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Plume detection and estimate emissions for biomass burning plumes
from TROPOMI Carbon monoxide observations using APE v1.0.1
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This paper presents the Automated Plume Detection and Emission Estimation Algorithm (APE), developed to detect CO
lumes from isolated biomass burning events and to quantify the corresponding CO emission rateusing-eross-sectional-flux

(TROPOMD abos.the Copemisus Setinel Preewsor (5.5 sl Jaunched in 2017 and clloaid aive v data in
enof the Visible Infrared Imaging
an automated plume detection algorithm using-based on traditional image processing algorithms is-developed-and-utilized
to-identify plumes—For these-phumes;-theselects plumes for further data interpretation. The approach is based on several
thresholds which are tuned for data over the US on September 2020, Subsequently, the CO emission rate is estimated by-the
plume. To infer proper wind fields from ECMWF reanalysis 5 data, we test three different plume heights. The-first-two-are
constant-phime-heights-at-a-We consider a constant plume height at 100 m and an-IS4FIRES injection-height-from-at the
injection height provided by Global Fire Assimilation System —And-thetast-one-is—a—varying(GFAS) and we simulate the
plume height in downwind direction —A-with a 3D Lagrangian modelr&useé%&sn&ula%&&aee&p&ﬁtele&ﬂm&fheﬁeﬂfee
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US and its performance is verified for observations over Australia and Siberia. APE identified 5562 fire clusters and onl
1327 cases was deemed to have good TROPOMI CO data. 882 plumes were detected in 1327 cases and only 378 plumes
were considered as 309 plumes were short and about 195 had multiple sources of fire in them. Finally, the emissions were

estimated for 226 cases in 378 cases out of which 5 were further visually filtered leading to 221 cases. The constant plume
height ef-at 100 m eompared-to-emissions-based-on—varying-plume-height—Furthermore—the-effect-of thechangingplume

he-provides unacceptable emission estimates. The
difference in emission estimates using a plume height at the GFAS injection height and using Lagrangian simulation, was

found < 4% for Siberia but is significant for several cases for US and Australia. Therefore, APE will employ the simulated
varying plume height in downwind direction is-eonsidered-for the automated algorithm. The-eross-section-flux-method-is-found

o-have-anu atnty-of 38%in-one-o dea d-ca OW —overalu atnty-o aleo ditfieultto-guan

as-conditions-for each-fire-are-unique-Finally, we provide a first estimate of the emission uncertainties. The assumption of a
constant emission over the time of the plume formation and the spatial under-sampling of the CO column concentration by
TROPOMLyields error < 20 %Mostly, an emission plume created by a burning and uncertainties in the GFAS injection height
may cause errors < 100 %. Errors in the wind data are considered to be significant but could not the quantified because of the
lack of uncertainty information in the used wind fields.

1 Introduction

Carbon monoxide (CO) is an air pollutant and in high concentrations, it causes harmful health effects. Moreover, it is a-weak
an indirect greenhouse gas and an-indireet-a contributor to increase in several greenhouse gases in the atmosphere (Spivakovsky
etal., 2000). CO is produced mainly due to incomplete combustion-
»for example, Andreae et al. (1988); Watson et al. (1990) have showed that the biomass burning increases CO in atmosphereasi
. Shi et al. (2015) quantified the total CO emissions from vegetation burning, fuel-wood combustion, and human waste for-three
in different tropical regions. Also, Granier et al. (2011); Crippa et al. (2018); Hoesly et al. (2018) show that the CO emissions
emission due fossil fuel burning has been-on-inerease-increased since 2000. Additionally, CO emitted by localized sources at
the ground leads to a prominent footprint in the atmosphere, namely plumes, due to its lifetime from days to several months
(Holloway et al., 2000). Thus, it becomes essential to understand the effect of CO on air-quality and climate by measuring and
quantifying it accurately on a global and local scaleswhich-helps-to-quantify-€O-emissions.

The TROPOspheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor (S5P) satellite launched in 2017,
monitors CO daily on global scale (Borsdorff et al., 2018) and at a high spatial resolution of 7 x 7 km?, improved to 5.5 x 7 km?
in August 2019. R

it’s high spatial resolution and the daily coverage of the TROPOMI-CO Level-2 dataset, the CO emissions by cities (Borsdorff
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et al., 2019a, 2020; Lama et al., 2020), wildfires (Schneising et al., 2020; Li et al., 2020; Magro et al., 2021; van der Velde et al.,
2021) and industrial sources (Tian et al., 2021) have been quantified and studied. Mest-ef-these-Rowe et al. (2022) compared
the TROPOMI CO measurements to in-situ aircraft measurements for different biomass burning plumes in 2018 and found that

the difference between the two measurements is about 7.2%. This shows that the TROPOMI CO measurements can be use to

uantify the biomass burning events.

Furthermore, most of the above studies estimate CO flux on large-scale regions (Schneising et al., 2020; Magro et al., 2021;
van der Velde et al., 2021) and mega-city scales (Borsdorff et al., 2019a, 2020; Lama et al., 2020). However, not many single

point emissions are quantified from the TROPOMI CO dataset. Tian et al. (2021) showed CO emissions based on TROPOMI
for single point industrial sources from India and China. A-similar-approach-hasnoetbeen-shoewn-for They were able to perform

a statistical study for three years as the geo-location is known for the industrial source. A similar study to quantify emissions
from single point biomass burning (fires) single-point-sourees-using TROPOMI CO data has not been shown in the literature

—The-as geo-locations of-the-industrial-sourees—inTian-etal+(20 are-known-a-priori;-whereas-thelocations—fe

for fires are not known in-advanee-and-are-not-fixed-in-time—The-a priori. The geo-locations for fires can be detected using the
Visible Infrared Imaging Radiometer Suite (VIIRS) 375m thermal anomalies/active fire product (Schroeder et al., 2014)ean
be-used-to-deteetsingle-point-sourees. The VIIRS instrument is aboard the joint NASA/NOAA Suomi National Polar-orbiting
Partnership (Suomi NPP) satellites ;-which-and flies in the same orbit as S5P in loose formation with a temporal separation
of 3.5 minutes between them. The-collocated-This short time difference helps in collocating observations of TROPOMI and

2 A Nresen aed—fo oud Q No—O he P_methane—d nrod orente—e 0 nd—nA M manne
P 10 oua O d cdata—proad O ar; =Y c a 5

the-CO data and VIIRS active fire data product wi in-th i i
The CO plumes in the TROPOMI data can be used to estimate CO emission by wild-fires and different methods are discussed

for this study.

