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Abstract.

The net Arctic sea-ice area (SIA) can be estimated from the sea-ice concentration (SIC) by passive microwave measurements

from satellites. To be a truly useful metric, for example of the sensitivity of the Arctic sea-ice cover to global warming, we

need, however, reliable estimates of its uncertainty. Here we retrieve this uncertainty by taking into account the spatial and

temporal error correlations of the underlying local sea ice concentration products. We find that the observational uncertainties5

of both sea-ice area and sea-ice extent (SIE) in 2015 are about 300 000 km2 for daily and weekly estimates and 160 000 km2

for monthly estimates. This daily uncertainty corresponds to about seven percent of the 2015 sea-ice minimum and is about

half of the spread in estimated sea-ice area from different passive microwave SIC products. This shows that random SIC errors

play a role in SIA uncertainties comparable to inter-SIC-product biases. We further show that the September SIA, which is

traditionally the month with least Arctic sea ice, has declined by 105 000 km2 a−1 ± 9 000 km2 a−1 for the period from 200210

to 2017. This is the first estimate of a SIA trend with an explicit representation of temporal error correlations.

Copyright statement. CC-BY 4.0

1 Introduction

In this study we quantify the uncertainty of total Sea Ice Area (SIA) and Sea Ice Extent (SIE) of the northern hemisphere. The

former is calculated as the sum of the individual sea-ice areas in all northern-hemisphere grid cells of a gridded product, while15

the latter is the sum of the grid-cell area of all grid cells with at least 15 % sea-ice concentration. We calculate the uncertainty

of these two metrics by taking into account the spatial and temporal error correlations for propagating uncertainties from the

local to the Arctic-wide level for the ESA Sea Ice Climate Change Initiative Sea Ice Concentration Climate Data Record based

on the AMSR-E and AMSR-2 instruments at 50km version 2.1 (Lavergne et al., 2019; Pedersen et al., 2017) (hereafter: CCI

SIC).20
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The local area fraction covered by sea ice, called Sea Ice Concentration (SIC), can be inferred at a resolution of the order of

tens of kilometers from passive microwave radiometers onboard several satellite missions since the 1970s. These SIC estimates

do not depend on daylight, have a small sensitivity to atmospheric conditions and cover most of the polar oceans on a near daily

basis. Several passive microwave SIC products exist, and they are valuable tools for many aspects of climate related science,

including operational weather forecasts (e.g. Mironov et al., 2012) and climate monitoring and model assessment (Notz and25

Marotzke, 2012; Kay et al., 2011; Roach et al., 2020; SIMIP Community, 2020; Stroeve et al., 2007; Ding et al., 2017, 2019).

Based on an analysis of these long-term records, we know that the Arctic sea ice cover is significantly declining in all seasons

(e.g. Stroeve and Notz, 2018). The observed decline of Arctic sea ice has been attributed to a combination of anthroprogenic

forcing and internal climate variability, with most studies agreeing that the anthropogenic forcing is the main contributor to the

observed loss (e.g. Kay et al., 2011; Notz and Marotzke, 2012; Ding et al., 2017; Fox-Kemper et al., 2021). Trend detection30

algorithms of satellite products have uncertainties mainly driven by spatial and temporal correlations which require careful

consideration (Wen et al., 2023). The vast majority of studies using sea ice as a variable for monitoring and model assessment

focus largely or completely on the aggregated measures of SIA and/or SIE (Notz and Marotzke, 2012; Kay et al., 2011; Roach

et al., 2020; SIMIP Community, 2020), including the IPCC Assessment Reports (e.g. Fox-Kemper et al., 2021; Gulev et al.,

2021, including Cross-Chapter Box 2.2). The need for a robust uncertainty estimate for SIA and SIE products is therefore35

evident.

Other types of satellite measurements are used to derive the SIC, such as from near-optical and Synthetic Aperture Radar

(SAR) sensors. These can, under favourable conditions, be of higher quality than passive microwave SIC products (Sun et al.,

2023). However, only passive microwave products provide continuous, nearly arctic-wide coverage for more than 40 years,

which is why we focus exclusively on passive microwave SIC estimates in this study. Efforts to synthesise passive microwave40

and SAR SIC algorithms, as discussed in Sun et al. (2023), require a sound understanding of the respective uncertainties, as

are studied here.

