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Abstract. TS1 CE2ACM-CAP provides a synergistic best-
estimate retrieval of all clouds, aerosols, and precipitation
detected by the atmospheric lidar (ATLID), cloud-profiling
radar (CPR), and multi-spectral imager (MSI) aboard Earth-
CARE (Earth Cloud Aerosol and Radiation Explorer)CE3 .5

While synergistic retrievals are now mature in many con-
texts, ACM-CAP is unique at providing a unified retrieval
of all hydrometeors and aerosols. The Cloud, Aerosol, and
Precipitation from mulTiple Instruments using a VAriational
TEchnique (CAPTIVATE) algorithm allows for a robust ac-10

counting of observational and retrieval errors and the contri-
butions of passive and integrated measurements and for en-
forcing physical relationships between components (e.g. the
conservation of precipitating mass flux through the melting
layer).15

We apply ACM-CAP to EarthCARE scenes simulated
from numerical weather model forecasts and evaluate the re-
trievals against “true” quantities from the numerical model.
The retrievals are well-constrained by observations from ac-
tive and passive instruments and overall closely resemble20

the bulk quantities (e.g. cloud water content, precipitation
mass flux, and aerosol extinction) and microphysical prop-
erties (e.g. cloud effective radius and median volume diame-
ter) from the model fields. The retrieval performs best where
the active instruments have a strong and unambiguous sig-25

nal, namely in ice clouds and snow, which is observed by
both ATLID and CPR, and in light to moderate rain, where
the CPR signal is strong. In precipitation, CPR’s Doppler
capability permits enhanced retrievals of snow particle den-

sity and raindrop size. In complex and layered scenes where 30

ATLID is obscured, we have shown that making a simple as-
sumption about the presence and vertical distribution of liq-
uid cloud in rain and mixed-phase clouds allows improved
assimilation of MSI solar radiances. In combination with a
constraint on the CPR path-integrated attenuation from the 35

ocean surface, this leads to improved retrievals of both liq-
uid cloud and rain in midlatitude stratiform precipitation.
In the heaviest convective precipitation, both active instru-
ments are attenuated and dominated by multiple scattering;
in these situations, ACM-CAP provides a seamless retrieval 40

of cloud and precipitation but is subject to a high degree
of uncertainty. ACM-CAP’s aerosol retrieval is performed in
hydrometeor-free parts of the atmosphere and constrained by
ATLID and MSI solar radiances. While the aerosol optical
depth is well-constrained in the test scenes, there is a high 45

degree of noise in the profiles of extinction. The use of nu-
merical models to simulate test scenes has helped to show-
case the capabilities of the ACM-CAP clouds, aerosols, and
precipitation product ahead of the launch of EarthCARE.

1 Introduction 50

The scientific goals of the EarthCARE (Earth Cloud Aerosol
and Radiation Explorer) mission are to measure the global
distribution of clouds, aerosols, and precipitation, to esti-
mate their quantities and microphysical properties, and to
quantify their radiative effects (Wehr et al., 2023). Within 55
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the European Space Agency (ESA) EarthCARE produc-
tion model (Eisinger et al., 2023), the ACM-CAP prod-
uct provides the best-estimate retrieval of clouds, aerosols,
and precipitation from the synergy of the atmospheric li-
dar (ATLID), cloud-profiling radar (CPR), and multispectral5

imager (MSI). The retrieval framework underlying ACM-
CAP is the Cloud, Aerosol, and Precipitation from mulTiple
Instruments using a VAriational TEchnique (CAPTIVATE;
Mason et al., 2017, 2018) algorithm, which is configurable
for any combination of vertically pointing radars, lidars, and10

radiometers. ACM-CAP exploits the complementary prop-
erties of EarthCARE’s Doppler-capable CPR, high-spectral
resolution ATLID, and solar and thermal-infrared MSI chan-
nels to simultaneously retrieve all classes of hydrometeors
and aerosols in each profile and takes account of measure-15

ment errors and physical assumptions to report the uncer-
tainties associated with all retrieved quantities for interpreta-
tion by users and downstream products. As is more fully de-
scribed in Eisinger et al. (2023), ACM-CAP forms the basis
for subsequent EarthCARE products quantifying the cloud–20

aerosol–precipitation interactions with radiation by means of
radiative transfer modelling for estimating broadband fluxes
and heating rates (ACM-RT; Cole et al., 2022) and the
top-of-atmosphere radiative closure assessment (ACMB-DF;
Barker et al., 2023) when compared against EarthCARE’s25

broadband radiometer (BBR).
Owing to the long-term success of the Afternoon Train

(A-Train) of active and passive spaceborne remote sensors,
algorithms exploiting the synergy of radars, lidars, and ra-
diometers to retrieve the properties of ice clouds and snow,30

rain, or liquid clouds can now be consideredCE4 mature.
The active sensors in the A-Train facilitated an unprece-
dented survey of the atmosphere (Stephens et al., 2018), with
the 94 GHz cloud-profiling radar aboard CloudSat (Stephens
et al., 2002), detecting ice clouds and snow, drizzle, and light35

rain, and the 532 nm Cloud–Aerosol Lidar and Orthogonal
Polarization (CALIOP) aboard Cloud–Aerosol Lidar and In-
frared Pathfinder Satellite Observation (CALIPSO; Winker
et al., 2003), which is sensitive to optically thin ice clouds,
liquid clouds, and aerosols. They were complemented by40

two radiometers aboard Aqua, namely the Moderate Res-
olution Imaging Spectroradiometer (MODIS; Salomonson
et al., 2002), providing solar and infrared radiances from
clouds and aerosols across a wide swath, and the Clouds and
the Earth’s Radiant Energy System (CERES; Wielicki et al.,45

1998) broadband radiometer, measuring radiative fluxes at
the top of the atmosphere. Single-instrument retrievals can
be especially subject to uncertainties in complex or layered
scenes – a limitation that multiple-instrument synergies help
to overcome. For example, MODIS cloud retrievals are sub-50

ject to biases in the presence of drizzle (e.g. Zhang and Plat-
nick, 2011; Painemal and Zuidema, 2011), in mixed-phase
clouds (e.g. Khanal and Wang, 2018), and in layered cloud
scenes (e.g. Chang and Li, 2005; Naud et al., 2006). Sim-
ilarly, CloudSat rain retrievals are subject to uncertainties55

due to liquid clouds, which contribute to radar attenuation
(Leinonen et al., 2016; Matrosov, 2007; Matrosov et al.,
2008), and CloudSat ice and snow retrievals are often blind
to the presence of supercooled liquid cloud (Battaglia and
Delanoë, 2013; Battaglia and Panegrossi, 2020). In synergis- 60

tic retrievals, complementary measurements can be used to
constrain multiple classes of hydrometeors simultaneously;
for example, CloudSat and MODIS solar radiances are used
to retrieve rain (Lebsock et al., 2011) and cloud water con-
tent (Austin et al., 2009; Leinonen et al., 2016). Synergistic 65

retrievals can also be used to constrain additional properties
within a class of hydrometeors; in ice clouds and snow, the
complementary constraints of the radar reflectivity factor and
lidar backscatter provide sufficient information to retrieve
two parameters of the particle size distribution. DARDAR- 70

CLOUD (Delanoë and Hogan, 2008, 2010) uses CloudSat,
CALIPSO, and MODIS thermal infrared radiances to re-
trieve the profile of ice cloud and snow, with infrared radi-
ances providing an integrated constraint on ice microphysical
properties near the cloud top. Building upon the heritage of 75

A-Train retrievals, and specifically on the optimal estimation
approach used by DARDAR-CLOUD, ACM-CAP will take
advantage of EarthCARE’s on board synergy to assimilate
all available ATLID, CPR, and MSI measurements and to re-
trieve all combinations of clouds, aerosols, and precipitation 80

simultaneously.
While the A-Train has yielded many single-instrument and

synergistic retrievals, each product has been concerned with
a subset of the full range of hydrometeors or aerosols in the
atmosphere; therefore, several data products must be com- 85

bined in order to reconstruct the full distribution of clouds,
aerosols, and precipitation in the atmosphere and estimate
their combined effects on the global radiation budget. The
prominent effort to collate the A-Train retrievals and radia-
tive transfer products based on composites of retrievals (Hen- 90

derson et al., 2013) in the context of radiative flux measure-
ments from CERES is the CALIPSO–CloudSat–CERES–
MODIS product (CCCM; Kato et al., 2010, 2011). CCCM
has been widely used to link profiles of clouds and aerosols
to atmospheric heating rates and cloud radiative effects (e.g. 95

Hill et al., 2018; Ham et al., 2017); however, a challenge
when combining retrievals is that the different products are
neither necessarily based on consistent physical assumptions,
nor do they account for consistent contributions from each
measurement. As a consequence, the uncertainties in the re- 100

trieved quantities, and hence the derived radiative fields, are
difficult to quantify (Kato et al., 2011). The ACM-CAP prod-
uct is novel in that all classes of hydrometeors and aerosols
are retrieved simultaneously. This maximizes the exploita-
tion of EarthCARE instrument synergy and allows the ap- 105

plication of physical relationships between different parts of
the retrieval. For example, retrieving snow and rain simulta-
neously means that a physical consistency condition can be
applied to ensure that the precipitation mass flux is conserved
across the melting layer, as has been used in radar precipita- 110
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tion retrievals (Haynes et al., 2009; Mason et al., 2017; Mróz
et al., 2021). In complex and layered scenes, some integrated
or passive measurements cannot be adequately interpreted by
species-specific retrievals. A unified approach ensures that
the contributions of such constraints – for example, radar at-5

tenuation due to rain and liquid cloud or solar radiance mea-
surements with contributions from multiple cloud or aerosol
layers – are applied consistently. This allows for high-quality
retrievals in the profiles where species-specific algorithms
are most likely to report biased retrievals, large uncertain-10

ties, or to skip profiles entirely. Moreover, using a single re-
trieval framework has the advantage of facilitating a detailed
and consistent accounting of all measurement errors, uncer-
tainties related to physical assumptions, and uncertainty esti-
mates for all retrieved quantities. Retrieval uncertainties can15

be easily interpreted by users of the product, and included in
downstream radiative transfer (ACM-RT; Cole et al., 2022)
products.