in the literature, namely, the inversion methods coupled with Gaussian dispersion models (Krings et al., 2011; Nassar et al.,
2017; Lee et al., 2019) or different Chemical Transport Models (CTM) (Brasseur and Jacob, 2017), Cross-sectional Flux Meth-
ods (CFM) (White et al., 1976; Beirle et al., 2011; Cambaliza et al., 2014, 2015; Kuhlmann et al., 2020) and integrated mass
enhancement (IME) method (Frankenberg et al., 2016). The inversion coupled with a Gaussian plume model is-simple-where

can be used for flux inversion of isolated single plume event assuming steady and uniform wind conditions. The method fits
an analytically computed Gaussian plume is-fitted-to TROPOMI CO column observations. Here;wind-conditions-are-assumed

S Stee 3te ausste The method can only be applied to observations under very specific
wind conditions (Varon et al., 2018). The IEM uses an empirical linear relation between the emission and the integrated mass
in the observed plume that was established based on aircraft data (Frankenberg et al., 2016). Current implementations are onl

applicable for single emission events for methane plumes and no such relationship has been established for CO measurements
in fires. Thus, we do not consider IME for the present work. The inversion methods using CTMs, such as Weather Research

and Forecasting model coupled to Chemistry (WRF-Chem) (Grell et al., 2005), GEOS-Chem (Bey et al., 2001), and others

can reduce uncertainties thereby predicting emissions more accurately. Hewever,-They can be applied to complex emission

events, but the corresponding simulations are complex, computationally expensive and difficult to automate, in particular for a
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large number of fires with different geolocations which is the objective of this study. The CFM is suited for the interpretation
of isolated plumes but does not assume a particular plume shape. It needs comparatively less computational power and is eas-
ier to automate. It is based on the mass conservation of the pollutant transport in downwind direction of the plume. The CO
emission is estimated from corresponding fluxes across different planes perpendicular to the direction of plume using the the
wind velocity at the plume height. The plume height depends upon different aspects, namely, meteorology, emission height,
etc (Brunner et al., 2019) and may not be explicitly available. Moreover, the CFM breaks down when diffusion is dominant,
i.e, when the wind velocity is < 2 ms~! (Varon et al., 2018).

The present work aims at developing an automated plame
observations and to estimate corresponding CO emissions. For this purpose, we employ and improve the CFM as it has the

potential to be applied in an operational data processing. First, VIIRS fire data and satellite data are prepared for automated

plume detection which is discussed in section 2.1. Plume detection algorithm from a single point source using VIIRS fire counts
is the subject of section 2.2. Section 2.3 describes emission estimation using cross-sectional flux method where an appropriate
choice of the plume height and the wind fields are discussed. The study results will-be-deliberated-are discussed in Section 3

and finally Section 4 concludes our study and sets recommendations for the future work.

2 Methodology

Figure 1 illustrates a high-level flowchart of eu

Corresponding pseudo-code is given in Appendix B algorithm description 1. It is divided into three parts, namely data prepa-
ration, automatic plume detection, and emission estimation. During data preparation, the algorithm identifies single point fire

sources from VIIRS 375 m active fire data product (Schroeder et al., 2014) and subsequently selects and extracts & TROPOMI
CO data around theloeated-fire-soureesevery located fire source. The plume detection algorithm searches for a plume in the
extracted CO data which is required as an input for emission estimation. The emission estimation algorithm initially com-
putes the background CO which is the usual observed CO concentration at that location without any CO emissions due to
the fire. Subtracting the background allows us to obtain the enhanced CO which further is used to estimate the emissions by

cross-sectional flux method. These three parts of the algorithm are discussed in the following sections.
2.1 Data preparation
2.1.1 Selection of fire events

Fire events ean-be-are inferred from the VIIRS 375m active fire data product (Schroeder et al., 2014) provided by EANCE

FIRMSFire Information for Resource Management System (FIRMS) which is operated by NASAESDIS-’s Earth Science
Data and Information System, (https://earthdata.nasa.gov/active-fire-data). The data contains different parameters such as fire

radiative power (FRP), temperature and the time of measurement defined at latitude-longitude coordinates which correspond
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Figure 1. High-level flow chart of the APE algorithm.

to the center of a 375 x 375 m? ground pixel. FurthermoreFrom now on, each of these latitude-longitude coordinates will be
referred to as a fire count in this paper. Mostly, an emission plume created by a-burning-in-burning a single VIIRS pixel cannot
be detected by Fropemi-with-a TROPOMI with its pixel size of 7x 7 or 5.5 x 7 km?. And-enty-a-elusterOnly clusters of VIIRS
fire counts can lead to a detectable CO plume in the observations. To identify sueh-appropriate fire clusters, we employ the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996; Schubert et al., 2017) algorithm
from the scikit-learn library (Pedregosa et al., 2011). It separates the areas which are densely packed with fire counts from
the low dense-density areas and has an ability to detect arbitrarily-shaped clusters. DBSCAN requires two inputs, first the
maximum search radius, 7,44, around a fire count and second the minimum number of fire counts within the area, nin. Tmas
is set to 4 km which is approximately half of the TROPOMI pixel size. The minimum number of fire counts have-been-has been
empirically set to ny,i, = 10. Figu i i

2049—For further analyses, we convert each cluster to a single point source using fire radiative power (FRP) as weights of

the individual fire counts. This single point source will be referred to as fire source from now on and serves as an input to

TROPOMI CO data preparation. Fire

2.1.2 TROPOMI CO data preparation

For the identified fire sources from VIIRS data, the corresponding TROPOMI orbit (See Table B1 for L2 product ver-
siont-03-02) is selected. Figure 2 illustrates the collocated information for a-data—granule-part of TROPOMI orbit number

10254 over Australia. The orbit is corrected for stripes (see Fast Fourier Transformation algorithm of Borsdorff et al. (2019b)).

For each fire source, we extract a 41-><41-pixel-granule-of TROPOMI-CO-data-data granule of 41 x 41 TROPOMI CO pixels
centered around the sourceby-applying-. The granule size is minimum 220 km is chosen to capture the distance of the emission

traveled from the source to the granule edges within 6h with an average velocity of 5 ms™!, After extraction, two data quality
filters —First;-the-are applied.
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DP-1 The maximum pixel size due to distortion in swath direction is eonstrained-restricted to < 12 km to avoid large pixel

size and its variation within the granule.
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DP-2 A sufficient number of CO pixels with data qualit > 0.5 (Apituley et al., 2018). g, > 0.5 corresponds to clear-sk

clear-sky like and mid-level clouds observations. Within the entire data granule 80% of all pixels must fulfil this qualit
criteria. Additionally we require 85 % of ’good’ pixels in an area of 7x7 pixels centered around the fire source. The data
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pixels-have-¢;—-0-5-in-more usable pixels around plume the better the plume can be disentangled from the atmospheric
background (see discussion in Sec 2.3.1).

The threshold values are empirically determined for a reference data set from September 2020 over the US and verified for two

other data sets over Australia and Siberia (see Tab. B1 in Appendix B for a detailed specification of the data sets). Finally, the
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scene corresponding to a fire source is forwarded as an input to the plume detection algorithm.

