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Referee #1 Guillaume Duclaux

This manuscript investigates the causes of faults deflection during early rift segments propagation.
Numerous observations of curved fault systems are reported from early continental rift settings, yet
the cause(s) of such deflections remain to be understood. Here the authors use crustal-scale analog
and numerical models to investigate rift propagation and strain localisation in early rifting stages when
isolated continental rift segments interact. The comparison between nature, analog and numerical
models is elegant. Thanks to the high-resolution numerical modelling results the authors demonstrate
the importance of transient stress rotations at the surface of early rift systems for controlling
propagation of rift arms. Although this work is original and focused on basin scale tectonic evolution
of propagating continental rift basins it confirms earlier findings proposed from larger scale numerical
models (see point 1 below).

The paper briefly reviews published work on rift basin propagation and linkage, then introduces a set
of analog and numerical models’ setups designed to investigate rift propagation dynamics in early
rifting when separated rift branches interact. The different models explore a wide range of rift arms
geometries (imposed using a weak seed heterogeneity at the base of the brittle upper crust) and test
how these branches propagate in a sub-pristine environment before joining. Modelling results are
presented in great details and highlight transient rift segments deflection prior to propagation. The
numerical model’s analysis explains this behavior with surface stress rotations and conclude that faults
bounding rift segments do not necessary align with the regional stress field. This contribution seems
well suited for EGU Solid Earth and will be of interest to the tectonics community in general. Overall,
the manuscript is original, very well written, well organized, and beautifully illustrated. | would
recommend accepting this manuscript after minor to very moderate revisions.

| present below some key points (mostly related to the numerical models and conclusions) for which
| have some concern followed by a list of minor comments and suggestions.



1) My first comment relates to the main conclusion of the manuscript that stress re- orientations occur
and change over time and with progressive deformation and the call for caution about paleo-stress
measurements @ lines 131-134 & lines 735-739. | couldn't agree more! Yet, | believe that these
statements are in essence what we wrote in Duclaux et al. (2020): "Our models, however, show that
progressive deformation during Phase 1 extension results in rotation of the extensional shear zones to
become orthogonal to the plate motion direction and control the structural style during oblique rifting.
Although the stress around the active extensional shear zones rotates (Fig. 3), the progressive rotation
of Phase 1 extensional shear zones during widening (Fig. 5) forces a discrepancy between o2 direction
and the strike of the structures that must be accommodated by a minor component of strike slip. Early
rift structures are thus critical in controlling the final architecture of oblique-rifted margins, but
because of potential rotations they must be used with caution when interpreting the tectonic evolution
of passive margins."

| hope I'm not biased but | believe a reference to our work here (as the paper is already cited in the
MS) would be legitimate, as well as a reference to Gapais et al. (2000) paper. | do understand this
original work focus on a smaller scale than ours, but the findings seem to match rather closely.

(Full ref: Gapais, D., Cobbold, P.R., Bourgeois, O., Rouby, D., de Urreiztieta, M., (2000). Tectonic
significance of fault-slip data. J. Struct. Geol. 22, 881-888.)

Thank you for pointing this out and the additionally suggested literature. We agree that, albeit on a
smaller scale, our conclusions well agree with those in Duclaux et al. (2020) and Gapais et al. (2000)
that highlight the issues that arise when interpreting passive margin evolution based on local stress
and strain data. We adjusted the abovementioned section in the conclusion and included the
suggested references there.

“Albeit on a smaller scale, implications from our observations are in agreement with conclusions from
previous studies (Duclaux et al., 2020; Gapais et al., 2000). Locally, stress and strain can largely deviate
from a regional pattern and merely represent local problems of deformation interferences. In addition,
the observed stress re-orientations change over time indicating that stresses measured in natural
examples may depict transient stages that change with progressive deformation due to subsequent
changes in material strengths. This implication must be considered when processing local fault-slip
data when interpreting the evolution of rifts at any scale.”



