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Abstract. Global studies of climate change impacts that use future climate model projections also require projections of land 10 

surface changes. Simulated land surface performance in Earth System models is often affected by the atmospheric models’ 

climate biases, leading to errors in land surface projections. Here we run the JULES-ES land surface model with ISIMIP2b 

bias-corrected climate model data from 4 global climate models (GCMs). The bias correction reduces the impact of the climate 

biases present in individual models. We evaluate JULES-ES performance against present-day observations to demonstrate its 

usefulness for providing required information for impacts such as fire and river flow. We simulate a historical and two future 15 

scenarios; a mitigation scenario RCP2.6 and RCP6.0, which has very little mitigation. We include a standard JULES-ES 

configuration without fire as a contribution to ISIMIP2b and JULES-ES with fire as a potential future development. 

Simulations for gross primary productivity (GPP), evapotranspiration (ET) and albedo compare well against observations. 

Including fire improves the simulations, especially for ET and albedo and vegetation distribution, with some degradation in 

shrub cover and river flow. This configuration represents some of the most current earth system science for land surface 20 

modelling. The suite associated with this configuration provides a basis for past and future phases of ISIMIP, providing a 

simulation setup, postprocessing and initial evaluation using ILAMB. This suite ensures that it is as straightforward, 

reproducible and transparent as possible to follow the protocols and participate fully in ISIMIP using JULES. 

1 Introduction 

The Joint UK Land Environment Simulator (JULES) (Clark et al., 2011; Best et al., 2011) is a community-supported and 25 

developed land surface model used by land, hydrological, weather and climate communities. JULES is a configurable code 

base supporting weather, climate and earth system science applications. Here, we describe and evaluate the JULES Earth 

System (JULES-ES) configuration and experimental setup used in the Inter-Sectoral Impact Model Intercomparison Project 

(ISIMIP; Frieler et al., 2017). JULES-ES builds on the JULES-GL7 configuration described in Wiltshire et al. (2020) by 

including processes necessary for representing impacts and terrestrial biogeochemical processes. Whilst we run JULES-ES in 30 

offline mode, it is also coupled to the atmosphere within the earth system model UKESM (Sellar et al., 2019). Climate change 
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impacts are already a feature of everyday life for much of the world, and quantifying these allows us to understand future 

benefits and trade-offs of climate mitigation and adaptation policies. ISIMIP provides a consistent framework for assessing 

impacts using a large ensemble of impacts models across various sectors (Warszawski et al., 2013, 2014). ISIMIP has recently 

completed its second phase, having more than 60 modelling groups contributing simulations to ISIMIP2a (reanalysis-driven 35 

hindcasts) and ISIMIP2b (bias-corrected GCM-driven historical and future scenarios). We present the JULES-ES 

configuration and experimental setup that has contributed to ISIMIP2b and will be the basis for further development in 

subsequent ISIMIP phases. An advantage of using JULES-ES as an offline impacts model is that it is computationally efficient 

compared to the closely aligned land surface scheme used in UKESM1 (Sellar et al., 2019), while using multi-model climate 

ensembles sample scientific uncertainty in land surface forcing that would not be possible within a single climate model 40 

framework. 

This paper briefly describes the changes to JULES-GL7 (Wiltshire et al., 2020) that form the JULES-ES configuration, the 

ISIMIP setup and an evaluation of the arising simulations. JULES-ES has been widely evaluated and applied for global 

biogeochemical modelling (Sellar et al., 2019; Slevin et al., 2017), including in the Global Carbon Budget (Friedlingstein et 

al., 2020). Here we focus on using JULES for impacts applications. Alongside this manuscript, we provide a suite to run 45 

JULES-ES following the ISIMIP2b modelling protocol (Frieler et al., 2017) for tailored impact projections that are consistent 

across sectors such as water and biomes. The suite includes the code to post-process output into ISIMIP formatted netcdf 

output and run the International Land Model Benchmarking (ILAMB) system to allow for quick evaluation (see Text S1). Data 

from the JULES-ES ISIMIP2b suite have been submitted to the biomes and water ISIMIP2b sectors and are available via the 

ISIMIP model archive (https://data.isimip.org/) and provide simulations of the historical and future land surface in the United 50 

Nations Environment Programme (2022) wildfire report. The JULES ISIMIP2b simulations with fire provide the basis for the 

contribution of JULES to the next FireMIP, which will use the ISIMIP3 set-up. The historical simulations and their evaluation 

are shown in section 3, with discussion and conclusions in Sections 4 and 5 respectively. 

