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Abstract5

We present a gravity inversion method that can produce compact and sharp images, to6

assist the modeling of non-smooth geologic features. The proposed iterative inversion ap-7

proach makes use of L0-norm stabilizing functional, hard and physical parameter inequal-8

ity constraints, and depth weighting function. The method incorporates an auto-adaptive9

regularization technique, which automatically determines a suitable regularization parame-10

ter and error weighting function that helps to improve both the stability and convergence of11

the method. The auto-adaptive regularization and error weighting matrix are not dependent12

on the known noise level. Because of that, the method yields reasonable results even if the13

noise level of the data is not known properly. The utilization of an effectively combined14

stopping rule to terminate the inversion process is another improvement that is introduced15

in this work. The capacity and the efficiency of the new inversion method were tested by16

inverting randomly chosen synthetic and measured data. The synthetic test models consist17

of multiple causative blocky bodies, with different geometries and density distributions that18

are vertically and horizontally distributed adjacent to each other. Inversion results of the19

synthetic data show that the developed method can recover models that adequately match20

the real geometry, location, and densities of the synthetic causative bodies. Furthermore,21

the testing of the improved approach using published real gravity data confirmed the po-22

tential and practicality of the method in producing compact and sharp inverse images of23

the subsurface.24

25

Keywords— Gravity data, Iterative inversion, L0-norm constraint, Auto-adaptive regularization,26

Stopping criteria, Compact image.27
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1 Introduction28

Gravity measurements have been used in a wide range of geophysical prospecting and investigations,29

such as in mineral explorations, engineering and environmental problems as well as archeological site30

investigations (Hinze et al., 2013, p. 20). In general, gravity inversion is a process that is used to de-31

termine the density, size, shape, and location of complex subsurface causative bodies from an observed32

gravity anomaly, by using different mathematical modeling techniques. Thus, inversion of gravity data33

constitutes an important step in the quantitative interpretation since the reconstruction of density contrast34

models markedly increases the amount of information that can be extracted from the gravity data.35

However, a principal difficulty with the gravity data inversion is the inherent non-uniqueness and insta-36

bility that also exists in any geophysical method (Al-Chalabi, 1971; Blakely, 1996, p. 216). In other37

words, for the given observed gravity data there are many equivalent density distributions that can repro-38

duce the same field data. The standard approach used to select acceptable solutions, that are geologically39

reasonable, is to use additional information about the problem by making assumptions on the following40

aspects: (1) about the model parameters (existing information on the subsurface structure from geologi-41

cal or other geophysical hindsight) and (2) about the data parameters (statistical properties of the inexact42

data, e.g. Gaussian distribution of errors). Based on these assumptions there are two approaches in43

gravity inversion: The first approach fixes the density and vary the geometry. This approach is nonlinear44

in nature and has been studied by many authors, for instance, Lelievre et al. (2015); Camacho et al.45

(2002) and Camacho et al. (2011). The second approach, which also is the one used in this work, fixes46

the geometry and vary the density. This approach is linear in nature and has been investigated by many47

researchers (Li and Oldenburg, 1998; Boulanger and Chouteau, 2001).48

In an effort to introduce more qualitative prior information, Last and Kubik (1983) in particular, devel-49

oped a method called compact gravity inversion. Their strategy utilizes the compactness stabilizer to50

minimize the area (in 2D) or volume (in 3D) occupied by the causative body, which is equivalent to51

maximizing its compactness. Barbosa and Silva (1994) generalized the compact inversion method by52

making use of compactness along several axes using Tikhonov’s regularization. In 2006 Silva and Bar-53

bosa further developed the Compact inversion method with the so-called ’interactive inversion’ which54

estimates the location and geometry of several density anomalies. They simplified their old method55

(Barbosa and Silva, 1994) to improve computational performance. The generalized compact and inter-56

active inversion strongly need a priori information to yield an accurate estimation.57

The compactness stabilizer (Last and Kubik, 1983) also known as the minimum support stabilizer (Port-58
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niaguine and Zhdanov, 1999) has been borrowed and implemented by other researchers in various geo-59

physical inversion methods (Ajo-Franklin et al., 2007; Stocco et al., 2009; Fei et al., 2018; Feng et al.,60

2020; Varfinezhad et al., 2020). As it was demonstrated by a number of researchers (Zhdanov and Tol-61

staya, 2004; Rezaie et al., 2017; Feng et al., 2020; Varfinezhad et al., 2022), this stabilizer is known to62

yield a compact or focused geophysical model with sharp boundaries. Apart from the inversion methods63

which produce focused images mentioned above, sparse geophysical inversion approaches derived from64

Lp-norm (0 ≤ p ≤ 1) stabilization have been developed by many researchers. For instance, sparse65

seismic reflectivity inversion method (Li et al., 2017), direct current resistivity data inversion algorithm66

(Singh et al., 2018), magnetic data sparse inversion method (Li et al., 2018; Fournier et al., 2020), sparse67

gravity data inversion technique (Vatankhah et al., 2017; Peng and Liu, 2021), to mention only a few.68

Some instability of the original compact gravity inversion algorithm of Last and Kubik (1983) was re-69

ported by Lewi (1997, p. 87) when the data is contaminated with noise. Then Lewi (1997, p. 89)70

has improved the original compact inversion by introducing a new approach to the 3D compact gravity71

inversion. The problem with Lewi (1997, p. 89) method arises when dealing with a multiple-source72

model, where the inversion algorithm tends to concentrate densities towards the surface regardless of73

the true depth of the causative bodies. In overcoming this drawback, Gebre and Lewi (2022) improved74

the compact gravity inversion method by incorporating a new depth weighting function. In this paper,75

we present a gravity inversion method that can produce compact and sharp images, to assist the model-76

ing of non-smooth, blocky geologic features with sharp boundaries. The proposed approach is based on77

the authors’ previous work (Gebre and Lewi, 2022), to which the reader is referred for further details,78

with the following two main differences and advancements. The first is proposing and incorporating an79

auto-adaptive regularization and error weighting function. This has improved the fast convergence of80

the method while keeping its stability. The second is the implementation of combined stopping criteria81

to terminate the iteration after an appropriate number of steps. The developed method uses an iteratively82

reweighted least squares (IRLS) minimization algorithm in combination with L0-norm stabilizer, depth83

weighting and physical parameter inequality constraint to estimate a compact and sharp density contrast84

model of the subsurface.85
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2 Methodology86

2.1 The 2D model87

Most fixed geometry gravity inversion algorithms, including the one presented here, employ rectangu-88

lar prismatic elements, to discretize the subsurface, owing to their flexibility in constructing complex89

models (Silva and Barbosa, 2006; Commer, 2011; Grandis and Dahrin, 2014). A 2-D model is obtained90

by discretization of the subsurface under the survey area into a large number of infinitely long hori-91

zontal rectangular prisms, with the infinitely long dimension oriented in the invariant y-direction, with92

variations in densities only assumed for the X and Z directions. The 2-D model is illustrated in Fig.93

1. The density contrasts are constant inside each cell only and can vary individually. Here we have94

used equal dimensions for the cells. However, the algorithm is flexible, to accommodate non-regular95

size cells. Gravity stations indicated by ▽ symbols are located at the centers of the upper faces of the96

rectangular blocks in the top layer. This discretization scheme of the subsurface allows us to calculate97

the gravitational attraction caused by each rectangular block separately.

