Nias et al., 2019). The underlying assumption of this
approach is that the accuracy of the model is less than the
accuracy of the observations (Edwards et al., 2019). Here,
we set σm,i = kσo,i and we manually adjust k for each ob-
servation type such that the peaks of the posterior probability10

distributions of GrIS committed contribution to global mean
sea level (GMSL) in 2100 from our three calibrations are ap-
proximately equal (Fig. 2). The selected value of k will also
affect the width of the posterior probability distribution, with
smaller values resulting in narrower distributions (Figs. S515

and S6). This choice allows us to compare the calibration re-
sults in a straightforward manner. The multiplier, k, varies for
each observation type and the values that we use are shown
in Table 1.

Once the scores, sj , are calculated for each calibration,20

they are normalized such that
∑n
j=1sj = 1, where n is the

total number of ensemble members, resulting in weights that
are applied to the prior distributions of (1) mass change and
(2) model parameters and forcings to obtain the posterior dis-
tributions. The weights assigned to each ensemble member25

are used to estimate the posterior probability density func-
tion using Gaussian kernel density estimation (Scott, 1992).

We perform three separate calibrations using observations
of (1) velocity, (2) thickness, or (3) mass change and com-
pare the posterior probability distributions of GrIS commit-30

ted contribution to GMSL in 2100, as well as model param-
eters and forcings obtained from all three calibrations.

4 Results

The calibrated posterior probability distributions of GrIS
committed contribution to GMSL and the associated statis-35

tics differ between the three calibrations (Fig. 2, Table 2).
The median GMSL varies significantly, based on the type of
observation chosen for calibration. The median GMSL from
the thickness change calibration is −6.4 mm, whereas the
median GMSL from the mass change calibration is 33.8 mm.40

As shown by the 95th percentile of the posterior distribution,

Figure 2. Posterior probability distributions of Greenland’s com-
mitted contribution to global mean sea level (GMSL) in 2100 from
three Bayesian calibrations: velocity (orange), thickness (green),
and mass (black) change observations. Prior distribution is shown
as a blue curve and the histogram of the prior population is shown as
a blue bar graph. Note that the y axes are normalized probabilities,
such that the integrals under the prior histograms and the posterior
probability curves equal 1.

all three calibrations decrease the probability of the highest
possible contributions to GMSL; the prior probability distri-
bution of GMSL has a 95th percentile of 213.3 mm and the
calibrations decrease this to ≤ 77.8 mm (Table 2). The 5th 45

percentiles are all negative, indicating that all three calibra-
tions result in a possibility that Greenland will accumulate
mass, decreasing GMSL. Like the 95th percentiles, the 5th
percentiles also decrease in magnitude as a result of the cali-
bration from −60.3 down to −14.7 mm for the mass change 50

calibration. In other words, all three calibrations serve to
narrow the probability distribution of the committed con-
tribution to GMSL from the GrIS. The choice of observa-
tion type also has a strong effect on the cumulative proba-
bility of high-end scenarios (GMSL > 50 mm). Calibration 55

using thickness change observations yields a 14.2 % prob-
ability of GMSL > 50 mm, whereas calibration using mass
change observations yields a 28.1 % probability of GMSL
> 50 mm, a 2-fold difference in probabilities. All three cali-
brations reduce the probability for the most extreme scenario 60

(GMSL> 100 mm) from 23 % to ≤ 0.6 %.
Posterior probability distributions of model parameters

and forcings for all three calibrations are shown in Fig. 3.
In all cases, the extreme values of all parameters and forc-
ings are de-weighted, and the peaks of the posterior distri- 65

butions occur near the central values. The posterior distri-
butions we obtain from the three calibrations are similar for
ice temperature and SMB seasonal amplitude. However, for
the basal friction multiplier, there are notable differences in
the posterior probability distributions between the three cali- 70

brations. Calibration using thickness change observations re-
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Table 2. Statistics for GMSL median (mm), 5th and 95th percentiles (mm), and probability of GMSL larger than 50 and 100 mm
(P(GMSL>50 mm) and P(GMSL> 100 mm), respectively).