In addition to its A-Train like measurements, Earth-
CARE’s active instruments will have novel capabilities that20

will enhance the potential for cloud, aerosol, and precip-
itation retrievals with ACM-CAP. The CAPTIVATE algo-
rithm has already been used to demonstrate how Doppler
radars to retrieve information about the structure and den-
sity of snowflakes (Mason et al., 2018, 2019) and about the25

rain drop size distribution (Mason et al., 2017). The high-
spectral-resolution lidar (HSRL) capability of ATLID allows
for more accurate retrievals of the profile of extinction, while
the combined aerosol depolarization ratio and extinction-to-
backscatter ratio are used for the advanced aerosol typing30

(Donovan et al., 2023b; Wandinger et al., 2023a) that informs
the target classification (AC-TC; Irbah et al., 2022).

In this study, we describe the ACM-CAP processor and
evaluate its performance over three synthetic EarthCARE
scenes produced from a numerical weather model. Section 235

provides an outline of the ACM-CAP processor within the
ESA EarthCARE production model (Eisinger et al., 2023), a
detailed description of the retrieval framework, its represen-
tation of ice cloud and snow, liquid cloud, rain and aerosols,
and its instrument forward models. In Sect. 4, we showcase40

and evaluate ACM-CAP using case studies in selected cloud,
precipitation, and aerosol regimes and present a statistical
evaluation of key retrieved quantities across the three test
scenes. Finally, in Sect. 5, we summarize the outlook for
ACM-CAP and EarthCARE science.45

2 ACM-CAP product

The CAPTIVATE retrieval scheme employs a classical vari-
ational (or optimal estimation) approach (Rodgers, 2000) but
is unique in that almost all aspects of the retrieval are con-
figurable at runtime, including the observations to assimi-50

late, the representation of the atmospheric constituents to re-
trieve (ice clouds and snow, liquid clouds, rain, and aerosols),

the state variables used to describe each constituent, and the
additional constraints to apply. This means that the same
algorithm can be applied to ground-based (Mason et al., 55

2018, 2019), airborne (Mason et al., 2017), and spaceborne
platforms. In Sect. 2.1, we provide an overview of how CAP-
TIVATE is configured for its application as the ACM-CAP
processor, and then we describe the representation of atmo-
spheric constituents (Sect. 2.2) and the forward models for 60

the EarthCARE instruments (Sect. 2.3).

2.1 Algorithm overview

Each EarthCARE orbit is divided into eight granules of
length ∼ 5000 km; the ACM-CAP processor runs one gran-
ule at a time, reading in six Level 1 and Level 2 data products 65

and outputting one ACM-CAP data product for each granule.
The ACM-CAP processor and its inputs and outputs are illus-
trated in Fig. 1.

Each profile in the granule is processed in turn. The syner-
gistic target classification product (AC-TC; Irbah et al., 2022) 70

is used to define which constituents will be retrieved in each
grid volume. Each retrieved constituent is described by a
number of state variables, the selection of which is described
in Sect. 2.2. We write the vectorTS2 of state variables describ-
ing a profile of constituent j as xj , and if we are retrieving 75

the properties of n different constituents, then the vectors are
concatenated to obtain the full state vector x.

The forward model H(x) is used to simulate the ob-
servations made by each instrument based on the state. In
Sect. 2.3, we describe how the state variables are used to 80

forward model the measurements of active and passive in-
struments at a range of wavelengths. The forward model re-
quires additional information about the atmosphere provided
by the auxiliary X-MET product (see Sect. 5 of Eisinger
et al., 2023), which contains atmospheric profiles of tem- 85

perature, humidity, and trace gas concentrations, as well as
surface temperature and albedo, extracted from the opera-
tional European Centre for Medium-Range Weather Fore-
casts (ECMWF) forecast in the proximity of each Earth-
CARE granule. These data are used to estimate clear-air ab- 90

sorption and scattering properties needed in the various for-
ward models.

Each instrument makes a certain number of usable mea-
surements in a profile, and we write the vector of usable
measurements by instrument i as yi . If we are assimilating 95

the measurements by m different instruments, then the vec-
tors are concatenated to obtain the full observation vector y.
These measurements are obtained from the following four
input data files:

– A-EBD, which contains the post-processed ATLID 100

backscatter measurements (Donovan et al., 2023a).

– C-FMR, which contains the CPR radar reflectivity and
path-integrated attenuation (PIA) measurements (Kol-
lias et al., 2023).
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Figure 1. Flowchart showing the ACM-CAP processor and its input and output data products. The ACM-CAP processor uses the CAPTI-
VATE retrieval framework configured for EarthCARE’s ATLID, CPR and MSI instruments.

– C-CD, which contains the Doppler velocity measure-
ments (Kollias2022TS3 ).

– M-RGR, which contains the regridded MSI reflectances
and radiances.

CPR and MSI products are provided on their own instru-5

ment grids, while A-EBD is on the joint standard grid (JSG),
which is initially defined by the auxiliary X-JSG data product
(Eisinger et al., 2023) and then inherited by all ATLID and
downstream synergistic Level 2 data products. The JSG pro-
vides the common reference grid at 1 km horizontal (along-10

track) and 100 m vertical resolution onto which all active
measurements are mapped. Within the ACM-CAP processor,
the CPR and MSI measurements are first interpolated onto
the common grid before the retrieval is carried out. To inform
the interpretation and assimilation of each measurement, ad-15

ditional variables describing the measurement uncertainties,
and quality and detection statuses, are also read from each
data product.

The optimal estimate is the state vector that minimizes the
cost function20

J =
1
2
δyTR−1δy+

1
2
δxTB−1δx+ Jc (x) , (1)

where, in the first term on the right-hand side, δy = y−

H(x), H(x) is the forward model, while R=O+M is the
error covariance matrix of δy and consists of the sum of the
error covariance matrices of the observations O and the for-25

ward model M. In the second term on the right-hand side,

δx = x− xa, where xa is the prior estimate of the state, and
B is the error covariance matrix of these priors. The final
term, Jc (x), expresses other physical constraints on the rela-
tionship between state variables. 30

Two methods have been implemented for iteratively mod-
ifying the state to minimize the cost function. The first is
the L-BFGS method (Liu and Nocedal, 1989), which re-
quires the gradient of the cost function with respect to the
state, ∂J/∂x (a vector), to be computed. This is the approach 35

used by most variational data assimilation systems for which
the state vector is very large. The second is the Levenberg–
Marquardt method (Marquardt, 1963), which requires both
∂J/∂x and the second derivative of the cost function with
respect to the state ∂2J/∂x2 (a matrix known as the Hessian) 40

to be computed. This curvature information leads to fewer
iterations being required, but each iteration is more compu-
tationally costly, since the Hessian requires the full Jacobian
matrix ∂y/∂x to be computed. In practice, both the Hessian
and Jacobian matrices are computed very efficiently by cod- 45

ing CAPTIVATE in C++, making use of the combined ar-
ray, automatic differentiation, and optimization library Adept
(Hogan, 2014, 2017). Both the Levenberg–Marquardt and L-
BFGS implementations in Adept support bounding values to
be applied to any of the state variables. We presently use the 50

L-BFGS method, having found that it leads to the shortest
computational runtime.

The method described so far allows all state variables to
be modified in an attempt to minimize J . While we include
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in CAPTIVATE all the variables needed to describe each
constituent, there are not always sufficient measurements to
constrain their retrieval; i.e. there may be too many degrees
of freedom. In these situations, it is possible to designate a
model variable, which is included in the state vector but not5

modified during the minimization. This reduces the degrees
of freedom, while allowing uncertainty in the model variable
to be included in the cost function and propagated to the re-
trieved and derived quantities.

A variational approach provides an elegant framework that10

takes rigorous account of uncertainties, but the fidelity of any
retrieval is dependent on the appropriate choice of state vari-
ables and additional constraints and the accuracy of the for-
ward models. In Sect. 2.4, we describe the automatic com-
putation of uncertainties and error covariance matrices for15

retrieved and derived variables, error correlation scales, and
additional metrics derived from the averaging kernel.

We have described the retrieval as being carried out on
each profile in turn; however, the retrieval of some state vari-
ables may be improved by representing a degree of coher-20

ence over larger spatial scales. For these state variables, a
Kalman smoother (Rodgers, 2000) can be applied, by which
each retrieved profile is constrained on the first pass by the
values retrieved in the previous profile and on a second pass
by the values retrieved in both directions. Kalman smooth-25

ing is especially beneficial for retrieving state variables that
are weakly constrained by noisy measurements, such as of
aerosols from lidar backscatter.

2.2 Representation of atmospheric constituents

In this section, we describe and justify how each of the atmo-30

spheric constituents is represented in ACM-CAP, although
we stress that these representations are completely config-
urable and may be modified as needed. There are several
overarching principles that we maintain in selecting state
variables:35

1. Usually, two variables are used to describe the size dis-
tribution, providing the degrees of freedom to allow to-
tal number density and mean size to vary. The shapes
of the size distributions are configurable but held fixed.
The uncertainty associated with a fixed size distribution40

shape is secondary compared to those of number con-
centration and mean size (Delanoë et al., 2005) but does
become relevant in, for example, triple-frequency radar
retrievals (Mason et al., 2019).

2. Typically, we retrieve one extensive variableE (e.g. wa-45

ter content or extinction coefficient) and one variable
N that has the properties of a number concentration.
This means that only 1D look-up tables are required,
since all other extensive variables X can be written as
X/N = f (E/N), while all intensive variables can be50

written as I = f (E/N) (see Delanoë et al., 2005, for
further discussion).

