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Abstract 

Despite significant advances in atmospheric measurements and modeling, clouds' response to human-induced climate warming 

remains the largest source of uncertainty in model predictions of climate. The launch of Cloud-Aerosol Lidar and Infrared 10 

Pathfinder Satellite Observation (CALIPSO) in 2006 started the era of long-term space-borne optical active sounding of the 

Earth’s atmosphere, which continued with the CATS (Cloud-Aerosol Transport System) lidar on-board ISS in 2015 and the 

Atmospheric Laser Doppler INstrument (ALADIN) lidar on-board Aeolus in 2018. The next important step is the 

ATmospheric LIDar (ATLID) instrument from the EarthCARE mission, expected to launch in 2024.  

In this article, we define the ATLID Climate Product, Short-Term (CLIMP-ST) and ATLID Climate Product, Long-Term 15 

(CLIMP-LT). The purpose of CLIMP-ST is to help evaluate the description of cloud processes in climate models, beyond what 

is already done with existing space lidar observations, thanks to ATLID new capabilities. The CLIMP-LT will merge the 

ATLID cloud observations with previous space lidar observations to build a long-term cloud lidar record useful to evaluate 

the cloud climate variability predicted by climate models. 

We start with comparing the cloud detection capabilities of ATLID and CALIOP (Cloud-Aerosol Lidar with Orthogonal 20 

Polarization) in day- and nighttime, on a profile-to-profile basis in analyzing virtual ATLID (355nm) and CALIOP (532nm) 

measurements over synthetic cirrus and stratocumulus cloud scenes. We show that solar background noise affects the cloud 

detectability in daytime conditions differently for ATLID and CALIPSO.  

We found that the simulated daytime ATLID measurements have lower noise than the simulated daytime CALIOP 

measurements. This allows lowering the cloud detection thresholds for ATLID compared to CALIOP and enables ATLID to 25 

detect optically thinner clouds than CALIOP in daytime at high horizontal resolution without false cloud detection. These 

lower threshold values will be used to build the CLIMP-ST (short-term, related only to ATLID observational period). This 

product should provide an advance to evaluate optically thin clouds like cirrus in climate models compared to the current 

existing capability. 

We also found that ATLID and CALIPSO may detect similar clouds if we convert ATLID 355nm profiles to 532nm profiles 30 

and apply the same cloud detection thresholds as the ones used in GOCCP (GCM Oriented Calipso Cloud Product). Therefore, 
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this approach will be used to build the CLIMP-LT. The CLIMP-LT data will be merged with the GOCCP data to get a long-

term (2006-2030’s) cloud climate record. Finally, we investigate the detectability of cloud changes induced by human-caused 

climate warming within a virtual long-term cloud monthly gridded lidar dataset over the 2008-2034 period that we obtained 

from two ocean-atmosphere-coupled climate models coupled with a lidar simulator. We found that a long-term trend of opaque 35 

cloud cover should emerge from short-term natural climate variability after 4 years (possible lifetime) to 7 years (best case 

scenario) of ATLID merged with CALIPSO measurements according to predictions from the considered climate models. We 

conclude that a long-term lidar cloud record built from the merge of the actual ATLID-LT data with CALIPSO-GOCCP data 

will be a useful tool to monitor cloud changes and to evaluate the realism of the cloud changes predicted by climate models. 

1 Introduction 40 

Clouds play an important role in the radiative energy budget of Earth. The radiative effect of clouds is twofold: on the one 

hand, clouds reflect some of the Sun’s radiance during the day, thus preventing surface warming. On the other hand, high thin 

clouds trap some of the outgoing infrared radiation emitted by the surface and re-emit it back to the ground, thus contributing 

to its heating. Overall, at global scale, clouds contribute to cool the Earth radiatively, but quantifying precisely this global 

effect as well as the influence of clouds on the Earth radiative budget everywhere requires knowing the coverage of clouds, as 45 

well as their geographical and vertical distributions, temperature, and optical properties. Cloud properties are expected to 

change under the influence of climate warming, leading to changes in the amplitude of the overall cloud radiative cooling. But 

how cloud properties change as climate warms is uncertain (e.g., Zelinka et al., 2012, 2016; Chepfer et al., 2014; Vaillant de 

Guélis et al., 2018; Perpina et al., 2021). Cloud feedback uncertainties are an important contributor to climate sensitivity 

uncertainty and therefore limit our ability to predict the future evolution of climate for a given CO2 emission scenario (e.g. 50 

Winker, 2017; Zelinka et al., 2020). 