The uncertainties in SIA and SIE investigated here stem from uncertainties in the underlying SIC fields. Passive microwave

SIC estimates in regions of consolidated ice have typically smaller uncertainties (2% to 8% SIC) than estimates from low to

intermediate SIC areas with uncertainties in the order of 20% SIC or more (Kern et al., 2019, 2021; Alekseeva et al., 2019;45

Meier, 2005). Uncertainties in passive microwave SIC products stem from (1) the interference of atmospheric, ocean and sea-

ice properties, (2) misclassification of surface types, (3) limits in sharpness of the passive microwave measurements and (4)

algorithmic uncertainties.

(1): The impact of atmospheric interference and roughening of the ocean from wind exposure near the ice edge have been

highlighted in Ivanova et al. (2015) and the impact of the surface emissivity variability in general in Andersen et al. (2007).50

Tonboe et al. (2021) investigated the sensitivity of several SIC algorithms to geophysical parameters using an emission model.

The range of realistic geophysical parameters is based on a multi layer sea ice model forced by reanalysis data. They find that

atmospheric variability has generally a small contribution to SIC errors and that, depending on the type of algorithm, either the

snow surface density or the snow-ice interface temperature are the largest error sources.
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(2): Microwave emissions of wet snow, wet ice and melt ponds on top of sea ice resemble the emissions of open water more55

closely than cold, dry snow or ice, which can lead to misclassifications and hence be a major source of uncertainty for summer

melt conditions (Kern et al., 2020; Alekseeva et al., 2019). The quality of SIC products that adapt dynamically to seasonal

conditions, including the CCI SIC, partly address this issue, and hence show less deterioration of their quality in summer than

other products (Kern et al., 2019). Further, thin ice can have a passive microwave signature similar to a mixture of thicker ice

and open water, adding to the uncertainties in SIC, particularly in summer (Alekseeva et al., 2019).60

(3): Smearing effects become important where SIC values vary on scales close to the measurement footprint, for example

in the marginal ice zone (Tonboe et al., 2016). SIC algorithms are typically based on several frequency bands with different

footprint sizes such that a mismatch occurs in the processing.

(4): Algorithmic uncertainties result from all the decisions taken within the SIC product development; the frequency bands

used for a product, the type of algorithm, corrections for the types of interference (see above), auxiliary data (e.g. land mask)65

and parameter values therein (e.g. thresholds and correction factors). The impact of these potential error sources on the accuracy

of the estimated sea-ice extent is part of the investigations by Meier and Stewart (2019) who compare different processing

chains and find that the near-real-time and the final product of the NSIDC sea ice index differ by about 100 000 km2. The

sensitivity of the estimated sea-ice extent to SIC algorithm parameters gives rise to an estimated parametric uncertainty in the

order of 50 000 km2.70

Inter-comparisons of SIA and SIE estimates from different SIC algorithms, which represent the impact of a mixture of all

described uncertainties, reveals SIA and SIE biases to be of the order of 500 000 km2 (Meier and Stewart, 2019; Ivanova

et al., 2014; Kern et al., 2019). However, so far no study exists that has specifically investigated how the local uncertainty in

individual grid cell’s SIC carries over to the integrated uncertainty of SIA. To do so is the overarching aim of this study.

For our investigation, we use the CCI SIC product that has generally one of the most advanced uncertainty estimates among75

available products. This uncertainty estimate attempts to represent the four types of sources of uncertainty described above,

however, some additional sources of uncertainty cannot be taken into account. Any physical process leading to a bias in the

SIC cannot be adequately taken into account by most of the common uncertainty estimates, including the one of the CCI SIC

product. Those underrepresented processes include misclassified ice types at the tie points, a possible unaccounted increase in

tie point emissions from wet snow (Kern et al., 2020), melt ponds and the influence of weather despite respective corrections80

and the underlying land mask.

The knowledge of inter-SIC-product biases in SIA and SIE is crucial, however, it is not suitable as the sole metric to

estimate and communicate SIA and SIE uncertainty: The inter-product differences contain constant biases, for example from

different land masks, which increase the perceived uncertainty and require in practice a different treatment than random errors.

While biases in SIC products lead to large perceived uncertainties from product inter-comparisons, other uncertainties are not85

represented at all, such as common algorithmic assumptions or errors in the commonly used passive microwave data sets.

To overcome these limitations, we here estimate the uncertainty of a single SIA product based on the uncertainty of the

underlying SIC fields. This approach complements the inter-comparison across various products because it is based directly

on the local SIC uncertainty estimates. Our SIA and SIE uncertainty estimates can accompany the whole product lifespan and
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can evolve with changes in product quality and SIC conditions. By representing temporal error correlations we can quantify90

the reduction in uncertainties from temporal averaging.