Median Percentiles P(GMSL> 50 mm) P(GMSL> 100 mm)

5th 95th

Prior 26.6 −60.3 213.3 38.8 % 23.0 %
Posterior (velocity calibration) 20.4 −23.9 64.5 14.2 % 0.1 %
Posterior (thickness calibration) −6.4 −51.0 51.2 5.3 % 0.1 %
Posterior (mass calibration) 33.8 −14.7 77.8 28.1 % 0.6 %

sults in a posterior probability distribution that is skewed to-
wards higher values of the basal friction multiplier, whereas
the velocity change and mass change calibrations result in
posterior probability distributions that are more symmetric.
Similarly, for SMB mean shift, the thickness change calibra-5

tion results in higher probabilities of positive shifts than the
velocity and mass change calibrations.

We find that three different ensemble members are scored
highest across the three calibrations, with notable differences
in the spatial patterns of their model–observation residu-10

als (Fig. 4). All three calibrations result in larger residuals
around the margin than in the interior of the ice sheet, an
expected result due to the fact that the magnitude of change
is largest around the margin. Residuals for the same obser-
vational quantity used in each calibration are smaller than15

residuals from the other calibrations (Fig. 4a, e, i). In other
words, velocity change residuals are smallest for the highest-
weighted ensemble member from the velocity calibration
and similarly for the thickness and mass change calibrations.
Looking at velocity change residuals, all calibrations over-20

estimate velocity change along the eastern margin of the ice
sheet and underestimate velocity change along the northern
margin (Fig. 4a–c). Along the western margin, the residuals
differ across the three calibrations, with the highest-weighted
ensemble member from the thickness calibration showing a25

large underestimate of velocity change (Fig. 4b). For outlet
glaciers that have accelerated during the 2007–2015 calibra-
tion time period, this means that the acceleration is under-
estimated by the thickness change calibration. The velocity
change and mass change calibrations yield highest-weighted30

ensemble members with a slight underestimate and slight
overestimate of velocity change along the western margin,
respectively (Fig. 4a and c). The thickness change residu-
als are similar in their spatial structure across all three cal-
ibrations (Fig. 4d–f). Dynamic ice thickness change resid-35

uals is positive around almost the entire margin of the ice
sheet, meaning that the model underestimates the magnitude
of observed dynamic thinning. The exception is the highest-
weighted ensemble member from the thickness change cali-
bration, which overestimates thinning around Jakobshavn Is-40

bræ. The mass change residuals have similar features across
the three calibrations (Fig. 4g–i). Mass change residuals are
positive in the east, southwest, and north, meaning the model

underestimates the magnitude of observed mass loss in those
regions. In the northeast, mass change residuals are nega- 45

tive, meaning the model overestimates the magnitude of ob-
served mass loss there. In the northwest, there is a mix of
positive and negative mass change residuals. Using the resid-
uals’ root sum of squares (RSS) as a measure, the velocity
change residuals show the highest sensitivity to the calibra- 50

tion choice, with a 38 % difference in residuals’ RSS between
the velocity and thickness change calibrations. The thickness
change and mass change residuals have less sensitivity, with
a 16 % difference in thickness change residuals’ RSS be-
tween the velocity and thickness calibrations and an 18 %TS2 55

difference in mass change residuals’ RSS between the mass
and thickness calibrations.

5 Discussion

The choice of observation type strongly affects the results
of the calibration. This choice affects the posterior probabil- 60

ity distributions of GrIS committed contribution to GMSL
in 2100 (Fig. 2), as well as the posterior probability distri-
butions of model parameters and forcings (Fig. 3). The me-
dian estimates of GMSL in 2100 can differ by 119 % (Ta-
ble 2) and, more importantly, the probabilities of “high-end” 65

scenarios can be very different, depending on the observa-
tion type used in the calibration. The posterior probability of
> 50 mm of committed GMSL in 2100 is a factor of 2 larger
for the calibration using mass change than the calibration us-
ing thickness change observations (Table 2). The “highest- 70

end” scenarios, however, are not sensitive to the choice of
observation; all three calibrations effectively rule out the pos-
sibility of> 100 mm of GMSL, regardless of the observation
type, essentially eliminating the 23 % cumulative probabil-
ity of GMSL > 100 mm in the prior distribution. The lower 75

probability of GMSL > 50 mm in the thickness change cali-
bration is caused by the thickness change calibration assign-
ing higher weights to ensemble members with higher basal
friction coefficients and a higher SMB mean shift (Fig. 3a
and c, respectively). 80