Figure 1: A 2-D model of the subsurface under a gravity profile. Gravity stations (Xi) are
located at the centers of the blocks, indicated by the ▽ symbols.

98

2.2 Forward modelling99

After discretization of the modeling space into a set of elementary rectangular blocks, the total vertical100

component gravity response calculated at the ith observation point gi is the sum of the gravity contribu-101

tions generated by each of the individual rectangular element, on all points belonging to the observation102
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grid and it is given by:103

gi =
M∑
j=1

aijρj + ei i = 1, 2, 3....N (1)

where ρj is the density of the jth prism; N denotes the numbers of observations; aij is the contribution104

of jth prism to the gravity value on ith observation point and ei is the noise associated with ith data point.105

The kernel aij is the forward operator that maps from the physical parameter space to the data space.106

The exact mathematical expression of the kernel used here is presented by Last and Kubik (1983) which107

is adopted from Nagy (1966) to which the reader is referred for more detail mathematical development.108

In matrix notation Eq. (1) can be written as:109

g = Aρ + e (2)

where g is an N-dimensional vector containing the gravity values, ρ is an M-dimensional model vector110

of densities, A is the N x M kernel matrix, and e represents the noise vector at data points. Equation111

(2) constitutes the gravity forward modeling, i.e. used to calculate the predicted gravity anomalies112

(theoretical data) for a known subsurface density contrast (model ρ).113

2.3 Inverse Modeling114

Our objective in solving gravity inverse problems is given the observed gravity data (g), we seek a115

solution that gives a density distribution ρ which predicts the observed data with a certain noise level116

and at the same time, satisfies certain constraints. For the model presented here, the density vector117

ρ is related to the predicted gravimetric field g by the linear expression given in Eq. (2). Like the118

majority of practical inverse problems arising in geophysical modeling gravity inversion is an ill-posed119

problem. Moreover, usually we have less number of the observed gravity data than the number of the120

model parameters which makes the system an under-determined problem. A standard way to solve such121

ill-posed and under-determined problems, according to regularization theory (Tikhonov et al., 2013), is122

minimization of the following objective function (Φ) which is the combination of data fidelity or misfit123

functional (Φd) and stabilizing functional (stabilizer) term (S(ρ)):124

Φ = Φd + ℓ2S(ρ) (3)
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Here the misfit functional is Φd = ∥W e(Aρ − gobs)∥22 and W e is error weighting diagonal matrix.125

In Eq. (3), ℓ is a regularization parameter that controls the trade-off between the data fidelity and the126

stabilizing term. Choosing a small value improves the data fit but the recovered models have highly127

oscillatory artificial structures (which is equivalent to under-regularization). On the other hand, a large128

value of ℓ leads to a large misfit value between the observed and predicted data and a small norm of the129

model (over-regularizing the solution). Thus, the choice of a suitable value for ℓ is very important.130

The choice of the stabilizing functional, in Eq. (3), depends on the desired model features that are to131

be recovered. There are several types of stabilizers that have been developed and implemented in the132

inversion of potential field data, which can roughly be divided into two categories: (I) Smooth stabilizer133

which uses L2-norm of the model parameters or gradient of the model parameters (Li and Oldenburg,134

1998; Cella and Fedi, 2012; Paoletti et al., 2013). (II) Non-smooth stabilizer which uses L1-norm or135

L0-norm directly on the model parameters or on the gradient of the model parameters (Bertete-Aguirre136

et al., 2002; Sun and Li, 2014; Li et al., 2018; Utsugi, 2019). Inversion methods that utilize a smooth137

stabilizer produce model typically characterized by smooth features, and hence have difficulties in re-138

covering blocky structures or non-smooth distributions that have sharp boundaries or abrupt changes in139

physical properties (Farquharson, 2008). To overcome this problem, non-smooth stabilizers that help to140

produce compact and sharp models have been applied successfully (Zhdanov, 2009; Meng et al., 2018).141

Since we are interested in developing a gravity inversion method that can produce compact and sharp142

models, we use a non-smooth stabilizer through the L0-norm on the model parameters and will be dis-143

cussed in the next subsection. In general, with all mentioned stabilizers Eq. (3) needs to be solved144

by using an iterative minimization algorithm. In this work, we use the IRLS algorithm to estimate the145

solution and it is described below.146

Using the classical weighted L2-norm stabilizing functional S(ρ) = ∥W c(ρ− ρF )∥22 in the objective147

function Φ (Eq. (3)) and minimizing by applying the standard weighted-damped least-square optimiza-148

tion, the estimated density distribution in matrix notation can be given by (Menke, 1989, p. 55):149

ρk+1 = ρk
F +

[
[W k

c ]
−1AT

(
A[W k

c ]
−1AT + ℓ2[W k

e ]
−1
)−1

gk
r

]
(4)150

where the superscript k denotes that variable at kth iteration and W k
c is a combined weighting matrix.151

ρk
F is reference density vector, which is from prior information or calculated at each iteration. gk

r =152

gobs−Aρk
F represents residual data vector computed at each iteration. Computation of the regularization153
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parameter ℓ in Eq. (4) will be described in Sect. 2.3.3. In this work, the combined weighting matrix154

(W k
c ) is defined as a product of three different diagonal matrices, L0-norm constraint matrix (W k

L0
),155

depth weighting (W z) and hard constraint matrix (W k
h).156

W k
c = W k

L0
W zW

k
h (5)

2.3.1 L0-norm Constraint157

The L0-norm is commonly defined as the number of nonzero elements in a vector. Because there is no158

analytical formula that meets the mathematical requirement to be regarded as L0-norm, the approximate159

expression is usually used to convert the L0-norm into an equivalent norm for the suitability of computa-160

tion. In literature (Zhao et al., 2016; Li and Yao, 2020) that discusses the inversion of potential field data,161

different L0-norm approximate stabilization functions have been developed and implemented to obtain162

focused images and sharp boundaries. Meng (2016) used a hyperbolic tangent function to approximate163

the L0-norm and applied it to the 3D inversion of gravity gradient tensor data. Meng et al. (2018) pro-164

posed an exponential mathematical function to approximate the L0-norm for 3D gravity sparse inversion.165

