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Abstract6

We present a gravity inversion method that can produce compact and sharp images, to7

assist the modeling of non-smooth geologic features. The proposed iterative inversion ap-8

proach makes use of L0-norm stabilizing functional, hard, and physical parameter inequal-9

ity constraints, and depth weighting function. The method incorporates an auto-adaptive10

regularization technique, which automatically determines a suitable regularization parame-11

ter and error weighting function that helps to improve both the stability and convergence of12

the method. The auto-adaptive regularization and error weighting matrix are not dependent13

on the known noise level. Because of that, the method yields reasonable results even the14

noise level of the data is not known properly. The utilization of an effectively combined15

stopping rule to terminate the inversion process is another improvement that is introduced16

in this work. The capacity and the efficiency of the new inversion method were tested by17

inverting randomly chosen synthetic and measured data. The synthetic test models consist18

of multiple causative blocky bodies, with different geometries and density distributions that19

are vertically and horizontally distributed adjacent to each other. Inversion results of the20

synthetic data show that the developed method can recover models that adequately match21

the real geometry, location, and densities of the synthetic causative bodies. Furthermore,22

the testing of the improved approach using published real gravity data confirmed the po-23

tential and practicality of the method in producing compact and sharp inverse images of24

the subsurface.25

Keywords— Gravity data, Iterative inversion, L0-norm constraint, Auto-adaptive regularization,26

Stopping criteria, Compact image.27
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1 Introduction28

Gravity measurements have been used in a wide range of geophysical prospecting and investigations,29

such as in mineral explorations, engineering and environmental problems as well as archeological site30

investigations (Hinze et al., 2013, p. 20). In general, gravity inversion is a process that is used to deter-31

mine the density, size, shape, and location of a complex subsurface causative bodies from an observed32

gravity anomaly, by using different mathematical modeling techniques. Thus, inversion of gravity data33

constitutes an important step in the quantitative interpretation since the reconstruction of density contrast34

models markedly increases the amount of information that can be extracted from the gravity data.35

However, a principal difficulty with the gravity data inversion is the inherent non-uniqueness and in-36

stability that also exists in any geophysical method (Al-Chalabi, 1971; Blakely, 1996, p. 216). In37

other words, for the given observed gravity data there are many equivalent density distributions that can38

reproduce the same field data. The standard approach used to select acceptable solutions, that are geo-39

logically reasonable, is to use an additional information about the problem by making assumptions on40

the following aspects: (1) about the model parameters (existing information on the subsurface structure41

from geological or other geophysical hindsight) and (2) about the data parameters (statistical properties42

of the inexact data, e.g. Gaussian distribution of errors). Based on these assumptions there are two43

approaches in gravity inversion: The first approach fixes the density and vary the geometry. This ap-44

proach is nonlinear in nature and has been studied by many authors, for instance, Lelievre et al. (2015);45

Camacho et al. (2002) and Camacho et al. (2011). The second approach, which also is the one used46

in this work, fixes the geometry and vary the density. This approach is linear in nature and has been47

investigated by many researchers (Li & Oldenburg, 1998; Boulanger & Chouteau, 2001).48

In an effort to introduce more qualitative prior information, Last & Kubik (1983) in particular, de-49

veloped a method called compact gravity inversion. Their strategy utilizes the compactness stabilizer to50

minimize the area (in 2D) or volume (in 3D) occupied by the causative body, which is equivalent to max-51

imizing its compactness. Barbosa & Silva (1994) generalized the compact inversion method by making52

use of compactness along several axes using Tikhonov’s regularization. In 2006 Silva and Barbosa53

further developed the Compact inversion method with so-called ’interactive inversion’ which estimates54

the location and geometry of several density anomalies. They simplified their old method (Barbosa &55

Silva, 1994) to improve computational performance. The generalized compact and interactive inversion56

strongly need a priori information to yield an accurate estimation.57

The compactness stabilizer (Last & Kubik, 1983) also known as the minimum support stabilizer (Port-58
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niaguine & Zhdanov, 1999) has been borrowed and implemented by other researchers in various geo-59

physical inversion methods (Ajo-Franklin et al., 2007; Stocco et al., 2009; Fei et al., 2018; Feng et al.,60

2020; Varfinezhad et al., 2020). As it was demonstrated by a number of researchers (Zhdanov & Tol-61

staya, 2004; Rezaie et al., 2017; Feng et al., 2020; Varfinezhad et al., 2022), this stabilizer is known to62

yield a compact or focused geophysical model with sharp boundaries. Apart from the inversion methods63

which produce focused images mentioned above, sparse geophysical inversion approaches derived from64

Lp-norm (0 ≤ p ≤ 1) stabilization have been developed by many researchers. For instance, sparse65

seismic reflectivity inversion method (Li et al., 2017), direct current resistivity data inversion algorithm66

(Singh et al., 2018), magnetic data sparse inversion method (Li et al., 2018; Fournier et al., 2020), sparse67

gravity data inversion technique (Vatankhah et al., 2017; Peng & Liu, 2021), to mention only a few.68

Some instability of the original compact gravity inversion algorithm of Last & Kubik (1983) was re-69

ported by Lewi (1997, p. 87) when the data is contaminated with noise. Then Lewi (1997, p. 89)70

has improved the original compact inversion by introducing a new approach to the 3D compact gravity71

inversion. The problem with Lewi (1997, p. 89) method arises when dealing with a multiple-source72

model, where the inversion algorithm tends to concentrate densities towards the surface regardless of73

the true depth of the causative bodies. In overcoming this drawback, Gebre & Lewi (2022) improved74

the compact gravity inversion method by incorporating a new depth weighting function. In this paper,75

we present a gravity inversion method that can produce compact and sharp images, to assist the mod-76

eling of non-smooth, blocky geologic features with sharp boundaries. The proposed approach is based77

on the authors previous work (Gebre & Lewi, 2022), to which the reader is referred for further details,78

with the following two main differences and advancements. The first is proposing and incorporating an79

auto-adaptive regularization and error weighting function. This has improved the fast convergence of80

the method while keeping its stability. The second is the implementation of combined stopping criteria81

to terminate the iteration after an appropriate number of steps.82

2 Methodology83

2.1 The 2D model84

Most fixed geometry gravity inversion algorithms, including the one presented here, employ rectangu-85

lar prismatic elements, to discretize the subsurface, owing to their flexibility in constructing complex86

models (Silva & Barbosa, 2006; Commer, 2011; Grandis & Dahrin, 2014). A 2-D model is obtained87
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by discretization of the subsurface under the survey area into a large number of infinitely long hori-88

zontal rectangular prisms, with the infinitely long dimension oriented in the invariant y-direction, with89

variations in densities only assumed for the X and Z directions. The 2-D model is illustrated in Fig.90

1. The density contrasts are constant inside each cell only and can vary individually. Here we have91

used equal dimension for the cells. However, the algorithm is flexible, to accommodate non-regular92

size cells. Gravity stations indicted by ▽ symbols are located at the centers of the upper faces of the93

rectangular blocks in the top layer. This discretization scheme of the subsurface allows us to calculate94

the gravitational attraction caused by each rectangular block separately.