Basal friction is the most sensitive parameter to choice in
observation type (Fig. 3a). The velocity change calibration
yields a posterior distribution that has a higher peak and nar-
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Figure 3. Prior and posterior probability distributions of model parameters and forcings: basal friction multiplier (a), ice temperature shift
(b), SMB mean shift (c), and SMB seasonal amplitude (d). Prior probability distribution is shown as a histogram (light-blue bars) and as a
Gaussian approximation (blue curve). Posterior probabilities are shown for Bayesian calibrations using ice sheet surface velocity (orange),
ice sheet thickness change (green), and ice sheet mass change (black). Note that the y axes are normalized probabilities, such that the integrals
under the prior histograms and the posterior probability curves equal 1.

rower spread for basal friction than the other two calibra-
tions. Posteriors for the other parameters and forcings (ice
temperature, mean SMB, and seasonal SMB) are less sensi-
tive to the choice of observation used in the calibration. The
narrower posterior distribution of basal friction from the ve-5

locity change calibration also corresponds to a slightly nar-
rower posterior probability distribution of GMSL in 2100
from that calibration (Fig. 2), as shown by the percentiles
in Table 2.

Calibration using dynamic ice thickness change results in10

a posterior probability distribution of GrIS committed con-
tribution to GMSL in 2100 that is quite different from the
velocity change and mass change calibrations. Although the
spread in the posterior probability distributions of GMSL in
2100 is similar across the three calibrations, as seen from the15

percentiles in Table 2, the median estimate from the thickness
change calibration (−6 mm) is negative, indicating that the
GrIS is increasing in mass, whereas the median estimate from
the velocity change and mass change calibrations is positive
(20 and 34 mm, respectively), indicating that the GrIS is de-20

creasing in mass. This corresponds to the thickness change
calibration assigning higher likelihood to simulations with
higher basal friction and a positive shift in mean SMB than
the velocity and mass change calibrations (Fig. 3a and c, re-
spectively). Simulations with higher basal friction result in25

a slower propagation of mass loss into the interior of the
ice sheet in response to terminus retreat (Nias et al., 2023),
and this can be seen in the larger negative velocity change
residuals that extend further into the ice sheet interior for
the highest-weighted ensemble member from the thickness30

calibration, indicating that ice sheet acceleration is underes-
timated by the model (Fig. 4b).

Several factors may contribute to discrepancies seen
across the three calibrations. For the dynamic ice thickness

change calibration, a potential source for a bias is the es- 35

timate of firn thickness change that is used in the calcula-
tion of observed dynamic ice thickness change. A bias can
be caused by a bias in the estimated trend of firn thickness
change either over the 1960–1979 baseline time period or
over the 2007–2015 calibration time period; this bias will di- 40

rectly translate to a bias in the observed dynamic ice thick-
ness change and can then bias the posterior probability distri-
bution of ice sheet mass change. Additionally, all three cal-
ibrations may be impacted by unique issues related to spa-
tial sampling of the observations. Mass change observations 45

from satellite gravimetry can be affected by “signal leakage”,
meaning that mass change of peripheral glaciers and ice caps
proximal to the GrIS may contaminate the mass change ob-
servations around the ice sheet margin (Loomis et al., 2021).
On the other hand, the ice sheet model may include some of 50

this peripheral ice mass as part of its domain, as there is not a
standard way to separate the GrIS from peripheral ice masses
(Goelzer et al., 2020). Finally, both velocity change and dy-
namic ice thickness change observations can be affected by
data gaps. This is most notable in the velocity change obser- 55