2 Method

If supplied at all, SIC uncertainties are kept on a grid cell level by the data providers. The analytical propagation of these

uncertainties to the aggregated measures SIA and SIE is challenging due to spatial and temporal correlations, computational

constraints when a full correlation matrix needs to be used, and by the application of thresholds (for SIE) on SIC fields with95

dependant uncertainties.

To overcome these issues, instead of an analytical uncertainty propagation we here use a Monte Carlo approach and derive an

ensemble of SIC estimates that possesses correlated error fields. For this approach it is crucial to distinguish between errors and

uncertainties: An error is the difference between an estimate and the real, typically unknown, value, while the uncertainty is

the width of a random variable distribution. In other words, the uncertainty is an estimate of the expected absolute amplitude of100

errors. Choosing to represent SIC uncertainties by an ensemble with statistically generated errors allows for easy propagation

even through complex calculations: The same calculation (e.g. of the SIE) is performed on each SIC ensemble member creating

a frequency distribution for the result. The widths of this frequency distribution can be understood as the uncertainty of the

result if the following criteria are met: (1) The spread within the ensemble is in agreement with the estimated local uncertainties

of the SIC product, (2) the error correlations of the generated errors are in agreement with estimates of the real SIC error105

correlations of the product and (3) the ensemble size is sufficiently large.

In the following, we address these criteria, starting in Section 2.1 with an estimate of the error characteristics from CCI SIC

data, followed in Section 2.2 by a description of the generation of error fields which are added to the average signal from the

CCI SIC data. The last step, described in Section 2.3, is to test the generated samples to be a good representation of the SIC

uncertainty and hence to fulfill the first two criteria above.110

2.1 CCI SIC error characteristics

The error correlations are assumed to be constant in space and time with one characteristic length scale in space and one in

time. Correlations are therefore assumed to solely depend on the (space-time) distance between two locations.

2.1.1 Spatial correlation

The estimate of the spatial correlation length scale used here is based exclusively on the data in Kern (2022), described in115

Kern (2021). In Kern (2021) the spatial correlation pattern across the polar regions is investigated. In this study, the CCI SIC is

used and locations of high concentration pack ice (SIC>90%) are selected. Within a 31 day window the correlations between

each location and circular discs around this location is calculated for both the CCI SIC field and the CCI SIC uncertainty field.

Exponentially decaying functions are fitted to the correlation as a function of distance to the center. The e-folding distance,

i.e. the distance at which the fit reaches 1/e, is saved restricted to the range of [20 km,1000 km], in steps of 5 km. There120
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are two types of correlation length scales discussed in Kern (2021), namely the total error correlation length and the sea-ice

concentration error correlation length, which are described below.

The total error correlation length results from the described processing when using the total_standard_error variable (re-

named to total_standard_uncertainties in newer versions) of the CCI SIC product. The total error correlation length therefore

describes whether the amplitude of uncertainties is correlated but not whether the errors that these uncertainties describe are125

correlated. An example for this would be a process which creates independent noise on a persistent spatial scale. In this

case, the amplitude of the noise would have a typical length scale but the errors would nevertheless be uncorrelated. The

total_standard_error variable is largely based on the maximum SIC minus minimum SIC of a moving 3×3 grid-cell box (cor-

responding to 150 km × 150 km for the 50 km resolution product) which is used to include the dependency of the smearing

effect on local SIC variability (Tonboe et al., 2016; Lavergne et al., 2019).130

The sea ice concentration error correlation length (hereafter: SIC error length), in contrast, results from the described process-

ing when using the raw SIC values themselves, including values outside the [0%, 100%] range. Analysing these untruncated

SIC values shows that they regularly reach up to 110% SIC, indicating that product SIC errors, even for pack ice regions,

can be of order 10% SIC, since SICs above 100% are physically impossible. By assuming a symmetric error distribution it

follows that all SIC values above 90% can originate from fully ice covered regions, which informed the >90% criterion of135

Kern (2021). The analysed correlations are caused by a combination of two factors: First, the actual SIC can indeed be below

100% (but above 90% throughout the analysed window) which might be reflected in the observations. In this case the spatial

correlation of the SIC field is misinterpreted as spatial correlations of the SIC errors. The other factor is given by the errors

in SIC observations which cause variations in the observed SIC field regardless of the real world SIC. Here we assume that

locations with real SICs very close to 100% dominate in the analysis for the SIC error length so that the SIC error length is140

a good measure of the product’s error correlation (see Discussion for more information on this assumption). In other words,

for a real SIC of 100%, the correlations in the derived SIC product originate solely from the retrieval errors. It is this error

correlation that is required for the statistical error generation proposed here and thus we will focus on the SIC error length in

the following.