3. Additionally, convergence is more rapid if the relation-
ship between observations and the main state variables
that they are sensitive to is close to linear. Since the re- 55

lationships between many variables are close to a power
law (implemented as look-up tables rather than an actual
power law), they can be represented as close to linear if
both x and y contain the natural logarithm of meteoro-
logical and observational quantities. This is appropriate 60

for properties of the size distribution (e.g. water content,
extinction coefficient, backscatter coefficient, and radar
reflectivity factor) that can span many orders of magni-
tude and also ensures that retrieved quantities cannot go
negative (Delanoë and Hogan, 2008). This approach is 65

common for cloud radar retrievals (i.e. official CloudSat
algorithms; Austin et al., 2009; Leinonen et al., 2016)
and also well-suited to applications for radiative trans-
fer, where solar and thermal radiances are more linearly
related to the natural logarithm of cloud optical depth. 70

4. Finally, certain useful a priori and physical constraints
can be applied only if a constituent is described by a cer-
tain variable. For example, the constraint that the gradi-
ent of water content of liquid clouds with height should
not exceed the adiabatic rate can only be applied if liq- 75

uid water content is a state variable.

Table 1 lists the state variables retrieved for each atmo-
spheric constituent, along with their a priori values and er-
rors, as presently configured for ACM-CAP. If a state vari-
able is well constrained by an active instrument, then inde- 80

pendent values will be retrieved in each volume. However,
frequently the observations will lack the information content
to retrieve certain state variables at such high vertical res-
olution, so to ensure that the retrieval is not ill-posed and
converges quickly, the profile may optically be described by 85

fewer state variables, such as the coefficients of a set of cubic
spline basis functions (Hogan, 2007).

2.2.1 Ice clouds and snow

We follow Delanoë and Hogan (2008) and treat ice clouds
and snow as a continuum described by extinction coeffi- 90

cient in the geometric optics approximation, αv , and a primed
number concentration variable,N ′0, which is defined in terms
of the normalized number concentration parameter, N∗0 (De-
lanoë et al., 2005). The variable N ′0 has the advantage that
a reasonable a priori estimate of it can be made from tem- 95

perature alone (Delanoë and Hogan, 2008). This enables a
seamless retrieval between regions where both radar and li-
dar detect the cloud and regions where only one detects it.
As ATLID has HSRL, capability the independent informa-
tion on backscatter and extinction allows vertical variations 100

in the lidar backscatter-to-extinction ratio (S) to be retrieved.
This quantity is represented by a cubic spline due to noise
in the lidar measurements preventing it from being retrieved
reliably at every volume.
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Table 1. List of state variables used to describe each of the constituents, with corresponding a priori values and their uncertainties. The only
state variable not represented as the natural logarithm of a meteorological quantity is the ice–snow density index. The physical constraints
include the vertical representation and horizontal Kalman smoothing.CE5

State variable A priori RMS Spatial representation
uncertainty

Ice cloud and snow

Geometric extinction
coefficient lnαv (m−1)

−6.9+ 0.0315T (◦C) 10.0 Cubic spline basis functions with z0 = 300 m

Primed number
concentration lnN ′0 (m−3.4)

16.118− 0.1303T (◦C)
(Delanoë and Hogan, 2008)

1.0 Cubic spline basis functions with z0 = 500 m

Backscatter-to-extinction ra-
tio lnS (sr−1)

ln(0.027) 0.3 Cubic spline basis functions with z0 = 500 m

Density index r ′ 0.0 1.0 Cubic spline basis functions with z0 = 500 m

Liquid cloud

Liquid water content
lnL (kg m−3)

ln(1× 10−4) 2.0 When detected by ATLID: direct

1.0 Collocated with rain: one value per vertically
contiguous layer with linear gradient reducing
to 0 at the bottom of the layer
Collocated with ice: layer-wise constant

Total number concentration
lnNT (m−3)

Marine: ln(74× 106)
Continental: ln(288× 106)
(Miles et al., 2000)

1.0 When detected by ATLID: layer-wise constant
Elsewhere: model variable

Rain

Rain rate lnR (kg m−2 s−1) ln
(

2.778× 10−5
)

4.0 Cubic spline basis function with z0 = 300m

Number concentration
scaling lnNs

ln(1.0) 0.5 Cubic spine basis function with z0 = 1 km;
temporal smoothing error 0.15

Melting layer

Thickness scaling factor
lnXm

ln(1.0) 1.0 Model variable

Aerosols (dust, sea salt, continental pollution, smoke, dusty smoke, dusty mixture)

Total number concentration
lnNT (m−3)

ln
(

1× 106
)

2.0 Direct; temporal smoothing error 0.1

Median volumetric diameter
lnD0 (m)

Dust: ln
(

0.866× 10−6
)

Sea salt: ln
(

0.789× 10−6
)

Cont. pollution:
ln

(
0.545× 10−6

)
Smoke: ln

(
0.241× 10−6

)
Dusty smoke: ln

(
0.783× 10−6

)
Dusty mix: ln

(
0.802× 10−6

)

1.0 Layer-wise constant
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Doppler velocity can provide information on the riming of
snowflakes, since rimed particles are denser and therefore fall
faster than unrimed particles of a similar size. The retrieval
of a density factor r to resolve variations in snow particle
density due to riming in mixed-phase cloud layers was de-5

scribed in Mason et al. (2018). This single parameter is used
to vary the prefactors and exponents of the mass–size and
area–size relations of ice particles, in addition to assumptions
about the microphysical structure informing microwave scat-
tering approximations. Snow with a density factor of r = 010

corresponds to unrimed aggregates with the mass–size rela-
tion given by Brown and Francis (1995) and the area–size
relation of Francis et al. (1998), while precipitating ice with
a density factor of r = 1 would correspond to spheres of solid
ice. Intermediate values of r represent a continuum of snow15

particles from partially rimed aggregates to lump graupel.
While there are limited observational and theoretical con-
straints on how to best represent rimed snowflakes and the
transition to graupel, CAPTIVATE retrievals of rimed snow
from Hyytiälä, Finland, assimilating dual-frequency Doppler20

radar measurements compared favourably in terms of snow
rate and bulk density with in situ snow measurements at the
surface (Mason et al., 2018).

In order that the parameter representing riming can be in-
cluded in the minimization without the possibility of reach-25

ing non-physical values, the retrieved state variable is a trans-
formed density factor r ′ = f (r), which also represents un-
rimed aggregates at r ′ = 0 but is physically meaningful at
all values (Sect. 2.2.3 of Mason et al., 2018). This capability
has been developed and evaluated using ground-based and30

dual-frequency Doppler radars. While Mason et al. (2018)
demonstrated some skill in using 94 GHz Doppler radars to
retrieve rimed snow in stratiform cloud scenes, the capac-
ity to perform this kind of retrieval from EarthCARE is sen-
sitive to the quality of the Doppler velocity measurements.35

Corrections for radar mispointing and non-uniform beam-
filling errors, along-track integration, and more sophisticated
local smoothing techniques have been implemented to re-
duce Doppler velocity measurement noise and decompose an
estimate of sedimentation velocity from vertical air motion40

(Kollias et al., 2023). The choice of which Doppler velocity
variable to use in ACM-CAP – and a better characterization
of their associated uncertainties – will be informed by cal-
ibration and validation activities after launch. The synthetic
test scenes used in this study do not include stratiform rimed45

snow in which to evaluate the contribution of Doppler veloc-
ity measurements to snow retrievals in more detail.

2.2.2 Liquid cloud

Liquid clouds present a significant challenge for spaceborne
radar and lidar retrievals; while the radar signal is dominated50

by drizzle drops, the lidar signal is rapidly attenuated at the
top of the layer, making the physical depth of a cloud layer
difficult to establish. Irbah et al. (2022) have showed that, for

EarthCARE, around 20 % of the volume of liquid cloud in
the test scenes is directly detected by the synergy of the ac- 55

tive instruments, representing around 10 % of the liquid wa-
ter content. Even when not directly detected by active instru-
ments, integrated constraints on the liquid water path (LWP)
– but not on the vertical distribution of liquid – may be ob-
tained from the radar PIA (Lebsock et al., 2011) and on cloud 60

optical depth from solar radiances (Leinonen et al., 2016).
Liquid water content (L) is used as the main state vari-

able, allowing for assumptions about the vertical distribu-
tion of cloud water, even in cloud layers that are not directly
observed by the active instruments (i.e. non-precipitating 65

clouds not detected by CPR or whenever ATLID is extin-
guished aloft). In ACM-CAP, liquid cloud is assumed to be
collocatedCE6 with precipitation in the following two situa-
tions:

– in rimed snow and convective cores, where the pres- 70

ence of supercooled liquid is very likely and will have a
greater contribution to radar attenuation than ice alone;
and

– collocated with rain, where liquid cloud is not directly
detected by ATLID, but clouds are very likely to be 75

present and will contribute to radar attenuation.

Irbah et al. (2022) showed that this interpretation of the syn-
ergistic target classification resulted in the correct classifica-
tion of around 60 % of the liquid cloud by volume, represent-
ing almost 75 % of liquid water content across the three test 80

scenes. The importance of these assumptions, and the capac-
ity to constrain a retrieval of liquid cloud not directly detected
by the active instruments, will be explored using case studies
in Sect. 3.