2) Frictional softening is of primary importance to control fault localisation and propagation in the
numerical models and | think a few more words should be added about it in the numerical model
setup section. Lines 266-268: | understand that grid resolution varies vertically in the top part of the
upper crust of the numerical models (Fig 4). Is there a normalization procedure in place for the
softening function to account for weakening with different grid sizes (like in Lavier et al., 2000)? If not
cells just below the surface will weaken faster than those deeper. That might have rather negligeable
effect on the results, but it should be presented/discussed at least briefly.

(Full ref: Lavier, L. L., Buck, W. R., & Poliakov, A. N. (2000). Factors controlling normal fault offset in an
ideal brittle layer. Journal of Geophysical Research: Solid Earth, 105(B10), 23431-23442.)

Thank you for pointing this out. We do not use a normalization scheme for frictional softening. As
suggested, we added this information in the pertinent section for clarity.

“... Note that we apply frictional softening as a function of strain within each cell and for simplicity, we
do not include normalization accounting for cell size (e.g., Lavier et al., 2000) nor viscoplastic
regularization techniques (Duretz et al., 2019; Jacquey and Cacace 2020). ...”

3) Line 328: "the fault segments deflect and turn away from each other": Don't they just tend to form
at this angle to strike orthogonal to the extension direction rather than “away from each other” as
stated for the analog results (line 192). This brings me to the next point which seems worth discussing
further in your work.

This is a good point. We find that, while strain rates tend to strike rather orthogonal to the extension
(Fig.5 c), the resultant finite deformation expressed by the topography (Fig. 5b) shows rather curved
rift segments that deflect away from each other. To our understanding, this is not in contradiction
with results from the analogue model. Fig.3 b and ¢ show the resulting finite deformation (i.e., similar
to Fig. 5b) where rift segments deflect from an initially oblique orientation and rotate into an inverted
oblique direction (with respect to the extension direction). With this respect we find that analogue
and numerical results are rather identical where the rift segments deflect away from each other.



4) Line 504: "dip slip faults are favored over oblique-slip faults with a strike-slip component" -
According to Brune et al. (2012) analytical and numerical modelling work oblique extension should be
favored. | believe this finding should be discussed in more details as it seems to contradict previous
work on the subject. Is this because of the rheologies, the boundary conditions? | find this very
interesting.

Thank you for pointing this out. In Brune et al., (2012) rift arms of different obliquity compete with
each other and the more oblique one wins (and thus all its secondary features, such as oblique-slip
faults). This does not mean that oblique-slip should be favored over dip-slip faulting. The striking
difference in the model setup of Brune et al., (2012) and our setup is that ours comprises two sub-
parallel rift segments (competing for linkage with an opposingly propagating segment; y- and v-seed
configuration) with identical obliquity. Hence, the degree of obliquity should not control which rift
segment is favored in our models. Moreover, Brune et al., (2012) and our study involve two different
scales (i.e., lithospheric scale vs crustal scale). In our models, the favoring of dip-slip over oblique faults
does occur throughout the entire model run but is most prominent at early stages when strain rates
are symmetrically distributed and the system is controlled by the competition of the sub-parallel
propagating rifts. We therefore conclude that the occurrence of dip-slip fault is largely due to the
initial conditions (i.e., the presence of the symmetric seeds in the v- and y-seed configurations).

We agree that this needs some clarification and needs to be discussed in the pertinent section. We
adjusted these lines accordingly in section 3.7.3.