2.2 Plume detection algorithm

Within-The next step of APE identifies plumes within each selected CO data granule;-we-try-to-identify-a—plame. Kuhlmann
et al. (2019) developed a plume detection algorithm based on statistical methods and Finch et al. (2021) used machine learning

to detect plumes. A machine learning approach is not considered in the present study mainly due to non-availability of geld
standard-data-data containing detected plumes and their sources for training. Instead, our plume detection approach is based on
traditional image processing algorithms (van der Walt et al., 2014).

Using the extracted CO TROPOMI data, a plume is detected by a region-based segmentation algorithm where pixels with
similar properties are clustered together to form a homogeneous region. One of the most commonly used and classic region-
based segmentation algorithm is the *marker based watershed transform method” (Beare, 2006; Gao et al., 2004). The CO
column concentration represents metaphorically the altitude of a topographic map. Thus, the watershed algorithm segments
the regions into valleys and mountains (CO enhancements) based on a given marker and a gradient map. In the following
paragraphs, we describe the plume detection in more detail using an example.

The marker-based watershed algorithm in the scikit-image package (van der Walt et al., 2014) takes two inputs to segment
an image, one is the ’elevation-map™Teev-gradient map’ I,.,q where the changes in altitude are emphasized and homogeneous
regions are dampened. The second input is a marker image I,k which provides the seed points referred by an integer label
for the algorithm. The definition of both inputs is discussed in the following paragraphs.

We start with the extracted CO TROPOMI granule of a 41 x 41 pixel size I(4,5) withi,j = 1,---,41. An example is shown
in Figure 3(a). First, high frequency components or noise of the CO-image are reduced by a Gausstanfilter2D Gaussian filter

with standard deviation o = 0.5 (pixel), which was chosen empirically. The smoothened image is referred to as I. From this
image, the elevation-mapJere-gradient map I.,4 is computed using a Sobel operator (Sobel and Feldman, 1990; van der Walt
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Figure 2. 49 detected fire sources represented by black '+’ on 2019-10-06 overlapped with the TROPOMI level 2 CO data for orbit 10254.

The dashed region represents a 41 x 41 pixel granule.
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edges-as shown below.
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185 where * represents the convolution operator. Here, the gradient 1,,,4 emphasizes the edges of a plume as shown in Figure 3b.
By default the marker image (I, ) is initiated-by-

Imark(i,j) =0 Vv 1,7 =1,---,41
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Figure 3. Plume detection algorithm. Figure shows different steps of the algorithm for an example plume for a fire source on 6th October

2019 in Australia.

Next-we-define-initialized to zero and subsequently two different seeds —Framc{#:5)=1t-are defined. One seed indicates regions
which do not have a-CO enhancements and Fiarc{455)=2-another refers to regions of clear CO enhancements —Regions-given

190 byl i, ] i) = 2, respectively. The seeds are defined as follows:

1. The regions of no CO enhancementsare-identified-by-the-median45—: A pixel Ly, (2,7) has no CO enhancement if it
is either below the median of Ig and-a-dynamically-computed-threshold I namely-

Imark(i7j) =1 when IS(Za]) < M(IS) or IS(Za]) < IDT(ivj)

.. i+N . .
where  Ipr(i,f) = Gtz Svarn Sy Is(7,5)

195

of the 15x15 pixels centered at Ig(z, 7). The size of 15x15 pixels is empirically chosen to account for the background

variability. The pixels corresponding to no enhancement can be seen in Figure 3;-the-cerrespendingregionis-shown-by
the-eolorc represented by label ’1” in-Figure 3e—

Using-this-and is referred to as preliminary marker image.

200 2. The regions with CO enhancements: Using the preliminary marker image with labels *0” and ’1°, we identify all the
conneeted-regions-connected pixels with same marker value (referred to as connected regions hereafter) using the ’label’
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algorithm (Fiorio and Gustedt, 1996) in the scikit-image (van der Walt et al., 2014)and-assign-an-unique-label-to-each
region-shown-in-different-eolorsinFig3eFurtherina-. Each connected region is identified by an unique integer value

er pixel (not to be confused with the seed marker). Next, we zoom in an 5 x5 plxel area around the fire source, we-extract
the-tabels-of-and extract all connected regions as th

tabel-12-within-a potential plumes. We extend the potential plumes by going to a 15 x 15 pi*el—afesrppgliaround the

fire source are¢

is-using pixels
of the same label. We extract all labeled CO data in this area and calculate a CO threshold as their mean CO value. We

mark all pixels within the 15 x 15 pixel area with a seed 2’ which have CO values above this threshold, which further
yields the remaining seed points which are defined only in a 15 x 15 pixel area around the fire sourceas-shown-below-

Tnark(4,5) =2  when Ig(7,5) > upper threshold for 1,7 =14,...,28.

The-.

'~

The above selection process is illustrated in Fig. 3¢ with the different labels of connected regions. The final marker image is
shown in Figure 3d.
Finally, the watershed algorithm calculates a segmented image uﬁﬂg%%%%ﬁwﬂ%w%m

using the gradient map image I and the marker image I, ,,x. E
in-Figure 3e - i

example of a segmented image. Using the gradient map, the watershed algorithm decided that the two areas of enhanced CO
values are not connected and so do not belong to the same plume. From the segmented image, we extract the correct plume
which should originate from emissions at the source location. Therefore, we consider only those labeled areas that overlap with

the center 7 x 7 pixelsare-extracted-and-for-all-theseregions;-. Figure 3f shows the detected plume. The detected plume in this
case seem to be shorter, however the tail end of the

foHowing four-eonstrainsplume i.e, < 143°E, will fail background subtraction due to similar enhancements as the background.
This can also be seen in gradient map where no gradient is detected on top side of the plume.
Finally, the extracted plume is evaluated regarding its suitability for further processing and the plume length is calculated
for each extracted plume. Only the data are provided to the emission estimation module if:

PD-1 the plume length > 25km.



If the plume length is < 25 km then the detected plume is flagged as short plume and will be ignored for further processing.

235 The short plumes are difficult to quantify in an automated way as they can have different shapes which makes it difficult to
identify the plume direction. Before starting the emission estimate module, we remove all plumes with multiple fire sources,
as the aim of this paper is to quantify fires with single sources. This is done by the following filter:

PD-2 Check if there are not more than 9 non-clustered or26-both-clustered-or-non-clustered-fire-counts-withinfire counts or
any other identified fire cluster within 0.05° distance from or in the-plame-the identified plume.