Figure 1: A 2-D model of the subsurface under a gravity profile. Gravity stations (Xi) are
located at the centers of the blocks, indicated by the ▽ symbols.

95

2.2 Forward modelling96

After discretization of the modeling space into a set of elementary rectangular blocks, the total vertical97

component gravity response calculated at the ith observation point gi is the sum of the gravity contribu-98

tions generated by each of the individual rectangular element, on all points belonging to the observation99

grid and it is given by:100

gi =
M∑

j=1

aijρj + ei i = 1, 2, 3....N (1)

where ρj is the density of the jth prism; N denotes the numbers of observations; aij is the contribution101

of jth prism to the gravity value on ith observation point and ei is the noise associated with ith data point.102

The kernel aij is the forward operator that maps from the physical parameter space to the data space.103

The exact mathematical expression of the kernel used here is presented by Last & Kubik (1983) which104
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is adopted from Nagy (1966) to which the reader is referred for more detail mathematical development.105

In matrix notation Eq. (1) can be written as:106

g = Aρ + e (2)

where g is an N-dimensional vector containing the gravity values, ρ is an M-dimensional model vector107

of densities, A is the N x M kernel matrix, and e represents the noise vector at data points. Equation108

(2) constitutes the gravity forward modeling, i.e. used to calculate the predicted gravity anomalies109

(theoretical data) for a known subsurface density contrast (model ρ).110

2.3 Inverse Modeling111

Our objective in solving gravity inverse problems is given the observed gravity data (g), we seek a112

solution that gives a density distribution ρ which predicts the observed data with a certain noise level113

and at the same time, satisfies certain constraints. For the model presented here, the density vector114

ρ is related to the predicted gravimetric field g by the linear expression given in Eq. (2). Like the115

majority of practical inverse problems arising in geophysical modeling gravity inversion is an ill-posed116

problem. Moreover, usually we have less number of the observed gravity data than the number of the117

model parameters which makes the system under-determined problem. A standard way to solve such118

ill-posed and under-determined problems, according to regularization theory (Tikhonov et al., 2013), is119

minimization of the following objective function (Φ) which is the combination of data fidelity or misfit120

functional (Φd) and stabilizing functional (stabilizer) term (S(ρ)):121

Φ = Φd + ℓ2S(ρ) (3)

Here the misfit functional Φd = ∥W e(Aρ−gobs)∥2
2, and W e is error weighting diagonal matrix. In Eq.122

(3), ℓ is a regularization parameter that controls the trade-off between the data fidelity and the stabilizing123

term. Choosing a small value improves the data fit but the recovered models have highly oscillatory124

artificial structures (which is equivalent to under-regularization). On the other hand, a large value of ℓ125

leads to a large misfit value between the observed and predicted data and a small norm of the model126

(over-regularizing the solution). Thus, the choice of a suitable value for ℓ is very important.127

The choice of the stabilizing functional, in Eq. (3), depends on the desired model features that are to128

be recovered. There are several types of stabilizers that have been developed and implemented in the129
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inversion of potential field data, which can roughly be divided into two categories: (I) Smooth stabilizer130

which uses L2 -norm of the model parameters or gradient of the model parameters (Li & Oldenburg,131

1998; Cella & Fedi, 2012; Paoletti et al., 2013). (II) Non- smooth stabilizer which uses L1-norm or132

L0-norm directly on the model parameters or on the gradient of the model parameters (Bertete-Aguirre133

et al., 2002; Sun & Li, 2014; Li et al., 2018; Utsugi, 2019). Inversion methods that utilize a smooth stabi-134

lizer produce model typically characterized by smooth features, and hence have difficulties in recovering135

blocky structures or non-smooth distributions that have sharp boundaries or abrupt changes in physical136

properties (Farquharson, 2008). To overcome this problem, non-smooth stabilizers that help to produce137

compact and sharp models have been applied successfully (Zhdanov, 2009; Meng et al., 2018). Since138

we are interested in developing a gravity inversion method that can produce compact and sharp models,139

we use a non-smooth stabilizer through the L0-norm on the model parameters and will be discussed in140

the next subsection.141

Minimizing the objective function Φ in Eq. (3), using the standard weighted-damped least-square opti-142

mization, the estimated density distribution in matrix notation can be given by (Menke, 1989, p. 55):143

ρk+1 = ρk
F +

[
[W k

c ]−1AT
(
A[W k

c ]−1AT + ℓ2[W k
e ]−1

)−1
gk
r

]
(4)144

where the superscript k denotes that variable at kth iteration and W k
c is a combined weighting matrix.145

ρk
F is reference density vector, which is from prior information or calculated at each iteration. gk

r =146

gobs−Aρk
F represents residual data vector computed at each iteration. Computation of the regularization147

parameter ℓ in Eq. (4) will be described in Sect. 2.3.3. In this work, the combined weighting matrix148

(W k
c ) is defined as a product of three different diagonal matrices, L0-norm constraint matrix (W k

L0
),149

depth weighting (W z) and hard constraint matrix (W k
h).150

W k
c = W k

L0
W zW

k
h (5)

2.3.1 L0-norm Constraint151

The L0-norm is commonly defined as the number of nonzero elements in a vector. Because there is no152

analytical formula that meets the mathematical requirement to be regarded as L0-norm, the approximate153

expression is usually used to convert the L0-norm into an equivalent norm for the suitability of computa-154

tion. In literature (Zhao et al., 2016; Li & Yao, 2020) that discusses the inversion of potential field data,155
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different L0-norm approximate stabilization functions have been developed and implemented to obtain156

focused images and sharp boundaries. Meng (2016) used a hyperbolic tangent function to approximate157

the L0-norm and applied it for 3D inversion of gravity gradient tensor data. Meng et al. (2018) proposed158

an exponential mathematical function to approximate the L0-norm for 3D gravity sparse inversion. In159

this paper, the minimum support functional, which is also called compactness constraint originally pro-160

posed by Last & Kubik (1983) and then further extended by Portniaguine & Zhdanov (1999) to include161

a reference model is selected which can be expressed as follows:162

S(ρ) =
M∑

j=1

(ρj − ρapr
j )2

(ρj − ρapr
j )2 + ε

(6)