Global-scale round-the-clock satellite observations of Earth’s atmosphere provide invaluable information that improves our 

knowledge of current clouds’ properties and helps to evaluate the cloud description in climate models in current climate 

simulations. Among the remote sensing techniques, active sounding plays a special role, because of its high vertical and 

horizontal resolution and high sensitivity. The launch in 2006 of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 55 

Observation (CALIPSO, Winker et al., 2010) started the era of operational space-borne optical active sounding of the Earth’s 

atmosphere for clouds and aerosols. It was followed with the CATS (Cloud-Aerosol Transport System) lidar on-board ISS in 

2015 (McGill et al., 2015) and the Atmospheric Laser Doppler INstrument (ALADIN) lidar on-board Aeolus in 2018 

(Reitebuch et al., 2020; Straume et al., 2020). The next important step is the ATLID instrument (do Carmo et al., 2021), from 

the EarthCARE mission (e.g. Héliere et al., 2012; Illingworth et al., 2015), expected to launch in 2024. With this lidar, the 60 

scientific community will continue receiving invaluable vertically resolved information of atmospheric optical properties 

needed for the estimation of cloud occurrence frequency, thickness, and height. Cloud profiles deduced from CALIOP 

observations have been widely used to evaluate the cloud description in climate models (e.g., Nam et al., 2012; Cesana et al., 
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2019), and have provided leads to improve this description (e.g., Konsta et al., 2012). To avoid any discrepancy in cloud 

definition between model and observation, and to allow consistent comparisons between clouds simulated by climate models 65 

and observed by satellite, the Cloud Feedback Model Intercomparison Project (CFMIP) has developed the CFMIP Observation 

Simulator Package (COSP1, Bodas-Salcedo et al., 2011), followed by COSP2 (Swales et al., 2018). These packages include a 

lidar simulator (Chepfer et al. 2008; Reverdy et al. 2015; Guzman et al. 2017; Cesana et al. 2019) that mimics the measurements 

that would be obtained by spaceborne lidars if they were overflying the atmosphere simulated by a climate model. In parallel 

to the COSP lidar simulator, a Level 2 and 3 cloud product named CALIPSO-GOCCP (Chepfer et al. 2008, 2010, 2013; 70 

Guzman et al. 2017; Cesana et al., 2019) was designed to ensure scale-aware and definition-aware comparison between 

simulated and observed clouds. 

Despite the similarity of the measuring principle of ATLID and CALIOP lidars – the emitter sends a brief pulse of laser 

radiation to the atmosphere, and the receiver registers a time-resolved backscatter signal collected through its telescope – the 

sensitivity of both lidars to the same clouds is different. This is explained by differences in observational geometry, in 75 

wavelength, pulse energy and repetition frequency, in telescope diameter and detector type, in the capability of detecting 

molecular backscatter separately from the particulate one, in vertical and horizontal resolution and averaging, and so on. Since 

the CALIPSO-GOCCP algorithm cannot be applied directly to ATLID data, a specific algorithm had to be developed, which 

generates the ATLID cloud product CLIMP (CLIMate Product). 

The present paper describes the design of the CLIMP product and its associated algorithm, developed with the following two 80 

goals in mind: 

(1) On short time scales, such as the period of ATLID operation, CLIMP should help improve the current evaluation of cloud 

description in climate models beyond CALIPSO. From this point of view, CLIMP should take advantage of ATLID capabilities 

compared to CALIPSO from the point of view of evaluation of clouds in climate models, while maintaining compliance with 

the COSP/lidar framework. 85 

(2) On long time scales, CLIMP should enable building a merged CALIPSO+ATLID long-term lidar cloud product, in which 

the same clouds are detected despite the instrumental and orbital differences between ATLID and CALIOP. From this point 

of view, CLIMP should maximize consistency with GOCCP. The GOCCP+CLIMP long-term dataset should describe more 

than 20 years of cloud profiles at global scale, which will enable the study and evaluation in climate models of inter-annual 

variability in cloud profiles due to multiannual climate variations (e.g., El Niño, NAO, Madden-Julian oscillation). Its analysis 90 

will moreover make possible the detection of cloud changes because of human-induced climate warming, and their evaluation 

in climate model simulations. 

Therefore, CLIMP will be composed of two datasets named CLIMP-ST (short-term) and CLIMP-LT (long-term). Both will 

mainly differ by their cloud detection threshold, as we will see later in the text. This threshold is parameterized in COSP/lidar 

and can be easily changed when comparing simulated data to CLIMP-ST and CLIMP-LT. 95 

The CLIMP product and algorithm inherit from the approach developed for CALIPSO-GOCCP. This algorithm processes L1 

data in exactly the same way as the COSP lidar simulator does. GOCCP is part of the CFMIP-OBS database included in 
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Obs4Mips (Waliser et al., 2020) for model evaluation. Differences between GOCCP, NASA, and JAXA CALIOP cloud 

products were documented in Chepfer et al. (2013) and Cesana et al. (2019).  