The second variable retrieved is the total droplet number 85

concentration, since a priori estimates are available over land
and sea (e.g. Miles et al., 2000). When ATLID detects a liq-
uid cloud layer, this variable is retrieved, assuming a constant
value for each contiguous cloud layer; otherwise, the a priori
value is used. 90

2.2.3 Rain and drizzle

This constituent represents both cold rain originating from
melting ice and warm rain or drizzle from the collision and
coalescence of cloud droplets within liquid clouds. The main
variable retrieved is the rain rate, R. Since rain has a high 95

fall speed, we can apply the physical constraint that R does
not vary rapidly with height, which is achieved by adding a
flatness term to Jc that is proportional to (∂ lnR/∂z)2, using
the approach of Twomey (1977). The result is that, in mod-
erate rainfall, the retrieval can infer rain rates from the gra- 100

dient of radar reflectivity factor with height (as proposed by
Matrosov, 2007), while also being able to use the radar PIA
derived from the surface reference technique when available
(L’Ecuyer and Stephens, 2002).
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The retrieval of warm and cold rain from airborne Doppler
radars using CAPTIVATE was demonstrated by Mason et al.
(2017). In that study, the second state variable for rain was
the normalized number concentration parameter Nw, as de-
fined by Testud et al. (2001) (see also Illingworth and Black-5

man, 2002). Informed by the mean Doppler velocity and PIA,
retrieved values of Nw in that study varied over several or-
ders of magnitude from near the Marshall and Palmer (1948)
value of 8× 106 TS4 m−4 in cold rain to much higher values
in warm rain and drizzle. In order that the a priori raindrop10

size distribution realistically represents both heavy rain and
drizzle, in this study we implement the transition between a
high concentration of predominantly small drops in drizzle
and light rain and fewer and larger raindrops in heavy rain,
as described by Abel and Boutle (2012). This relation consti-15

tutes our a priori drop size distribution (DSD) for which the
number concentration scaling parameter Ns = 1 is retrieved
as constrained by the mean Doppler velocity and PIA mea-
surements.CE7

2.2.4 Melting layer20

Retrieving an accurate physical description of the melting
layer is very challenging because we have no direct measure-
ments of its properties, and current models for the scattering
and attenuation behaviour of melting ice particles are very
uncertain. Since the radar is the only instrument affected by25

the melting, and there is no enhanced reflectivity bright band
at 94 GHz, we treat the melting layer as a thin layer of radar
attenuation that is applied across the infinitesimal layer be-
tween the lowest volume in the profile classified as ice and
snow and the highest volume classified as rain – provided that30

the two are adjacent. By default, we follow Matrosov (2008)
and assume that the two-way attenuation of the melting layer
A is proportional to the rain rate R at the first volume just
below the melting layer, such that

A= kXmR, (2)35

where, at 94 GHz, k = 2.2 dB km−1 (mm h−1)−1. This esti-
mate has been supported using ground-based radars (Li and
Moisseev, 2019). The physical depth and hence the total at-
tenuation across the melting layer also depends on the local
temperature profile; variations in the strength of the melting40

layer attenuation can be represented by a thickness scaling
factor Xm. Independent information on melting layer atten-
uation can sometimes be extracted from the combination of
the radar PIA over the ocean and the rain rate inferred from
the reflectivity gradient; we therefore include the natural log-45

arithm of Xm as either a retrieved state variable or a model
variable that resolves the effect of this uncertainty in the other
retrieved variables and their errors.

To ensure physical consistency between retrieved con-
stituents within the profile, a constraint can be included in50

Jc, such that the rain rate in the volume at the bottom of
the melting layer is close to the mass flux of snow enter-

ing the melting layer. This mass flux continuity constraint
has been used before in radar retrievals (Haynes et al., 2009;
Mason et al., 2017); further constraints on the continuity of 55

snow and rain microphysical parameters across the melting
layer have been demonstrated in multiple-frequency radar re-
trievals (Mróz et al., 2021) but could prove beneficial even in
this application and could be the subject of future work.

2.2.5 Aerosols 60

The ACM-CAP treatment of aerosols takes as given the
aerosol typing and properties of the HETEAC model
(Wandinger et al., 2016, 2023b), in which all classifications
comprise up to four aerosol species, namely fine (strongly
and weakly absorbing) and coarse (dust and salt) particles. 65

Predefined mixtures of the HETEAC species map directly
to the ATLID aerosol classification (A-TC; Donovan et al.,
2023b) and subsequently to the synergistic target classifi-
cation (AC-TC; Irbah et al., 2022). Look-up tables of the
wavelength-dependent scattering properties of the four HET- 70

EAC species are combined based on the aerosol classifica-
tion, using a fixed particle size distribution, and the primary
state variable retrieved is the total number concentration,
which acts to scale all extensive variables such as aerosol
extinction/optical thickness. 75

A major difficulty with using observations at 1 km along-
track resolution is that at this scale the lidar measurements
are very noisy, especially when the signal is weak. The tradi-
tional approach is to average along-track before performing
the retrieval, but this is not satisfactory if clouds are to be 80

retrieved simultaneously at high spatial resolution. The re-
trieval of aerosols from a noisy lidar signal was the primary
motivation for the implementation of the Kalman smoother;
in this scenario, along-track smoothing is achieved by per-
forming a first (backward) pass through the data, during 85

which the retrieval of a profile is constrained by the values
retrieved in the previous profile, followed by a second for-
ward pass in which the retrieval of a profile is constrained by
the values in both directions.

2.3 Instrument forward models 90

The forward model H(x) is a function that outputs the pre-
dicted observations yf corresponding to a particular estimate
of the state vector x. Figure 2 shows the flow of information
from x to yf. After outlining the precalculated hydrometeor
scattering and surface properties, the following sections de- 95

scribe the individual steps of forward modelling the instru-
ment measurements from the state.

A key part of the forward model is the use of the state vari-
ables to calculate the profile of scattering properties at the
wavelengths of each instrument being used in the retrieval. 100

Before the retrieval is run, offline calculations are performed
to compute the scattering properties of individual hydrome-
teors, specifically the extinction, scattering, and backscatter
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Figure 2. Flowchart depicting the flow of information through the forward model in ACM-CAP, translating the state variables x to the forward
modelled observations yf. Auxiliary information about the state of the atmosphere and Earth’s surface is shown in grey. The temperature and
composition of the atmosphere are used for forward modelling of the profile of atmospheric scattering at each wavelength, while the surface
temperature, albedo, and emissivity are needed to simulate passive measurements. The symbols are defined in Sect. 2.3.

Table 2. The scattering, fall speed, and size distribution assumptions made for each of the constituents retrieved in ACM-CAP. Certain
categories are not applicable (n/a) if an instrument is not able to detect a constituent (e.g. radar and aerosol).

Constituent Solar/infrared
scattering model

Radar scattering model Terminal
fall speed
model

Size distribution
shape

Ice cloud and snow Baran and Francis
(2004)

Aggregates: SSRGA
(Hogan et al., 2017);
graupel: soft spheroids
(Mason et al., 2018)

Heymsfield
and Westbrook
(2010)

Field et al. (2005)

Liquid cloud Mie theory Mie theory Beard (1976) Lognormal with
shape factor 0.38

Rain Mie theory Mie theory Beard (1976) Gamma with shape
factor µ= 5

Melting ice n/a Matrosov (2008) n/a n/a

Aerosol HETEAC (Wandinger
et al., 2023a)

n/a n/a HETEAC (Wandinger
et al., 2023a, Table 2)

cross sections. In the case of solar radiometers, we also com-
pute and store the scattering-phase function. The scattering
models used for each constituent are listed in the second and
third columns of Table 2. In order to allow the forward mod-
elling of the radar Doppler velocity, we need a model for the5

terminal fall speeds of hydrometeors detectable to the radar,
as given in the fourth column of Table 2.

Since liquid clouds, rain, and spherical aerosol species
can reasonably be treated as homogeneous spheres for the
wavelengths under consideration, we may use Mie theory. 10

The effect of representing large raindrops with a more realis-
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tic spheroidal geometry using the T matrix scattering model
had only minor effects on the retrieved rain in Mason et al.
(2017) and is neglected here. The complex shapes of ice par-
ticles require more detailed careful consideration. For solar
and infrared scattering from ice particles, we use the Baran5

and Francis (2004) database, which takes account of surface
roughness effects; however, the backscatter-to-extinction ra-
tio S predicted by such a model is not regarded as being ac-
curate enough for the lidar forward model, so this variable is
retrieved (see Sect. 2.2). For radar scattering by unrimed ice10

particles, we use the Self-Similar Rayleigh–Gans Approx-
imation (SSRGA) model of Hogan et al. (2017), which is
appropriate for aggregates and other irregular particles. Fol-
lowing the evidence of Hogan et al. (2012) and others, these
particles are assumed to have an aspect ratio of 0.6, to fall15

with a horizontal alignment, and to follow the mass–size and
area–size relations of Brown and Francis (1995) and Francis
et al. (1998), respectively. The mass and cross-sectional area
of snowflakes are both needed for the fall speed model of
Heymsfield and Westbrook (2010). Mason et al. (2018) de-20

scribed how, when Doppler velocity is assimilated, the den-
sity factor is used to transition from the unrimed aggregates
above to heavily rimed, graupel-like particles, which are rep-
resented as homogeneous spheroids for both radar scattering
(Hogan et al., 2012) and mass–size and area–size relations.25

All of these assumptions have uncertainties, which are repre-
sented approximately by adding a radar reflectivity forward
model error to the appropriate diagonal elements of M (see
Eq. 1).

For the forward-modelling of passive solar and infrared30

radiances in clear-sky and optically thin profiles, we require
information about the surface, which is provided in the X-
MET product generated from the ECMWF forecast model
(Eisinger et al., 2023). For thermal infrared radiances the sur-
face, emissivities are taken as constant for wavelengths close35

to 10 µm, with values of 0.96 over ocean and 0.98 over the
land (Fig. 3 of Feldman et al., 2014). The skin temperature is
from the same ECMWF forecast that provides the profile of
atmospheric temperature and humidity.

In a synergistic retrieval, the absence of a detection from40

one of the instruments can also convey important informa-
tion because in volumes where ATLID detects ice clouds
but CPR does not make a detection (i.e. classified clear),
a pseudo-observation equal to a background noise term is
added to both the observation vector of CPR and to the45

forward-modelled radar reflectivity. This acts as a constraint
penalizing the retrieval of ice clouds for which the forward-
modelled radar reflectivity would exceed the threshold of de-
tection; it is applied for ice clouds detected only by ATLID,
with the effect of reducing the retrieved ice effective radius50

near the cloud top.
In the following subsections, we describe the steps shown

in Fig. 2.

2.3.1 Expanding vertical representation of variables

As indicated in the final column of Table 1, many state vari- 55

ables are not represented by separate values in every volume.
Therefore, the first step in the forward model is to expand the
representation of each state variable to compute its value in
every volume. This process simply involves applying the op-
eration xfull

=Wx, where x contains the state variables for 60

a particular quantity, xfull contains the corresponding values
in each volume where that constituent is present, and W is a
matrix describing the representation. Hogan (2007) describe
how W is formulated in the case of cubic splines.

After the state variables are computed in every volume, 65

in the case of ice, we then calculate the normalized number
concentration parameter N∗0 =N

′

0α
0.6
v (Delanoë and Hogan,

2008).