In our case to avoid the requirement of a prior model, we set ρapr
j = 0. Using the function in Eq. (6)163

as stabilizing functional in the objective function (Φ) is equivalent to using L0-norm based stabilization164

and thus it can be rewritten as follows (Sun & Li, 2014):165

L0(ρ) =
M∑

j=1

ρ2
j

ρ2
j + ε

(7)

where ε is a focusing parameter. Application of L0(ρ) as stabilizer in minimization process of the166

objective function (Eq. (3)) leads to the following choice of an L0-norm constraint WL0 which is given167

by (Last & Kubik, 1983):168

[WL0 ]j = ([ρj ]2 + ε)−1 (8)

Based on Eq. (8) the kth iteration diagonal elements of the L0-norm constraint matrix (W k
L0

) can be169

formulated as follows:170

[W k
L0

]−1
jj = [ρj

k−1]2 + ε (9)

The focusing parameter ε is a very important parameter. Its main purpose is to avoid singularities when171

ρj → 0. The parameter ε is a small number and in general, we are interested in the case where ε → 0172

because a small value leads to very compact models. However, this may introduce instability. On the173

other hand, if ε is chosen large the L0-norm compactness constraint has no influence on the compactness174

of the model that means it results in a smooth solution. Figure 2 shows the comparison of the minimum175

support stabilizing functional for different values of ε to demonstrate the impact of the choice different176

values of ε further. From Fig. 2, one can see that as ε becomes large the minimum support stabilizing177

function loses its property and behaves more like the minimum length L2-norm stabilizer which results178
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in undesirable smoothness in the model though it improves the stability. Therefore, it is very essential179

to choose an optimal value of ε.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
j

0.0
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0.4
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2 j
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= 0.0001

Figure 2: Comparison of the minimum support stabilizing function for different values of ε.
180

In previous investigations e.g Last & Kubik (1983) and Guillen & Menichetti (1984) the parameter ε181

was assigned a value close to machine precision (≈ 10−11 to 10−15). Alternatively, Zhdanov &182

Tolstaya (2004) introduced a trade-off curve method, similar to the L-curve technique, to select ε by183

computing the model objective for the current model estimate over a range of values for ε. However,184

as pointed out by Ajo-Franklin et al. (2007) setting ε to values near machine precision results in severe185

instability as ρj → 0 and the approach of Zhdanov & Tolstaya (2004) often yields trade-off curves with186

corners that are not well defined. Therefore it is better to fix ε at a reasonable value determined by187

experience, typically between 10−4 to 10−7 (Ajo-Franklin et al., 2007). Accordingly, in the present188

work based on several numerical simulation tests, the value 10−6 is assigned just for the inversion189

examples presented in the manuscript. Note that the developed method is flexible to use different values190

of ε.191

2.3.2 Error weighting192

According to compact inversion method proposed by Last & Kubik (1983), the kth iteration error weight-193

ing matrix W k
e is defined as:194

[W k
e ]−1 = diag

(
A[W k

L0
]−1AT

)
(10)

Even though W k
e expressed by Eq. (10) is applied by many authors (Guillen & Menichetti, 1984;195

Barbosa & Silva, 1994; Ghalehnoee et al., 2017; Gebre & Lewi, 2022), some instability was reported196
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by Lewi (1997, p. 87) in using W k
e in scenarios such as complicated geological geometry and when197

the data is contaminated with noise. To overcome this problem Lewi (1997, p. 90) proposed to use a198

weighting matrix that make use of the following equation:199

[W k
e ]
−1 =

[
[σ2

ρ]
k

1 + [σ2
e ]k

]
I (11)

where I represents identity matrix, and σ2
ρ and σ2

e are model and error variances respectively that are200

given by:201

[σ2
e ]

k =

∑N
i=1{gi −

∑M
j=1 aij [ρj

k−1]}2

N − 1
(12)202

203

[σ2
ρ]

k =

∑M
j=1[ρj

k−1]2

M − 1
(13)204

The term in square brackets in Eq. (11) can be considered as regularization parameter (Silva & Barbosa,205

2006; Lewi, 1997, p. 90). Based on several numerical experiments done in the present work it was206

observed that this term can sometimes ends up in a larger value which may result over-regularization of207

the solution. For this reason, in the present study a new error weighting matrix W k
ne is introduced and208

it is given as:209

[W k
ne]
−1 = diag

(
A

[
W z(

[σ2
ρ]

k

1 + [σ2
e ]k

)W k
h

]
AT

)
(14)210

Let us represent the terms in square brackets by W k
n as follows:211

W k
n = W z

(
[σ2

ρ]
k

1 + [σ2
e ]k

)
W k

h (15)212

where Wz and W k
h are diagonal depth and hard constraint matrices respectively and will be described in213

the next subsections. Then the error weighting matrix in Eq. (14), the one introduced and implemented214

here becomes:215

[W k
ne]

−1 = diag
(
AW k

nAT
)

(16)

2.3.3 Auto-adaptive Regularization Parameter Estimation216

Choosing a suitable value for regularization parameter is a crucial part of the inversion process. The217

precise value of regularization parameter depends on the noise level associated with the observed data.218

Thus, the higher value of ℓ refers to the higher noise level of the data points. Several methods have been219

proposed to choose the appropriate value of regularization parameters, and are reviewed in the literature220
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(Farquharson & Oldenburg, 2004; Vatankhah et al., 2014) and standard texts for example Vogel (2002,221

pp. 97-109) and Aster et al. (2018, p. 57). Particularly, depending on the noise level a constant value222

of ℓ, throughout the inversion, has been chosen by many authors (Silva & Barbosa, 2006; Ghalehnoee223

et al., 2017). In other works, for example Zhdanov (2009) and Rezaie et al. (2017) the parameter ℓ has224

been iteratively updated in each iteration.225

As pointed out in previous works (Farquharson & Oldenburg, 2004; Gholami & Aghamiry, 2017) in-226

stead of using a constant value of ℓ, dynamic re-adjustment throughout the iterative scheme might be227

a superior approach. Taking this into account, in the present work ℓ is updated in each iterative step.228