In this paper, the minimum support functional, which is also called compactness constraint originally166

proposed by Last and Kubik (1983) and then further extended by Portniaguine and Zhdanov (1999) to167

include a reference model is selected which can be expressed as follows:168

L0(ρ) =

M∑
j=1

(ρj − ρaprj )2

(ρj − ρaprj )2 + ε
(6)

In our case to avoid the requirement of a prior model, we set ρapr
j = 0 and hence Eq. (6) can be rewritten169

as follows (Sun and Li, 2014):170

L0(ρ) =

M∑
j=1

ρ2j
ρ2j + ε

(7)

where ε is a focusing parameter. Application of L0(ρ) as stabilizer in minimization process of the171

objective function (Eq. (3)) leads to the following choice of an L0-norm constraint matrix WL0 which is172

given by (Last and Kubik, 1983):173

[WL0 ]j = ([ρj ]
2 + ε)−1 (8)
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Based on Eq. (8) the kth iteration diagonal elements of the L0-norm constraint matrix (W k
L0

) can be174

formulated as follows:175

[W k
L0
]−1
jj = [ρj

k−1]2 + ε (9)

The focusing parameter ε is a very important parameter. Its main purpose is to avoid singularities when176

ρj → 0. The parameter ε is a small number and in general, we are interested in the case where ε → 0177

because a small value leads to very compact models. However, this may introduce instability. On the178

other hand, if ε is chosen large the L0-norm compactness constraint has no influence on the compactness179

of the model which means it results in a smooth solution. Figure 2 shows the comparison of the minimum180

support stabilizing functional for different values of ε to demonstrate the impact of the choice of different181

values of ε further. From Fig. 2, one can see that as ε becomes large the minimum support stabilizing182

function loses its property and behaves more like the minimum length L2-norm stabilizer which results183

in undesirable smoothness in the model though it improves the stability. Therefore, it is essential to184

choose an optimal value of ε.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
j

0.0

0.2

0.4

0.6

0.8

1.0

2 j
2 j

+

= 1.0
= 0.1
= 0.01
= 0.0001

Figure 2: Comparison of the minimum support stabilizing function for different values of ε.

185

In previous investigations e.g Last and Kubik (1983) and Guillen and Menichetti (1984) the parameter186

ε was assigned a value close to machine precision (≈ 10−11 to 10−15). Alternatively, Zhdanov and187

Tolstaya (2004) introduced a trade-off curve method, similar to the L-curve technique, to select ε by188

computing the model objective for the current model estimate over a range of values for ε. However,189

as pointed out by Ajo-Franklin et al. (2007) setting ε to values near machine precision results in severe190

instability as ρj → 0 and the approach of Zhdanov and Tolstaya (2004) often yields trade-off curves191

with corners that are not well defined. Therefore it is better to fix ε at a reasonable value determined by192

experience, typically between 10−4 to 10−7 (Ajo-Franklin et al., 2007). Accordingly, in the present193
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work based on several numerical simulation tests, the value 10−6 is assigned just for the inversion194

examples presented in the manuscript. Note that the developed method is flexible to use different values195

of ε.196

2.3.2 Error weighting197

According to compact inversion method proposed by Last and Kubik (1983), the kth iteration error198

weighting matrix W k
e is defined as:199

[W k
e ]

−1 = diag
(
A[W k

L0
]−1AT

)
(10)

Even though W k
e expressed by Eq. (10) is applied by many authors (Guillen and Menichetti, 1984;200

Barbosa and Silva, 1994; Ghalehnoee et al., 2017; Gebre and Lewi, 2022), some instability was reported201

by Lewi (1997, p. 87) in using W k
e in scenarios such as complicated geological geometry and when the202

data is contaminated with noise. To overcome this problem Lewi (1997, p. 90) proposed a weighting203

matrix that makes use of the following equation:204

[W k
e ]

−1 =

[
[σ2

ρ]
k

1 + [σ2
e ]

k

]
I (11)

where I represents identity matrix, and σ2
ρ and σ2

e are model and error variances respectively that are205

given by:206

[σ2
e ]

k =

∑N
i=1{gi −

∑M
j=1 aij [ρj

k−1]}2

N − 1
(12)207

208

[σ2
ρ]

k =

∑M
j=1[ρj

k−1]2

M − 1
(13)209

The term in square brackets in Eq. (11) can be considered as regularization parameter (Silva and Bar-210

bosa, 2006; Lewi, 1997, p. 90). Based on several numerical experiments done in the present work it was211

observed that this term can sometimes ends up in a larger value which may result in over-regularization212

of the solution. For this reason, in the present study, a new error weighting matrix W k
ne is introduced213

and it is given as:214

[W k
ne]

−1 = diag

(
A

[
W z(

[σ2
ρ]

k

1 + [σ2
e ]

k
)W k

h

]
AT

)
(14)215
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Let us represent the terms in square brackets by W k
n as follows:216

W k
n = W z

(
[σ2

ρ]
k

1 + [σ2
e ]

k

)
W k

h (15)217

where Wz and W k
h are diagonal depth and hard constraint matrices respectively and will be described in218

the next subsections. Then the error weighting matrix in Eq. (14), the one introduced and implemented219

here becomes:220

[W k
ne]

−1 = diag
(
AW k

nA
T
)

(16)

2.3.3 Auto-adaptive Regularization Parameter Estimation221

Choosing a suitable value for the regularization parameter is a crucial part of the inversion process. The222

precise value of the regularization parameter depends on the noise level associated with the observed223

data. Thus, the higher value of ℓ refers to the higher noise level of the data points. Several methods224

have been proposed to choose the appropriate value of regularization parameter, and are reviewed in the225

literature (Farquharson and Oldenburg, 2004; Vatankhah et al., 2014) and standard texts for example226

Vogel (2002, pp. 97-109) and Aster et al. (2018, p. 57). Particularly, depending on the noise level227

a constant value of ℓ, throughout the inversion, has been chosen by many authors (Silva and Barbosa,228

2006; Ghalehnoee et al., 2017). In other works, for example Zhdanov (2009) and Rezaie et al. (2017)229

the parameter ℓ has been iteratively updated in each iteration.230

As pointed out in previous works (Farquharson and Oldenburg, 2004; Gholami and Aghamiry, 2017)231

instead of using a constant value of ℓ, dynamic re-adjustment throughout the iterative scheme might be232

a superior approach. Taking this into account, in the present work ℓ is updated in each iterative step.233