240
2.3 Emission estimation
For the detected plumes, the emissions were estimated using the cross-sectional flux method (CFM) (White et al., 1976; Beirle et al., 2011;
. The CO emission E is defined as the mean flux through n cross sections perpendicular to the downwind direction of the plume,
245 namely
Z Qi
/(5 (s,t0) - u'(2i,8,10) ds/(SC s,t0) - v'(24,8,t0) - ds 3)

where Q; (in kgs~!) is the CO flux through cross section i, JC¢ (in kgm~2) is the background subtracted CO values along a
cross-section 7 and +v" (in ms™!) is the velocity perpendicular to the cross-section . The wind velocity w{zrs-#o)v(z,8,t0)

250 at the plume height z, the cross-section position s and at the observation time ¢, is obtained from the European Center for
Medium range Weather Forecasts (ECMWF) Reanalysis v5 (ERAS) data (Hersbach et al., 2018b). For error characterization,
we define the standard error as-(og) as

255

260 To determine the cross-sections, hereafter referred to as transects, we first calculate the direction of the plume in downwind

direction. The plume line results from a second order curve fit through the pixel centers of the identified-pixels-detected plume

10
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Figure 4. Plume on 2019-05-19 at 04:55 UTC. (a) Plume and every second transact lines drawn based on the detected plume separated b

5 km in downwind direction. (b) The black dotted line corresponds to CO column along a transect in (a) and the red line shows re-centered

and cut-off CO used for Gaussian fitting. Blue-dash dotted line corresponds to the Gaussian fit and orange line represents the enhanced CO

along the transect. (¢ C., along a transect against the distance from source.

(see e.g. the black solid line in Fig. 4a). Next, we calculate the transects at every 2.5 km perpendicular to the plume line which

is-and are illustrated as dashed lines in Figure 4a. Transects are sampled at 2.5 km to reduce the errors due to interpolation
discussed in next paragraph. To calculate (); in Eq. 3, each transect is sampled at distances of 500 m.

The points over an transects are over-sampled to get a smoother CO distribution which further helps in background subtraction

discussed in Sec. 2.3.1. Along each transect, the CO column (C.,) is extracted by linear interpolation of the original CO data
and is illustrated by dotted black line in Figure 4b. This CO column is further used to compute 6C,, in Eq. 3. During the diag-
nostics tests of our interpolation algorithm, an oscillation was observed in the CO columns integrated along the transects as a

function of the downwind distance from the fire source (see Figure 4c). The oscillation is due to interpelation-errersfrom-the

large-sized-pixelsthe under-sampling of the CO distribution by the TROPOMI instrument. The distance between two minima
is approximately equal to the TROPOMI pixel size. This error is found to propagate further into the CO enhancement 6C,

which is computed from background subtraction algorithm.
2.3.1 Background Subtraction

To determine the atmospheric background of CO per transect, first we re-center the C,, such that the maximum is at the origin
—Then-the-to facilitate the Gaussian fit. The transect line is truncated at the first minima of CO on either side of the origin as
illustrated by red line in the Fig. 4b. To determine the background for each transect (red line), we assume that the column CO

along the transect can be expressed as
CCO=H0+H1~S+A()G(S) (6)

where G2—=Hy—+H—s-deseribes-a-linear- CO-background-per-transeet-and-the-Gaussian-H,_and H; represents background

and the slope of change in background over the transect, respectively. Ag is the amplitude of the Gaussian distribution
(Gaceounts—for-the-CO-enhancement). We determine the background by fitting Eq. 6 through the CO data, which we sub-

11
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sequently subtract from the C,, data to calculate the CO enhancement
0Ceo = max{0, Cco — Ho + Hy - s}. @)

Here, the negative CO column enhancements are ignored. The blue dashed line and the orange line in Fig. 4b represent Gaussian

fit and 0C,,, respectively.

2.3.2 Filtering during background subtraction

The background subtraction includes an important filtering mechanism to remove overlapping fires-—Figure-22-shows-a-ptame

—plumes. This is done during the background subtraction
after the transect line is truncated. H-the-difference-between-The filter criteria

EE-1 Difference between the two minima on either side of a truncated transect is-higher-than< 10% ;-then-the-transeetis

flagged-as-badof the smallest value ensures a smooth background and so the absence of any interference with adjacent

emission events. It should alse-be noted that the-estimation-of-background-CO-might-go-wrong-when-the-difference-on

isrejected-and-filtered-out-this filter also account for background situation which are too demanding for the CFM.

2.3.3 Plume height

The plume height z; at a transect/cross-section i is used to extract the appropriate wind velocity w{zs5tjv(z;. s, o). For
wildfires, Rémy et al. (2017) showed that the an Integrated monitoring and modeling System for wild-land Fires (IS4FIRES)

injection height, z;,;, from the Global Fire Assimilation System (GFAS) database is in a good agreement with the observations.
The-uncertainty-ininjection-heightis-aboutSofiev et al. (2012) showed the IS4FIRES injection height deviated by less than 500
m i ~ ompared to MISR Plume Height Project (MPHP), thus we consider 500m as plume height uncertainty.

First, we assume that the plume height is equal to zj,j and is constant throughout the plume, which may hold true for stable
meteorological conditions. The constant plume height will be referred as z. and uncertainty at this plume height is given as 2?
and z" which correspond of zj,; + 500 m and zi,; — 500 m, respectively.

It should be noted that the injection height computed in GFAS is for 24 h and may not be appropriate for a satellite plume
which is a snapshot at time ¢y. Additionally, the plume height might vary due to meteorology in downwind direction. Therefore,
we simulated alternatively particle trajectories starting at the fire location around the injection height with a three dimensional
Lagrangian tracer dispersion model. This allows us to estimate the local plume height z; by a vertical averaging of tracers along
the downwind direction. The estimated plume height is referred as 21, in the following, which captures the change in height

in the downwind direction.
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Figure 5. (a) The grayish-white band shows all tracer particles at the end of Lagrangian simulation and the ree-blue dots show the fire counts

on the detected plume. (b) Shows the plume height computed for different transects from Lagrangian simulations. The constant plume height

(zc) represented by orange dashed line is +454-3-2521.87 m.

The Lagrangian simulations are performed using tracer particles. The motion of tracers is simulated according to
(1)
dt
where v (x,,) represents the fluid velocity at the instantaneous particle position x,,. The explicit forward Euler scheme (Butcher, 2003, p. 45)
315 is employed to integrate the equation in time. The velocity on the right-hand side of the Equation. (8) is calculated by the tri-

= v (% (1)) ®)

linear interpolation of the ERAS velocity fields. The source locations for the Lagrangian simulations are based on the fire
counts described in Section 2.1.1. At each source location, 3 tracer particles are released at zj,j and zi,; &= 500 m and the parti-
cle trajectories are simulated. Particles are released at z;,; &= 500 m for uncertainty analysis. The end time of the simulations is
the TROPOMI measurement time ¢, which is about 13:30h local time (Veefkind et al., 2012), and the simulation startis-starts
320 at top — 6 h. The particles are released from the source locations every 2 minutes. Figure 5(a) shows the tracer particle simu-

lation for a plume and the grayish band indicates them at TROPOMI measurement time. The contribution to emissions from

fires is low in early morning as shown in the ecosystem-specific diurnal cycles by Li et al. (2019) and so we ignore trajecto
simulations before ¢y — 6 h. Additionally the process of heating due to fires is not accounted in our Lagrangian simulation as

we assume the ERAS velocity fields contain some aspect of it as ERAS assimilates skin surface temperatures.
325 At each intersect, the height of the tracer particles released at z;y,; are extracted and the mean height, 21,4 ; is computed —Fhe

mean-hetght-orphime-heightis-and assumed to be constant along the transect. Figure 5(b) shows the plume height for different
transects from the fire source which is used to compute velocity, +v, in Equation 3. The uncertainty in plume height is defined
as zf’ag and zj;, and are computed from tracer particles that were released at height zinj + 500 m and zinj — 500 m, respectively

and can be observed in Figure 5(b). Finally, the velocity, v, is used to compute emissions.