In our implementation, to select an optimal regularization parameter at each iteration, we proposed an229

auto-adaptive regularization method. This method leads to an automatic update of the regularization230

parameter at each and every iteration. The basic principle including its procedure in relation to formally231

known adaptive regularization approach which was proposed by Zhdanov (2002, p. 55) and implemented232

by many authors (Zhdanov, 2009; Rezaie et al., 2017) is as follows. In adaptive regularization approach233

the initial value of the regularization parameter ℓ1 is updated at each iteration step by (Zhdanov, 2002,234

p. 55):235

ℓk = ℓ1qk (17)

where q, as described by Zhdanov (2002, p. 55), is damping factor which decreases from iteration to236

iteration. Its initial value is empirically determined having a value between zero and one. It is obvious237

that the trial and error selection of the value for q requires computational work . The presented auto-238

adaptive regularization method overcomes this problem and the iterative values ℓk are determined by the239

following formula:240

ℓk = ℓk−1

[ |g −Aρ|k−1
max

|g −Aρ|kmax

]
(18)

where the term in the square bracket is an adjusting factor that is automatically determined at each241

iterative step. In the auto-adaptive regularization method, choosing a suitable initial value of (ℓo) is242

essential. Based on a number of synthetic and real data simulations done in this work we recommend243

the following in choosing a reasonable value of ℓo: Firstly, the initial value of ℓ should be within the244

range 0 < ℓo ≤ 1. Secondly the precise value of ℓo depends on the noise level related with the observed245

data. When the probable or expected noise level of the data is higher, a larger value ℓo is a reasonable246

choice to avoid unwanted and false anomalies due to noise. In contrast, when the probable or expected247

noise level is less a small value of ℓo should be chosen. Once an appropriate initial value ℓo is given as an248
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input, then for subsequent iterations Eq. (18) is used to determine ℓk. The advantage of the auto-adaptive249

regularization scheme is its capability to automatically determine a suitable regularization parameter, in250

the course of the optimization process, depending on the automatically determined adjusting factor.251

2.3.4 Physical Parameter Inequality Constraint252

To produce a physically meaningful model from a gravity inverse solution, the usage of lower and upper253

bound constraints on the recovered density contrast is beneficial (Silva et al., 2001; Grandis & Dahrin,254

2014). Lower and upper bounds can be obtained from a prior information such as geological investiga-255

tions in conjunction with published density values of rocks, well-logging, and/or laboratory tests. Many256

procedures such as gradient projection approach (Wang & Ma, 2007; Lelièvre et al., 2009), transform257

function approach (Pilkington, 2008) and logarithmic barrier approach (Li & Oldenburg, 2003) have258

been applied in different inversion schemes to implement this constraint. However, with regard to L0-259

norm stabilizer based gravity inversion methods an effective method is the direct utilization of lower260

and upper density constraint (Meng et al., 2018). Hence, in this work the direct density bound inequal-261

ity constraint is used, that is at each iteration density contrast of each rectangular block is bounded by262

minimum and maximum density constraint function given by:263

if [ρk]j > [ρmax]j

if [ρmin]j < [ρk]j < [ρmax]j

if [ρk]j < [ρmin]j





[ρk]j = [ρmax]j

[ρk]j = [ρk]j

[ρk]j = [ρmin]j

(19)264

By using this function, if kth iteration ρj of any block exceeds one of its bounds, then it will be fixed at265

the violated bound.266

In each iteration step the procedure to compute the hard constraint matrix W k
h (Boulanger & Chouteau,267

2001) and the reference density vector ρk
F is determined as follows: The diagonal elements of W k

h are268

fixed at ε or 1.0. When a prior geological and geophysical information are able to provide the initial269

value of density contrast of the jth specific cells, then these values are assigned to the corresponding270

[ρk
F ]j . Simultaneously, the corresponding diagonal elements of [W k

h]jj are set to be ε. During the in-271

version process, if the jth elements of estimated density values falls out of inequality constraint limits272

defined by ρmin and ρmax, then [ρk
F ]j will be fixed at the violated bound density itself and [W k

h]jj273

assigned to be ε. On the other hand, if the elements of the estimated density did not exceed its bounds274

(i.e. lies between the limits), [W k
h]jj and [ρk

F ]j are assigned to be 1.0 and 0.0 respectively.275
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Using W k
h any blocks whose density is known from a priori information or exceeds the density con-276

straint limit, the algorithm will automatically freezes this block in the next iteration by assigning a very277

small weight to it. Whereas, ρk
F is used to remove the gravity effects of those cells that have crossed278

the inequality constraint limit from the observed gravity data. That is applied to compute the reduced279

gravity data vector gk
r = gobs − Aρk

F in Eq. (4) of the inversion algorithm. In other word, at each280

iterative step the inversion of subsequent iteration will be performed using reduced gravity data vector.281

2.3.5 Depth weighting282

It is well known that gravity data, like any potential field data, has no inherent depth resolution. The283

reconstructed model structures by the inversion process tend to concentrate near the surface regardless of284

the true depth of the causative bodies (Li & Oldenburg, 1996). This happens because the inverse solution285

of model construction is a linear combination of kernel, whose amplitudes rapidly decay with depth. The286

problem can be overcome by introducing a depth weighting matrix to counteract the natural decay of287

kernel with depth (Li & Oldenburg, 1998). Depth weighting is designed to ensure that all cells have288

equal likelihood to accommodate the sources, not just those at shallow levels that are most sensitive to289

the observed data. Depth weighting is used and its effect is investigated by different authors (Pilkington,290

2008; Commer, 2011). Based on Gebre & Lewi (2022), the recently proposed depth weighting function291

is given as follows:292

wzj = (aZj + co)−τ (20)293

where Zj is the mean depth of the jth cell and a, co and τ are adjustable parameters. The values of294

the three adjustable parameters are computed by optimizing wz(z) to match with the actual gravity295

kernel values utilizing nonlinear least-squares minimization (Virtanen et al., 2020). Accordingly, for all296

inversions in this work the depth weighting matrix similar to the one used by Gebre & Lewi (2022) is297

employed (Eq. (21)):298

[Wz]jj = diag(wzj) (21)299

where W z is diagonal M x M depth weighting matrix.300

2.3.6 Stopping Criteria301

It is clear that if the iterations are stopped too early, then a reasonable solution of the inverse problem may302

not be obtained. On the other hand, too many iterations may waste computer time without increasing the303
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overall solution qualities. Thus, an important aspect of any iterative inversion method is to decide when304

the iterations should be terminated. A number of stopping criteria have been proposed and employed to305

terminate iterative inversion algorithms (Borges et al., 2015; Levin & Meltzer, 2017). Commonly used306

stopping criteria are based on a norm of the residual vector (i.e. the norm of the difference between307

estimated and observed data). For instance, a noise level, i.e. χ2 = ||W d(gobs − Aρ)||22, where a308

diagonal data weighting matrix W d, whose ith element is the inverse of the standard deviation of the309

noise at each data point, is used by Boulanger & Chouteau (2001) and Vatankhah et al. (2017). Other310

criteria for stopping gravity inversion procedure are based on simple misfit or the Root Mean Square311