 

2 Materials and Methods 55 

2.1 JULES-ES Configuration 

To better represent variation in plant traits and managed land, we extend the standard representation of 5 Plant Functional 

Types (PFTs) in JULES-ES to 13, building on Harper et al. (2016), with 4 managed and 9 natural PFTs. Natural PFTs are 

extended by splitting trees into deciduous and evergreen types and then distinguishing between temperate and tropical 

broadleaf evergreen trees. These additional PFTs represent a wider range of leaf life spans and metabolic capacities. Evergreen 60 

trees typically have less access to nutrients, higher leaf mass per unit area, longer lifespans and low carbon assimilation and 

respiration rates, whereas a deciduous PFT typically has leaves with a higher nutrient concentration, shorter lifespan and lower 

leaf mass per unit area. Tropical broadleaf evergreen trees have lower maximum carbon assimilation rates than temperate trees. 
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The 9 natural PFTs used are: tropical broadleaf evergreen trees (BET-Tr), temperate broadleaf evergreen trees (BET-Te), 

broadleaf deciduous trees (BDT), needle-leaf evergreen trees (NET), needle-leaf deciduous trees (NDT), C4 grasses, C4 65 

grasses, evergreen shrubs (ESh), and deciduous shrubs (DSh). Harper et al. (2016) also updated several parameters required 

for calculating photosynthesis and respiration using the TRY database (Kattge et al., 2011). They also reduced the bias in 

model simulations by tuning parameters relating to leaf dark respiration, canopy radiation, canopy nitrogen, stomatal 

conductance, root depth, and temperature sensitivities of the maximum carboxylation rate of Rubisco (Vcmax) based on 

available observations. The 4 managed PFTs are C3 and C4 crop and pasture PFTs and are functionally similar to natural 70 

grasses but, in the case of crops are assumed not to be nitrogen limited and litter carbon is removed as a simple representation 

of crop harvest. Both crop and pasture surface types undergo land-use change according to externally forced time-varying land 

use. Within the respective crop/pasture fraction, only the C3 and C4 crop/pasture PFTs are allowed to grow, with the area of 

each determined by the TRIFFID dynamic vegetation module (Burton et al., 2019).  

 75 

Outside of the managed land area, only the nine natural PFTs (including natural C3 and C4 grasses) can grow in the remainder 

of the grid box once the non-vegetated surfaces have been accounted for (urban, ice, lakes). As the prescribed crop or pasture 

fraction increases with land-use change, natural vegetation is removed from the portion of the grid box into which agriculture 

has expanded, representing anthropogenic land clearance. Conversely, when crop and pasture areas are reduced, the natural 

PFTs are allowed to recolonize the vacated grid box fraction. Bare soil occupies any remaining space once the vegetation 80 

dynamics have been simulated. Simple representations of fertilisation and harvesting are applied to the crop PFTs, but 

otherwise these are physiologically identical to the natural grasses. After accounting for land-use, the fractional coverage and 

biomass of each PFT within a grid box is determined by the TRIFFID dynamic vegetation model. Inter-PFT competition is 

based on vegetation height, with the taller vegetation shading and therefore dominating other PFTs (Harper et al., 2018). 

 85 

The other major change introduced in JULES-ES is a representation of nitrogen and nutrient limitation effects on ecosystem 

carbon assimilation. The nitrogen component of JULES is described in Wiltshire et al. (2021). In brief, JULES-ES represents 

all the key terrestrial N processes. Inputs to the land surface are via biological fixation, fertilization and nitrogen deposition, 

with losses from the land surface occurring via leaching and gas loss, with Nitrogen deposition being externally provided to 

the model. JULES simulates a nitrogen-limited ecosystem by reducing the net primary productivity if there is insufficient 90 

available N to satisfy plant N demand. Any excess carbon is added to the plant respiration. The soil biogeochemistry is based 

on the representation of the four-pool RothC soil carbon model (Clark et al., 2011) consisting of decomposable plant material 

(DPM), resistant plant material (RPM), microbial biomass (BIO), and humus (HUM). For each soil carbon pool there is an 

equivalent soil nitrogen pool (Wiltshire et al., 2021). Nitrogen transfers between the organic and inorganic nitrogen pools 

depend on decomposition rates and the C to N ratio of the organic pool. 95 
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Another important change is the inclusion of a fire module. Fire is simulated in JULES by the fire model INFERNO 