330 2.3.4 Filtering during Lagrangian simulations
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350

During-Related to the Lagrangian simulation, we apply three filters;-two-of-them-are-before-the-start-of the simulation-and-one

EE-2 The injection height from GFAS must be available,
EE-3 If the simulated trajectories are not aligned in the direction of the plume then the plume is rejected.

EE-4 If the wind velocity at the TROPOMI measurement time which is used to compute emissions is less than 2 ms~! then
the plume is rejected.

Filter EE-2 may become relevant due to false detection of plume or false fire in VIIRS active fire database or just the data

is missing in GFAS database. Figure shows-a-case-where-there-ts-aplume but-no-datafor-injection-heicht-was-avaitable:

be a rotation or the errors in the ERAS velocities or due to the spatial and temporal resolution of velocity fields or inaccurate

injection height. H

i =1 is-rej i i Finally, if the wind speed is below the specified
value in EE-4, diffusion dominates the pollutant transport and CFM is not appropriate to estimate the CO emission.

3 Algorithm application

Table 1. Results for automated plume detection and emission estimation algorithm (APE v1-6.1) for twe-four months in USand-, Australia

and Siberia

EoeationRegions | Fire Clusters | CO data | Plume detection | Emission estimation | Visual Inspection
us 1081 228213 64-130 3337 3435
Austratta- AU 2013 394385 132266 HH129 +H6-128
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in-Qur APE algorithm targets at global
performance and includes several threshold values, which needs to be determined carefully for optimal performance. For the
current version APE V1.1, we decided to determine the thresholds using the region encapsulating the United States of America
MMMMWMMWQ&%&AUSWW (AU> on OetoberOct 2019
and h
WMMMM@M%&Q&QWW
note that these regions are not used to configure APE and so can be used to test the overall performance of the algorithm.
The different time periods were chosen to focus on the regional burning season and so to maximize number of observed fires.
Table 1 shows the result-of-our-automated-plume-deteetion-number of plume evaluated in the different modules of APE. Fire
cluster and CO data columns highlight the results of data preparation (see Section. 2.1) part. The columns plume detection and
emission estimation show the results for plume detection (sec. 2.2) and emission estimation —(sec, 2.3) parts. Furthermore, the

details corresponding to filtering can be found in Tables B2, B3 and B4 in appendix.
A total of 3094-fireclusters—were-deteeted-5562 fire clusters (see Table. 1) were identified in the VIIRS active fire data

product for beth-US-and-Australia-all regions based on the clustering method discussed in 2--1-TFROPOMI-CO-overpasses
Wﬁeﬂ%ﬂﬂdﬁ&ﬁeﬂié%@&w%m@s&w&dm was filtered for maximum pixel size
and quality (see Sec. 2.1.2)whi he—, The filter on the

Finally the data preparation part yielded a total of 1327 good CO data granules for all regions for further processing.

The plume detection algorithm described in Sec. 2.2 identified +96-plumes-ameng-622-cases—a total of 378 plumes for all
regions from available 1327 good CO data cases. A total of 445 cases were found to have no enhancements (see Table B3)
which means that the CO enhancement from these fires was not significant enough to be measured by TROPOML. In addition
(PD-1 filter). Further, the PD-2 filter identified a total of 195 cases where other fire sources and clusters were present in the
detected plumes.

The emission estimation algorithm eemputed-takes 378 plumes as an input and computes emissions using CFM for a total

See—22226 cases. So a total of 152 plumes were rejected by filter EE-1, EE-2, EE-3, and EE-4 during the emission estimation

See Table. B4 for details). The injection height from GFAS database was not available for 57 cases (EE-2) and 29 plumes
failed because overlapping with other plumes (EE-1). Furthermore, particles-plume ahgnmentﬁker—de%e&bed—m—Seeﬁe&%4

vEE-3 removed a total of 51

cases. This is mostly due to bad plume detection, inaccurate velocities or injection heights. Lastly, the velocity filter diseussed
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A-total-of 3-phimes-were falselyidentified-as shown-in-EE-4 rejects about 15 cases. Finally, the automated plume selection
can be verified with a visual inspection. For the US region difference are small by construction as the threshold values were
tuned for this data ensemble. For the verification areas Australia and Siberia we see similar good performance of the detection
J&%ﬁmﬂmlmlﬂ&ww&w&g&waﬂﬁ%mﬁg 6 —Fo-concluderpresented-automated
-ogives three examples of the false positive detection.
Thus, our analysis confirms the applicability of our algorithm to other areas with a confidence of 97.7% of the cases.

3.1 Cross-Sectional Massflux method (CFM)

3.1.1 CeonstantandLagrangian-plumeheight

The CFM was-used-to-compute-emissions—for-the-seleeted14t-computed emissions for 221 cases. To compare the effect of

plume heights, two variables are defined, namely, mean plume height Zj,g, which is mean of z,, of all transects along the

downwind direction of the plume and the maximum rise in plume height (dz) w-rt-with respect to z.. They are given as

- 1
Zlag = E Z Rlag,i )
i=0
0z = max{Ziag} — Z¢ (10)

The mean plume height Z1, is plotted against the constant plume height (z.) in Figure 7(a) and (c) for US and Australia, and
Siberian region, respectively. The dz decreased and increased in downwind direction for about 24+-and126-43 and 178 fires,
respectively. Additionally, the plame-height-0z in the downwind direction is found to vary significantly-and-is-highlighted-by
errorbars > 500 m fg&&wmmmm Figure 7(a). The

a)However, no such cases were found in

Siberia (see Fig 7(c)). Among these 22-30 fires, about +0-11 fires had dz > 1000 m. As the total fire radiative power (FRP) and
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Figure 7. Plume height variation and emissions for regions encapsulating US and Australia (top figures) and Siberia (bottom figures). (Panel
a and c) The mean plume helght (see Eq. (9)) versus the constant plume height for each fire. The error-bars-indicate-the-standard-deviation

black color represents dz < 500m and blue-orange
color indicates ¢z<-500-9z > 500m (Panel b and d) Comparlson between the emissions computed at plume helght Zlag VS-VEISUS 2c —The

color and 21;-)-afd-z),, versus a constant plume height

comptted-at-ptame-height 2r—vs-the-emisstons-at-of 100 mp}ﬁfﬁ&hetg‘ht—z”"mrr represented by blue color.

fire counts represent the heat generated and the area burnt, a relation between plume height rise and these two variables can
be expected as higher FRP means higher temperature which heats up the air, leading rise of the warm air. However, no such

relation was observed and there were cases with low FRP or low fire counts where the 6z > 1000 m. HeweverAdditionally, it
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was difficult to find an appropriate reason for large rise in plume height in downwind direction. Obviously, this plume height

variation can influence the emissions due to the change in the velocity with height.