Error (RMSE) between the observed data and predicted data produced by the recovered model (see, for312

example Rezaie & Moazam (2017)). The expressions used to estimate these criteria are the following:313

misfit =

(∑N
i=1(g

obs
i − gcal

i )2
∑N

i=1(g
obs
i )2

) 1
2

(22)314

315

RMSE =
(
∑N

i=1(g
obs
i − gcal

i )2)
1
2

N
(23)316

Ekinci (2008) also introduced other possible criterion, namely the parameter variation function (smy)317

which is defined as:318

smy =




M∑

j=1

(ρj
k − ρj

k−1)2




1
2

(24)319

320

The most widely used approach is to quit the iterative process when one of the above criteria are below321

a given tolerance (the level of observational error). However, in practical applications a precise value322

for such tolerance is rarely known; rather, only some possibly vague idea of the desired quality of323

the numerical approximation is at hand. Moreover, it has been pointed out by Rao et al. (2018) that324

stopping iteration based solely on the norm of the residual is neither safe nor a robust solution. The325

non-uniqueness and instability of the gravity inverse problem further complicates the usage of only326

one of the aforementioned stopping criteria. To overcome these issues, a combination of the misfit327

and smy has been utilized in this paper. Therefore, the iterative procedure continues until one of the328

following stopping criteria is met: (I) the maximum number of iteration (kmax) given by the user is329

reached or (II) the difference between two consecutive iteration values of smy and misfit have reached330

the target values. That means for the second criterion both the conditions |smyk−1 − smyk| ≤ τ and331

|misfitk−1−misfitk| ≤ µ must be satisfied at the same time. In all demonstrations considered in this332
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work, after testing different values, the parameter τ is assigned to
√

2M ; and µ to 0.005. Where M is333

again the total number of model parameter. The effectiveness of the proposed termination criteria will334

be illustrated by using synthetic tests.335

2.4 Computational procedure336

The solution of the linear system of equations in Eq. (2) will be carried iteratively using the information337

about the misfit and density from successive iteration. The input parameters for the inversion proce-338

dure are: (1) Kernel matrix (A) and discretized subsurface model (mesh) and its initial approximation339

reference density model ρF if exits based on a priori information; (2) Observed gravity anomaly (g)340

at measurement points (x); (3) Maximum number of iteration (kmax) and the constant β; (4) Lower341

ρmin and upper ρmax density bounds and initial ℓo value. In summary, the steps taken to carry out the342

inversion process consists the followings.343

1. For k = 0, if there is no a priori information, W L0 , W c, W n and W h are identity matrices,344

ρF = 0. W z and W ne are computed through Eq. (21) and (16) respectively, after this, the first345

iteration model parameter solution is obtained by Eq. (4).346

2. The elements of W h and ρF are updated as explained in preceding section, then W L0 is calcu-347

lated using Eq. (9) and then W c using Eq. (5).348

3. Compute the value of σρ and σe using expressions (13) and (12) respectively. Then calculate W n349

using Eq. (15).350

4. To remove the effect of those blocks that have crossed the maximum target density, evaluate the351

reduced data gk
r = gobs −Aρk

F . Then compute the current ℓ with Eq. (18) and Wne with Eq.352

(16).353

5. Carrying out the inversion through Eq. (4).354

6. Application of bounded constraints on density are carried out as discussed in the preceding sec-355

tion.356

7. Now a forward modelling procedure will be carried out using Eq. (2) to compute the gravity357

anomaly gcal from the estimated model in the previous iteration.358
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8. Data misfit (Eq. (22)) and smy (Eq. (24)) are computed using gcal from step 7, and obtained359

model parameters from the previous and current iteration.360

9. Test if the stopping criteria are fulfilled. If the termination criteria are satisfied the iteration361

terminates and obtained results are stored and plotted. Otherwise, using the current estimated362

density model, move to the next iteration k by going to the second step and continue the iterative363

procedure until the stopping criteria are fulfilled.364

3 Synthetic Model Test365

To evaluate the functionality and efficiency of the method, the developed procedure was tested on sev-366

eral synthetic model examples. The examples presented here are randomly chosen to demonstrate: (I)367

the applicability of the proposed auto-adaptive regularization technique (Eq. (18)) and error weighting368

function (Eq. (16)); (II) the performance of the method in producing compact and sharp images of the369

causative bodies; (III) the effectiveness of the combined stopping criterion. The forward and the inverse370

problem were carried out using the procedure described in the preceding sections. In the inversion of the371

synthetic examples, the same subsurface discretization as the one used in generating the synthetic data372

(Forward modeling) is used. All the inversion tests are performed on a Desktop computer ( 11th Gen373

Intel(R) Core(TM) i7-11700, 2.50GHz processor). For the first and second synthetic examples presented374

in this work: (I) The model region was discretized into 60 x 15 rectangular cells and the dimensions of375

each cell were taken as 10 x 10 m, in the X and Y directions respectively. (II) The synthetic gravity data376

were computed at 60 data points that are centered in each cell at the top side of the model, to produce377

data at 10 m sample interval. (III) The computed gravity anomalies are contaminated with Gaussian378

noise that has a standard deviation that amounts to 4 % of the magnitude at each data point with zero379

mean (Farquharson, 2008; Rezaie et al., 2017).380

The first synthetic data inversion has been done for the model presented in Fig. 3(a). For this synthetic381

model the causative bodies are two rectangular structures elongated differently in the horizontal and382

vertical directions and located at different depths. The causative bodies have the same density contrast383

1000 kg/m3. The density of the causative bodies are given relative to the zero density of uniform back-384

ground. Figure 3(a) upper panel shows noise free (solid line) and noise contaminated (star dots) gravity385

data. Separate inversion runs, for three different ℓo values ( 0.2, 0.3 and 0.4 ), were performed with the386

developed inversion method. Note that, for subsequent iterations the proposed auto-adaptive regular-387
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ization technique (Eq. (18)) is used to compute ℓ for each case. At the beginning of the inversion, the388

iterations are initialized with ρF = 0 and W h = W c = W n = W L0 = I . The lower limit density389

contrasts of all cells is zero (ρmin = 0) and the upper bound ρmax = 1000 kg/m3.