Figure 1c shows that for 2015, the spatial error correlation length, as provided by Kern (2021), peaks at around 300 km.145

The generated samples will be designed to echo this distribution. Due to a lack of other information, we assume that this error

correlation length can be applied to all locations, independent of the local SIC value.

2.1.2 Temporal correlation

We derive the temporal error correlation length (i.e., the duration) by generally following the processing of the spatial SIC

error length in Kern (2021). Using the untruncated CCI SIC fields, we check each month for locations where the daily SIC150

never falls below 90% SIC. Based on all these locations we derive a monthly autocorrelation time-series and find the minimum

RMSD fit of an exponentially decaying function, ct(∆t) (Equation 1, Figure 1b). The e-folding value, `t, of this fit is used as

a measure for the temporal error correlation length. The seasonal cycle and potential trends are not removed from the SIC data
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Figure 1. Spatial (left) and temporal (right) correlation characteristics. (a) Example of the correlation with a selected location near Wrangel

Island on January 26 2010 ; (c) the frequency distribution of the spatial sea-ice concentration error correlation length scale for the northern

hemisphere and the whole year 2015; (b) Examples of the auto-correlation values (solid lines) for the northern hemisphere in September

from 2013 to 2016 with minimal RMSD fit (dotted lines); (d) The frequency distribution of the temporal correlation length scale for the years

2013 to 2016 . Panel (a) taken from Kern (2021).

set for this processing because they are expected to have negligible impact on timescales of several days to weeks. However,

we do allow ct to converge to a floor level cf different from zero:155

ct(∆t) = (1− cf ) · exp
(∆t

`t

)
+ cf (1)

where ∆t is the time-lag and `t is the temporal error correlation length. The addition of a floor level correlation results in much

better fits of ct to the autocorrelation data (Figure 1b) which improves the representation of the initial drop in autocorrelation

of interest here.

2.2 Monte Carlo modelling160

We use the previously identified spatial and temporal error correlations to create a Monte Carlo ensemble in order to propagate

the CCI SIC uncertainty estimates to the SIA and SIE estimates. The spread within the SIC ensemble represents its correlated
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uncertainties. Therefore, the ensemble-spread in the resulting SIA or SIE estimates provides an estimate of the propagated

uncertainty.

The generation of ensemble members with correlated random errors consists of the following four steps: (1) Independent165

white noise with zero mean and a standard deviation of one is generated in the whole domain by a numerical random generator.

The noise is generated for the whole time period and hemisphere at once to avoid discontinuities in the final error fields. (2)

A three-dimensional Gaussian low-pass filter with sigma values of 5 days in the time dimension and 288 km in the two space

dimensions (compare Figure 1c and d) is applied to the independent noise to remove higher frequency components. These

nominal values are not matched exactly in the generated ensemble, the quality of the statistical model will be evaluated in the170

following section. Two alternative types of filters have been applied for comparison which have limited impact on the results

(see Appendix). (3) The amplitude of the filtered noise field is normalized to have a standard deviation of one. (4) The noise

field is multiplied with the total_standard_error variable of the CCI SIC product. All noise realizations are added individually

to daily fields of the SIC product from which the high-frequency variations have been filtered. The CCI SIC product contains

errors itself; the objective here is to replace these errors by statistically generated ones. Therefore we remove high frequency175

SIC variations by using the same Gaussian filter on the SIC data, as is used to create errors fields. Without this step we would

add the generated error fields to a SIC field that already contains the same type of error, so that the resulting fields would by

default show stronger spatio-temporal variability.

2.3 Quality of generated noise

To examine the quality of the generated SIC field, we need to examine two questions describing the two basic quality measures180

mentioned before: (1) How well is the local spread within the ensemble reflecting the uncertainty estimates of the CCI SIC

product? (2) How well does the generated ensemble reproduce the spatial and temporal error correlation characteristics of the

original product? If both criteria are met, we have shown that our synthetic errors are a good approximation for the inherent

product errors.

2.3.1 Local uncertainties185

To examine whether the first quality measure is met, we compare the spread in the generated ensemble with the uncertainty

estimate by the data providers (Figure 2). We find that indeed, the ensemble spread is very similar to the total_standard_error

variable which is the combination of the algorithmic uncertainty and the smearing uncertainty, representing one standard

deviation in percentage points of the SIC. It is outside the scope of this work to derive individual error characteristics for those

contributing uncertainties. Note that we do not asses the quality of the local CCI SIC uncertainty estimate here, but instead190

focus on creating a statistical representation of this product.
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Figure 2. Example of (left) uncertainty estimates as provided by the CCI SIC product variable total_standard_error and (right) the standard

deviation of 100 members of the statistically generated ensemble using the Gauss filtering approach.