(INteractive Fire and Emission algoRithm for Natural envirOnments; Mangeon et al. (2016)). Burned area is calculated from 

flammability and ignitions. Temperature, saturation vapour pressure, relative humidity, precipitation, together with soil 

moisture and fuel load from JULES give flammability by PFT, prescribed population density from HYDE3.2 (Goldewijk et 100 

al., 2017) gives human ignitions, and prescribed lightning from LIS/OTD version 2.3.2015 (Cecil, 2006) gives natural 

ignitions. Here we use INFERNO coupled to the dynamic vegetation model TRIFFID (Burton et al., 2019), enabling carbon 

cycle feedbacks from fire onto the land surface via vegetation mortality, regrowth, and burnt litter fluxes. Recent updates to 

INFERNO allow fire mortality to vary by PFT, and updates to the representation of land-use and PFTs in JULES allows for 

reduced burning in C3 and C4 crop PFTs (Burton et al., 2020), based on global trends of agricultural fire suppression (Bistinas 105 

et al., 2014; Andela et al., 2017). 

 

2.2 Modifications for ISIMIP2b 

In the ISIMIP JULES-ES configuration the TRIFFID period has been reduced from a 10-day to a 1-day period in order to 

allow a shorter restart periods necessary to meet the diagnostic requirements of ISIMIP (a large number of variables on short 110 

temporal scales). A daily TRIFFID period also allows the vegetation dynamics to respond more realistically to variations in 

plant productivity on shorter timescales, although the effect of this change is minimal in test historical runs. 

 

Another key difference to the standard setup of JULES is the use of daily meteorological driving data. JULES needs a model 

timestep of no more than 1 hour to accurately simulate the diurnal cycle and exchange of heat, water and momentum and avoid 115 

numerical instabilities. In the ISIMIP experimental setup, we use the internal disaggregator (Williams and Clark, 2014) to 

calculate driving data values at the model timestep of 1 hour, based on the method used by the IMOGEN model (Huntingford 

et al., 2010). The diurnal cycle of downward shortwave radiation is calculated from the position of the sun in the sky. 

Temperature is calculated from a sinusoidal function with a maximum 0.15 of a daylength after local noon, normalised by the 

diurnal temperature range. Downward longwave radiation is a linear function of temperature, and specific humidity is kept 120 

below saturation at each timestep. Precipitation is considered to occur in a single event, with a globally specified ‘duration’ 

parameter (6h for convective rainfall, 1h for large-scale rainfall, convective snowfall and large-scale snowfall). Given that this 

event does not, by construction, overlap with midnight GMT, on average, this produces a spurious trapezoidal diurnal cycle, 

which is zero at midnight GMT (Williams and Clark, 2014). Precipitation above 350 mm/day is redistributed. Note that 

convective precipitation occurs only on a fraction of the grid box (Best et al., 2011), set to 30% in the ISMIP2b runs, and 125 

within this fraction is modelled as a negative exponential distribution (Johannes Dolman and Gregory, 1992). Therefore, the 

grid box average intensity is not the same as the effective intensity at a point. Given the strong effect of intensity on canopy 

interception and runoff, the water cycle in the model is sensitive to the duration parameter choices (Williams and Clark, 2014). 
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See Figure S1 for plots showing that using the disaggregator has little effect on vegetation that we would expect to be 

influenced by rainfall. 130 

 

2.3 ISIMIP2b protocol 

The ISIMIP2b experiments focus on understanding different levels of mitigation. They are consistent with the international 

commitment made under the Paris Agreement to stabilise global warming at well below 2°C, relative to pre-industrial mean 

temperatures. ISIMIP2b uses simulations from the Coupled Model Inter-comparison Project 5 (CMIP5), using an historical 135 

scenario (1860-2006) and the RCP2.6 and RCP6.0 future concentration pathways (2006-2099) to represent a higher ambition, 

lower temperature outcome and a low ambition pathway respectively (Riahi et al., 2017). Land-use data and population density 

are based on the Shared Socioeconomic Pathway (SSP2) scenario and applied to RCP2.6 and RCP6.0 simulations. To capture 

a range of climate sensitivities, four CMIP5 GCM driving models are chosen: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-

LR and MiROC5. The GCM driving data is global bias-corrected daily data at 0.5° resolution (Hempel et al. (2013), Lange 140 

(2018) and Frieler et al. (2017)). The bias-correction methodology adjusts multi-year monthly mean distribution for the period 

1979 to 2013, using CMIP5 RCP8.5 post-2006 (the end of CMIP5 “historic” period), such that trends and inter-annual 

variability are preserved in absolute and relative terms for temperature and non-negative variables respectively Lange (2018). 

