Reviewer 1: RC1– Anonymous

Reviewer	Comments/corrections /Questions	Accepted / not Accepted	Authors Response
RC1	General Comments: The authors	Accepted	First of all, we would like to
	present a sparsity-constrained		thank Reviewer RC1 for the
	inversion method. The technical		careful revision of the
	content of the paper is good and have		manuscript. We highly
	both synthetic and field data		appreciated his questions and
	illustrations. However, the paper has		valuable comments. Note: We
	several typo and grammatical errors.		have accommodated nearly all
	The following are my comments on		the suggestions as they were
	the paper.		very important. The applied
			changes are highlighted in
			yellow color in the revised
			manuscript.
RC1	Comments//Questions 1: I suggest	Accepted	We have shortened the title as
	the title be shortened to "Gravity		suggested.
	Inversion Method Using L0-norm		
	Constraint with Auto-adaptive		
	Regularization and Combined		
	Stopping Criteria"		
RC1	Comments//Questions 2: Could you	Accepted	According to the reviewer's
	discuss the possibility of extending the		suggestion, we have
	method to 3D?		incorporated a text about the
			possibility of extending the
			method to a 3D inversion
			algorithm.
RC1	Comments//Questions 3: For the field	Accepted	Because it was extensively
	data examples, can you show the		discussed in previous work
	conventional least square inversion		and because we showed the
	results like the one shown in Fig. 7a.		same using the synthetic data
			we were more focused on
			showing the advantage of the

			new approach compared to
			other previous work. However,
			because it will add value to the
			manuscript we have included
			the least-square solution for
			one of the field data as
			suggested by Reviewer RC1 ,
			for better justification and
			clarification.
RC1	Comments//Questions 4 : For the	Accepted	For all presented synthetic data
	synthetic data examples, is the noise		examples the noise is added in
	added in the gravity data or the model		the gravity data as mentioned
	density? The description in the paper is		in the text. To make this point
	not clear about this point.		clearer we have rewritten
			additional descriptions in the
			revised manuscript.
RC1	Comments//Questions 5: The noise	Not	The noise added to the
	added in the synthetic data is small.	Accepted	synthetic data is comparatively
	Can you show the robustness of the		larger than most of the
	method by adding significant of noise		previously published works
	in the data?		and it took into consideration
			the error budget in measuring
			gravity data presently. That is
			commonly considers the real
			data scenario. Different
			inversion methods have been
			published using different
			approaches for adding
			Gaussian noise. As an example,
			the following works used
			different ways for adding the
			Gaussian noise: Li and
			Oldenburg (1998); Boulanger
			and Chouteau (2001); Cella

			and Fedi (2012); Vatankhah et
			al. (2014). For the first two
			examples, we have used a
			similar computation scheme
			applied by several researchers
			e.g. Li and Oldenburg 1998
			(used 2%); Farquharson, 2008
			(used 1 %); Portniaguine and
			Zhdanov, 2002 (used 2 %);
			Rezaie et al., 2017 (used 3 %).
			Note Please note that we have
			used 4 %. To show the
			robustness of the presented
			method further, for the third
			and fourth examples we used
			another computation scheme of
			the noise which is even more
			strong as we can clearly see
			from the presented Figures in
			the manuscript.
RC1	Comments//Questions 6: What	Accepted	The developed method can
	happens when the causative body is		successfully recover a causative
	big in size but has a sharp boundary?		body which is big in size, with
			a sharp boundary. This is
			because the method uses one
			of the well-known sparse norm
			constraints which is used to
			recover non-smooth or blocky
			geological features. For
			example, Feng et. al 2020
			applied a similar L0 norm
			constraint to estimate the
			basement relief of a rift basin
			consisting of grabens and
			horsts. Moreover, the

	capability of the presented
	<i>method</i> can be demonstrated by
	the first real data example in
	the manuscript where the
	geological structure is <i>b</i> ig and
	also has a sharp boundary.
	Additionally, we have shown a
	synthetic example here below.

(a) Single big size sharp boundary causative synthetic model example

(b) Inversion results of the model in (a) using the presented method.