In our implementation, to select an optimal regularization parameter at each iteration, we proposed an234

auto-adaptive regularization method. This method leads to an automatic update of the regularization235

parameter at each and every iteration. The basic principle including its procedure in relation to the236

formally known adaptive regularization approach which was proposed by Zhdanov (2002, p. 55) and237

implemented by many authors (Zhdanov, 2009; Rezaie et al., 2017) is as follows. In adaptive regular-238

ization approach the initial value of the regularization parameter ℓ1 is updated at each iteration step by239

(Zhdanov, 2002, p. 55):240

ℓk = ℓ1qk (17)
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where q, as described by Zhdanov (2002, p. 55), is damping factor which decreases from iteration to241

iteration. Its initial value is empirically determined having a value between zero and one. It is obvious242

that the trial and error selection of the value for q requires computational work . The presented auto-243

adaptive regularization method overcomes this problem and the iterative values ℓk are determined by the244

following formula:245

ℓk = ℓk−1

[
|gobs −Aρ|k−1

max

|gobs −Aρ|kmax

]
(18)

where the term in the square bracket is an adjusting factor that is automatically determined at each246

iterative step and |gobs − Aρ|max is the maximum absolute value of the residual data elements. In247

the auto-adaptive regularization method, choosing a suitable initial value of (ℓo) is essential. Based248

on a number of synthetic and real data simulations done in this work we recommend the following in249

choosing a reasonable value of ℓo: Firstly, the initial value of ℓ should be within the range 0 < ℓo ≤ 1.250

Secondly, the precise value of ℓo depends on the noise level related to the observed data. When the251

probable or expected noise level of the data is higher, a larger value ℓo is a reasonable choice to avoid252

unwanted and false anomalies due to noise. In contrast, when the probable or expected noise level is less253

a small value of ℓo should be chosen. Once an appropriate initial value ℓo is given as an input, then for254

subsequent iterations Eq. (18) is used to determine ℓk. The advantage of the auto-adaptive regularization255

scheme is its capability to automatically determine a suitable regularization parameter, in the course of256

the optimization process, depending on the automatically determined adjusting factor.257

2.3.4 Physical Parameter Inequality Constraint258

To produce a physically meaningful model from a gravity inverse solution, the usage of lower and259

upper bound constraints on the recovered density contrast is beneficial (Silva et al., 2001; Grandis and260

Dahrin, 2014). Lower and upper bounds can be obtained from a prior information such as geological261

investigations in conjunction with published density values of rocks, well-logging, and/or laboratory262

tests. Many procedures such as gradient projection approach (Wang and Ma, 2007; Lelièvre et al., 2009),263

transform function approach (Pilkington, 2008) and logarithmic barrier approach (Li and Oldenburg,264

2003) have been applied in different inversion schemes to implement this constraint. However, with265

regard to L0-norm stabilizer based gravity inversion methods an effective method is the direct utilization266

of lower and upper density constraints (Meng et al., 2018). Hence, in this work the direct density267

bound inequality constraint is used, that is at each iteration density contrast of each rectangular block is268
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bounded by minimum and maximum density constraint function given by:269

[ρk]j =


[ρmax]j if [ρk]j > [ρmax]j

[ρk]j if [ρmin]j < [ρk]j < [ρmax]j

[ρmin]j if [ρk]j < [ρmin]j

(19)270

By using this function, if kth iteration ρj of any block exceeds one of its bounds, then it will be fixed at271

the violated bound.272

In each iteration step the procedure to compute the hard constraint matrix W k
h (Boulanger and Chouteau,273

2001) and the reference density vector ρk
F is determined as follows: The diagonal elements of W k

h are274

fixed at ε or 1.0. When a prior geological and geophysical information are able to provide the initial275

value of density contrast of the jth specific cells, then these values are assigned to the corresponding276

[ρk
F ]j . Simultaneously, the corresponding diagonal elements of [W k

h]jj are set to be ε. During the in-277

version process, if the jth elements of estimated density values falls out of inequality constraint limits278

defined by ρmin and ρmax, then [ρk
F ]j will be fixed at the violated bound density itself and [W k

h]jj279

assigned to be ε. On the other hand, if the elements of the estimated density did not exceed its bounds280

(i.e. lies between the limits), [W k
h]jj and [ρk

F ]j are assigned to be 1.0 and 0.0 respectively.281

Using W k
h any blocks whose density is known from a priori information or exceeds the density con-282

straint limit, the algorithm will automatically freezes this block in the next iteration by assigning a very283

small weight to it. Whereas, ρk
F is used to remove the gravity effects of those cells that have crossed284

the inequality constraint limit from the observed gravity data. That is applied to compute the reduced285

gravity data vector gk
r = gobs − Aρk

F in Eq. (4) of the inversion algorithm. In other word, at each286

iterative step the inversion of subsequent iteration will be performed using reduced gravity data vector.287

2.3.5 Depth weighting288

It is well known that gravity data, like any potential field data, has no inherent depth resolution. The289

reconstructed model structures by the inversion process tend to concentrate near the surface regardless290

of the true depth of the causative bodies (Li and Oldenburg, 1996). This happens because the inverse291

solution of model construction is a linear combination of kernel, whose amplitudes rapidly decay with292

depth. The problem can be overcome by introducing a depth weighting matrix to counteract the natural293

decay of kernel with depth (Li and Oldenburg, 1998). Depth weighting is designed to ensure that all294

cells have equal likelihood to accommodate the sources, not just those at shallow levels that are most295
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sensitive to the observed data. Depth weighting is used and its effect is investigated by different authors296

(Pilkington, 2008; Commer, 2011). Based on Gebre and Lewi (2022), the recently proposed depth297

weighting function is given as follows:298

wzj = (aZj + co)
−τ (20)299

where Zj is the mean depth of the jth cell and a, co and τ are adjustable parameters. The values of300

the three adjustable parameters are computed by optimizing wz(z) to match with the actual gravity301

kernel values utilizing nonlinear least-squares minimization (Virtanen et al., 2020). Accordingly, for all302

inversions in this work the depth weighting matrix similar to the one used by Gebre and Lewi (2022) is303

employed (Eq. (21)):304

[Wz]jj = diag(wzj) (21)305

where W z is diagonal M x M depth weighting matrix.306

2.3.6 Stopping Criteria307

It is clear that if the iterations are stopped too early, then a reasonable solution of the inverse problem may308

not be obtained. On the other hand, too many iterations may waste computer time without increasing the309

overall solution qualities. Thus, an important aspect of any iterative inversion method is to decide when310

the iterations should be terminated. A number of stopping criteria have been proposed and employed311

to terminate iterative inversion algorithms (Borges et al., 2015; Levin and Meltzer, 2017). Commonly312

used stopping criteria are based on a norm of the residual vector (i.e. the norm of the difference between313

estimated and observed data). For instance, a noise level, i.e. χ2 = ||W d(g
obs − Aρ)||22, where a314

diagonal data weighting matrix W d, whose ith element is the inverse of the standard deviation of the315

noise at each data point, is used by Boulanger and Chouteau (2001) and Vatankhah et al. (2017). Other316

criteria for stopping gravity inversion procedure are based on simple misfit or the Root Mean Square317