Transfer functions are used to adjust the distributions of daily anomalies from monthly mean values.  The ISIMIP2b bias 

correction includes humidity as well as shortwave and longwave radiation using quantile mapping. ISIMIP2b bias-correction 145 

methods adjust distributions independently for each variable, grid cell and month, preserving the statistical dependencies 

between variables, in space and changes over time. The bias correction approach preserves the trends (and therefore 

sensitivities) from different GCMs but removes absolute biases over the reference period. Each GCM therefore has a different 

variability and simulated climate outside of the reference period. Some small biases remain after bias-correction, particularly 

in precipitation (Figure S2), where biases are a small fraction of total local rainfall but can affect precipitation particularly in 150 

the South America (Figure S3). As part of the setup provided here, we include code for preparing JULES data for submitting 

to ISIMIP and ensuring it conforms to the strict protocols (see Text S1) and the ILAMB system for rapid evaluation of the 

simulations (see Text S2). 

 

2.4 Model Evaluation 155 

We evaluate the model for key impacts sectors, and use the International Land Model Benchmarking (ILAMB) tool (Collier 

et al., 2018) to assess model performance for GPP, ET, runoff and albedo. ILAMB evaluates performance against observations 

from remote sensing, reanalysis data and fluxnet site measurements and produces graphical and statistical scores of model 

results. We compare model GPP against the upscaled fluxnet product from Jung et al. (2011), ET against GLEAM (Miralles 

et al., 2011) and MODIS (Mu et al., 2011) estimates, runoff against Dai and Trenberth (2002), albedo against the GEWEX 160 
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SRB radiation observations (Stackhouse et al., 2011) and burnt area against Global Fire Emission Database version 4 with 

small fires (GFED4s; Van Der Werf et al. (2017). As ILAMB doesn’t include vegetation cover evaluation, we also include the 

Manhattan Metric (Kelley et al., 2013) comparison against from ESA CCI Land Cover tree, shrub, wood and grass cover 

(Harper et al., 2022). Results and further details of the ILAMB and vegetation cover analysis are provided in Text S2. We 

evaluate the historical simulations separately for each GCM because the bias correction preserves inter-annual differences 165 

between GCMs. We conduct evaluation over common time periods between observations and simulation using the historic 

and, for observational periods beyond the end of 2006, RCP6.0. 

 

2.5 The experimental suite 

We provide a full setup for running the ISIMIP2b simulations using JULES-ES in the form of the suite u-cc669 available via 170 

the Met Office Science Repository Service (MOSRS - https://code.metoffice.gov.uk/trac/roses-u see data availability section 

for information). The bias corrected driving data is available from ISIMIP at https://www.isimip.org/gettingstarted/input-data-

bias-adjustment/. We also use the following datasets from ISIMIP. Where preprocessing of these is required to use this data 

within JULES, this preprocessing code is also part of the suite. 

• CO2 concentration 175 

• Future land-use patterns 

• Nitrogen deposition 

• Land-sea mask 

TRIP is used for river routing in JULES, therefore a TRIP 0.5° river routing ancillary is also required and available from 

http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/. 180 

 

3 Model evaluation 

3.1 Water 

We evaluated the water cycle using runoff derived from Dai and Trenberth (2002) for the 50 largest river catchments. Estimated 

observed mean basin runoff combines river flow measurements at downstream gauge stations with a river flow model to 185 

estimate the flow at the river mouth. By assuming there are no losses from the river, we calculated the long-term mean, basin 

averaged runoff by dividing the river flow at the river mouth by the basin area.  

 

Particularly in temperate regions north and south of the equator, simulations using all 4 sets of driving data show similar biases. 