The three key elements of the GOCCP algorithm, which need to be kept when developing CLIMP, are: 100 

(i) lidar profiles, which are not averaged horizontally before cloud detection to (1) keep consistency with the subgridding 

module SCOPS (Klein and Jacob, 1999) included in COSP that is required to respect the Eulerian framework of climate model 

simulations, and (2) avoid overestimation of the cloud fraction in shallow clouds (e.g., Chepfer et 2008, 2013; Feofilov et al. 

2022).  

(ii) lidar measurements are averaged vertically every 480 m, to improve the signal-to-noise ratio (SNR) while maintaining 105 

consistency with CloudSat data used to compare with COSP/radar outputs (Marchand et al., 2009; Haynes et al., 2007). This 

value of 480 m can be different in CLIMP as it can be changed in COSP/lidar, but averaging the lidar signal vertically before 

cloud detection should remain the way to increase ATLID SNR when needed for climate mode evaluation. 

(iii) cloud detection thresholds are chosen for consistency with COSP/lidar and to prevent false cloud detections in CALIOP 

L1 daytime data at full horizontal resolution and 480 m-averaged vertical resolution. The cloud detection threshold can be 110 

modified in CLIMP, but then should also be modified in COSP/lidar. This threshold needs to be constant over a full dataset 

and cannot be scene-dependent.  

We would like to stress that the main two purposes of this article are (a) to compare two space-borne lidars in terms of cloud 

detection and signal-to-noise ratio for given observational conditions and (b) to develop a method for merging the data from 

several space borne lidars into a continuous cloud record to detect long-term changes and get a seamless cloud climatology. 115 

We assume that the calibration of the instruments is performed dynamically onboard the satellites and that the calibration 

coefficients and cross-talk parameters are known with high accuracy. In this case, we can study the theoretically achievable 

cloud detection for a given experimental setup, which is defined by a number of parameters like telescope diameter, 

transmission of the system, solar noise filtering, detector type, and so on. For the sake of simplicity, we do not discuss the 

depolarized component of the radiation backscattered by particles, assuming that it is backscattered the same way at these 120 

wavelengths and that one can always consider a sum of parallel and perpendicular backscatter for cloud detection.  

The structure of the article is as follows. In Section 2, we briefly describe the differences and similarities between ATLID and 

CALIOP, the formalism necessary to understand the analysis presented in the next sections, and the cloud variables used in 

this study. Section 3 describes the physical elements that matter for the development of CLIMP-ST. Using synthetic cloud 

scenes (3.1) and a numerical chain which simulates lidar profiles observed by CALIPSO and ATLID over the cloud scenes at 125 

full spatial resolution and instantaneous time scales (3.2). In this section, we also pay specific attention to the estimates of lidar 

signal noise. Then we define the cloud detection scheme of CLIMP-ST (3.3) and we try to answer whether ATLID might 

observe optically thinner clouds in daytime than CALIOP at full horizontal resolution, a useful capability to evaluate the 

description of cirrus in climate models. Section 4 describes the physical elements that matter for the development of CLIMP-

LT. Section 4.1 presents the cloud detection scheme used in CLIMP-LT to detect the same cloud as CALIPSO-GOCCP, despite 130 

the instrumental differences between ATLID and CALIOP. Then we analyze a long-term (multi-decadal, monthly averaged), 
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global-scale space lidar virtual dataset built from climate models + COSP/lidar simulation (Sect. 4.2) to illustrate how a merged 

dataset “CLIMP-LT + CALIPSO-GOCCP” could help evaluate climate models’ predictions of multi-decadal cloud changes 

(Sect. 4.3). We conclude in Section 5. 

2. Two spaceborne lidars, lidar equation, and cloud detection 135 

2.1. Differences between CALIOP/CALIPSO and ATLID/EarthCARE space borne lidars  

CALIOP, a two-wavelength polarization-sensitive near-nadir viewing lidar, provides high-resolution vertical profiles of 

aerosols and clouds (Winker et al., 2010). Its initial orbital altitude was 705 km (now 688 km to match that of CloudSat), and 

its orbit is inclined at 98.05º. The lidar overpasses the equator at 1h30 and 13h30 LST (local solar time). It uses three receiver 

channels: one measuring the 1064 nm backscatter intensity and two channels measuring orthogonally polarized components 140 

of the 532 nm backscattered signal. Cloud and aerosol layers are detected by comparing the measured 532 nm signal return 

with the return expected from a molecular atmosphere (see the definitions later). The other instrumental parameters of this 

lidar are described in Table 1 (see also Fig. 1 of (Hunt et al., 2009) for block diagram of CALIOP). 