(a) The lower panel represents 2-D synthetic model,
which constitutes two isolated rectangular bodies lo-
cated at various depths and the top panel shows the
gravity anomaly due to these two subsurface rectangu-
lar bodies.
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(b) The lower panel represents the subsurface, as a result
of the proposed inversion method using ℓo = 0.3 and the
top panel shows the synthetic data together data derived
from the model.

Figure 3: The first synthetic model and the result of the inversion.

390

The results of the inversion by using the developed method for three different ℓo values are shown in391

Figs. 3(b) and 4. The corresponding data fit between the predicted gravity anomaly (solid line ) and392

actual contaminated data (stars) are also shown. Comparing the inversion results with the original syn-393

thetic model in Fig. 3(a), the inversion has sufficiently recovered the true models. The depth, geometry,394

and density distributions of the synthetic causative bodies were recovered adequately. This can confirm395

the applicability of the proposed auto-adaptive regularization technique (Eq. (18)) and error weighting396

function (Eq. (16)). Notice that the results also indicate the robustness and stability of the developed397

inversion method for different ℓo values. The avarge computation time to finish the inversion is approx-398

imately 16.3 seconds.399

The second synthetic model is more complicated and consists of two causative bodies placed at various400

depth. The bodies have different sizes, shapes, and density contrasts. The first causative body is a verti-401

cal rectangular block, with density contrast 2000 kg/m3, placed at 40 m depth and the second body is402

a dipping dike with density contrast 3000 kg/m3 at 20 m depth. The synthetic model is shown in the403

lower part of Fig. 5(a) and the generated noise-corrupted and noise free gravity data are shown on the404
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(a) Using ℓo = 0.2.
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(b) Using ℓo = 0.4.

Figure 4: Inversion results, using different ℓo values, for the first synthetic model given in Fig.
3(a).

upper part. Using the generated synthetic data, the inversion was initiated by assigning an initial zero405

density to each cell. We set initial ℓo = 0.3. The density contrast limits are bounded between lower406

bound ρmin = 0 and the upper bound ρmax = 3000 kg/m3. Even though a maximum iteration of 20407

was set, the misfit and smy between two consecutive iterations gradually fall below the threshold set408

after the 14th iteration. The total computation time is approximately 15.73 seconds. In Fig. 5(b), the409

resulting model from the inversion of the second synthetic model (Fig. 5(a)) using the proposed method410

is presented. As can be seen in Fig. 5(b) upper panel the modeled gravity data (solid line) fits adequately411

with the synthetic data. The result, presented in Fig. 5(b) lower panel, indicates an acceptable recon-412

struction of the synthetic multi-sources and multi-shape bodies that are located at different depths. The413

true shape, location and density of the causative bodies are recovered adequately. Like the first example414

the reproduced images of the localized multiple sources are compact and sharp (Fig. 5(b) lower panel).415

For the third and fourth synthetic examples: (I) The subsurface model was discretized into 100 x 20416

rectangular cells. Each cell has a size of 50 m in X and Z directions. (II) The synthetic gravity data417

were computed on 100 data points with a sample spacing of 50 m. The third synthetic model includes418

two dipping dikes in opposite directions. The causative 2-D bodies have different sizes and the same419

density contrast that amounts to 1000 kg/m3 in a homogeneous background zero density. The top part420

of the shallower dipping dike lies at a depth of 200 m and that of the deeper dike at a depth of 250421

m. The computed gravity anomalies were contaminated by uncorrelated Gaussian noise whose standard422

deviation was equal to 4% of the difference between the maximum and the minimum anomaly and zero423
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(a) Synthetic model consisting of a dipping dike and
vertical rectangular block and the corresponding grav-
ity data.

(b) The density model obtained by inverting the gravity
data using the developed method. The predicted data as
a result of inversion process are shown on the top panels
(solid line).

Figure 5: The second example synthetic model and the corresponding inversion result.

mean. The synthetic model and the corresponding data are shown in Fig. 6 at lower and upper panels424

respectively.
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Figure 6: The third synthetic model that comprises two dikes at various depths with the density
contrast that amounts to 1000 kg/m3 and the corresponding gravity data.

425

The inversion process was commenced by setting the densities of all cells to zero. The initial value of426

ℓo was set to 0.4. The bounding density ranges were set to a minimum value ρmin = 0 and maximum427

value ρmax = 1000 kg/m3. The maximum number of iterations was set to 20. Here, the inversion428

converged after the 13th iteration and the total computation time is approximately 66.49 seconds. The429

resulting model and the inverted data using the proposed method are shown in Fig. 7(b). For the sake430

of comparison keeping all inversion parameters the same, the synthetic data was also inverted with the431

classical L2-norm regularized inversion approach and the obtained result is shown in Fig. 7(a). As it432
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can be seen from the lower panel of Fig. 7(b), unlike the model in Fig. 7(a), the developed method was433

able to produce a compact and sharp model successfully. The other concern, which can be seen from434

the result in Fig. 7(a), is that the target density contrast values are underestimated in the case of the435

conventional L2-norm inversion. In contrast, the geometrics, locations, and densities of both anomalous436

structures were adequately recovered with the presented inversion method (see Fig. 7(b)).
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(a) Using the conventional minimum norm (L2-norm)
smooth stabilizer and the corresponding data fit.
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(b) Using the presented method

Figure 7: Inversion results of the third synthetic example in Fig. 6.
437

The fourth synthetic model consists of two different rectangular anomalous bodies (Fig. 8(a) lower438

panel). The anomalous structures have different dimensions and are buried at different depths. The top439

of the first rectangular block is placed at a depth of 200 m and its density contrast is -1000 kg/m3 while440

the top of the second block is placed at a depth of 250 m and has a density contrast of 1000 kg/m3.441

Different density contrast, size, and depth of adjacent structures have been considered to show the ability442

of the presented inversion method in reconstructing true parameters for these models. In this synthetic443

example, the computed anomalies are contaminated by Gaussian noise with a standard deviation of 3%444

of the difference between the maximum and the minimum anomaly.445

For the current example, the inversion process was initialized by setting the initial value of ℓo = 0.5.446

The lower bound for the density constraint ρmin = -1000 kg/m3 and the upper bound ρmin = 1000447

kg/m3. Similar to the previous examples, though the maximum number of iterations was set to be 20,448

the iterative step terminated when the proposed combined criterion is satisfied after 11 iterations. The ap-449

proximate running time required to finish the inversion is 55.64 seconds. Figure 8(b) lower panel shows450

the recovered density contrast model. The corresponding fits between synthetic (stars) and predicted451
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(a) Synthetic model consisting of two rectangular
bodies at various depths with different density con-
trast and the corresponding noise free and contami-
nated gravity anomalies.
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(b) The lower panel shows recovered density contrast
model obtained by inverting the gravity data using the
developed method, while the upper one shows the asso-
ciated fits between the synthetic data that is taken from
(a) and the predicted response.