However, differences between the driving datasets are greatest in tropical or sub-tropical river catchments (Figure 1). This is 190 
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particularly evident in the Amazon basin, where mean runoff biases range from approximately 0 in the simulation driven by 

HADGEM2-ES, to more than -0.6mm day-1 in the simulation driven by IPSL-CM5A-LR. Strong variations between the 

simulations are also seen in the Brahmaputra basin (Figure 2). The general underestimate of runoff in the higher latitudes may 

be due to the treatment of moisture infiltration into partially frozen soils (see below) but could also be caused by biases in 

precipitation estimates due to the gauge “under-catch” of snow (Adam and Lettenmaier, 2003). In arid and semi-arid basins 195 

river flow and runoff tends to be over-estimated, which could be due to anthropogenic water extraction which 

disproportionately affects groundwater depletion (Richey et al., 2015). 

 

Figure 2 compares the long-term monthly mean river flow (1980-2014 inclusive where observations are available) over the 

six largest rivers to those of downstream observations in Dai (2021). All the simulations reproduce the overall seasonal river 200 

flow over the Amazon. After the wet season, the modelled river flows decline earlier than observed and the simulated river 

flows at "low water" are too low. This could be due to too much evaporation in the drier months (see ET for JJA in Figure S4) 

and/or the simulated speed of flow through the soil and/or river channel being too fast. Though GFDL-ESM2M and IPSL-

CM5A-LR driving precipitation data also has a dry bias during the dry season (Figure S3). All simulations over-estimate river 

flow over the Congo, mainly due to over-estimates in the rainy months. This could be driven by too little evaporation from the 205 

vegetation canopy or from flooded areas. The simulations reproduce the seasonal river flow over the Orinoco well. The timings 

of peak river flow for the Chiangjiang and Brahmaputra are well simulated although the amplitudes are too low. Dams, which 

we do not model, are likely to affect the observed seasonal cycle. The simulated river flow over the Mississippi lags 

observations by several months. This lag is also evident over many high latitude basins (not shown). The observed river flow 

peak is mainly driven by Spring melt, whereas the simulated river flow peak is in line with that of precipitation. This is due to 210 

this configuration allowing significant soil infiltration of snow melt when the soil surface is mainly frozen, rather than resulting 

in surface runoff. This also may result in the underestimate of annual river flow because once the water has infiltrated the soil 

it may then be evaporated. 

 

3.2 Surface fluxes 215 

Global Gross Primary Productivity (GPP) is 134-137 PgC/yr, depending on driving data, which is above the estimate off IPCC 

AR6 (Canadell et al., 2021) of 113 PgC yr-1, but agrees well with the estimates of 146 ± 21 PgC/yr of Cheng et al. (2017; 

Table S1). Net Biome Productivity (NBP) is 0.94-1.46 PgC/yr between 2011-2020, within the 1.0-2.8 PgC/yr range estimated 

by the Global Carbon Budget (Friedlingstein et al., 2022). All simulations show positive GPP biases in similar regions, such 

as central and southern Africa, south of the Himalaya and east towards Bangladesh and Myanmar compared to Jung et al. 220 

(2011) observations (Figure 3). South America is a more complicated picture with Brazil broadly split between negative GPP 

to the northeast and positive GPP to the country's southeast. For Brazil, the ET bias has a more northwest – southeast split, 

with the northwest having a slightly negative bias and the southeast more positive. The northwest bias in ET and the bias in 
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GPP in South America is more prominent and wide-spread in early wet season (September-November) when driven by climate 

data from GFDL-ESM2M and IPSL-CM5A-LR (see Figure S4) and is due to a longer dry season in both sets of driving data 225 

(Figure S3), with rains starting in October rather than September. The far north of Columbia, Bolivia and Argentina also have 

a negative bias in both GPP and ET across the simulations. Australia also has a north-south split with a slight positive ET bias 

to the north and the inverse to the south. 

 

Albedo (Figure 3right column) generally shows a positive bias across most regions and simulations. However, there are small 230 

regions with a negative bias, for example, south of the Sahel and small regions at higher northern latitudes. Eastern Siberia has 

a positive bias in all simulations (see Discussion). 

 

3.3 Biomes 

All simulations show similar vegetation cover patterns that largely follow observations, capturing high tree cover fractions in 235 

boreal and tropical forests, grass cover in tropical, temperate and boreal grasslands and bare ground in arid regions (Figure 4). 