vations, which are missing for a portion of the southeast mar-
gin of the GrIS (Fig. 1a); however the dynamic ice thickness
change observations also have some data gaps in the interior
of the GrIS (Fig. 1b). This gap in the velocity change ob-
servations means that the model simulations are not scored 60

based on their ability to capture velocity change in south-
east Greenland. In contrast, the thickness change and mass
change observations provide adequate data coverage to sam-
ple the southeast of the GrIS. To fill the velocity data gap, a
later start year could be selected for the calibration. However, 65

selecting velocity observations from a later year will shorten
the calibration time span and, thus, potentially remove infor-
mation from the likelihood. The trade-off between filling data
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Figure 4. Residuals (modeled minus observed) for the highest-
weighted ensemble members from Bayesian calibration using ve-
locity change (column 1), thickness change (column 2), and mass
change (column 3) observations. Residuals of velocity (row 1),
thickness (row 2), and mass (row 3) change over the calibration
time period of 2007–2015 are shown. Note that mass change resid-
uals are shown at the resolution of individual mascons, rather than
aggregated within basins, in order to provide additional detail. We
provide the root sum of squares (RSS) of the residuals shown below
each map.TS3

gaps in velocity observations and shortening the calibration
time span should be explored in future work.

Differences among the three calibrations in terms of their
residuals can provide insight into biases in the model ensem-
ble beyond what can be gleaned from any one of the cal-5

ibrations alone. For example, the highest-weighted ensem-
ble member from the mass change ensemble overestimates
acceleration (Fig. 4c) and underestimates dynamic thinning
along almost the entirety of the GrIS margin (Fig. 4f). As
discussed above, the dynamic thickness change observations10

may be affected by errors in the estimate of firn thickness
change, but this discrepancy around the margin is not af-
fected by this source of error because firn does not persist
around most of the ice sheet margin. Combining informa-
tion from all available sources of observations will make the15

calibration more robust to systematic uncertainties in the ob-
servations, as discussed in the previous paragraph. Addition-
ally, utilizing multiple observations may reveal the presence
of compensating model errors that allow model simulations
to correctly reproduce one observation type but for an incor-20

rect reason. Aschwanden and Brinkerhoff (2022) have taken
a step in this direction, by performing a two-step calibration
process of GrIS projections, first using observations of ve-
locity to calibrate a subset of model parameters and second
using observations of mass change to calibrate the rest of the 25

parameters. This is a notable advancement in utilizing infor-
mation from multiple observations for Bayesian calibration,
and their use of velocity observations in calibration is some-
what akin to the use of 2007 velocities to initialize our model
ensemble (Nias et al., 2023). Adding information from dy- 30

namic thickness change observations would build upon their
approach and help to further constrain uncertainty in the pro-
jections. However, more work needs to be done to better un-
derstand the structural model uncertainties for the different
observation types in order to combine their likelihoods. 35

The ad hoc approach used here and elsewhere (Nias et al.,
2023; Edwards et al., 2014) to estimate structural model un-
certainty as a multiple of the observational uncertainty means
that the spatial structure of the observational uncertainty is
preserved in the residual uncertainty, σ . Therefore, it is im- 40

portant to have accurate estimates of the spatial structure of
errors provided by observational data products. On the other
hand, to move beyond this ad hoc approach, it is necessary
for the ice sheet modeling community to develop an im-
proved understanding of the structural model uncertainty in 45

the quantities that are used for calibration.
We tested several values for the value of the multiplier, k,

and found that it affects the shape of the posterior probability
distribution, with smaller values resulting in narrower distri-
butions and lower peaks, but it does not affect the ensem- 50

ble member that is weighted highest (Figs. S5 and S6). We
also investigated eliminating the structural model uncertainty
term in the calibration altogether (i.e., by setting k equal to
zero). However, this results in calculated weights, wj , that
are all equal to zero due to our formulation of the likeli- 55

hood function as a normal (Gaussian) distribution. Mathe-
matically, this occurs because the numerator in the likelihood
equation becomes relatively much larger in magnitude than
the denominator. Future work should investigate other func-
tional forms for the likelihood and the impact of the func- 60

tional form, along with the choice of the value for k, on the
results.