2.3.2 Scattering look-up tables

The next step is to compute the profile of scattering proper- 70

ties for each constituent (ice clouds and snow, liquid clouds,
rain, and aerosol) at the wavelength of each instrument.
All instruments require the extinction coefficient α, sin-
gle scattering albedo ω, and asymmetry factor g. The ac-
tive instruments also require a backscatter-to-extinction ratio 75

S. Furthermore, the Doppler radar requires the reflectivity-
weighted terminal fall speed v, and the lidar requires the
fraction of the backscatter due to liquid droplets f in order
to correctly describe small-angle multiple scattering (Hogan,
2008). Solar radiance modelling requires coefficients de- 80

scribing the full phase function pi . These quantities are com-
puted from the expanded state variables using look-up tables
(see Sect. 2.2). The scattering look-up tables are constructed
when the algorithm is initialized.

2.3.3 Combining profiles 85

The profiles of scattering properties for each constituent, in
addition to the profile of scattering due to the atmosphere, are
then combined into a single profile for the scattering at each
wavelength. The extinction coefficients can be combined as
a direct summation, while the other quantities must be com- 90

bined as weighted sums. The backscatter-to-extinction ratio
and single-scattering albedo are combined as weighted by the
extinction coefficient, the combined asymmetry factors are
weighted by the scattering coefficient (i.e. the extinction co-
efficient multiplied by the single-scattering albedo), and the 95

droplet fraction and mean Doppler velocity are weighted by
the backscatter coefficient (i.e. the extinction coefficient mul-
tiplied by the backscatter-to-extinction ratio).

2.3.4 Radiative transfer

The final step in the forward model is to represent the prop- 100

agation of radiation at all measured wavelengths through
the combined profiles of scattering properties due to all hy-
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drometeors, aerosols, and atmospheric gases. To represent
ATLID’s high-spectral-resolution capability, the Mie atten-
uated backscatter from hydrometeors and aerosols, and the
Rayleigh attenuated backscatter due to air molecules are
forward-modelled in separate channels; for all other instru-5

ments, the molecular and particulate scattering are combined.
For inclusion in the forward model of the retrieval scheme,
the radiative transfer model and its adjoint must be calculated
accurately and efficiently. All of the radiative transfer meth-
ods are therefore written in C++ using the Adept automatic10

differentiation library (Hogan, 2017).
Multiple scattering is accurately treated within the for-

ward model for all active measurements. Millimetre-wave
radar is chiefly subject to multiple scattering in deep convec-
tive towers, while lidar multiple scattering can occur in all15

clouds. Wide-angle multiple scattering is modelled for both
radar and lidar, using the time-dependent two-stream method
(Hogan and Battaglia, 2008). Additional small-angle multi-
ple scattering only affects lidar and is represented using the
photon variance–covariance method (Hogan, 2008). The ef-20

fect of multiple scattering on the radar reflectivity is repre-
sented within the radar forward model but not on the mean
Doppler velocity; in practice for EarthCARE, Doppler mea-
surements from CPR will not be assimilated wherever mul-
tiple scattering has been diagnosed, according to the status25

variables in the C-FMR and C-CD data products.
In the extreme case of radar attenuation, the surface return

is equal to the radar noise, and the measured PIA becomes
saturated (Kollias2022TS5 ). This results in a maximum PIA
measurement, around 60 dB in the heaviest precipitation, be-30

ing included in the simulated EarthCARE scenes (similar
to that observed by CloudSat; the relationship between the
PIA and the maximum retrievable precipitation rate for the
CloudSat rain retrieval is considered in detail in Haynes et al.,
2009). Assimilating the saturated PIA values naively would35

result in a strong upper limit on the retrieved rain rate; how-
ever, not assimilating the saturated PIA values at all would
be to discard an important integrated measurement in pro-
files where both of the active instruments are obscured by
multiple scattering and attenuation. We therefore represent40

the effect of a surface return equal to the radar noise by al-
lowing the forward-modelled PIA to become dominated by a
saturation PIA (PIAsat = 60 dB) at high precipitation rates:

PIA=−10log10

(
10−PIAtrue/10

+ 10−PIAsat/10
)
, (3)

where PIAtrue is given in Kollias et al. (2023, Eq. 4). This45

allows the retrieval to smoothly make use of PIA measure-
ments, even in the heaviest precipitation.

The two-stream source function (TSSF; Toon et al., 1989)
approach is used for thermal infrared radiances and has
also been applied to model passive microwave radiances, al-50

though such measurements are not used in this study. For
solar wavelengths, the Forward-Lobe Two-Stream rAdiance
Model (FLOTSAM; Escribano et al., 2019) is used, which

explicitly models the propagation of radiation that is scat-
tered into the wide forward lobe (of width around 15◦) that is 55

a characteristic feature of the phase function of most clouds.
Radiation that is scattered by larger angles enters the diffuse
radiation field and is treated using the two-stream method;
thus, FLOTSAM can be thought of as the equivalent of TSSF
but for solar wavelengths. 60

2.4 Calculation of retrieval errors

The state vector that minimizes the cost function is called
the solution of the optimal estimation retrieval. Once the
cost function is minimized, the errors in the retrieval can
be estimated; however, we have often selected as state vari- 65

ables quantities that are not the most physically meaningful,
e.g. the primed normalized number concentration parameter
N ′0 for ice and snow. The scattering look-up tables are there-
fore used to convert the state variables into all of the derived
variables that might be of interest to users; as an example, to 70

input the retrieval to a radiative transfer code, we may need
to derive a vector d describing the profile of ice water content
and effective radius. To compute the retrieval RMS errors in
d , we first compute the error covariance matrix of x which
is the inverse of the Hessian at the final iteration as follows: 75

Sx =
(
∂2J/∂x2)−1. The error covariance in d is given by

Sd = DSxDT, where D= δd/δx is a Jacobian matrix. The
appendix of Delanoë and Hogan (2008) shows that D is very
complex to implement manually; however, it is trivial to ap-
ply automatic differentiation to d(x) (i.e. the look-up table 80

part of the forward model code) in order to compute D and
hence Sd . The square root of the diagonal of Sd then provides
the RMSE in d, and error correlations between variables can
also be computed.

In addition to the standard deviation error or RMSE for a 85

particular quantity, the error covariance matrix yields the cor-
relation between the errors in the two variables at a particular
gate, which is a value between −1 and 1. Second, the width
of the diagonal band of the error covariance matrix around an
element provides a measure of the vertical error correlation 90

scale (given in metres).
Finally, the averaging kernel given by

A= SxHTR−1H (4)

provides a measure of the information content of the re-
trieved state, such that an averaging kernel equal to the iden- 95

tity matrix would describe a retrieval in which all of the re-
trieved information comes from the observations. The effect
of the priors, or of other physical constraints on the retrieval,
are reflected by off-diagonal terms. The averaging kernel is
used to derive the averaging kernel sum, which reflects the 100

contribution of the observations to the retrieved state and the
width of the diagonal, which indicates the smoothing of the
retrieval compared to the “true”CE8 values (Pounder et al.,
2012).
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3 Case studies

Three simulated EarthCARE scenes have been produced by
applying a state-of-the-art instrument simulator (Donovan
et al., 2023b) to a combination of high-resolution Global
Environmental Multiscale (GEM) numerical weather fore-5

casts for clouds and precipitation, merged with aerosols ex-
tracted from the Copernicus Atmospheric Monitoring Ser-
vice (CAMS; Qu et al., 2022). The test scenes have proved
an invaluable tool for developing, testing, and evaluating
EarthCARE retrieval algorithms and the production model10

(Eisinger et al., 2023). Each scene corresponds to a granule,
or roughly 5000 km or one-eighth, of an EarthCARE orbit.
The Halifax scene is a Northern Hemisphere midlatitude de-
scending granule that passes over eastern Canada, the west-
ern Atlantic Ocean, and the Caribbean. The Baja scene is15

a Northern Hemisphere midlatitude descending granule that
transects the North American continent and ends over the
Baja Californian peninsula. The Hawaii scene is a tropical
descending granule over the central Pacific Ocean, beginning
near Hawaii.20

We have selected cloud, precipitation, and aerosol regimes
from within the test scenes as case studies for detailed eval-
uation. As these scenes have been generated from numer-
ical models, we can access the model variables as “truth”
for a more omniscient evaluation than is traditionally pos-25

sible when using in situ measurements. This will help to
demonstrate the performance of ACM-CAP retrievals, in ad-
dition to some of the challenges at the limits of the Earth-
CARE instruments; however, GEM is a numerical model that
makes certain microphysical assumptions (e.g. the structure30

and density of snowflakes and the drop size distribution of
rain), which may not always be a good approximation to the
real world and which will differ from the prior assumptions
and physical representations made in ACM-CAP. The details
of some adjustments to the microphysical representation of35

ice, snow, and supercooled liquid cloud output by the GEM
model before input to the instrument simulators are given in
Sect. 7 of Qu et al. (2022). As discussed in Qu et al. (2022)
and Donovan et al. (2023b), the aerosols in the CAMS model
have been mapped to the HETEAC species before simulating40

the ATLID and MSI measurements. ACM-CAP’s representa-
tion of aerosols relies on the same HETEAC model but uses
predefined mixtures of the HETEAC species to quantify the
properties of the six tropospheric aerosol classes which are
identified in A-TC (and hence in AC-TC). These and other45

factors will contribute to the differences between ACM-CAP
and the simulated truth from numerical models identified in
the evaluation that follows.

3.1 Midlatitude convective and stratiform precipitation

The first case features cold rain in convective and strati-50

form contexts from the Halifax scene. We show observed
and forward-modelled EarthCARE measurements in Fig. 3

and retrieved and model quantities in Fig. 4. The first part of
this case is dominated by light-to-moderate cold rain below
the stratiform mixed-phase cloud, with tops around 5 km, be- 55

neath optically thin ice clouds up to around 12 km. Heavier
rain up to 10 mm h−1 is associated with an embedded con-
vective cell around 39.5◦ N, in which CPR is dominated by
multiple scattering and attenuation. The second part of the
scene features heavy precipitation up to 20 mm h−1, asso- 60

ciated with deep convective clouds reaching around 13 km
above sea level; physically and optically thick anvil cloud
north of the deep convection overlays a shallow layer of liq-
uid cloud at around 1 km.