Figure 8: The fourth synthetic model example and the corresponding inversion result.

data (line) are shown in the upper panel of the same figure. We can see that the recovered rectangular452

bodies are compact and have sharp boundaries. The obtained results also indicate that the depth and453

density contrast of the anomalous rectangular bodies have been determined sufficiently.454

Here, the effectiveness and the advantage of the proposed combined stopping criterion are illustrated455

by comparing it with another commonly used stopping condition. For this reason, the inversion process456

was performed again with the developed inversion method using only the misfit function (|misfitk−1−457

misfitk|) as a stopping condition. Note that, for comparison purposes, all the other inversion parame-458

ters are set the same except for the stopping criterion. The resulting recovered density contrast models459

and the data fit are presented in Fig. 9. The corresponding values of the misfit and smy as a function460

of iteration number are also shown in Fig. 10(a). For the sake of comparison, the misfit and smy461

when using the proposed combined stopping criterion for the same data set are also presented in Fig.462

10(b). The stopping condition |misfitk−1 − misfitk| ≤ µ was reached after 5 iterations, as shown463

in the curve of Fig. 10(a) before the true density distribution has been recovered fully. In other words,464

the estimated models are not satisfactory because densities lower than the target density are observed465

around the edges of the anomalous bodies ( Fig. 9). This indicates that unlike the result presented in466

Fig. 8(b), where the proposed combined stopping condition is used, quitting the iterative process only467

with |misfitk−1 −misfitk| ≤ µ criterion produces a premature solution that is before the maximum468
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compactness is achieved.469

A number of other numerical experiments we carried out showed that there are situation where either
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Figure 9: Inversion result obtained using only the commonly used criterion (|misfitk−1 −
misfitk|) and the corresponding data fit (upper panels) for the synthetic example in Fig. 8(a).
The obtained density model shows that compact and sharp model is not approximately achieved
due to the termination before the iterative procedure has reached convergence.
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(b) Using only |misfitk−1 −misfitk| ≤ µ

Figure 10: The progression of misfit and smy in the course of the iteration during the inver-
sion of the fourth example synthetic data.

470

misfitk| or |misfitk−1−misfitk| fall below the given threshold values, at earlier iterations, before the471

true density is fully recovered. Thus, it is hard to take only one criterion as a termination condition. As472

stated in Sect. 2.3.6, it has been mentioned that the same has also be pointed out in number of previous473

works (Rao et al., 2018). Whereas, in the case of the proposed criterion that is when both the conditions474

|smyk−1 − smyk| ≤ τ and |misfitk−1 − misfitk| ≤ µ are satisfied at the same time the inversion475

process yields an acceptable model. This clearly illustrates the advantage of using the proposed stopping476

criterion and its effectiveness in quitting the iterative scheme after optimal number of iterations. To fur-477

ther illustrate the effectiveness of the proposed combined criterion, the inversion process is allowed to478
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(a) The obtained recovered density model (lower panel)
and the corresponding data fit (upper panel).
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(b) Progression of misfit (top panel) and smy (lower
panel) in the course of the iterative procedure.

Figure 11: Late iteration termination (at 16th iteration) inversion result and the corresponding
misfit and smy variation with iteration number for the fourth example in Fig 8.

continue to the 16th iteration and the model as a result of this is presented in Fig. 11(a). The progression479

of the misfit and smy in the course of the iterative procedure are also given in Fig. 11(b). As it can be480

seen from the result (Fig. 11(b)) the solution obtained at subsequent iterations, after the 11th iteration481

where the iteration is terminated with the proposed stopping condition, remains virtually unaltered. This482

can also be observed from the misfit and smy variation curves shown in Fig. 11(b), in such that after483

11th iteration the misfit and smy values remain literally unchanged. Moreover, the results also indicate484

the appropriateness of the suggested threshold values µ and τ used in the proposed stopping criterion.485

The other thing one can observe from the results in Fig. 11 is the stability of the developed inversion486

method. This can also illustrate the effectiveness of the newly proposed auto-adaptive regularization487

technique (Eq. (18)) and error weighting function (Eq. (16).488

In general, the presented method was tested with noise contaminated data that are generated from dif-489

ferent geometries, locations, sizes, and densities contrasts of causative bodies and it has successfully490

recovered all models. Moreover, all the reconstructed images of the presented synthetic models are491

compact and sharp. Numerous synthetic data inversions were performed to analyze the impact of the492

density contrast bounds. The obtained results, which are not presented here, suggest that the values of493

density contrast bounds have a significant effect on the results, and hence to recover a feasible model a494

good knowledge of the density bounds is vital. This also pointed out by number of authors, for exam-495

ple Vatankhah et al. (2017); Li et al. (2018) and Utsugi (2019), in the case of inversion methods that496
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use non-smooth stabilizers (L1-norm or L0-norm). Provided that the lower and upper density contrast497

bounds are chosen properly, this inversion technique produces acceptable solutions. Therefore, as it was498

demonstrated using synthetic examples, the proposed method has effectively and efficiently recovered499

the synthetic models. Generally, the tests performed on different geometry synthetic models showed that500

the method gives acceptable results for localized multi-sources anomalies at different depths with sharp501

features.502

4 Real Data Test503

To test the method in the real world, where the gravity data is contaminated with noise the improved504

algorithm is implemented on gravity data acquired on different published geologic settings. The first one505

is taken from Green (1975) by carefully digitizing the residual gravity data. As it was given in Green506

(1975) the data was measured over the Guichon Creek batholith in south-central British Columbia. For507

the details about the measurement and geology the reader is referred to Ager et al. (1973) and Ager508

(1972). The residual gravity profile is digitized at a regular intervals of 0.5 km to produce a total of 64509

data points as shown in Fig. 12. For the inversion, the source volume beneath the anomaly was divided
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Figure 12: The observed gravity anomaly over Guichon Creek batholith in south-central British
Columbia (after Green (1975)) and its inversion result. Digitized data (star marks) with calcu-
lated data (solid line) shown on the top panel. Corresponding recovered density contrast model
after 9th iteration shown on the bottom panel. The recovered body density contrast is repre-
sented by the color scale bar. For comparison, the results obtained by Ager et al. (1973), which
was obtained from drilling and Green (1975) are also presented.
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into 64 x 22 square lattice with dimensions of each cell being 0.5 km in both X and Z-directions. Based511

on the a prior information from Ager (1972) density values were constrained between the limits ρmin512