Error (RMSE) between the observed data and predicted data produced by the recovered model (see, for318

example Rezaie and Moazam (2017)). The expressions used to estimate these criteria are the following:319

misfit =

(∑N
i=1(g

obs
i − gcal

i )2∑N
i=1(g

obs
i )2

) 1
2

(22)320

321

RMSE =
(
∑N

i=1(g
obs
i − gcal

i )2)
1
2

N
(23)322
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Ekinci (2008) also introduced other possible criterion, namely the parameter variation function (smy)323

which is defined as:324

smy =

 M∑
j=1

(ρj
k − ρj

k−1)2

 1
2

(24)325

326

The most widely used approach is to quit the iterative process when one of the above criteria are below327

a given tolerance (the level of observational error). However, in practical applications a precise value328

for such tolerance is rarely known; rather, only some possibly vague idea of the desired quality of329

the numerical approximation is at hand. Moreover, it has been pointed out by Rao et al. (2018) that330

stopping iteration based solely on the norm of the residual is neither safe nor a robust solution. The331

non-uniqueness and instability of the gravity inverse problem further complicates the usage of only332

one of the aforementioned stopping criteria. To overcome these issues, a combination of the misfit333

and smy has been utilized in this paper. Therefore, the iterative procedure continues until one of the334

following stopping criteria is met: (I) the maximum number of iteration (kmax) given by the user is335

reached or (II) the difference between two consecutive iteration values of smy and misfit have reached336

the target values. That means for the second criterion both the conditions |smyk−1 − smyk| ≤ τ and337

|misfitk−1 −misfitk| ≤ µ must be satisfied at the same time. In all demonstrations considered in this338

work, after testing different values, the parameter τ is assigned to
√
2M ; and µ to 0.005. Where M is339

again the total number of model parameters. The effectiveness of the proposed termination criteria will340

be illustrated by using synthetic tests.341

2.4 Computational procedure342

The solution of the linear system of equations in Eq. (2) will be carried iteratively using the information343

about the misfit and density from successive iteration. The input parameters for the inversion proce-344

dure are: (1) Kernel matrix (A) and discretized subsurface model (mesh) and its initial approximation345

reference density model ρF if exits based on a priori information; (2) Observed gravity anomaly (g)346

at measurement points (x); (3) Maximum number of iteration (kmax) and the constant β; (4) Lower347

ρmin and upper ρmax density bounds and initial ℓo value. In summary, the steps taken to carry out the348

inversion process consists the followings.349

1. For k = 0, if there is no a priori information, W L0 , W c, W n and W h are identity matrices,350

ρF = 0. W z and W ne are computed through Eq. (21) and (16) respectively, after this, the first351
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iteration model parameters solution is obtained by Eq. (4).352

2. The elements of W h and ρF are updated as explained in preceding section, then W L0 is calcu-353

lated using Eq. (9) and then W c using Eq. (5).354

3. Compute the value of σρ and σe using expressions (13) and (12) respectively. Then calculate W n355

using Eq. (15).356

4. To remove the effect of those blocks that have crossed the maximum target density, evaluate the357

reduced data gk
r = gobs − Aρk

F . Then compute the current ℓ with Eq. (18) and Wne with Eq.358

(16).359

5. Carrying out the inversion through Eq. (4).360

6. Application of bounded constraints on density are carried out as discussed in the preceding sec-361

tion.362

7. Now a forward modelling procedure will be carried out using Eq. (2) to compute the gravity363

anomaly gcal from the estimated model in the previous iteration.364

8. Data misfit (Eq. (22)) and smy (Eq. (24)) are computed using gcal from step 7, and obtained365

model parameters from the previous and current iteration.366

9. Test if the stopping criteria are fulfilled. If the termination criteria are satisfied the iteration367

terminates and obtained results are stored and plotted. Otherwise, using the current estimated368

density model, move to the next iteration k by going to the second step and continue the iterative369

procedure until the stopping criteria are fulfilled.370

3 Synthetic Model Test371

To evaluate the functionality and efficiency of the method, the developed procedure was tested on sev-372

eral synthetic model examples. The examples presented here are randomly chosen to demonstrate: (I)373

the applicability of the proposed auto-adaptive regularization technique (Eq. (18)) and error weighting374

function (Eq. (16)); (II) the performance of the method in producing compact and sharp images of the375

causative bodies; (III) the effectiveness of the combined stopping criterion. The forward and the inverse376

problem were carried out using the procedure described in the preceding sections. In the inversion of the377
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synthetic examples, the same subsurface discretization as the one used in generating the synthetic data378

(Forward modeling) is used. All the inversion tests are performed on a Desktop computer ( 11th Gen379

Intel(R) Core(TM) i7-11700, 2.50GHz processor). For the first and second synthetic examples presented380

in this work: (I) The model region was discretized into 60 x 15 rectangular cells and the dimensions of381

each cell were taken as 10 x 10 m, in the X and Y directions respectively. (II) The synthetic gravity data382

were computed at 60 data points that are centered in each cell at the top side of the model, to produce383

data at 10 m sample interval. (III) The computed gravity data are contaminated with Gaussian noise384

that has a standard deviation that amounts to 4 % of the magnitude at each data point with zero mean385

(Farquharson, 2008; Rezaie et al., 2017).386

The first synthetic data inversion has been done for the model presented in Fig. 3(a). For this synthetic387

model the causative bodies are two rectangular structures elongated differently in the horizontal and388

vertical directions and located at different depths. The causative bodies have the same density contrast389

1000 kg/m3. The density of the causative bodies are given relative to the zero density of uniform back-390

ground. Figure 3(a) upper panel shows noise free (solid line) and noise contaminated (star dots) gravity391

data. Separate inversion runs, for three different ℓo values ( 0.2, 0.3 and 0.4 ), were performed with the392

developed inversion method. Note that, for subsequent iterations the proposed auto-adaptive regular-393

ization technique (Eq. (18)) is used to compute ℓ for each case. At the beginning of the inversion, the394

iterations are initialized with ρF = 0 and W h = W c = W n = W L0 = I . The lower limit density395

contrasts of all cells is zero (ρmin = 0) and the upper bound ρmax = 1000 kg/m3.396