The CPR and ATLID measurements are accurately for- 65

ward modelled across this scene at the final iteration of
the retrieval (Fig. 3), indicating that the retrieval is well-
constrained by the available measurements – but not guar-
anteeing a unique solution in terms of retrieved quantities.
While the overall distribution of IWCCE9 is well captured in 70

the retrieval, the retrieved IWC is systematically lower than
the GEM model, by around 30 % in the optically thinnest
cloud at 10 km above sea level (region A; Fig. 4c). While
radar–lidar synergy is available in parts of this cloud, the
CPR signal is weak, so the retrieval is primarily constrained 75

by ATLID. IWC is underestimated by as much as 75 % at
10 km above sea level in the deepest ice clouds (region C)
and by up to 50 % in the anvil part of the frontal cloud (re-
gion B), which is just below the level where lidar signal be-
comes fully attenuated. Warm biases in infrared brightness 80

temperatures (up to 5 K in region A and up to 10 K regions B
and C; note the inverted vertical axis in Fig. 3h) in these re-
gions and elsewhere (e.g. 44 to 45◦ N, where the snow rate is
also underestimated at 5 km; see Fig. 4h) may be related to
low IWC reducing the effective radiative level of the clouds 85

and increasing their infrared brightness temperature. These
issues may be exacerbated by biases in atmospheric temper-
ature used within the retrieval (X-MET data product, as de-
rived from ECMWF analysis), which can be 1 to 3 K warmer
than that of the GEM model, especially in high clouds. 90

The retrieved snow rates at 5 km above sea level show a
better match to the GEM model (Fig. 4i) but include under-
estimates near the tops of stratiform cloud, such as at the
poleward edge of region A. In region C, deficits in retrieved
IWC and snow rate are evident where CPR is extinguished; 95

this illustrates the challenge of performing retrievals at the
limits of the active sensors and will be explored further in the
tropical convection case (Sect. 3.2). While the retrieved snow
is not sufficient to attenuate the radar, the retrieved rain rate
in region C (Fig. 4j–l) is close to that in the GEM model, at 100

least representing heavy enough rain to saturate the forward-
modelled PIA around 60 dB (Fig. 3e).

The forward-modelled ATLID Mie backscatter also
broadly reproduces the measurements (Fig. 3g, f) in both
optically thin (region A) and optically thick ice clouds (re- 105

gions B and C), despite the underestimate of IWC. The rapid
extinction of ATLID in the mixed-phase cloud-top layer of
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Figure 3. Simulated and forward-modelled CPR reflectivity factor (a, b), mean Doppler velocity (c, d), and PIA (e). ATLID attenuated Mie
backscatter (f, g), MSI infrared brightness temperature (h), and solar albedo (i) for the midlatitude stratiform part of the Halifax scene. All
profiling variables are overlaid with contours of atmospheric temperature from X-MET. Three areas of interest (A, B, and C) are highlighted.

regime A is somewhat weaker than observed, corresponding
to an underestimate in LWCCE10 in parts of these features
(Fig. 4d, e).

The bulk of the retrieved liquid cloud, however, is col-
located with rain in regions A and C (as described in5

Sect. 2.2.2), and its retrieval is not constrained by active
measurements. Throughout this case, both the LWC at 1 km
above sea level and the LWP (Fig. 4f) are remarkably close
to the GEM model truth, even in convective precipitation (re-
gion C), where the spatial distribution of liquid water in the10

model is complex (Fig. 4d). As noted above, the deficit of
CPR attenuation above the melting layer in region C is re-
lated to the deficit of IWC and snow rate. A remedy to this
may be a more aggressive assumption to place supercooled
liquid throughout convective towers (up to and above 8 km15

above sea level in the GEM model); however, further tun-
ing of these assumptions should be supported by in-flight
data and validation studies rather than a numerical model.

To illustrate the effect of retrieving liquid cloud in rain, an
ACM-CAP retrieval in which liquid cloud is only retrieved 20

where ATLID detects it is shown in red in Fig. 4f and l.
The retrieved LWP throughout region A is underestimated
by around an order of magnitude, and the forward-modelled
MSI shortwave channel (Fig. 3i) exhibits a 20 % deficit in
solar albedo. As both liquid cloud and rain contribute to the 25

attenuation of CPR, which is strongly constrained within the
retrieval by PIA, this deficit of liquid cloud is also compen-
sated by an overestimation of rain rate (Fig. 4l). In this strat-
iform cold-rain regime, solar radiances and radar PIA con-
tribute to an accurate retrieval of LWP and rain rate. 30

3.2 Deep tropical convection

The equatorial part of the Hawaii scene is dominated by deep
tropical cloud, with tops around 18 km and a convective core
with extreme precipitation beginning well above the melting
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Figure 4. GEM model and ACM-CAP retrievals of IWC (a, b), LWC (d, e), snow rate (g, h), and rain rate (j, k) and comparisons of vertically
integrated and selected quantities for ice (c), liquid (f), snow (i), and rain (l) for the midlatitude stratiform part of the Halifax scene. Three
areas of interest (A, B, and C) are highlighted.

level. This case provides an important check on the capacity
for synergistic retrievals in heavy precipitation (region A),
where both ATLID and CPR are fully attenuated and passive
and integrated measurements become saturated.

The retrieved IWC at 10 km above sea level (Fig. 6c) and5

rain rate at 1 km above sea level (Fig. 6l) are remarkably
close to the GEM model, except in the convective core (re-
gion A). Here the retrieved rain rates are up to 10 mm h−1,
whereas the GEM model reaches values of 10 to 30 mm h−1.
As noted in the previous case, the greatest challenge is repro-10

ducing IWC and snow rate within convective cores, where
the radar reflectivity is affected by both attenuation and en-
hancement due to multiple scattering (Fig. 6c).

As in the midlatitude stratiform precipitation, the presence
and distribution of liquid cloud cannot be constrained by ac- 15

tive instruments. The model truth includes a complex field
of liquid cloud (Fig. 6d), namely scattered boundary layer
clouds around 1 to 2 km and cloud layers close to the melt-
ing level and in convective cores reaching from the surface
to almost −40 ◦C. To a greater extent than in the midlati- 20

tude case, where the top of a mixed-phase layer was detected
by ATLID, the liquid clouds in this scene are almost com-
pletely obscured from the active instruments. Using the same
approach to indirectly retrieve liquid cloud wherever rain is
detected by CPR, the LWC at 1 km above sea level and LWP 25

(Fig. 6f) are close to the GEM model in many parts of this
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Figure 5. Simulated and forward-modelled CPR reflectivity factor (a, b), mean Doppler velocity (c, d), and PIA (e). ATLID attenuated Mie
backscatter (f, g), MSI infrared brightness temperature (h), and solar albedo (i) for the deep convective part of the Hawaii scene. All profiling
variables are overlaid with contours of atmospheric temperature from X-MET.TS6

scene (e.g. 5 to 3.5◦ N) but overestimated in others (2.5◦ N
to 2◦ S) where the vertical distribution of liquid clouds is
more limited. Comparing the forward-modelled solar albedo
when liquid cloud is not retrieved in rain (Fig. 6f) shows that
this approach can greatly improve the representation of cloud5

in complex scenes. As in the previous scene, the most ex-
treme mismatches to the MSI solar albedo are beneath non-
precipitating ice clouds on either edge of the convective sys-
tem, where neither liquid clouds nor rain are diagnosed in
the target classification but where the GEM model includes10

shallow layers of low non-precipitating cloud (region B).

3.3 High-latitude mixed-phase clouds

The high-latitude part of the Halifax scene features mixed-
phase clouds at night, transitioning from deeper clouds, with
tops up to 6 km around 65◦ N and with supercooled liquid15

in convective cells, to mixed-phase clouds, with tops around

3 km at temperatures as cold as −30 ◦C, and, finally, more
broken shallow mixed-phase clouds toward 50◦ N.

Without solar radiances, the simultaneous retrieval of ice
and supercooled liquid is constrained only by the active 20

instruments. The retrieved IWC at 1 km above sea level
(Fig. 8c) is close to the model truth throughout the scene,
while the retrieved LWC at the −28 ◦C isotherm (Fig. 8f)
is underestimated by 3 orders of magnitude, as is the LWP
(Fig. 4f). In day-lit scenes, solar radiances would provide a 25

stronger integrated constraint on liquid water path; the PIA
(Fig. 4c) provides little constraint in this part of the scene,
where the CPR is only weakly attenuated by supercooled liq-
uid clouds.

3.4 Maritime and continental aerosol layers 30

The subtropical part of the Halifax scene is dominated by
two distinct overlapping layers of aerosols – sea salt from
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Figure 6. GEM model and ACM-CAP retrievals of IWC (a, b), LWC (d, e), snow rate (g, h), and rain rate (j, k) and comparisons of vertically
integrated and selected quantities for ice (c), liquid (f), snow (i), and rain (l) for the deep convective part of the Hawaii scene.

the ocean surface up to 2–4 km, with continental pollution
aloft up to 6–8 km – with shallow cumulus clouds embed-
ded in the lowest 2 km. Figure 9 shows the simulated and
forward-modelled ATLID and MSI measurements through
this scene, and Fig. 10 shows the retrieved aerosol extinc-5

tion, total aerosol optical thickness, and lidar ratio (LR;
i.e. extinction-to-backscatter ratio). We show LR here rather
than its reciprocal the backscatter-to-extinction ratio used in
the actual retrieval in order to be more easily comparable to
other papers in this special issue.10

The measured ATLID Mie backscatter (Fig. 9a) shows the
high degree of measurement noise from which the signal of
aerosol backscatter must be detected, which is in contrast
to the clear signal from the high ice and liquid boundary

layer clouds in the same scene. The forward-modelled Mie 15

backscatter (Fig. 9b) does not contain noise and shows that
the signal is often less than 1× 10−6 sr−1 m−1.