Figure 3. Comparison of the error correlation distributions of the CCI SIC product with the statistically generated ensemble. The shown

spatial distributions (left) for 2015 have a mean of 333 km (CCI) and 322 km (sample) and a median of 305 km (CCI) and 280 km (sample).

The shown temporal error distributions (right) have a mean of 5.8 days (CCI) and 4.5 days (sample) as well as a median of 4.7 days (CCI)

and 4.2 days (sample).
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Figure 4. Daily Arctic SIA and SIE ensemble of 20 SIC ensemble members for the year 2015. One member is highlighted in red to illustrate

the temporal correlation of the time series. The ensemble mean is shown in black.

2.3.2 Error characteristics

The spatial and temporal error characteristics of the statistically generated ensemble members are similar to the ones of the

original CCI SIC product (Figure 3). For Figure 3, we use the same approach to derive spatial and temporal error correlation

lengths as described in Section 2.1 on one noise realization to be compared with the CCI SIC characteristics. It can be seen195

that not only the average correlation length scales agree between the CCI SIC and statistically generated ensemble members,

but that furthermore the width of the distributions are consistent.

In summary, we have generated a statistical ensemble of SIC time-space fields which are centered around the CCI SIC

product while the added noise is in excellent agreement with the local CCI SIC uncertainty estimates and the estimated temporal

and spatial error correlations. In the following, we can therefore use the generated ensemble to quantify uncertainties in the200

SIA and SIE.

3 Results

To derive SIA and SIE uncertainties we repeat the calculation of daily SIA and SIE values for each ensemble member indi-

vidually (see Figure 4 for an example). Note that the temporal correlation in the SIC errors results in increased smoothness

over time in the SIA and SIE variability of ensemble members compared to temporally independent noise (Figure 4, compare205

Figure A1). The errors in SIA and SIE can neither be well represented by a constant bias nor by temporally independent noise,

which highlights the value of our approach to statistically model the underlying SIC error.

In a next step we derive the weekly and monthly SIA and SIE estimates from the daily time-series and calculate the ensemble

STD (Figure 5a). As an example, we find that the SIA uncertainty in 2015 is 306 000 km2 for daily, 275 000 km2 for weekly, and
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Figure 5. Results from Monte Carlo ensembles with 100 members. (a) Standard deviations of SIA and SIE from daily (gray) values as well

as weekly (purple) and monthly (red) averages. (b) Frequency distribution of 2002 to 2017 September SIA trend (blue) with the trend from

linear regression based directly on the CCI product for comparison (black line) and one standard error of the trend (gray shade).

164 000 km2 for monthly estimates. The SIE uncertainty in 2015 is slightly smaller with 296 000 km2 for daily, 261 000 km2210

for weekly, and 156 000 km2 for monthly estimates.

This example shows that weekly averages have nearly the same uncertainty as daily estimates which is due to the typical

temporal error correlation of 5 days. In general, the uncertainty of daily SIA and SIE values strongly depends on the spatial

error correlation, while the amount of uncertainty reduction by temporal averages is determined by the temporal correlation

(see Appendix, Figure A1). The reduction in errors by weekly averages is small because errors do not cancel efficiently due to215

the temporal error correlation. For monthly estimates, in contrast, the uncertainty is reduced by a factor of about two. Figure

5a, indicates a small increase in SIA and SIE uncertainties in summer (JJA) compared to the rest of the year.

We address the sensitivity of our uncertainty estimates on the SIC error correlation length scales by repeating the ensemble

generation for realistic lower-end and upper-end correlation length scales. The difference in daily uncertainty between these

two setups is about 80 000 km2 for both SIA and SIE (Figure A2 and Table A1).220

Of particular interest both scientifically and in the public discussion is the trend in September SIA and SIE because Septem-

ber is the month that typically contains the yearly sea ice minimum and is one of the months with the fastest observed decline

in sea ice (Stroeve and Notz, 2018). We derive the linear trends of the ensemble members by a minimum RMSD fit to the

September daily SIA estimates from 2002 to 2017 and analyse their statistical distribution (Figure 5b). The ensemble of SIA

decline for this period has a mean of 105 000 km2 a−1 with one standard deviation of about 9 000 km2 a−1. The standard error225

of the trend, estimated directly from the CCI SIC data, is nearly 6 000 km2 a−1 and thus of similar size. Considering the differ-

ent nature of these uncertainty estimates with comparable values supports our confidence in the ensemble error representation

and the provided local SIC uncertainty estimates of the CCI SIC product.
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4 Discussion

The uncertainties studied here can be understood as an improved representation of the total_standard_error variable provided230

with the ESA CCI sea-ice concentration product. We fully rely on the experience and extensive validation efforts of the data

providers to quantify the local uncertainties (Kern and Timms, 2018). As mentioned in the introduction, these uncertainty

estimates summarize the impact of several sources of uncertainty. However, biases are not represented in these estimates, for

example those from the applied land mask, which would require a separate statistical treatment.