The goals of the EarthCARE mission are “to retrieve vertical profiles of clouds and aerosols, and the characteristics of their 

radiative and microphysical properties to determine flux gradients within the atmosphere and fluxes at the Earth’s surface, as 145 

well as to measure directly the fluxes at the top of the atmosphere and also to clarify the processes involved in aerosol-cloud 

and cloud-precipitation-convection interactions” (Héliere et al., 2012; Illingworth et al., 2015). The ATLID instrument onboard 

the EarthCARE satellite will measure the attenuated atmospheric backscatter with a vertical resolution of ~100 m and ~500 m 

in the altitude ranges of 0−20 km and 20−40 km, respectively. ATLID is a polarization-sensitive, high-spectral resolution lidar 

(HSRL), which can separate the thermally broadened molecular backscatter (Rayleigh) from the unbroadened backscatter from 150 

atmospheric particles (Mie) (Durand et al., 2007; see also Fig. 2 of (do Carmo et al., 2021)). This helps ATLID retrieve 

extinction and backscatter vertical profiles without assuming the extinction-to-backscatter ratio (as in CALIOP retrievals), 

which is poorly known, especially for aerosols (e.g. Rogers et al., 2014). 
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Parameter Symbol CALIOP ATLID 

Altitude, [km] Z 688# 393 

Orbital inclination, [deg] I 98.05 97.050 

Wavelength, [nm] λ 532/1064 355 

Pulse Repetition Frequency, [Hz] PRF 20 51 (25.5)* 

Horizontal distance between profiles, [m] Δx 333 285 

Finest Vertical resolution (troposphere), [m] Δz 30 100 

Telescope diameter, [m] 𝑑𝑡𝑒𝑙  1.0 0.6 

Telescope Field of view, [µrad] φ 130 64 

Energy/pulse, [mJ] 𝐸𝑝𝑢𝑙𝑠𝑒  110 35 (70)* 

Footprint, [m] 𝑑𝑓𝑝 90 29 

Laser beam divergence [µrad] 𝜃 100 45 

Solar filter bandwidth, [nm] Δλ 0.04/0.475 0.71 (0.35)** 

Solar filter transmission ξ𝑓𝑖𝑙𝑡𝑒𝑟  0.85 0.87 

Total optical system transmission ξ𝑟𝑒𝑐 0.67/0.68 0.62 

Detector type  PMT/APD CCD 

Detector efficiency γ 0.11/0.4 0.79mol/0.75part 

Excess noise factor ENF 1.46 1.44 

Single-shot noise scale factor [photoelectons1/2] NSF 5.14 1.0 

Dark current, [phot/s] 𝑁𝑑𝑎𝑟𝑘 1331/1.85e7 153 

Readout noise [photoelectrons] RON 3−5 < 3 

Table 1: specifications of the CALIOP and ATLID spaceborne lidars considered in this article. We gathered specifications 155 

from Hunt et al. (2009) for CALIOP and from do Carmo et al. (2021) for ATLID. (#) the nominal orbit altitude at launch was 

705 km, but was lowered to 688 km in September 2018 to maintain formation flying with CloudSat; (*) the original pulse 

repetition frequency of ATLID laser is 51Hz at the energy of 35 mJ per pulse, but the measurements will be doubled onboard 

the satellite (do Carmo et al., 2021), so one can consider the effective frequency and energy per pulse to be equal to 25.5 and 

70 mJ, respectively. (**) the solar filter bandwidth of ATLID is 0.71 nm, but the transmission function of the Mie channel is 160 

approximately half of that, so one should calculate the solar noise in this channel with narrower effective filter width. 

When considering signal quality and performance, some parameters are in favor of CALIOP (telescope diameter, energy per 

pulse, solar filter bandwidth) whereas others favor ATLID (altitude, noise level). In the next section, we show how these 

differences affect the detectability of clouds. We excluded the multiple scattering coefficient from the table since it is an 

important and complex parameter of lidar instrument, which depends on its several parameters. Instead, we discuss it in a 165 

dedicated paragraph below. 