The retrieved aerosol extinction (Fig. 10b) shows that the
retrieval resolves some of the key vertical features within
both the sea salt and continental pollution layers; in the sea 20

salt, the strongest extinction is within 1 km of the surface on
the equatorward side of the scene, while embedded within
the continental pollution layer are 2 km deep structures of
stronger extinction. Many horizontal features and disconti-
nuities in the retrieved extinction are not found in the model 25

variables and reflect the challenges of applying a Kalman
smoother across large spatial scales when the target classifi-
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Figure 7. Simulated and forward-modelled CPR reflectivity factor (a, b), mean Doppler velocity (c, d), and PIA (e). ATLID attenuated Mie
backscatter (f, g), MSI infrared brightness temperature (h), and solar albedo (i) for the high-latitude mixed-phase part of the Halifax scene.
All profiling variables are overlaid with contours of atmospheric temperature from X-MET.TS7

cation is interrupted by hydrometeors, which are mostly liq-
uid clouds in this case.

The forward-modelled LR in aerosols (Fig. 10e) shows
that the model variables are only coarsely resolved. This
illustrates the approach taken within ACM-CAP (and in-5

deed other EarthCARE aerosol algorithms; e.g. Docter et al.,
2023) to representing each aerosol class as a mixture of HET-
EAC species, each with a fixed LR. The result is that some of
the structure, especially within the continental pollution layer
where LR varies between 50 and 70 sr over around 3 km of10

the layer, is not resolved. This likely contributes to the over-
estimated aerosol extinction in the lowest part of the con-
tinental pollution layer (around 4 km above the surface be-
tween 33–28◦ N).

4 Statistical evaluation 15

In addition to case studies, we also evaluate the retrieval sta-
tistically in order to diagnose biases and sensitivities. Here
we combine all data from the three synthetic EarthCARE
granules to evaluate ACM-CAP retrievals of the quantities
and properties of ice and snow, liquid clouds, rain, and 20

aerosols against those from the GEM and CAMS models.
Strong correlations in retrieved quantities are indicative of
the skill of the retrieval. We also statistically compare the
forward-modelled and observed measurements from ATLID,
CPR, and MSI; strong correlations between these quantities 25

are expected when the retrieval is assimilating EarthCARE
measurements as intended.

4.1 Ice and snow

To evaluate the retrieved ice clouds and snow against the
GEM model, and the forward-modelled EarthCARE mea- 30
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Figure 8. GEM model and ACM-CAP retrievals of IWC (a, b), LWC (d, e), snow rate (g, h), and rain rate (j, k) and comparisons of vertically
integrated and selected quantities for ice (c), liquid (f), snow (i), and rain (l) for the high-latitude mixed-phase part of the Halifax scene.

surements against those simulated from the GEM model, we
show probability density functions (PDFs; top panels) and
joint histograms (lower panels) of snow rate, IWC, and effec-
tive radius (Figs. 11 and 12). The PDF of all true data (black
PDFs) is compared against those in volumes correctly clas-5

sified by radar–lidar synergy (grey shading; these two will
be identical for the measured variables, except due to mea-
surement noise); the difference between these PDFs illus-
trates the portion of ice clouds that are not recoverable from
EarthCARE’s instruments. The other PDFs show equivalent10

quantities retrieved or forward modelled by ACM-CAP ev-
erywhere (red lines) and specifically in volumes which do not
contain ice or snow in the model (red shading). The joint his-
tograms show the degree to which the retrieved and forward-

modelled quantities represent the true values, including cor- 15

relation coefficients (r) and RMSEs.
The retrieved snow rates (Fig. 11a) and IWC (Fig. 11b)

have similar high correlations (r = 0.90 and 0.91) and er-
rors (62 % and 51 %); this suggests that the variability in the
fall speeds of ice particles – as represented by the numerical 20

model’s four ice species – does not dominate the uncertainty
in the retrieval. The radar reflectivity is very faithfully repro-
duced (Fig. 12a) but the mean Doppler velocity (Fig. 12b) –
which is well fitted in stratiform snow where the measure-
ment is dominated by the terminal velocity of particles – has 25

a higher degree of spread when the forward-modelled val-
ues are less than 1 m s−1, such as in ice clouds dominated by
smaller particles.
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Figure 9. Simulated and forward-modelled ATLID attenuated Mie backscatter (a, b), MSI solar albedo (c), and ATLID attenuated Rayleigh
backscatter (d, e) for the subtropical part of the Halifax scene. All profiling variables are overlaid with contours of atmospheric temperature
from X-MET.

Figure 10. CAMS model and ACM-CAP retrievals of aerosol extinction (a, b) and aerosol optical thickness (c) for the subtropical part of the
Halifax scene. Panels (d) and (e) show the corresponding CAMS and ACM-CAP-reported aerosol lidar ratio (i.e. the extinction-to-backscatter
ratio); the latter is not retrieved but is a property of each HETEAC aerosol species, as mapped to the CAMS aerosol classes.

The GEM model ice effective radius (reff) (Fig. 11c) has a
bimodal distribution (black line) as an artefact of distinct ice
and snow habits in the model microphysics scheme. As ice
and snow are represented as a continuum in ACM-CAP, the
retrieved distribution of ice effective radius (red line) is only5

weakly bimodal and shows a tendency to underestimate the
frequency of the lowest and highest effective radii. The joint

histogram (Fig. 11c) shows that the retrieved effective radius
is well-correlated with the GEM model (r = 0.85), with low
RMS error (12 %); the greater apparent variability in this 10

quantity is due to the linear, rather than logarithmic, scale.
The thermal infrared and solar radiances (Fig. 12d, e) both
exhibit strong correlations, which is to be expected for pas-
sive and integrated measurements that have been assimilated
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Figure 11. 1D (above) and joint (below) histograms comparing true (GEM model) and retrieved (a) snow rate, (b) IWC, and (c) effective
radius for the three GEM scenes. The 1D histograms compare all GEM model data (black line) and GEM model data, where ATLID or CPR
correctly detect ice cloud (grey shading) against retrieved ACM-CAP data (red line) and retrievals in volumes which do not contain ice cloud
(red shading).

within the retrieval. The warm bias in the infrared brightness
temperatures includes a contribution from low IWC near the
cloud top being highlighted in parts of the case studies, but
– since a similar bias is also evident for the liquid clouds
discussed in Sect. 4.2 – we attribute this largely to system-5

atic differences between the atmospheric temperatures in the
GEM model and the ECMWF forecasts used to inform the
retrieval. By contrast, the shortwave albedo has a higher de-
gree of random error but is not biased.

4.2 Liquid cloud10

In this section, we evaluate the retrieved properties of liq-
uid clouds (Fig. 13) and forward-modelled ATLID and MSI
measurements (Fig. 14). As shown in the case studies, the
retrieval of liquid cloud in rain results in an overall improve-
ment in retrieved LWP, but the smooth spatial distribution of15

liquid cloud often differs from those in the GEM model (see
red shaded PDF in Fig. 13). Overall, the retrieval of liquid
clouds is unbiased and moderately correlated with the GEM
model variables (r = 0.58) but with a high degree of random
error (RMSE= 90 %).20

The forward-modelled ATLID Mie backscatter and MSI
shortwave albedo in liquid clouds (Fig. 14a, b) help eval-
uate the extent to which the available measurements are
correctly assimilated within the retrieval. The attenuated
Mie backscatter (Fig. 14a) reflects a moderately good fit to25

the ATLID measurements; the primary peak in backscat-
ter from liquid clouds around 1× 10−5 sr−1 m−1 is well-
represented, but the correlation rapidly deteriorates at lower
values (i.e. where the signal is becoming extinguished). The
fit to MSI shortwave albedo is extremely good (r = 0.99 with30

RMSE of 8 %).

In common with the ice clouds, the MSI thermal infrared
(8.85 µm) channel has a warm bias (around 5 K and as much
as 10–20 K, especially in higher clouds or colder brightness
temperatures) for liquid clouds. A comparison of the temper- 35

ature fields from the GEM model and X-MET data product
derived from the ECMWF analysis revealed temperature dif-
ferences of as much as several degrees, including positive
biases near the cloud top in the three test scenes, which are
likely to explain part of the observed bias in MSI thermal 40

infrared channels and which contribute to the uncertainties
in this evaluation. In practice, the high-resolution ECMWF
1 d forecasts will also differ from the true state of the atmo-
sphere, but verification against radiosondes reveals that these
forecasts have an RMSE of only 1 K in the upper troposphere 45

(Thomas Haiden, personal communication, 2023). Nonethe-
less, the effect of such errors in the retrieval uncertainty, and
the potential for representing these uncertainties within the
retrieval, should be the subject of future work.

While the benefit of retrieving liquid cloud in rain was 50

clear from the case studies, it is important that the assumption
of liquid cloud in rain can be used at night, without introduc-
ing a bias to the retrieval. The high-latitude mixed-phase case
study (Fig. 8) showed that ACM-CAP may occasionally un-
derestimate LWP at night, but it is not clear to what extent 55

this would be improved by the availability of solar radiances.
As a test, we ran all three scenes without assimilating solar
radiances and found that, while LWC exhibited more ran-
dom error, the retrievals were not biased. This indicates that
the priors and uncertainties used are broadly appropriate – at 60

least across the cloud regimes sampled by the test scenes. A
more robust check will be to apply the same test using a large
number of A-Train orbits.
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Figure 12. Histograms of observed and forward-modelled CPR radar reflectivity (a), mean Doppler velocity (b), and ATLID attenuated Mie
backscatter (c) in volumes containing ice and snow across all three simulated test scenes. The 1D histograms compare all GEM model data
(black line) and GEM model data, where ATLID or CPR correctly detect ice cloud (grey shading) against retrieved ACM-CAP data (red line)
and retrievals in volumes which do not contain ice cloud (red shading).