For our study, we used an ensemble of GrIS committed
contribution to GMSL, which quantifies the changes that are
locked in to the ice sheet, independent of any additional fu- 65

ture atmospheric or oceanic forcing. Greenland’s commit-
ment results in a contribution to GMSL that is similar in mag-
nitude to the contribution due to future climate anomalies un-
der the Representative Concentration Pathway (RCP2.6) and
Shared Socioeconomic Pathway (SSP1-26) scenarios (Ed- 70

wards et al., 2021) but lower in magnitude than the contribu-
tions under the higher emissions scenarios. Additional work
is needed to perform similar Bayesian calibrations of GrIS
ensembles forced with future climate anomaly projections
(e.g., Goelzer et al., 2020; Aschwanden et al., 2019). How- 75
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ever, we hypothesize that there will be significant discrepan-
cies among the posterior distributions of GrIS contribution to
GMSL in these ensembles, although the relative differences
between calibrations may be smaller in an ensemble of the
forced mass loss under the higher emissions scenarios than5

the relative differences for our committed mass loss ensem-
ble, due to the fact that the magnitudes of ice sheet mass
change will be larger in projections forced with higher emis-
sions scenarios.

6 Conclusions10

Our study presents three calibrations using three different ob-
servation types (velocity, thickness, and mass change) of the
GrIS over an 8-year time period. The choice of observation
type leads to important differences in the posterior probabil-
ity distributions of GrIS committed contribution to GMSL15

in 2100. It has been proposed that mass change observations
should be used to calibrate ice sheet model projections (As-
chwanden et al., 2021). However, as we have shown, calibrat-
ing with any one observation type will not necessarily result
in high-weighted ensemble members that will reproduce cer-20

tain desired behaviors, such as reproducing observed outlet
glacier dynamic thinning or acceleration. More work must
be done to better understand the impact of various choices
made during the calibration process and to develop better ap-
proaches to incorporating information from different obser-25

vation types.
Using Bayesian calibration to constrain uncertainty in ice

sheet ensembles still has many open questions. We have
clearly shown how Bayesian calibration can refine uncertain-
ties in ice sheet projections but future work should explore30

additional choices, such as the method for specifying model
structural uncertainty, the time span over which the calibra-
tion is done, the use of time series of observations rather than
a snapshot of change, and the use of additional metrics de-
rived from these observations. Additionally, future work can35

move away from the simplifying assumption that we have
made that model-calibration residuals are uncorrelated and,
instead, quantify the correlation and incorporate that through
a covariance matrix into the calibration procedure. Finally,
the modeling community should develop robust methods to40

quantify structural model uncertainty for velocity change,
dynamic ice thickness change, and mass change, which could
then be used to perform a multivariate calibration using all
three observation types simultaneously. Ultimately, the goal
is to make use of all of the observation types to get the best45

possible calibration, although, as we have shown, utilizing
different observation types in separate calibrations can yield
additional insight into biases in the model ensemble.

Code and data availability. Velocity observations from
the Making Earth System Data Records for Use in Re-50

search Environments (MEaSUREs) project are available at
https://doi.org/10.5067/OC7B04ZM9G6Q (Joughin et al., 2015b).
Mass change observations derived from the Gravity Recovery
And Climate Experiment (GRACE) and Gravity Recovery And
Climate Experiment Follow-On (GRACE-FO) are available at 55

https://doi.org/10.5281/zenodo.10037961TS4 (Loomis et al., 2023;
Loomis et al., 2021). Code for Bayesian calibration is avail-
able at https://doi.org/10.5281/zenodo.10038131TS5 (Felikson,
2023). Surface elevation estimates from the Surface Elevation
Reconstruction and Change (SERAC) approach are available at 60

https://doi.org/10.5281/zenodo.7324429 (Csatho et al., 2022).TS6
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