2.2. Lidar equation 

The formalism used in this work was described in (Feofilov et al., 2022). In this section, we repeat only the basic definitions 

needed for understanding the material presented below. Since we will discuss both conventional (non-HRSL) and HSRL lidars, 

we will introduce necessary quantities in parallel and label them correspondingly: the molecular, particulate, and total 170 

components will get the indices “mol”, “part”, and “tot”, respectively. 



 

7   

 

An atmospheric lidar sends a brief pulse of laser radiation towards the atmosphere. The lidar optics collect the backscattered 

photons and drive them to a detector. The detected signal is time-resolved: supposing each photon travelled straight forward 

and back, each time bin corresponds to a fixed distance from the lidar to the atmospheric layer where backscattering occurred. 

The propagation of laser light through the atmosphere and backwards to the detector is described by the lidar equation: 175 

𝐴𝑇𝐵(𝜆, 𝑧) = (𝛽𝑚𝑜𝑙(𝜆, 𝑧) + 𝛽𝑝𝑎𝑟𝑡(𝜆, 𝑧)) × 𝑒
−2 ∫ (𝛼𝑚𝑜𝑙(𝜆,𝑧′)+𝜂𝛼𝑝𝑎𝑟𝑡(𝜆,𝑧′))𝑑𝑧′

𝑧
𝑍𝑠𝑎𝑡   (1) 

where ATB stands for Attenuated Total Backscatter [m−1 sr−1], 𝛽𝑚𝑜𝑙(𝜆, 𝑧)  and 𝛽𝑝𝑎𝑟𝑡(𝜆, 𝑧) are the wavelength-dependent 

molecular and particulate backscatter coefficients [m−1 sr−1], 𝛼𝑚𝑜𝑙(𝜆, 𝑧) and 𝛼𝑝𝑎𝑟𝑡(𝜆, 𝑧) are the extinction coefficients [m−1], 

Zsat is the altitude of the satellite, λ is the wavelength, and η is a multiple scattering coefficient (e.g., Platt et al., 1973; Garnier 

et al., 2015; Donovan, 2016). 180 

For the HSRL lidar, one can write similar equations for the attenuated radiance backscattered from atmospheric particles and 

molecules (APB and AMB), respectively:  

𝐴𝑃𝐵(𝜆, 𝑧) = 𝛽𝑝𝑎𝑟𝑡(𝜆, 𝑧) × 𝑒
−2 ∫ (𝛼𝑚𝑜𝑙(𝜆,𝑧′)+𝜂𝛼𝑝𝑎𝑟𝑡(𝜆,𝑧′))𝑑𝑧′

𝑧
𝑍𝑠𝑎𝑡    (2) 

𝐴𝑀𝐵(𝜆, 𝑧) = 𝛽𝑚𝑜𝑙(𝜆, 𝑧) × 𝑒
−2 ∫ (𝛼𝑚𝑜𝑙(𝜆,𝑧′)+𝜂𝛼𝑝𝑎𝑟𝑡(𝜆,𝑧′))𝑑𝑧′

𝑧
𝑍𝑠𝑎𝑡     (3) 

For cloud definition, we will also need to define the attenuated molecular backscatter for clear sky conditions 185 

𝐴𝑇𝐵𝑚𝑜𝑙(𝜆, 𝑧) = 𝛽𝑚𝑜𝑙(𝜆, 𝑧) × 𝑒
−2 ∫ 𝛼𝑚𝑜𝑙(𝜆,𝑧′)𝑑𝑧′

𝑧
𝑍𝑠𝑎𝑡      (4) 

The physical meaning of η in Eqs. (1-3) is an increase in the number of photons remaining in the lidar receiver field of view 

besides the ones directly backscattered by the layer, and its value depends on the type of scattering media, FOV of the telescope, 

and laser beam divergence. The typical value of η varies between 0.5 and 0.8 for commonly used lidars (Chiriaco et al., 2006; 

Chepfer et al., 2008, 2013; Garnier et al., 2015; Donovan, 2016; see also Appendix B of Reverdy et al., 2015). Setting η to 1 190 

means no multiple scattering, and would correspond to an infinitely narrow FOV telescope combined with an infinitely small 

laser beam divergence. In CALIOP cloud products up to version 3, the η was set to 0.6 for ice clouds, whereas for version 4.10 

a temperature-dependent coefficient was used, which varied in between 0.46 and 0.78 (Young et al., 2018). For water clouds, 

the η values are derived from the relationship developed in Hu et al., 2007 (also see Table 4 in Young et al., 2018). A detailed 

modeling of η for different cloud types observed by CALIOP and ATLID (Shcherbakov et al., 2022) shows that η depends on 195 

the cloud thickness and type and that the ATLID values are somewhat higher than those of CALIOP. Based on these works, 

we set a fixed value of η to 0.6 for CALIOP and to 0.75 for ATLID. This is an approximation and a more complex approach 

might be required for processing real data, but our tests show that the conclusions of the present work do not change if we vary 

η within ±0.1 either for CALIOP or for ATLID (but not for both). 