The assumption of homogeneous and purely radial error correlations is of course a simplification: some sources of errors235

are expected to play a stronger role for specific conditions. This includes the land spill-over, which originates from a strong

contrast between microwave signatures from land and the ocean, while the signatures of land and sea-ice are very similar. The

passive microwave sensors permit a blurring of this sharp contrast, leading to a contamination of measurements near the coast

with land signatures (Parkinson, 1987; Cavalieri et al., 1999) which can confuse the SIC retievals. This leads to a potential

SIC overestimation, in particular for low ice conditions near the coast where the contrast between ocean and land emissivities240

is largest. Filters to reduce the land spill-over effect exist and are used also in the CCI SIC product (Lavergne et al., 2019).

Nevertheless, this effect is creating increased uncertainty in some cases and is likely to create correlated errors along the coast

that lose correlation much quicker in offshore direction.

Another error source with likely non-circular error correlation are tie-points. Tie-points act as reference values on the one

hand for regions of consolidated ice, sometimes split into consolidated first-year ice and consolidated multi-year ice, and on245

the other hand for open ocean conditions. Errors in tie-points are expected to create errors at all locations with conditions

similar to the tie-point conditions. Therefore error correlations are expected to be higher between locations with high sea-ice

concentrations and between locations with low sea-ice concentrations. In other words, since the ocean and sea-ice tie-points

are defined independently of each other, one would expect the errors of an ocean measurement to be less correlated with errors

in sea-ice measurements, everything else being equal.250

Despite these caveats, we use circular correlation pattern in this study, based purely on the distance between two locations.

The existence of non-circular correlation pattern is further supported for example by Figure 5 in Kern et al. (2021). However,

taking these into account requires additional research to quantify the cause, abundance and impact of those non-circular com-

ponents. In general an increase in error correlations at locations with high uncertainties, such as the coast and marginal ice

zone, would correspond to larger uncertainties in the SIA and SIE.255

Another assumption we rely on is that the error characteristics derived from nearly 100% SIC are applicable for all ice

conditions. A similar analysis for intermediate SIC is not possible because variations in real SIC and SIC errors cannot be

distinguished. For conditions close to 0% SIC at locations close to the ice edge, the approach used here and in Kern (2021)

could be applied in principle, but there is a larger chance of ice floes passing through the area, again making the distinction

between errors and real SIC variations difficult. For high SIC areas, leads or other openings in the ice can have the same effect,260

but they typically close or freeze over within days. Leads covered with thin ice can cause passive microwave products to show

reduced SIC values, which we consider an error in the SIC estimate. Therefore we want refrozen leads to be represented by the
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error ensemble. For a better understanding of error correlations, one would need a large set of high quality reference data to be

analysed for passive microwave SIC error characteristics, which currently do not exist.

Comiso et al. (2017) compare four different SIC products and find the decline in annual minimum SIA to be 79 300 km2a−1265

on average for the period from 1979 to 2015. This is smaller than the decline of about 104 000 km2a−1 found here for the

period from 2002 to 2017 (Figure 5b). Since the decline in SIA is accelerating (e.g. Comiso et al., 2017), the differences can be

easily explained by the different time periods used. The range between the products with the smallest (69 100 km2a−1, NASA

Team 1) and largest decline (85 800 km2a−1, HadISST2) in minimum SIA in Comiso et al. (2017) is 16 700 km2a−1, or about

20% of the average estimate. This range of inter-product uncertainty in SIA trend is fully consistent with our single product270

ensemble uncertainty estimate where a single STD of the trend (9 000 km2 a−1) corresponds to about 8.5% of the average.