The results of the inversion by using the developed method for three different ℓo values are shown in397

Figs. 3(b) and 4. The corresponding data fit between the predicted (solid line) and the actual contam-398

inated (stars) gravity data are also shown. Comparing the inversion results with the original synthetic399

model in Fig. 3(a), the inversion has sufficiently recovered the true models. The depth, geometry, and400

density distributions of the synthetic causative bodies were recovered adequately. This can confirm401

the applicability of the proposed auto-adaptive regularization technique (Eq. (18)) and error weighting402

function (Eq. (16)). Notice that the results also indicate the robustness and stability of the developed403

inversion method for different ℓo values. The avarge computation time to finish the inversion is approx-404

imately 16.3 seconds.405

The second synthetic model is more complicated and consists of two causative bodies placed at various406

depth. The bodies have different sizes, shapes, and density contrasts. The first causative body is a verti-407

cal rectangular block, with density contrast 2000 kg/m3, placed at 40 m depth and the second body is408
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(a) The lower panel represents 2-D synthetic model,
which constitutes two isolated rectangular bodies lo-
cated at various depths and the top panel shows the
gravity anomaly due to these two subsurface rectangu-
lar bodies.
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(b) The lower panel represents the subsurface, as a result
of the proposed inversion method using ℓo = 0.3 and the
top panel shows the synthetic data together data derived
from the model.

Figure 3: The first synthetic model and the result of the inversion.

a dipping dike with density contrast 3000 kg/m3 at 20 m depth. The synthetic model is shown in the409

lower part of Fig. 5(a) and the generated noise-corrupted and noise free gravity data are shown on the410

upper part. Using the generated synthetic data, the inversion was initiated by assigning an initial zero411

density to each cell. We set initial ℓo = 0.3. The density contrast limits are bounded between lower412

bound ρmin = 0 and the upper bound ρmax = 3000 kg/m3. Even though a maximum iteration of 20413

was set, the misfit and smy between two consecutive iterations gradually fall below the threshold set414

after the 14th iteration. The total computation time is approximately 15.73 seconds. In Fig. 5(b), the415

resulting model from the inversion of the second synthetic model (Fig. 5(a)) using the proposed method416

is presented. As can be seen in Fig. 5(b) upper panel the modeled gravity data (solid line) fits adequately417

with the synthetic data. The result, presented in Fig. 5(b) lower panel, indicates an acceptable recon-418

struction of the synthetic multi-sources and multi-shape bodies that are located at different depths. The419

true shape, location and density of the causative bodies are recovered adequately. Like the first example420

the reproduced images of the localized multiple sources are compact and sharp (Fig. 5(b) lower panel).421

For the third and fourth synthetic examples: (I) The subsurface model was discretized into 100 x 20422

rectangular cells. Each cell has a size of 50 m in X and Z directions. (II) The synthetic gravity data were423

computed on 100 data points with a sample spacing of 50 m. The third synthetic model includes two424

dipping dikes in opposite directions. The causative 2-D bodies have different sizes and the same density425
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(a) Using ℓo = 0.2.
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(b) Using ℓo = 0.4.

Figure 4: Inversion results, using different ℓo values, for the first synthetic model given in Fig.
3(a).

contrast that amounts to 1000 kg/m3 in a homogeneous background zero density. The top part of the426

shallower dipping dike lies at a depth of 200 m and that of the deeper dike at a depth of 250 m. The427

computed gravity data were contaminated by uncorrelated Gaussian noise whose standard deviation was428

equal to 4% of the difference between the maximum and the minimum anomaly and zero mean. The429

synthetic model and the corresponding data are shown in Fig. 6 at lower and upper panels respectively.430

The inversion process was commenced by setting the densities of all cells to zero. The initial value of431

ℓo was set to 0.4. The bounding density ranges were set to a minimum value ρmin = 0 and maximum432

value ρmax = 1000 kg/m3. The maximum number of iterations was set to 20. Here, the inversion433

converged after the 13th iteration and the total computation time is approximately 66.49 seconds. The434

resulting model and the inverted data using the proposed method are shown in Fig. 7(b). For the sake435

of comparison keeping all inversion parameters the same, the synthetic data was also inverted with the436

classical L2-norm regularized inversion approach and the obtained result is shown in Fig. 7(a). As it437

can be seen from the lower panel of Fig. 7(b), unlike the model in Fig. 7(a), the developed method was438

able to produce a compact and sharp model successfully. The other concern, which can be seen from439

the result in Fig. 7(a), is that the target density contrast values are underestimated in the case of the440

conventional L2-norm inversion. In contrast, the geometrics, locations, and densities of both anomalous441

structures were adequately recovered with the presented inversion method (see Fig. 7(b)).442

The fourth synthetic model consists of two different rectangular anomalous bodies (Fig. 8(a) lower443

panel). The anomalous structures have different dimensions and are buried at different depths. The top444
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(a) Synthetic model consisting of a dipping dike and
vertical rectangular block and the corresponding grav-
ity data.
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(b) The density model obtained by inverting the gravity
data using the developed method. The predicted data as
a result of inversion process are shown on the top panels
(solid line).

Figure 5: The second example synthetic model and the corresponding inversion result.
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Figure 6: The third synthetic model that comprises two dikes at various depths with the density
contrast that amounts to 1000 kg/m3 and the corresponding gravity data.

of the first rectangular block is placed at a depth of 200 m and its density contrast is -1000 kg/m3 while445

the top of the second block is placed at a depth of 250 m and has a density contrast of 1000 kg/m3.446

Different density contrast, size, and depth of adjacent structures have been considered to show the ability447

of the presented inversion method in reconstructing true parameters for these models. In this synthetic448

example, the computed data are contaminated by Gaussian noise with a standard deviation of 3% of the449

difference between the maximum and the minimum anomaly.450

For the current example, the inversion process was initialized by setting the initial value of ℓo = 0.5.451

The lower bound for the density constraint ρmin = -1000 kg/m3 and the upper bound ρmin = 1000452

kg/m3. Similar to the previous examples, though the maximum number of iterations was set to be 20,453
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(a) Using the conventional minimum norm (L2-norm)
smooth stabilizer and the corresponding data fit.
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(b) Using the presented method

Figure 7: Inversion results of the third synthetic example in Fig. 6.