 200 
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2.3 Cloud detection and cloud variables 

To characterize the scattering properties of the atmosphere, it would be convenient to use some ratio of attenuated backscatter 

values (Eqs. 1−4), which would have a clear physical interpretation. Due to attenuation of AMB below the clouds, using it in 

the denominator is counterproductive, so the 𝐴𝑇𝐵𝑚𝑜𝑙(𝜆, 𝑧) is used instead, and the scattering ratio (SR) is defined as: 205 

𝑆𝑅(532𝑛𝑚, 𝑧) =
𝐴𝑇𝐵(532𝑛𝑚,𝑧)

𝐴𝑇𝐵𝑚𝑜𝑙(532𝑛𝑚,𝑧)
      (5) 

Considering a single-pulse profile measurement, we declare a layer as cloudy if the following two conditions are met: 

𝑆𝑅(532𝑛𝑚, 𝑧) > 5 and 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) − 𝐴𝑇𝐵𝑚𝑜𝑙(532𝑛𝑚, 𝑧) > 2.5 × 10−6 𝑚−1 𝑠𝑟−1   (6) 

The second condition in Eq. 6 comes from the fact that the molecular backscatter in the upper troposphere is weak, and the 

fluctuation in ATB might cause a false cloud detection if only SR is used. With the second condition, the cloud detection is 210 

more robust. This definition is used in CALIPSO-GOCCP (e.g. Chepfer et al., 2008, 2010, 2013) and we suggest keeping it 

for other lidars to ensure the consistency between cloud products as discussed later. 

In application to ATLID, this will mean using the recalculated to 532nm values of ATB, which will be estimated from (1) 

𝛽𝑝𝑎𝑟𝑡(355𝑛𝑚, 𝑧) and 𝛼𝑝𝑎𝑟𝑡(355𝑛𝑚, 𝑧)  retrieved from the measurements (Eqs. 2 and 3) and 𝛽𝑚𝑜𝑙(532𝑛𝑚, 𝑧) and 

𝛼𝑚𝑜𝑙(532𝑛𝑚, 𝑧) retrieved or estimated from pressure-temperature profiles from reanalysis. In the numerical experiment 215 

below, we calculated 𝐴𝑇𝐵𝑚𝑜𝑙(532𝑛𝑚, 𝑧) = 𝛽𝑚𝑜𝑙(532𝑛𝑚, 𝑧) × 𝑒
−2 ∫ 𝛼𝑚𝑜𝑙(532,𝑧′)𝑑𝑧′

𝑧
𝑍𝑠𝑎𝑡  using the available pressure-

temperature profiles and the formalism provided in (Feofilov et al., 2022). Here, we reproduce the Eq. 8 of this paper: 

 𝑆𝑅′(532𝑛𝑚, 𝑧) =
(𝛽𝑚𝑜𝑙(532,𝑧)+𝛽𝑝𝑎𝑟𝑡(355,𝑧))×𝑒

−2 ∫ (𝛼𝑚𝑜𝑙(532,𝑧′)+𝜂355𝛼𝑝𝑎𝑟𝑡(355,𝑧′))𝑑𝑧′
𝑧
𝑍𝑠𝑎𝑡

𝛽𝑚𝑜𝑙(532,𝑧)×𝑒
−2 ∫ 𝛼𝑚𝑜𝑙(532,𝑧′) 𝑑𝑧′

𝑧
𝑍𝑠𝑎𝑡

   (7) 

In this conversion, we assume that the spectral dependence of particulate backscatter (𝛽𝑝𝑎𝑟𝑡(𝜆) and 𝛼𝑝𝑎𝑟𝑡(𝜆)) is weak at the 

wavelengths used in this study. In (Beyerle et al., 2001) it is stated that this is generally true for cirrus. In (Voudouri et al. 220 

2020), the values at two wavelengths agree within (relatively large) error bars. Therefore, we do not attempt to compensate for 

the spectral dependence. The only area where we noticed that this approach does not work for real data is the polar stratospheric 

region, where a direct application of Eq. 7 leads to an overestimation of polar stratospheric clouds, PSCs (Fig. 8b of Feofilov 

et al., 2022). 