The work presented here looks at the year 2015 for a continuous time-series and data from 2002-2017 for the September

trend analysis, for a specific SIC dataset (CCI SIC at 50km resolution). It demonstrates how error estimates can be supplied

for SIE and SIA estimates and for their trends. In a next step our method can readily be implemented for sea-ice indicators

on a daily basis by operational services such as the EUMETSAT OSI SAF. In addition to providing error estimates on their275

daily or monthly mean SIE and SIA time-series, it would allow the data providers to set confidence intervals for widely used

metrics such as the trends in monthly SIE and SIA (typically September and March), as well as rank values such as record

low/high, earliest/latest sea-ice extreme, etc., thus increasing the maturity of these key climate indicators. We further hope that

this work will inspire the development of more sophisticated SIC error correlation estimates to refine SIA and SIE uncertainty

estimates and improve the SIC ensemble from different SIC algorithms and new applications. If regional error characteristics280

are sufficiently well represented, the SIC ensemble could be used directly in regional coupled models to investigate the impact

of correlated SIC uncertainties on oceanic and atmospheric surface fluxes.

5 Conclusions

An analysis of errors in the CCI passive microwave SIC product indicates typical error correlations of around 300 km in space

(based on the findings of Kern et al., 2021) and about 5 days in time. We derive a SIC error ensemble by statistical modelling285

and show that this ensemble is able to represent the local SIC uncertainty estimates as provided by the CCI SIC product, as well

as the analysed error correlations. These correlations are shown to have a strong impact on the error propagation from local

SIC to aggregated SIA and SIE; The SIA uncertainty in 2015 is 306 000 km2 for daily, 275 000 km2 weekly, and 164 000 km2

for monthly estimates. The SIE uncertainty in 2015 is slightly smaller with 296 000 km2 for daily, 261 000 km2 weekly, and

156 000 km2 for monthly estimates. These daily uncertainties correspond to more than 5% of the total SIA and SIE values290

around the yearly minimum. The uncertainties of weekly SIA and SIE averages are very similar to those of daily estimates

due to the temporal error correlation. Quantitatively, these uncertainties are about half as large as the spread in SIA and SIE

estimates from different products, which, however, differ not only by random errors as sampled here, but also conceptional

factors such as different land masks (Kern et al., 2019) or the treatment of the pole hole in satellite data. These conceptional

factors often result in biases. Uncertainties in SIE due to the algorithm parameter sensitivity of the order of 50000 km2 a−1295
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as found by Meier and Stewart (2019) do not represent aspects like gridding and sensor noise. The uncertainties provided

here originate from a single SIC product and encompass algorithmic and smearing uncertainties due to satellite footprint

mismatches, which makes them a more appropriate estimate when, for example, comparing model and observational products

on the same grid.

The Arctic September SIA trend for the period from 2002 to 2017 is estimated to be 105 000 km2 a−1±9 000 km2 a−1. This300

trend is an important indicator for the sensitivity of the Arctic ocean to climate change and a good example to illustrate the

strength of our approach: Biases (not represented here) are not an issue for trend analysis but our representation of temporal

error correlations allows us to give a more complete picture of the trend uncertainty.

By using a simple (spatial- and temporal-) distance based correlation model to propagate the uncertainties of the underlying

SIC fields to uncertainties of the key climate indicators SIA and SIE and their trends, we have been able to improve our305

understanding and the quantification of these uncertainties. We expect this quantification of observational uncertainties to be

essential for our understanding of the ongoing Arctic climate change, both as a means in themselves but also in providing a

more robust basis for model evaluation studies.

Code and data availability. The original SIC data is available from the ESA CCI website and the CEDA Archive (Pedersen et al., 2017).

The code to create ensemble members based on this data is available at Wernecke (2022)310

Appendix A: Sensitivities

The SIA and SIE uncertainty estimates are strongly dependent on the error correlation length scales. While we attempt to

constrain the error correlation length as well as possible, there is some ambiguity in the best representation of these correlations.

To investigate the impact of uncertainties in the error correlations we test the sensitivities with regards to several aspect of the

processing.315

A1 Sensitivity to individual correlations

First we set the spatial (temporal) error correlation to zero and use our best estimate for the temporal (spatial) error correlation.

In this way we separate the impacts of the spatial and temporal correlations from each other ( Figure A1). We find that the

spatial error correlation influences the magnitude of the SIA and SIE uncertainties while the temporal correlation reduces the

rate at which the uncertainties reduce with temporal averaging.320

A2 Sensitivity to correlation length scales

Second we define error correlations on the lower and upper end of consistency with observations. Based on Figure 3 we choose

±50 km and ±1 day as a reasonable parameter range. We repeat the SIA and SIE uncertainty calculations for the combination

of lower-end spatial and temporal error correlations (nominal 238 km and 4 days) as well as the combination of upper-end
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Figure A1. (left) Daily Arctic SIA and SIE ensemble of 20 SIC ensemble members with one member highlighted (red) and mean (black).