There are, however, some biases common to all simulations. Tree cover fraction is too high globally, with a simulated range 

of 4.97-5.31Mkm2 higher than observations depending on driving data (Table S2). In the observations, shrub and grasses 

dominate eastern Siberian Taiga in the model instead of tree cover. There is also slightly too much shrub cover in tropical 

forests at the expense of tree cover, contributing to a global bias of 1.22-1.31 Mkm2. Conversely, simulated tropical tree cover 240 

is too high in savanna regions, giving the impression of more continuous and less fragmented forests across the tropics (Figure 

4). Boundaries between temperate and warm temperate woodlands/forests and tropical forests are too sharp, suggesting 

JULES-ES does not capture processes in temperate woodland transition. Savanna and grasslands tend to be too narrow, with 

more bare soil in the models in semi-arid regions such as southern Africa, the Mojave desert and the Sahel. 

 245 

3.4 Fire 

Burnt area is similar across all four simulations (Figure 5). The model simulates present-day burnt area well compared to 

satellite observations, with the global total burnt area average for 2000-2020 observed by MODIS CCI v5.1 as 4.55 Mkm2, 

and the model simulating between 3.94-4.43 Mkm2 depending on driving data (Table S3). The model captures the high burnt 

area in southern hemisphere Africa - a common area of low bias in global fire models (Hantson et al., 2020). The model also 250 

performs better than other FireMIP models at simulating the high burnt areas in northern hemisphere Africa (Hantson et al., 

2020), though fire is still lower than in observations. This is partly due to very low simulated burnt areas in Nigeria's Guinean 

savanna, which Kelley et al. (2019) show is likely inevitable in global parameterisations of population density and agricultural 

drivers of burnt area. Other regional biases include too high burnt area in South America and too low in Eurasia and northern 

Australia (Figure 5). 255 
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Fire is simulated well in savanna bands (15 degrees north and south), which improves the representation of tree cover by 

reducing the positive bias compared to observations (Figure 6; Table S2).  The inclusion of interactive fire has the overall 

effect of decreasing simulated global tree cover (from 38.66-39, depending on driving data to 34.32-35.65 Mkm2) to more in 

line with observations (34.86 Mkm2) and increasing grasses and bare soil. In the tropics, this tends to bring the modelled 260 

“forest” (areas dominated by trees) more in line with the observations, with high simulated tree cover restricted to observed 

forested areas. However, including fire does reduce tree cover in Savanna areas (Figure S5), particularly in Africa, which 

diminishes performance in spatial distribution (Table S2). Fire reduces shrub cover to well below observations (Table S2), 

though given the well documented issues in distinguishing tall and short woody vegetation (Gerard et al., 2017), it is probably 

more meaningful to assess total woody cover. Here, including fire reduces model bias (from 6.19-6.59 to -3.60- -2.25 Mkm2) 265 

and improves the spatial pattern (Table S2). Including fire reduces the global bias of high GPP, bringing global total down by 

~2 PgC/yr across all simulations (Table S1). However, fire does slightly degrade GPPs spatial pattern (Table S1). Including 

fire also reduced global NBP (Table S1) by 0.12-0.38 PgC/yr, depending on driving data.  

 

Fire alleviates some of the high bias in ET, improving the models’ overall performance (Table S4). In semi-arid areas we 270 

already over-estimate river flow (in part probably due to human extraction). The addition of fire lowers ET, thereby increasing 

river flow bias in semi-arid regions, which slightly degrades overall runoff performance (Figure S6). Fire also improves spatial 

pattern of albedo (Table S5), though seasonal performance decreases. This is in line with well-documented biases in fire 

seasonal cycles across all global fire models (Hantson et al., 2020, 2016), including in previous JULES configurations 

incorporating INFERNO (Burton et al., 2019, 2022). 275 

 

4 Discussion 

We have presented simulations of the JULES-ES land surface model, run according to the ISIMIP2b protocols using bias-

corrected climate model data from 4 GCMs for the historical period. The configuration will be used to perform simulations 

under 2 future scenarios (RCP2.6 and RCP6.0). The JULES-ES ISIMIP2b configuration simulates the surface fluxes (GPP, 280 

ET, albedo) reasonably well. Including fire improves the ET and albedo, but not the GPP which is biased high. Including fire 

in the simulations currently degrades runoff (Table S6). 