A-USHire {red Figure 7(b) and (d) compare the emissions computed from Lagrangian plume height (Za¢) with the emissions
computed from constant plume height () represented by black color and 100 m plume height (Z100) represented by blue
color, Combination of all cases in figures 7(b) and (d) show that the E varied less than 10% from the F, for a total of
198 cases. And the fires in Siberia varied by less than 4%. However, 23 cases in US and AU had variation larger than 10%.
Thus, the overall effect of the Lagrangian plume height to the constant plume height on the emission estimate is considered

minor, however we could identify several cases where the emissions estimate from Lagrangian plume height become more
reliable. For example, a US fire (black color) on the bottom right of Figure 7(b) was found to have high Ej,, = 809 kgs™*

and low E-=115-F, = 115.9 kgs~!. The total fire radiative power (FRP) for this case was found to be the highest among
all the detected plumes and the burnt area (number of fire counts in VIIRS data) was third highest among all the detected
cases. Additionally, the CO enhancement was large, thus, a high emission estimate is expected. Furthermore, the high FRP is

correlated with higher temperatures, so an increase in the plume height in downwind direction is normal. Fhis-It should be

noted that the Lagrangian simulations do not consider the heating. However, we assume that the velocities in ERAS cover this
as it assimilates the surface temperature. The increase in plume height is observed in the Lagrangian simulations as the 2,4

increases by 1350 m compared to constant plume height in the downwind direction at 32.5 km from the fire source. From this,
one can conclude that the Ej,, is-can be more appropriate than E.. A similar reasoning can be used to explain why the Fi.q
was higher by—=>-306%-compared to E, for 9-eut-ef22-the fires where the FRP on average was higherand-the-6=-was=>500-m-

3.1.1 100-mplame height

Three-dimensional-veloeity-fieldsand (d) also compare emissions from Lagrangian plume height to a constant 100 m plume

height. We considered 100 m plume height as three-dimensional velocity fields, which are required to compute the CO emis-
sions based on the plume heights z. and 21, Which-ameunts-, amount to a large quantity of data. The-approach-would-be-much

mplified when the three-dimensional velocity data could be reduced to a two-dimenstional velocity field a Mm&

for-winds would simplify the the approach to a large extent. However, we found no correlation between the difference in the
emissions (F1o9 — Fi.e or F.) and the variation in plume heights. Additionally a total of +05-eases-eut-ofH41-ecases—Thefigure
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under-predicted-Additionally; Frogmisnegative foer H-fires-37 fires were found to negative values for Foq due to a negative
velocity at 100 m. i ; : e S

ptume-heights—This makes it difficult to find an appropriate scaling to obtain emissions at zj,, from the velocities at 100 m.
TFhis-highlights Thus, highlighting the importance of using three-dimensional velocity fields rather than surface near wind fields
at a fixed altitude.

From all these observations, we conclude that the varying plume height is more reliable to compute emissions by an auto-

mated algorithm.

It should be noted that the emission estimations in this paper are not compared to any existing database as we are not aware
of any in-situ studies except by Rowe et al. (2022) which compares the CO column from aircraft measurements to TROPOMI

data,

3.2 Emission uncertainty

We estimate two different contributions to the uncertainty of the estimated emission, where we assumed constant emissions

in time for each plume. First, we consider the relative variation of the CO fluxes through the different intersects ();. Different

error sources may cause this variation and the corresponding error on the flux estimate can be characterized by the standard
error o, in Eq. 4. Second, errors that affect the different fluxes (J; equally cannot be address by this approach, and so require
a dedicated discussion. These errors are TROPOMI bias, ERAS velocity bias and injection height uncertainty. In addition to
these two errors, we verify the emission uncertainty in APE, i.e., the standard error, using data from WRE simulations where

3.2.1 Standard errors

MMCncompass various uncertainty sourcessuch-as-, €.g., the interpolation error due to sampling-(large-grid-sizes)
i torts-the under-sampling of the CO field by TROPOMI (shown
in Fig. 4(bc)), the-systematic-bias-and-preeision-errors-in-TROPOMI-CO—-uneertaintiesrelative wind errors with respect to

the ERAS velocity fields, the precision of the TROPOMI CO data, the uncertainty variation in deﬁmng the atmospherlc CcO
background

Figure7te)-is-per intersect, and the
the-temporal variation of the emission around its mean. g does not allow us to disentangle these error sources, expect for
the TROPOMI CO precision. This is_< 10% even for dark scenes over land (Landgraf et al., 2016). For the flux estimate,
this yields an negligible error contribution. To compare the standard error for different fires, Table. 2 reports the maximum
relative standard error for the four regions using the Lagrangian plume height and the constant plume height 2. For individual
fires errors can be accessed in the data base (Goudar et al., 2023). The data shows that the maximum standard error for the
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Table 2. Maximum values of standard error and emission uncertainties due to plume height for different regions among all fires.

AU | 1879 | 28d0 | o478 | 9541 | 13047 | 17037
Sibjun | 1821 1843 | 1734 | 1495 [ 1737 | 884
siblul [ 1972 | 1957 | 488 | 1312 | 1547 | 12l

Lagrangian plume height is significantly smaller than for z. for both the US and Australia data. This is another indication to
use the Lagrangian plume height as baseline for APE. For the Siberian region there is no difference between the two methods
because the plume height does not vary much as depicted in Figure. 7c. Overall, the standard error of the emission estimate is

<20%.