For the cloud properties, we use the same variables as in CALIPSO-GOCCP (Chepfer et al. 2010): cloud fraction CF(z), 225 

opaque cloud cover Copaque, and opaque cloud height Zopaque. If a given atmospheric layer was observed multiple times or if it 

was sampled vertically at several points, we define the cloud fraction profile CF(z) in a usual way:  

𝐶𝐹(𝑧) =
𝑁𝑐𝑙𝑑(𝑧)

𝑁𝑡𝑜𝑡(𝑧)
       (8) 

where 𝑁𝑐𝑙𝑑(𝑧) is the number of times the conditions of Eq. (6) are met and 𝑁𝑡𝑜𝑡(𝑧) is the total number of measurements in this 

layer. The opaque cloud cover Copaque is used in long-time series and is defined over the 2º×2º latitude/longitude gridded data 230 

as follows: 
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𝑆𝑅(𝑧) < 0.06;    𝐶𝑜𝑝𝑎𝑞𝑢𝑒 =
𝑁𝑜𝑝𝑎𝑞𝑢𝑒_𝑝𝑟𝑜𝑓

𝑁𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑜𝑓
       (9) 

where the first condition triggers the opaque cloud detection (Guzman et al., 2017), 𝑁𝑜𝑝𝑎𝑞𝑢𝑒_𝑝𝑟𝑜𝑓 is the number of vertical 

profiles, for which an attenuation corresponding to a presence of opaque cloud was found and 𝑁𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑜𝑓 is the total number 

of measurements in 2º×2º grid box. For an individual lidar profile, Zopaque corresponds to an altitude of full attenuation of 235 

backscattered signal whereas for gridded data, Zopaque is an opaque-cloud-cover-weighted sum (Guzman et al., 2017).  

3. The CLIMP short-term dataset  

In this section, we search for useful cloud information for model evaluation that can be retrieved from the ATLID, but cannot 

be obtained from the CALIPSO data. For this purpose, we use high resolution cloud scenes (Sect. 3.1), simulate how they 

would be observed by ATLID and CALIPSO (Sect. 3.2), and compare the SR(z) profiles seen by the 2 lidars (Sect. 3.3) and 240 

the clouds detected by the 2 instruments (Sect.3.4). To address the comparability of clouds observed by two space-borne lidars, 

we used the existing methodology (Reverdy et al., 2015; Feofilov et al., 2022), but with a much finer-scaled cloud model, 

updated instrumental parameters of ATLID, and a new simulation chain, which estimates noise at the detector level and 

propagates it to cloud product level (the details are provided in Section 3.2.2 below). The main question we sought to answer 

in this section was whether ATLID can observe optically thinner clouds than CALIPSO in daytime, a useful capability to 245 

evaluate thin cirrus clouds in climate models (e.g. Berry et al., 2019). At the same time, we checked whether the chosen cloud 

detection parameters and instrumental properties affect the detection of highly inhomogeneous low-level thick clouds. 

3.1 Cloud generating model 

The 3DCLOUD model (Szczap et al., 2014) generates three-dimensional (3-D) spatial structures of stratocumulus, fair weather 

cumulus and cirrus that share some statistical properties observed in real clouds such as the inhomogeneity parameter 𝜌 250 

(standard deviation normalized by the mean of the water content) and the Fourier spectral slope 𝛽̂ close to −5/3 between the 

smallest scale of the simulation to the outer scale 𝐿𝑜𝑢𝑡 (where the spectrum becomes more flat). We assume that water content 

follows a gamma distribution. 3DCLOUD_V2 presented in Alkasem et al. (2017) is based on wavelet framework instead of 

Fourier framework. First, 3DCLOUD assimilates meteorological profiles (humidity, pressure, temperature and wind velocity) 

and solves drastically simplified basic atmospheric equations in order to simulate 3D water content. Second, the Fourier 255 

filtering method is used to constrain the intensity of mean water content, 𝜌, 𝛽̂, and 𝐿𝑜𝑢𝑡, values provided by the user (Hogan 

and Illingworth, 2003; Kärcher et al., 2018).  

Conditions of simulations to generate the stratocumulus in this study (see Fig. 1 and Fig. 1b) are identical to those used in 

Szczap et al. (2014) for the DYCOMS2-RF01 case (the first Research Flight of the second Dynamics and Chemistry of Marine 

Stratocumulus) for the marine stratocumulus regime (Stevens et al.,2005). We have only changed the number of voxels in the 260 

𝑥, 𝑦 and 𝑧 direction to 𝑁𝑥 = 𝑁𝑦 = 1000 and 𝑁𝑧 = 50, respectively. The corresponding spatial resolutions were set to ∆𝑥=

∆𝑦= 100 m and ∆𝑧= 24 m, respectively. The vertical extension of the simulated area is still 𝐿𝑧 = 1200 m, but the horizontal 

extensions for this study are 𝐿𝑥 = 𝐿𝑦 = 100 km. 
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 265 

Figure 1: Examples of the stratocumulus generated with 3DCLOUD : (a) 2-D ice water path and (b) its volume rendering. 