= -150 kg/m3 and ρmax = 0.001 kg/m3. We start the inversion with a homogeneous initial model in513

which every block has the same zero density and an initial ℓo value of 0.48. The inversion was terminated514

after 9th iteration because the stopping criteria are fulfilled. The resulting model is presented in Fig. 12.515

For comparison, the results obtained by Ager et al. (1973) and Green (1975) are also included in Fig.516

12. The shape, real extent of the anomaly, and depth to bottom from the developed method are very517

close to the true geological feature (Ager et al., 1973) which was obtained from drilling. That means the518

implementation of the presented method resulted in a better solution compared Green (1975). Note that,519

this reasonable result is obtained by using only the density contrast limits as a prior information.520

The second test on measured gravity data is carried out using the published data by Last & Kubik
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Figure 13: An observed gravity anomaly over the Woodlawn ore body, New South Wales
(After Last & Kubik (1983)) and the its inversion result. The digitized data (star marks) is
shown together with calculated data (solid line) on the top panel. The corresponding recovered
density contrast model after 11th iteration shown on bottom panel and the ore body proved by
drilling is shown with solid line. The recovered body density contrast is represented by the
color scale bar.

521

(1983) over the Woodlawn massive sulfide ore body, New South Wales, Australia. The residual anomaly522

of the area consisting of 61 data measurements, sampled every 5 m, is digitized from Last & Kubik523

(1983). The details about the data measurement and the geology of the area are discussed in Whiteley524

(1981). The model subsurface was divided into 61 by 30 blocks with a dimension of 5 m in both X- and525

Z-direction. Inverse modeling was performed with bounding constraints ρmin = −600 and ρmax = 1000526

25

https://doi.org/10.5194/egusphere-2022-1202
Preprint. Discussion started: 15 November 2022
c© Author(s) 2022. CC BY 4.0 License.



kg/m3. The initial given value for ℓo is 0.6. The final solution was obtained after the 11th iteration. The527

reconstructed model including the final model of Last & Kubik (1983) are shown in Fig. 13. The cross-528

section of the ore body verified by drilling (Whiteley, 1981) is also shown in the figure. The recovered529

model is approximately coincident with the shape, depth of burial and density of the known ore body.530

Areas of misfits in the current and previous works are believed to be caused by the termination of the531

original data at both ends before it reaches the background level. Thus, this can be additional evidence532

that the presented method can be successfully applied to real data.533

5 Conclusion534

We have presented an alternative gravity inversion method that can produce compact and sharp images535

by using the L0-norm stabilizing functional that helps to model geological features with non-smooth,536

blocky geologic bodies. Physical parameter inequality constraints, and depth weighting are integrated537

into the procedure. The method also incorporates an auto-adaptive regularization technique, which auto-538

matically determines a suitable regularization parameter at every iteration, and an error weighting func-539

tion that helps to improve both the stability and convergence of the method. One of the strongest sides of540

the proposed auto-adaptive regularization and error weighting matrix is that they are not dependent on a541

priori knowledge of the noise level. Because of that, the method can yield reasonable results even when542

the noise level of the data is not known properly. We implemented a combined stopping criteria and543

illustrated its effectiveness to terminate the iterative inversion process after an optimal number of steps.544

To illustrate the efficiency and the capacity of the proposed procedure numerous synthetic tests were545

done. From these, four synthetic examples were presented. According to the results from these syn-546

thetic examples, the method can be applied for multi-source localized bodies located at different depths547

and having different geometries with sharp features. Furthermore, the method proved to be efficient in548

resolving causative bodies both vertically and laterally and produced compact and sharp images. The549

obtained results also indicate that the method behaves well with different noise levels embedded in the550

data and still retains its stability. This can confirm the robustness and stability of the developed inversion551

method for different noise levels. The method was also tested on measured gravity data. We obtained552

geologically acceptable models and the results showed that our approach is effective and reliable. From553

a computational point of view, the method is efficient and can be easily run on a personal computer just554

in a few seconds. In conclusion, the developed method is advantageous in such that it is stable, efficient,555
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and resolves sharp subsurface futures with acceptable resolving capacity.556
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Figure Captions713

Figure 1. A 2-D model of the subsurface under a gravity profile. Gravity stations (Xi) are located714

at the centers of the blocks, indicated by the ▽ symbols.715

Figure 2. Comparison of the minimum support stabilizing function for different values of ε.716

Figure 3. The first synthetic model and the result of the inversion.717

Figure 4. Inversion results, using different ℓo values, for the first synthetic model given in Fig.718

3(a).719

Figure 5. The second example synthetic model and the corresponding inversion result.720

Figure 6. The third synthetic model that comprises two dikes at various depths with the density721

contrast that amounts to 1000 kg/m3 and the corresponding gravity data722

Figure 7. Inversion results of the third synthetic example in Fig. 6.723

Figure 8. The fourth synthetic model example and the corresponding inversion result.724

Figure 9. Inversion result obtained using only the commonly used criterion (|misfitk−1 −725

misfitk|) and the corresponding data fit (upper panels) for the synthetic example in Fig. 8(a).726

The obtained density model shows that compact and sharp model is not approximately achieved727

due to the termination before the iterative procedure has reached convergence.728

Figure 10. The progression of misfit and smy in the course of the iteration during the inversion729

of the fourth example synthetic data.730

Figure 11. Late iteration termination (at 16th iteration) inversion result and the corresponding731

misfit and smy variation with iteration number for the fourth example in Fig. 8(a).732

Figure 12. The observed gravity anomaly over Guichon Creek batholith in south-central British733

Columbia (after Green 1975) and its inversion result. Digitized data (star marks) with calculated734

data (solid line) shown on the top panel. Corresponding recovered density contrast model after735

9th iteration shown on the bottom panel. The recovered body density contrast is represented by736

the color scale bar. For comparison, the results obtained by Ager (1973), which was obtained737

from drilling and Green (1975) are also presented.738
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Figure 13. An observed gravity anomaly over the Woodlawn ore body, New South Wales (After739

Last and Kubik (1983)) and the its inversion result. The digitized data (star marks) is shown740

together with calculated data (solid line) on the top panel. The corresponding recovered density741

contrast model after 11th iteration shown on bottom panel and the ore body proved by drilling is742

shown with solid line. The recovered body density contrast is represented by the color scale bar743
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