 

The configurations of JULES can capture the annual cycle of many of the largest rivers, although high latitude rivers and 

managed rivers are generally not captured as well. Including structural hydrological developments, such as dams and 285 

reservoirs, would likely improve the simulations of managed rivers. Previously, Falloon et al. (2011) found that GCM 

precipitation biases contribute to errors in TRIP river flows for some basins in both HadGEM1 and HadCM3. In this study, 
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we use bias-corrected data which reduces these errors, meaning that differences in JULES-ES results between the driving 

models are due to differences in inter-seasonal or inter-annual variability between driving models (e.g. Figure S3). However, 

errors in evapotranspiration, runoff generation or other missing processes e.g., snow accumulation and snow melt processes, 290 

could also contribute. Uncertainty in precipitation due to the sparsity of observation networks and the under-catch of solid 

precipitation for high latitude (Falloon et al., 2011) and altitude rivers e.g., in the Himalaya (Mathison et al., 2015), means that 

it is difficult to interpret model performance in these basins.  

 

Some basins show the same bias direction in runoff (Figure 1) and ET (Figure 3), notably that the Amazon is too dry for both 295 

variables and the Nile too wet, whereas we would expect opposing biases if they were from land surface simulation. In these 

basins, there is a dry and wet bias (respectively) in the driving precipitation data (Figure S2). HadGEM2-ES and IPSL-CM5A-

LR have particularly dry driving data in the Amazon, and results in the driest runoff and ET in the simulation. This translates 

to biases in GPP (Figure 3) and vegetation cover (Figure 4). So, while ISIMIP bias-correction reduces climate model biases 

compared to those in an Earth System Model (see evaluation in Sellar et al. (2019)) or when run with a none-bias corrected 300 

climate (Burton et al., 2022), they are not eliminated.  

 

Land cover is an important factor for the surface fluxes. Grassy regions for example, correlate with the regions of positive ET 

bias. The annual mean global GPP biases are small, but this is not the case for GPP on a seasonal timescale and over a smaller 

region such as South America. The albedo and land cover area bias are also closely related. For example, the number of trees 305 

may lead to a higher or lower albedo. This is particularly important at high latitudes where there is snow cover, for example 

the positive albedo bias in Eastern Siberia is because JULES simulates too few trees and too much grass there. This positive 

bias in grass cover, affects the snow cover in these regions, which in turn affects the albedo. JULES represents the bending 

and partial burying of vegetation by snow (Ménard et al., 2014), however the settings controlling this interaction described in 

Sellar et al. (2019) have been tuned for the coupled UKESM1 model rather than the standalone JULES model. Eastern Siberia 310 

is a vulnerable region which has experienced increased climate-related impacts, including heatwaves (Ciavarella et al., 2021) 

and fires (Kelley et al., 2019); it is very likely that climate change will exacerbate these feedbacks by the end of the 21st 

century (United Nations Environment Programme, 2022). Developments by (Mercado et al., 2018) which improve the 

representation of plant acclimation to thermal stress may improve spatial variations across different vegetation types in JULES. 

 315 

In general, the simulations with fire improve the vegetation distribution. Developing JULES to include these processes will 

improve simulations for these areas and properly capture the climate impacts there. The results show that there are too few 

trees compared to observations for western parts of Brazil. The simulations with fire on improve tree cover in savanna, which 

is consistent with the findings of Lasslop et al. (2016) and Staver et al. (2011), however there is still ongoing discussion around 

how much impact fire really has on tree cover in the savanna compared to other dry disturbances such as wind throw, heat 320 

stress, rainfall distribution (Veenendaal et al., 2018; Brovkin et al., 2009). 
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5 Conclusions 

We have presented a configuration of JULES-ES set up to run and generate output following the ISIMIP protocols. We provide 

a suite for running the simulations that includes driving data, ancillaries, postprocessing and first look evaluation (ILAMB) 325 

for any phase of ISIMIP. Outputs using this set up were submitted to the biomes and water ISIMIP2b sectors, and our 

evaluation helps inform any difference between JULES-ES and other models participating in ISIMIP2b. The suite also 

provides a starting point for further JULES-ES developments. We include a fire set up for running with INFERNO to include 

representation of fire in anticipation of ISIMIP3 which will include a Fire Sector.  We show that including fire has an impact 

on model results and is important to include in simulations of climate impacts. Therefore, while documentation of the 330 

configuration without fire will be useful for anyone using previously submitted results, we recommend using the configuration 

with fire in future JULES-ES development. Future work using this configuration and new phases of ISIMIP will focus on 

using the full benefit and extent of the ISIMIP ensemble to enable more in-depth exploration of climate impacts together with 

the quantification of earth system uncertainties, co-benefits of mitigation and adaptation to climate change.  