3.2.2 Other errors

One potential error which cannot be addressed with the standard error is an overall bias in the TROPOMI CO product.
Borsdorff et al. (2019b) reported a CO bias of 3.4ppb for the TROPOMI product compared to_the Total Carbon Column
Obserying Network (TCCON). This corresponds to an typical relative error < 1.7 % for a plume concentration of about 200
ppb in a plume. Assuming the CO bias to be constant over the plume, it yields the same relative error on the emission estimate

and so can be neglected.
Another error of this category is the emission uncertainty because of the uncertainty in plume-height,whichisfartherrelated
aneertainty-in-the-injectionheight in-GFAS-database—The-injection-height is-assumed-to-have-an-uncertainty IS4FIRES

emission uncertaint

AEP™ = Eig’ ~ By
lag Elag

(1)

using plume heights zﬁg and z{y,, respectively (see Fig 5b). Simitarly-the-uncertainties-Analogously, the uncertainties AE?
and AE™" for E are-computed, are computed and the maximum number per region is again given in Table 2. The uncertainties

changes from fire to fire and can be found in the data (Goudar et al., 2023). For the Siberian region, the maximum uncertainties
are small indicating little vertical variation in the velocity. The-size-of the-error-bars-highlights-the-variationin-the-veloeity-at

.... %4 vgo H p

estimate-or-may-vary-For US and Australia region, the corresponding uncertainties are much larger where the uncertainties
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for the constant emission height exceeds those using the Lagrangian simulation by a factor of 2-3. This hints at a more

variable wind field for these regions. Overall, we estimate this APE error term to be the largest error contribution with
error < 100 % for each fire. ' ) at—1% matic—bias—in ' ’ 1% ith

Researehrand-Foreeasting (WRF- ) Finally, we consider errors in the wind velocity that are constant over the plume domain. The
error propagate one-to-one into error of the flux estimate. Uncertainties of the ERAS wind fields in the tropospheric boundary.
layer are not reported. Gualtieri (2022) derived surface near wind errors of 1.76 m/s (root-mean-square error) for ERAS data.
A typical wind speed at the plume height is 3-11 m/s and although at the plume height the wind speed error might be smaller,
we consider this error as a significant error contribution. However, we refrain from quantifying this error because of lack of
reliable the knowledge on the wind.

3.2.3 Verification of emission uncertaint

We verify our uncertainty estimates evaluating WRF simulations of a CO plume using APE. The WRF simulation was per-
formed using real atmospheric forcing at 1 km resolution for a fire with the highest FRP (USA, September 12, 2020, see

Sec. 3.1). The details on the WRF simulation can be found in the Appendix A. Three plumes at three different UTC times
shown in Figure 8a-c were selected and emissions were estimated by our algorithm. Additienally;—the-simulation—grid-was

e-observedinFigs—8e-g-It should be noted that the averaging kernels were not used to

degrade to TROPOMI grids-data and only the enhancements were simulated in the model, thus the background is set to zero
by simulation. The plume height (z1,5) was computed as the maximum height where the concentration became zero and fire
sources were same as the sources used in WRF simulation. The velocity used in both Lagrangian simulations and emission
estimations was WRF velocity data. The emissions for these plumes were estimated by eur-automated-plume-detection-and

emission-estimation-algorithm-APE assuming a constant emission in time and are presented in Table 3. The-Here, the actual
emission is the mean of the known total CO emission from all fire sources with time. This considered time is based on the

release time of the particles around the final transect used to compute emission. Additionally, we degraded the simulation grid
The hic L .
estimate ranges between -1.5 % and +38.5% at-UTC-time-18:00-(Table 3). In all three plumes, the velocity and plume height

-uncertainties of the APE emission

used by APE are appropriate, however the emissions computed by our algorithm differed from the actual emissions. This is
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Figure 8. Three selected plumes at three different UTC times (a, d) at 17:00, (b, e) at 18:00 and (c, f) at 19:00. Top (a-c) represent plumes at
1 km grid resolution and bottom (d-f) represent TROPOMI grid resolution.

Table 3. Comparison of actual emissions to the emissions computed at plume height 21, for the three selected plumes shown in Fig. 8. The

uncertainty in the table is computed as 100*(Actual - Computed)/Actual.

Time in UTC (H:M) | Actual (kgs™") | 1 km grid (kgs™');
Uncertainty Frepemi-TROPOMI grid
(kgs™"); Uncertainty
17:00 28.45 20.26;  28.8% 20.67; 27.3%_
18:00 56.84 34.92; 38.5%. 34.52; 37.5%
19:00 97.86 99.15; -1.5%_ 99.36; -1.53%

attributed to the error in the cross-sectional flux method due to the assumption of eenstant-wind-and-a constant emissions which
might not be the case for a fire. It should be noted that this uncertainty is for one particular case and it can vary depending upon

the case. For the three selected cases, the CFM method leads to an error of 28.8, 38.5 and 1.5% which highlights-thateven-with

540 is in the range of the derived standard error. The difference in emissions between high resolution (1 km grid) and low
resolution (TROPOMI grid) was found to be less than 2%. i tth- : i

sridsIf the velocity is accurate, then

it can be concluded that having higher resolution data deesn*t+does not have much effect on the cross-sectional flux method.
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Overall this analysis suggests that the assumption of a constant emission is the major error source next to errors in the wind
field and uncertainties in the injection height.

4 Conclusions and recommendations

An automated plume detection and emission estimation scheme for CO flux inversion for single point fires was developed by

integrating four freely available data sources, such as, VIIRS active fire dataset, TROPOMI CO dataset, injection height from

GFAS and ERAS meteorological data. The automated plume detection and emission estimation algorithm (APE v1-0)-was

estimated-automaticatly-for_ 1) was optimized for one region and its performance is verified for three months data for two other
regions, Australia and Siberia. For all the regions, 1327 fires had clear sky TROPOMI CO data of sufficient quality among
3562 identified fire clusters. Even though 882 plumes were identified in 1327 cases, only 378 plumes were considered as 309
plumes were too short and about 97-9195 had multiple sources of fire in them. Lastly, the emissions were estimated for only.
226 cases among 378 plumes. We can conclude that APE can reliably detect and estimate emissions automatically for 97.7%

of the cases.
The key to automatically detect fire plumes in TROPOMI CO dataset and estimate emissions was knowing the fire source

a priori.

in-In the present study, VIIRS active fire
data product from Suomi NPP helped in identifying fire source which was used to detect plumes in TROPOMI CO data.
This highlights the potential for flying the satellites Suomi NPP and SP5 in the same orbit and in formation with a temporal

separation of 3.5 minutes to identify fires.

The-emisston-estimationusing-We considered three different assumption on plume heights, first a constant plume height may-

he a agn n atha affa of-1 me-hetah AR—A n nd dira an—P Mme-hetroh

temperatares-eaused-by-the-at 100 m altitude, second a constant plume height at the GFAS injection height and third a varyin
lume height using a Lagrangian model. The varying plume height was chosen based on the characteristics of a fire. If the-a

fire is at its peak then the air around is heated and rises in the atmosphere and at the same time, it will be transported away from

the fire source. Thus, one can observe the CO rise with distance from the source. We-observed-this-trend-infew-cases-where-the

emissions-from-constantIt should be noted that we assume the ERAS velocity fields incorporate this heating effect to a certain
extent as it assimilates the surface temperature from satellites. In our simulations, the plume height varied by tess-than10%
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The-emission-eomputed-based-on-more than 500 m in downwind direction for 30 cases out of 221 cases and all 30 cases

were in US and Australia. The plume height variation was found to be minimal in Siberia.
The assumption of plume height at 100 58 i i

evelocities—A—total-of10 o

led to unreliable emission estimates and was discarded. The difference in estimation emission for the constant injection height
from GFAS and varying plume height, was observed to be less than 4% for Siberian region. Larger differences we observed for
the US and Australia, where the maximum uncertainty using the varying plume height is half of that using a constant plume
height. However. for many plumes the difference in the uncertainty estimate was minor. Based on this findings, we decided to
use the Lagrangian model for the plume height as processing baseline of APE.