“... The early symmetric stress distribution in the y-seed configuration model is unarguably due to the
symmetric seed configuration (see also Fig. 8a-e). At this stage, dip-slip faulting along the competing
sub-parallel rift segments is favored over oblique slip faults identical to the v-seed configuration. It is
only after 1.2 million years, when fault activity along the right rear segment ceases that deformation
localizes along the left rear and frontal segments and linkage intensifies (Fig. 8m). Successively,
localization and linkage occur coevally with a switch from a symmetric to an asymmetric stress
distribution and resembles more the stress distribution in the i-seed configuration model (Fig. 8f-j). The
model state after 1.2 million years (Fig. 8m) also marks the switch from a symmetric to an asymmetric
stress distribution that was formerly dominated by the competing rear rift segments with dip-slip
faulting favored along the two competing rift segments (see also v-seed configuration; Fig.8 a-e). After
1.2 million years the system is dominated by the linkage of two obliquely oriented segments (i.e., i-
seed configuration). Note that after 1.2 million years dip-slip faulting mostly occurs along the
competing rift segment that links with the opposingly propagating segment whereas dominantly
oblique slip faults occur along the abandoned rift segment where activity ceases.

”



5) I find Figure 8 very informative and pretty well designed. It allows visualizing stress deflection at the
surface of the models and the surface stress regime at once. There must be an interpolation method
used for the stress vectors representation as not all stress markers (one per cell cell) are depicted.
Could you comment on this and how does it smooth the signal out?

Thank you! The stress vectors are indeed resampled. For this, we defined an equidistant grid plane in
Paraview with the desired grid resolution and resampled the existing unstructured stress data on that
structured grid plane.

More importantly, | have some trouble with the location marked with "rotation jump" in Fig 8i. It
seems that some of the stress markers are not resolved (non-defined in the caption), so | assume Symax
could be as depicted or be orthogonal?? How can a jump be argued in this context? I'm not arguing it
doesn't take place, only that the marked region chose to highlight it is not the most suitable one... It
seems to me that the overall "rotation jump" is related to the transition from compressional to
extensional regions, while the gradual rotation relates to region with a transition from strike-slip to
extensional. Is that correct?

The choice where to show a rotation jump is unfortunate from our side. At its current state, it appears
as if “rotation jump” relates to the flip of E-W striking Sumax (compressional regime/blue) to the N-S
striking Sumax (non-defined regime/purple). However, we refer to the rapid switch from compressional
to extensional regions that is associated with rift boundary faults that prevail tectonic activity over
long period (i.e., no rift-inward migration) in contrast to zones where this re-orientation occurs
gradually via faults with an oblique-slip in a strike-slip regime, as assumed correctly. We adjusted the
position of the label and marker in Fig.8 accordingly.

6) The comparison of rift arms propagation, symmetry, and timing between the different model
geometries in the discussion would benefit some additional words related to the consequences of
differential frictional softening rates resulting from the different seeds geometries. Rather than
comparing time between models, you could maybe compare the amount of extension accommodated
at one seed tip?

+ Lines 557-563: Because strain is distributed in the 2 arms in the early stage of the v- and y-models,
this difference with the i-model is to be expected. Indeed, the models don’t have comparable strain
rates, and frictional softening isn’t as effective in the y- and v- models.

+ Lines 575-576: In the i-model case, frictional strain softening rate is more effective too.
We agree that differences between models are also due to different frictional softening rates in

particular branches. But since these differences arise from localisation and competition, we feel that
it would not add significant information to compare rift tips at similar total strains.



Minor comments
+ Figure 1: a location map for c and d in the context of the EARS would be a nice addition.

We adjusted Fig. 1 and added an overview map of the EARS. This overview replaces the example of
the Turkana Rift system since this example of a natural y-configuration has a more complex evolution
than we originally described.

+ line 113: for the multiphase extension | would recommend adding a citation to Duffy et al. (2015)
whose work seems relevant in this context.

(Full ref: Duffy, O.B., Bell, R.E., Jackson, C.A.-L., Whipp, P.S. & Gawthorpe, R.L. 2015. Fault growth and
interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea. Journal of
Structural Geology, 80, 99—-119. DOI: 10.1016/j.jsg.2015.08.015)

Thank you for the hint. The study’s conclusions are indeed similar to those of Bellahsen et al. (2005)
and demonstrate that observations from the laboratory are in agreement with results from natural
examples. We have changed this passage accordingly.