the iterative step terminated when the proposed combined criterion is satisfied after 11 iterations. The ap-454

proximate running time required to finish the inversion is 55.64 seconds. Figure 8(b) lower panel shows455

the recovered density contrast model. The corresponding fits between synthetic (stars) and predicted456

data (line) are shown in the upper panel of the same figure. We can see that the recovered rectangular457

bodies are compact and have sharp boundaries. The obtained results also indicate that the depth and458

density contrast of the anomalous rectangular bodies have been determined sufficiently.459

Here, the effectiveness and the advantage of the proposed combined stopping criterion are illustrated460

by comparing it with another commonly used stopping condition. For this reason, the inversion process461

was performed again with the developed inversion method using only the misfit function (|misfitk−1−462

misfitk|) as a stopping condition. Note that, for comparison purposes, all the other inversion parame-463

ters are set the same except for the stopping criterion. The resulting recovered density contrast models464

and the data fit are presented in Fig. 9. The corresponding values of the misfit and smy as a function465

of iteration number are also shown in Fig. 10(a). For the sake of comparison, the misfit and smy466

when using the proposed combined stopping criterion for the same data set are also presented in Fig.467

10(b). The stopping condition |misfitk−1 − misfitk| ≤ µ was reached after 5 iterations, as shown468

in the curve of Fig. 10(a) before the true density distribution has been recovered fully. In other words,469

the estimated models are not satisfactory because densities lower than the target density are observed470

around the edges of the anomalous bodies ( Fig. 9). This indicates that unlike the result presented in471

Fig. 8(b), where the proposed combined stopping condition is used, quitting the iterative process only472
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(a) Synthetic model consisting of two rectangular
bodies at various depths with different density con-
trast and the corresponding noise free and contami-
nated gravity anomalies.
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model obtained by inverting the gravity data using the
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ciated fits between the synthetic data that is taken from
(a) and the predicted response.

Figure 8: The fourth synthetic model example and the corresponding inversion result.

with |misfitk−1 −misfitk| ≤ µ criterion produces a premature solution that is before the maximum473

compactness is achieved.474

A number of other numerical experiments we carried out showed that there are situation where either
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Figure 9: Inversion result obtained using only the commonly used criterion (|misfitk−1 −
misfitk|) and the corresponding data fit (upper panels) for the synthetic example in Fig. 8(a).
The obtained density model shows that compact and sharp model is not approximately achieved
due to the termination before the iterative procedure has reached convergence.

475

misfitk| or |misfitk−1−misfitk| fall below the given threshold values, at earlier iterations, before the476

true density is fully recovered. Thus, it is hard to take only one criterion as a termination condition. As477

stated in Sect. 2.3.6, it has been mentioned that the same has also be pointed out in number of previous478

works (Rao et al., 2018). Whereas, in the case of the proposed criterion that is when both the conditions479
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(b) Using only |misfitk−1 −misfitk| ≤ µ

Figure 10: The progression of misfit and smy in the course of the iteration during the inver-
sion of the fourth example synthetic data.

|smyk−1 − smyk| ≤ τ and |misfitk−1 − misfitk| ≤ µ are satisfied at the same time the inversion480

process yields an acceptable model. This clearly illustrates the advantage of using the proposed stopping481

criterion and its effectiveness in quitting the iterative scheme after optimal number of iterations. To fur-
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(a) The obtained recovered density model (lower panel)
and the corresponding data fit (upper panel).
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(b) Progression of misfit (top panel) and smy (lower
panel) in the course of the iterative procedure.

Figure 11: Late iteration termination (at 16th iteration) inversion result and the corresponding
misfit and smy variation with iteration number for the fourth example in Fig 8.

482

ther illustrate the effectiveness of the proposed combined criterion, the inversion process is allowed to483

continue to the 16th iteration and the model as a result of this is presented in Fig. 11(a). The progression484

of the misfit and smy in the course of the iterative procedure are also given in Fig. 11(b). As it can be485

seen from the result (Fig. 11(b)) the solution obtained at subsequent iterations, after the 11th iteration486
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where the iteration is terminated with the proposed stopping condition, remains virtually unaltered. This487

can also be observed from the misfit and smy variation curves shown in Fig. 11(b), in such that after488

11th iteration the misfit and smy values remain literally unchanged. Moreover, the results also indicate489

the appropriateness of the suggested threshold values µ and τ used in the proposed stopping criterion.490

The other thing one can observe from the results in Fig. 11 is the stability of the developed inversion491

method. This can also illustrate the effectiveness of the newly proposed auto-adaptive regularization492

technique (Eq. (18)) and error weighting function (Eq. (16).493

In general, the presented method was tested with noise contaminated data that are generated from dif-494

ferent geometries, locations, sizes, and densities contrasts of causative bodies and it has successfully495

recovered all models. Moreover, all the reconstructed images of the presented synthetic models are496

compact and sharp. Numerous synthetic data inversions were performed to analyze the impact of the497

density contrast bounds. The obtained results, which are not presented here, suggest that the values of498

density contrast bounds have a significant effect on the results, and hence to recover a feasible model a499

good knowledge of the density bounds is vital. This also pointed out by number of authors, for exam-500

ple Vatankhah et al. (2017); Li et al. (2018) and Utsugi (2019), in the case of inversion methods that501

use non-smooth stabilizers (L1-norm or L0-norm). Provided that the lower and upper density contrast502

bounds are chosen properly, this inversion technique produces acceptable solutions. Therefore, as it was503

demonstrated using synthetic examples, the proposed method has effectively and efficiently recovered504

the synthetic models. Generally, the tests performed on different geometry synthetic models showed that505

the method gives acceptable results for localized multi-sources anomalies at different depths with sharp506

features.507

4 Real Data Test508

To test the method in the real world, where the gravity data is contaminated with noise the improved509

algorithm is implemented on gravity data acquired on different published geologic settings. The first one510

is taken from Green (1975) by carefully digitizing the residual gravity data. As it was given in Green511

(1975) the data was measured over the Guichon Creek batholith in south-central British Columbia. For512

the details about the measurement and geology the reader is referred to Ager et al. (1973) and Ager513

(1972). The residual gravity profile is digitized at a regular intervals of 0.5 km to produce a total of 64514

data points as shown in Fig. 12 (star marks).515
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(a) Using the conventional minimum norm (L2-norm)
smooth stabilizer.
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Figure 12: The observed gravity anomaly over Guichon Creek batholith in south-central British
Columbia (after Green (1975)) and its inversion results. Digitized data (star marks) with calcu-
lated data (solid line) are shown on the top panels of each subfigure. The corresponding recov-
ered density contrast models are shown on the bottom. For comparison, the results obtained by
Ager et al. (1973), which was obtained from drilling and Green (1975) are also presented.