(right) standard deviations of SIA and SIE derived from an ensemble of 100 SIC ensemble members with (top) spatial error correlation only

and (bottom) temporal correlation only.

spatial and temporal error correlations (nominal 338 km and 6 days) in Figure A2. These two setups can be understood as an325

envelope of SIA and SIE uncertainty estimates.

A3 Sensitivity to filter type

To assess the sensitivity to the filter type, we use two alternative filters to create the noise ensemble: A Fast Fourier Transform

(FFT) and a wavelet filter (Xu et al., 1994). The FFT filter transforms the independent noise field into a frequency representation

in which we set all frequency contributions outside a given range to zero. The inverse transformation creates the required noise330

in the space/time domain. The FFT is a global transformation, meaning that oscillating components in the whole noise field

are preserved if they have a frequency which is not filtered out. This is important because it means that FFT bandpass filters

have the tendency to create negative correlations at specific distances in addition to the desired positive correlation at small

distances. Such anticorrelation is not expected to be found in SIC errors.
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Figure A2. (left) Daily Arctic SIA and SIE ensemble of 20 SIC ensemble members with one member highlighted (red) and mean (black).

(right) Standard deviations of SIA and SIE derived from an ensemble of 100 SIC ensemble members with (top) lower-end and (bottom)

upper-end spatial and temporal error correlations.

A wavelet transformation is a multi-resolution decomposition of an n-dimensional image. The basis functions (wavelets) are,335

in contrast to the FFT, diminishing with distance to their center and are therefore supported only on local subsections of the

image. Wavelet transforms are able to reveal the frequency content of the signal around a specific location which makes them

attractive to identify edges in noisy images (e.g. Xu et al., 1994). Differently sized wavelets, representing different frequencies,

are used as basis function for a wavelet decomposition, providing coefficients that illustrate at which location which frequency

is found in the signal. Wavelet recompositions have been used before to create geophysical noise in applications similar to ours340

(Castleman et al., 2022).

The filtering steps are the same for FFT and wavelet filters: First the three dimensional white noise field is decomposed into

its frequency components. Then frequency components/wavelet coefficients outside of a manually defined window are set to

zero, followed by a reverse transformation/recomposition into the original space-time domain. For the FFT band-pass filter,

the range is set to 238 km to 338 km and 4 days to 6 days. The wavelet filter decomposes the noise field into four levels using345

a discrete wavelet transform with Daubechies-12 wavelets (function wavedecn() of the python module pywt) and removes the
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Figure A3. (left) Daily Arctic SIA and SIE ensemble of 20 SIC ensemble members with one member highlighted (red) and mean (black).

(right) Standard deviations of SIA and SIE derived from an ensemble of 100 SIC ensemble members (right) based (top) on a wavelet filter

and (bottom) on a Fast Fourier transform filter.

contributions from the two smallest levels before recomposition. We have set these variables to reproduce spatial and temporal

error correlation length scales as closely as possible (Figure A4) to focus on the sensitivity of the functional form of the error

correlations itself. Figure A3 and Table A1 show that the sensitivity of the SIA and SIE uncertainties to the used filter type

is up to 93 000 km2. That being said, the FFT filter noise used here has slightly shorter spatial correlations (Figure A4). As350

we have seen in Figure A1, this leads to a smaller total SIA and SIE uncertainty, which is also what we see when comparing

Figure A3 with Figure 5a. Therefore the quoted filter type sensitivity is likely to be overestimated and, in fact, smaller than the

sensitivity to the correlation length scales.
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Figure A4. As Figure 3 but including Wavelet filter and Fast Fourier transform filter based noise characteristics.

Table A1. Uncertainty estimates (one STD) of 100 member ensemble for the year 2015 based on different processing types. The spatial (Sp.)

and temporal (Tmp.) error correlations are nominal values and do not necessarily correspond to the averaged analysed error correlations (see

text)

Quantity Filter Sp-corr Tmp-corr Daily Weekly Monthly

[km] [days] [103 km2] [103 km2] [103 km2]

SIA Gauss 288 5 306 275 164

SIA Gauss 238 4 252 219 125

SIA Gauss 338 6 334 311 204

SIA Gauss 288 0 280 106 49

SIA Gauss 0 5 41 34 19

SIA FFT 288 5 213 179 72

SIA Wavelet 288 5 233 211 114

SIE Gauss 288 5 296 261 156

SIE Gauss 238 4 245 209 120

SIE Gauss 338 6 322 295 190

SIE Gauss 288 0 266 103 48

SIE Gauss 0 5 47 34 19

SIE FFT 288 5 232 193 87

SIE Wavelet 288 5 242 213 116
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