“They suggested that pre-existing faults may disturb the local stress field and impede linkage of newly
forming faults which also occurs in natural examples of multiphase extension (Duffy et al., 2015).”

+ line 213: "[...] propagated minimallLY [...]" - missing the LY

Thank you for pointing this out. We changed it accordingly.

+ Figure 5: Just a question: did you try a model without the random seeds to check whether surface
ruptures remain symmetrical? | understand the random noise distribution will promote dissymmetry;
this is out of curiosity.

Yes, during the testing phase of the model setup we switched the initial plastic strain distribution
on/off. In both configurations, eventually linkage of one of the competing rift segments with the
opposingly propagating rift segment is favored. However, we find that the presence of initial plastic
strain yields more natural (i.e., distinct) fault zones. This is particularly the case in early phases (i.e.,
up to 0.5 M years; see image below).



No initial plastic strain

Time: 0.1 M yr

Time: 0.5 M yr

Time: 1.0 M yr

Time: 1.5 M yr

Time: 2.0 M yr

Initial plastic strain ([0, 0.1])

Time: 0.1 M yr

Time: 0.5 M yr

Time: 1.0M yr

Time: 1.5 M yr

Time: 2.0 M yr




+ Figure 6: While | can understand the "Curved faulting" contour line for i- and y- geometries, | struggle
with v- geometries... there are plenty of faults outside the curved faulting region... and the faults
within the regions do not seems to be very curved either.

We agree that “curved faulting” is not an appropriate term for the v-seed configuration. Rather, faults
deflect in a fan-shape fashion and successively rotate into an orthogonal orientation (with respect to
the extension direction) towards the model margin. We therefore use the term “deflection” in the
revised version for the v-seed models and adjusted the text where needed. We also adapted this
change in Fig. 6 and the pertinent caption.

+ Figure 9: In the models, main border faults are facing each other’s creating a strong asymmetry of
the segments at time of propagation/linkage. On the other hand, in the natural example LT is marked
as a hemi-graben with east dipping western border fault, but SV is super narrow graben and doesn’t
display apparent asymmetry. Can you please comment on this significant difference?

As commented earlier, we removed the comparison with the Turkana Rift from the revised manuscript
since it has undergone a more complex evolution compared to our models. However, we agree that
the asymmetry (i.e., half graben vs narrow graben) in models with a y-seed configuration is an
interesting aspect that needs further discussion. This feature also occurs at times in models with an i-
seed configuration, where most of the strain is accommodated along one prominent boundary fault
with a polarity switch across the interaction zone. We implemented this point in the pertinent sections
in the discussion.

+ Line 131, 581: | would recommend using the term "heterogeneity" or "structure" rather than
"fabrics" throughout the manuscript, but this is just semantic, and | will let the authors decide whether
this is the correct terminology. To me a "fabric" relates to a preferred orientation or configuration of
all the elements that make up a rock. In the context of this study there is no initial fabric in this sense,
but a pre-existing weak structure at the base of the brittle upper crust. A "fabric" would relate to the
initial noise distribution within the upper crust region.

Thank you for elaborating this fine difference. We agree and replaced “fabrics” by “structures”, where
appropriate. Note that, where related literature is cited, we still use “fabrics” according to the
literature.

+ Line 621: I'm a little confused... how can a "discrete zone" be "broad"? Maybe the broad zone could
be described as "distributed"?

We agree that this reads confusingly. The broad zone (according to Kolawole et al., 2018) describes a
wider zone where faulting occurs clustered (rather than along a single discrete fault) and thus, creates
a “wider zone” where faulting occurs distributed. We rephrased for clarity:

“Prominent strain accommodation localized onto a discrete and narrow zone along large rift boundary
faults (Style-1; sensu Kolawole et al., 2018) and faulting distributed over a broader zone, where fault
clusters may reflect pre-conditioning of the material (Style-2; sensu Kolawole et al., 2018).”