For the inversion, the source volume beneath the anomaly was divided into 64 x 22 square lattice with516

dimensions of each cell being 0.5 km in both X and Z-directions. Based on the a prior information from517

Ager (1972) density values were constrained between the limits ρmin = -150 kg/m3 and ρmax = 0.001518

kg/m3. We start the inversion with a homogeneous initial model in which every block has the same519

zero density and an initial ℓo value of 0.48. The inversion was terminated after 9th iteration because the520

stopping criteria are fulfilled. The resulting model is presented in Fig. 12(b). For comparison, the results521

obtained by Ager et al. (1973) and Green (1975) are also included in Fig. 12(b). In addition, using the522

same inversion parameters we have performed L2-norm regularized inversion and the obtained result is523

shown in Fig. 12(a). The shape, real extent of the anomaly, and depth to bottom from the developed524

method are very close to the true geological feature (Ager et al., 1973) which was obtained from drilling.525

That means the implementation of the presented method resulted in a better solution compared to Green526

(1975) and the conventional L2-norm inversion. Note that, this reasonable result is obtained by using527

only the density contrast limits as a prior information.528

The second test on measured gravity data is carried out using the published data by Last and Kubik529

(1983) over the Woodlawn massive sulfide ore body, New South Wales, Australia. The residual anomaly530

of the area consisting of 61 data measurements, sampled every 5 m, is digitized from Last and Kubik531
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Figure 13: An observed gravity anomaly over the Woodlawn ore body, New South Wales (After
Last and Kubik (1983)) and the its inversion result. The digitized data (star marks) is shown
together with calculated data (solid line) on the top panel. The corresponding recovered density
contrast model after 11th iteration shown on bottom panel and the ore body proved by drilling
is shown with solid line. The recovered body density contrast is represented by the color scale
bar.

(1983). The details about the data measurement and the geology of the area are discussed in Whiteley532

(1981). The model subsurface was divided into 61 by 30 blocks with a dimension of 5 m in both X-533

and Z-direction. Inverse modeling was performed with bounding constraints ρmin = −600 and ρmax534

= 1000 kg/m3. The initial given value for ℓo is 0.6. The final solution was obtained after the 11th
535

iteration. The reconstructed model including the final model of Last and Kubik (1983) are shown in536

Fig. 13. The cross-section of the ore body verified by drilling (Whiteley, 1981) is also shown in the537

figure. The recovered model is approximately coincident with the shape, depth of burial and density of538

the known ore body. Areas of misfits in the current and previous works are believed to be caused by the539

termination of the original data at both ends before it reaches the background level. Thus, this can be540

additional evidence that the presented method can be successfully applied to real data.541

5 Conclusion542

We have presented an alternative gravity inversion method that can produce compact and sharp images543

by using the L0-norm stabilizing functional that helps to model geological features with non-smooth,544

blocky geologic bodies. Physical parameter inequality constraints, and depth weighting are integrated545
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into the procedure. The method also incorporates an auto-adaptive regularization technique, which auto-546

matically determines a suitable regularization parameter at every iteration, and an error weighting func-547

tion that helps to improve both the stability and convergence of the method. One of the strongest sides of548

the proposed auto-adaptive regularization and error weighting matrix is that they are not dependent on a549

priori knowledge of the noise level. Because of that, the method can yield reasonable results even when550

the noise level of the data is not known properly. We implemented a combined stopping criteria and551

illustrated its effectiveness to terminate the iterative inversion process after an optimal number of steps.552

To illustrate the efficiency and the capacity of the proposed procedure numerous synthetic tests were553

done. From these, four synthetic examples were presented. According to the results from these syn-554

thetic examples, the method can be applied for multi-source localized bodies located at different depths555

and having different geometries with sharp features. Furthermore, the method proved to be efficient in556

resolving causative bodies both vertically and laterally and produced compact and sharp images. The557

obtained results also indicate that the method behaves well with different noise levels embedded in the558

data and still retains its stability. This can confirm the robustness and stability of the developed inversion559

method for different noise levels. The method was also tested on measured gravity data. We obtained560

geologically acceptable models and the results showed that our approach is effective and reliable. From561

a computational point of view, the method is efficient and can be easily run on a personal computer just562

in a few seconds. In conclusion, the developed method is advantageous in such that it is stable, efficient,563

and resolves sharp subsurface futures with acceptable resolving capacity. In geophysical exploration564

gravity data are more often used to image complex 3D structures of the subsurface, hence further de-565

velopment of the method to 3D is crucial. Accordingly, future work will deal with the extension of the566

presented method to 3D gravity inversion algorithm.567
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Figure Captions728

Figure 1. A 2-D model of the subsurface under a gravity profile. Gravity stations (Xi) are located729

at the centers of the blocks, indicated by the ▽ symbols.730

Figure 2. Comparison of the minimum support stabilizing function for different values of ε.731

Figure 3. The first synthetic model and the result of the inversion.732

Figure 4. Inversion results, using different ℓo values, for the first synthetic model given in Fig.733

3(a).734

Figure 5. The second example synthetic model and the corresponding inversion result.735

Figure 6. The third synthetic model that comprises two dikes at various depths with the density736

contrast that amounts to 1000 kg/m3 and the corresponding gravity data737

Figure 7. Inversion results of the third synthetic example in Fig. 6.738

Figure 8. The fourth synthetic model example and the corresponding inversion result.739

Figure 9. Inversion result obtained using only the commonly used criterion (|misfitk−1 −740

misfitk|) and the corresponding data fit (upper panels) for the synthetic example in Fig. 8(a).741

The obtained density model shows that compact and sharp model is not approximately achieved742

due to the termination before the iterative procedure has reached convergence.743

Figure 10. The progression of misfit and smy in the course of the iteration during the inversion744

of the fourth example synthetic data.745

Figure 11. Late iteration termination (at 16th iteration) inversion result and the corresponding746

misfit and smy variation with iteration number for the fourth example in Fig. 8(a).747

Figure 12. The observed gravity anomaly over Guichon Creek batholith in south-central British748

Columbia (after Green 1975) and its inversion result. Digitized data (star marks) with calculated749

data (solid line) shown on the top panel. Corresponding recovered density contrast model after750

9th iteration shown on the bottom panel. The recovered body density contrast is represented by751

the color scale bar. For comparison, the results obtained by Ager (1973), which was obtained752

from drilling and Green (1975) are also presented.753
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Figure 13. An observed gravity anomaly over the Woodlawn ore body, New South Wales (After754

Last and Kubik (1983)) and the its inversion result. The digitized data (star marks) is shown755

together with calculated data (solid line) on the top panel. The corresponding recovered density756

contrast model after 11th iteration shown on bottom panel and the ore body proved by drilling is757

shown with solid line. The recovered body density contrast is represented by the color scale bar758
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