inr-time-which-is not Qverall, we estimated the uncertainty of our product with the standard error < 20 %, which mainly accounts
for errors in the spatial under-sampling of the CO field by TROPOMLI and the ease-for-firesassumption of a constant emission
for the time frame relevant for the plume formation. The TROPOMI CO data is of high quality regarding precision and bias
and does not provide any significant contribution to the CO emission estimate of APE. Additionally, as-the-uneertainty ean-vary
from-a-fire-to-another; itis diffieult to-quantify it in-anautomated-waywe analyzed emission errors due to the GFAS uncertainty.
in the injection height. Depending on the meteorological situation at the different regions, errors are < 100 %. Errors due to
wrong wind information is also considered to be important but could not be specified as the ERAS data product does not

rovide an uncertainty estimate of the provided wind field at the plume height.
Finally, for the first time the presented algorithm is appropriate to estimate CO emissions from fires from TROPOMI/VIIRS

data by a fully automated algorithm. We-identified-the-assumption-of-constant-wind-and-emissions-in-time-for-the-CFM-as-on

It is considered as a baseline for future APE upgrades to optimize automated emission estimates of CO point sources. As
a next step, we consider (1) the processing of entire CO TROPOMI data setwill-be-processed-and-, (2) expanding emission
estimations for multiple fire sources and (3) develop an improved inversion scheme. This can done by developing algorithms

that maps the simulated tracer particles from Lagrangian simulations to the TROPOMI CO concentrations to compute emis-

APE to available in-situ emissions databases.
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Appendix A: The WeatherResearch-andForeeasting(WRF }-Model description

610 The WRF model configured in a two-domain configuration is applied in the tracer mode to simulate the transport and dispersion
of CO emitted by a wildfire in the US. The outer and inner domains are run at a horizontal grid spacing of 5 x 5 km%km? and
1 x 1 km?, respectively. The model domains are centered at 36.16225°N, 119.1528%E and have 43 vertical levels stretching
from the surface to a model top of 50 hPa. The outer domain has 200 x 200 grid points while the inner domain has 400 x 350
grid points in the west-east and north-south directions. The meteorological initial and boundary conditions for the outer domain
615 are based on the Global Forecast System (GFS) forecasts available every 3 hours at a horizontal grid spacing of 0.25° x 0.25°.
The static geographical fields and the GFS output are mapped onto the WRF domains using the WRF pre-processing system
(WPS). The physical parameterizations follow Kumar et al. (2021) except the cumulus parameterization that is turned off in

the inner domain.
Biomass burning emissions are obtained from the Fire Inventory from NCAR (FINN; Wiedinmyer et al., 2011) version 2.5
620 and are distributed vertically online using a plume rise parameterization developed by Freitas et al. (2007). This parameteri-
zation selects fire properties appropriate for the land use in every grid box containing fire emissions and simulates the plume
rise explicitly using the environmental conditions simulated by WREF. Since we are using the model in the tracer mode, the
chemical evolution of the plume is not simulated. To describe the loss of CO in the model, we allow the CO fire emissions to
decay with an e-folding lifetime of 30 days. No other source (anthropogenic emissions, biogenic emissions or phetechemieal
625 photo-chemical production from hydrocarbons) is included in the simulation. The model run started on 12 Sep 2020 at 12 UTC
and stopped at 13 Sep 00 UTC. We used a time step of 20 s for the outer domain and 4 s for the inner domain. The model

output is saved every min and used for further analysis.

Appendix B: Algorithm and Simulation details

Code availability. APE v1.1 code is archived on Zenodo (https://doi.org/10.5281/zenodo.7361559).

630 Data availability. The TROPOMI CO dataset of this study is available for download at ftp://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/co/
(last access: 5 Feb October 2023). The IS4FIRES injection height and the 3-d velocities at 127 model levels were obtained from the Global
Fire Assimilation System (GFAS) database and the European Center for Medium range Weather Forecasts (ECMWF) Reanalysis v5 (ERAY),
respectively on 10 October 2020. The Visible Infrared Imaging Radiometer Suite 375m thermal anomalies/active fire product was also ac-

cessed on October 2020 (https:/firms.modaps.eosdis.nasa.gov/active_fire/). The processed data is available DOI:10.5281/zenodo.7728874.
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Algorithm 1 APE algorithm: Pseudo-code

Require: region and time
for region and time do
Find Fire sources from VIIRS data (Sec. 2.1.1)
for Each fire source do
Extract TROPOMI CO data granule (Sec. 2.1.2)
if Data is good then
Detect plume by plume detection algorithm (Sec. 2.2)
if Plume is detected then
Estimate emission (Sec. 2.3)
end if
end if
end for

end for

Table B1. Considered region and time. The region is rectangular and is constructed based on the origin and the width and height. The origin

is always the south-western point of the region.

Label | Region Origin [(lon, lat)] Time | L2 product version
Region _ Size VIRS, _ERAS _ and
Width, Height) GFAS Data access
us. 140°W, 20°N Sept 2020 1.03.02
807,457 10 Oct 2020
AU 70°E, 538 Qct 2019 1.03.02
550,210 10 Oct 2020
Sib. 1I3%E, 44°N June 2021 1.04.00
410,347 3 Feb2023
Sib 113°E, 44°N July 2021 2.02.00
417,347 S Feb2023

635  Author contributions. MG developed the code and performed analysis with the inputs from TB and JL. JA master thesis served as feasibility

study for this work. RK performed WRF simulations and gave inputs on its data analysis. All co-authors commented and improved the paper

with a special mention to JL and TB.
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Table B2. Filtering from fire clusters to good CO data. The total column is same as the fire clusters in Table 1.

us | m 53 23 | 1081
AU 1020 | 512 87, 85 | 203

Table B3. Filtering from good data to plume detection Table 1. The total should represent the good CO data available.

Region | Noenhancements | Short plumes | Other clusters | Detected plumes | Total
Us 42 41 S N 213,
AY 37 02 . 172 385
Sib Jun, 22 2 12 7 130,
SibJul, 324 181, 38 36 599,
All Regions 445 309, 195 378 1327

Table B4. Filtering from plume detection to emission estimation Table 1. The total should represent the plume detection cases.

Region
0 Injection acKgroun ume elocity < mission ota
us
14 14 1 3 37 2
AU
20 4 3 6 129 12
Sib Jun
15 2 15 4 3 !
8 2 12 2 2 Ng
All Regions
51 2 51 15 26 E7E]
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