4.3 Rain

The retrieved properties of rain (Fig. 15) and forward-
modelled CPR measurements (Fig. 16) indicate that the rain
rate (Fig. 15a) is strongly constrained by radar reflectivity
and PIA (Fig. 16a, c) through light to moderate rain rates.5

A low bias is evident in the heaviest rain (10 mm h−1 and
above), corresponding to an underestimate in the highest
radar reflectivity factors in rain (above around 15 dBz). The
integrated constraint on attenuation due to both liquid cloud
and rain has a correlation of r = 0.99 and an RMSE of 17 %.10

In contrast, the mean Doppler velocity (Fig. 16b) and pa-
rameters of the raindrop size distribution (DSD; Fig. 15b,
c) indicate some challenges in retrieving the microphysics
of rain. While mean Doppler velocity has a good corre-
lation with measurements (r = 0.67) and a weaker impact15

from measurement noise than was observed for ice cloud
(RMSE= 18 %), a low bias is evident in the raindrop termi-
nal velocity, which is reflected in high biases in normalized
number concentration and underestimates in median diam-
eter, especially in heavy rain with relatively low concentra- 20

tions of large raindrops (Nw less than the Marshall–Palmer
value andDm greater than 1 mm). This is likely related to the
retrieval being over-constrained by priors when the measure-
ments are near the limits of the CPR within heavy precipita-
tion and may suggest the need to set modified priors for rain 25

within profiles identified as convective.

4.4 Aerosols

The retrieved properties of aerosols and forward-modelled
ATLID and MSI measurements (Fig. 18) show that aerosols
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Figure 13. 1D (above) and joint (below) histograms comparing true (GEM model) and retrieved (ACM-CAP) liquid water content (left),
extinction (middle), and effective radius (right) for the three simulated test scenes. The 1D histograms compare all GEM model data (black
line) and GEM model data, where ATLID or CPR correctly detect liquid cloud (grey shading) against retrieved ACM-CAP data (red line)
and retrievals in volumes which do not contain liquid cloud (red shading).

Figure 14. Histograms of observed and forward-modelled ATLID attenuated Mie backscatter (a) and MSI shortwave albedo (b) in volumes
and profiles containing liquid cloud across all three simulated test scenes. The 1D histograms compare all GEM model data (black line) and
GEM model data where ATLID or CPR correctly detect liquid cloud (grey shading) against retrieved ACM-CAP data (red line) and retrievals
in volumes which do not contain liquid cloud (red shading).

are the most challenging aspect of the retrieval, given the
relatively weak signals and the related issues of character-
izing surface properties for the passive measurements. As
discussed earlier, the aerosol quantities in the test scenes
have been extracted from the CAMS model and mapped to5

the HETEAC aerosol species in preparation for inclusion in
the simulated test scenes (Qu et al., 2022). ACM-CAP re-
lies on the classification of tropospheric aerosols from A-TC
to determine the physical properties of each aerosol class,
including their scattering properties and size distribution,10

and retrieves the number concentration by which all other

quantities such as extinction and mass content are deter-
mined. Hence, there is the quantized distribution of forward-
modelled aerosol extinction-to-backscatter ratio, with val-
ues corresponding to the properties of each aerosol class 15

(Fig. 17b).
The forward-modelled attenuated Mie and Rayleigh

backscatter (Fig. 18a, b) have little relation to the measure-
ments at the scale of the JSG. This is consistent with the
forward-modelled measurements in the aerosol case study 20

(Fig. 9), where noise dominates the simulated ATLID mea-
surements in the aerosol. This demonstrates the importance



S. L. Mason et al.: ACM-CAP 23

Figure 15. Histograms of GEM model quantities and ACM-CAP retrievals of (a) rain rate, (b) normalized number concentration, and
(c) median diameter. 1D (above) and joint (below) histograms comparing true (GEM model) and retrieved (ACM-CAP) rainwater content
for the three simulated test scenes. The 1D histograms compare all GEM model data (black line) and GEM model data, where CPR correctly
detects rain (grey shading) against retrieved ACM-CAP data (red line) and retrievals in seconds, which do not contain rain (red shading).

Figure 16. Histograms of observed and forward-modelled CPR radar reflectivity (a), mean Doppler velocity (b), and path-integrated atten-
uation (c) in seconds and profiles containing rain across all three simulated test scenes. The 1D histograms compare all GEM model data
(black line) and GEM model data, where CPR correctly detects rain (grey shading) against retrieved ACM-CAP data (red line) and retrievals
in volumes which do not contain rain (red shading).

of the Kalman smoother for extracting information on larger
spatial scales. Errors in the solar albedo appear to be domi-
nated by the land surface (i.e. the Baja scene, crossing North
America), with a higher degree of scatter at moderate to
high albedos but a relatively close correlation over the ocean5

(i.e. where A< 0.2).

5 Discussion and conclusions

The ACM-CAP product uses the synergy of all available
measurements from EarthCARE’s active and passive sensors
to retrieve profiles of ice and snow, rain, liquid clouds, and 10

aerosols simultaneously. Such a unified retrieval product has
never been produced from the synergy of spaceborne instru-
ments and has the advantage of facilitating retrievals, even in
mixed-phase, layered, and heavily precipitating scenes. This
is a priority for the EarthCARE production model in which 15
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Figure 17. Histograms of CAMS model quantities and ACM-CAP retrievals of (a) aerosol extinction and (b) aerosol lidar ratio (extinction-
to-backscatter ratio). 1D (above) and joint (below) histograms comparing true (CAMS model) and retrieved (ACM-CAP) aerosol quantities
for the three simulated test scenes. The 1D histograms compare all CAMS model data (black line) and CAMS model data, where ATLID
correctly detects rain (grey shading) against retrieved ACM-CAP data (red line) and retrievals in volumes which do not contain rain (red
shading).

Figure 18. Histograms of observed and forward-modelled (a) ATLID attenuated Mie backscatter, (b) attenuated Rayleigh backscatter, and
(c) MSI shortwave albedo in volumes and profiles containing aerosols across all three simulated test scenes. The 1D histograms compare all
CAMS model data (black line) and CAMS model data, where ATLID correctly detects aerosols (grey shading) against retrieved ACM-CAP
data (red line) and retrievals in volumes which do not contain aerosols (red shading).

the retrievals are used to compute broadband heating rates
and inform a top-of-atmosphere radiative closure assessment.
In this study, we have described the innovative CAPTIVATE
optimal estimation retrieval framework in its configuration
for the ACM-CAP processor and presented a detailed evalu-5

ation of ACM-CAP’s performance across three EarthCARE
granules. Taking as truth the numerical model fields used to
generate the test scenes, it was possible to evaluate the re-
trieval more thoroughly than will be possible using in situ
or remotely sensed measurements to evaluate in-flight Earth-10

CARE retrievals – with the caveat that the numerical weather

model is not a perfect physical representation of aerosols, hy-
drometeors, or the atmosphere, and some biases in the model
may contribute to apparent errors and uncertainties presented
here. Over the test scenes, the retrieved IWC and snow rate 15

were closely correlated with the model truth; however, the
snow rate was subject to more than twice the random error of
IWC, reflecting the high degree of natural variability in the
structure and terminal fall speed of snowflakes. The rain re-
trieval is constrained chiefly by CPR measurements, with im- 20

portant contributions from Doppler velocity and PIA. The re-
trieved rain rate was very highly correlated with model truth,
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with a similar random error to that of IWC. Liquid clouds
and aerosols are more challenging to retrieve, as both rely
on detection by ATLID, which is obscured by cloud aloft
and rapidly extinguished in liquid cloud layers. Retrieved
LWC was moderately correlated with that in the model, with5

RMSE around 90 %. The retrieved aerosol extinction is mod-
erately correlated with the model but has a lower RMSE of
around 32 %.

The quality of ACM-CAP retrievals is dependent on the
accuracy of the target classification used to determine where10

different species are to be retrieved. A significant limitation
of radar-lidar synergy, whether from CloudSat-CALIPSO or
EarthCARE, is that of detecting liquid cloud, which is either
embedded within ice clouds or rain or beneath layered cloud
scenes after ATLID is extinguished. An evaluation of the tar-15

get classifications in the same test scenes (Irbah et al., 2022)
showed that liquid cloud is correctly identified by ATLID in
around 22 % of sampling volumes – less than 10 % of LWC
– and primarily at the tops of mixed-phase clouds and shal-
low liquid clouds unobscured by optically thick clouds. We20

have demonstrated a simple assumption to compensate for
this missing liquid cloud, which is to assume that liquid cloud
is present wherever rain is detected by CPR. While this does
not resolve the small-scale structure of liquid clouds within
rain, it is sufficient to correctly identify around 54 % of vol-25

umes containing liquid cloud or 65 % of LWC (Irbah et al.,
2022). We have shown that making the assumption of liquid
cloud in rain within ACM-CAP greatly improves the assimi-
lation of MSI solar radiance channels in stratiform rain, con-
straining the retrieval of a simple profile of LWC. An equally30

important benefit is that the contribution of liquid cloud to
radar attenuation helped to reduce a positive bias in retrieved
rain rate in the stratiform precipitation regime. Finally, the
fact that liquid cloud in the context of stratiform rain can
be coarsely constrained by MSI solar radiance channels sug-35

gests its importance for the shortwave broadband fluxes at
the top of the atmosphere. The differences between ACM-
CAP and other EarthCARE L2 products’ retrieved geophys-
ical quantities are explored in an intercomparison study in
this special issue (Mason et al., 2023). ACM-CAP’s repre-40

sentation of liquid clouds appears to be a contributor to im-
proved shortwave top-of-atmosphere radiative closure when
compared to the composite of single-instrument retrievals
(Barker et al., 2023).

We have described the configuration of the ACM-CAP re-45

trieval prior to EarthCARE’s launch and evaluated its perfor-
mance, using test scenes generated from a numerical weather
prediction model. The test scenes have proved invaluable
in facilitating the maturity of the retrieval processor ahead
of EarthCARE’s launch; however, the three orbital granules50

represent around 5 % of 1 d of in-flight EarthCARE data and
cannot provide a thorough coverage of all the regions and
regimes that are of interest for EarthCARE science. Prior to
launch, field campaign data, additional simulated scenes, and
A-Train data will provide further potential to test and eval-55

uate ACM-CAP, including against in situ measurements of
cloud, aerosol, and precipitation properties. Ultimately, the
configuration of the ACM-CAP retrieval algorithm will be
updated as necessary in response to the exposure of the en-
tire EarthCARE production model to in-flight measurements, 60

in coordination with EarthCARE calibration/validation cam-
paigns.

Data availability. The EarthCARE Level 2 demonstra-
tion products from simulated scenes, including the ACM-
CAP product discussed in this paper, are available from 65

https://doi.org/10.5281/zenodo.7117115 (van Zadelhoff et al.,
2023).
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