 335 

Data and code availability 

The JULES-ES for ISIMIP configuration (based on JULES version 5.5) is preserved at 

https://code.metoffice.gov.uk/trac/roses-u/browser/b/k/8/8/6 (fire off) and https://code.metoffice.gov.uk/trac/roses-

u/browser/c/f/1/3/7 (fire on). JULES and associated configurations are freely available for non-commercial research use as set 

out in the JULES user terms and conditions (http://jules-lsm.github.io/access_req/JULES_Licence.pdf). For a comprehensive 340 

guide on how to access, install and run the configurations used in this research, we direct the reader to Appendix A of Wiltshire 

et al. (2020) available at https://gmd.copernicus.org/articles/13/483/2020/#section6  

The data and code used for the evaluation of the JULES-ES outputs with iLAMB in the study are available at 

https://www.ilamb.org/datasets.html and https://github.com/rubisco-sfa/ILAMB with a BSD 3-clause “New” license 

(https://github.com/rubisco-sfa/ILAMB/blob/master/LICENSE.rst)  345 

The JULES model data output used in the model evaluation in the study are available at https://data.isimip.org/, using the 

search tag ‘jules-es-55’ https://data.isimip.org/search/query/jules-es-55/ with a Creative Commons Attribution 4.0 

International license (https://creativecommons.org/licenses/by/4.0/) 
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Figure 1: Multi-year mean bias of catchment scale runoff simulated by JULES driven by 4 sets of climate driving data compared to 

runoff derived from (Dai, 2021). Number of years of observations contributing to the multi-year mean varies depending on 560 
catchment, however, observations within the period 1980-2006 were accepted. ISIMIP2b forcing data derived from 4 CMIP5 GCMs: 

GFDL-ESM2M; HadGEM2-ES; IPSL-CM5A-LR; MIROC5. 
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Figure 2: Comparison of the simulated long term monthly mean river flow with observations (Dai, 2021) for the six largest rivers: 565 
a) Amazon (Obidos, -1.95N,-55.51E); b) Congo (Kinshasa, -4.3N, 15.3E); c) Orinoco (Pte Angostu , 8.15N,-63.6E); d) Changjiang 

(Datong, 30.77N, 117.62E); e) Brahmaputra (Bahadurabad, 25.18N, 89.67E); f) Mississippi (Vicksburg 32.31N, -90.91E). The 

observations are over the time period 1980 to 2010. 
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 570 

Figure 3: Multi-year annual mean for GPP (column 1), Evapotranspiration (Column 2) and Albedo (column 3) for observations 

(row 1) and subsequent rows show the anomaly compared with observations for each set of ISIMIP2b forcing data derived from: 

GFDL-ESM2M (row 2), HADGEM2-ES (row 3), IPSL-CM5A-LR (row 4) and MIROC5 (row 5). Observations are downloaded 

from iLAMB (https://www.ilamb.org/doc/ilamb_fetch.html) and the datsets shown are GBAF for GPP (Jung et al., 2011), GLEAM 

for ET ((Miralles et al., 2011) and GEWEX.SRB for Albedo (Stackhouse et al., 2011). 575 
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Figure 4: Observed vegetation fractional cover, derived from ESACCI Land Cover (v2.0.7) for 2010 (K. L. Harper et al., 2022), for 

(left to right) tree, shrub, grass and unvegetated (bare) fraction. Subsequent rows show the difference between model (without fire) 

and ES CCI observations for each set of driving data. 580 
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Figure 5: Present day burned area fraction (2000-2020) from and Fire CCI observations (a) and modelled by JULES driven by 

HadGEM2-ES (b), IPSL-CM5A-LR (c), MIROC5 (d), GFDL-ESM2M (e) 

 585 
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Figure 6: Modelled vegetation cover without fire (left) and with fire (middle) compared to observations from ESA CCI Land Cover 

and Fire (right). Dark green, light green, light brown, dark brown indicates tree, shrub, grass and unvegetated fraction of the latitude 

band. Black hashing indicates burnt area, with observations taken from MODIS CCI v5.1 (Chuvieco et al., 2018). In “Model with 

fire”, burnt area from the 4 driving models is shown by hatching at 4 different angles. 590 
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