 

Figure 2: Examples of cirrus generated with 3DCLOUD_V3 : (a) ice water path and (c) its volume rendering; (c) IWC PDF ; (d) 

Mean 1-D power spectrum of IWP (red curves) and of IWC (blue curve) following 𝒙,y and z direction (solid, dash dot and dashed 
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line, respectively). A theoretical power spectrum with spectral slope 𝜷̂ = − 𝟓 𝟑⁄  is added_ = −5/3 (dashed black line). A dotted 270 
vertical black line indicates the outer scale 𝑳𝒐𝒖𝒕 = 𝟐𝟎 km. 

If the number of voxels is large, the 3DCLOUD and 3DCLOUD_V2 are very time-consuming (see Table 1 in Szczap et al., 

2014) and cannot assimilate the fractional coverage for cirrus cloud. Therefore, we have developed 3DCLOUD_V3 that 

overcomes these two drawbacks for the cirrus cloud. This model will be published elsewhere. Here, we present only an outline 

of the 3DCLOUD_V3 algorithm.  275 

To increase the calculation speed in 3DCLOUD_V3, we generate clouds using modified statistic tools developed as part of 

stage 2 of 3DCLOUD. The first stage of 3DCLOUD (i.e. the step of solving simplified basic atmospheric equations, which is 

very time-consuming) is no longer carried out in 3DCLOUD_V3. Thereby, 3DCLOUD_V3 can be seen as a purely stochastic 

cirrus cloud generator. The user has to provide, in addition to 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, ∆𝑥, ∆𝑦, and ∆𝑧 , the mean Ice Water Path (IWP), 

𝐿𝑜𝑢𝑡 , the shape of the vertical profile of Ice Water Content (IWC), 𝜌(𝑧), 𝛽̂(𝑧) , and of horizontal wind velocity components 280 

𝑢(𝑧) and 𝑣(𝑧), and finally the cloud fraction 𝐶𝐹. The shape of the vertical profile of IWC can also be stipulated (rectangular, 

upper triangle, lower triangle and isosceles trapezoid (Feofilov et al., 2015)). The algorithm works as follows: 

(1) Generation of a 3D isotropic field with a Gaussian probability density function (PDF) from a 3D inverse Fourier transform 

assuming random phase for each Fourier amplitude and a 3D spectral energy density with 1D spectral slope 𝛽̂ close to −5/3 

between the smallest scale of 𝐿𝑜𝑢𝑡. 285 

(2) Transformation of the 2-D Gaussian PDF to a 2-D Gamma PDF at each 𝑧 level, satisfying the values of IWC(z), 𝜌(𝑧), 

and 𝛽̂(𝑧).  

(3) Horizontal displacement, at each 𝑧 level, of 2-D IWC (to simulate fall streaks) computed from 𝑢(𝑧) and 𝑣(𝑧), based on the 

model of sedimentation proposed by Hogan and Kew (2005). In 3DCLOUD_V3, the user can choose the value of the 

sedimentation velocity: either constant or function of IWC (see formula into Fig.12 in Heymsfield et al., 2017). Alternatively, 290 

the wind velocity vertical profile can be computed from a constant value of the vertical wind shear prescribed by the user; in 

this case, the user has also to provide the “generated-level height” as explained in Hogan and Kew (2005). 

(4) Iterative modification of the vertical profile of the cloud cover in order to obtain the 𝐶𝐹 value prescribed by the user.  

Figure 2 demonstrates the examples of 2D IWP and the 3D IWC volume rendering of the cirrus generated with 3DCLOUD_V3, 

where 𝑁𝑥 = 𝑁𝑦 = 1000, 𝑁𝑧 = 100, ∆𝑥= ∆𝑦= 100 m and ∆𝑧= 20 m. The mean IWP is set to 1 g m−2. The IWC vertical 295 

profile shape is “rectangular”. The geometric depth is 2 km. The outer scale is 𝐿𝑜𝑢𝑡 = 20 km. We set the constant vertical 

wind shear to 5 m s−1 km−1 in the 𝑥  and 𝑦  directions and the generated-level height is 400 m under the cloud top. The 

inhomogeneity parameter of IWC is 𝜌 = 0.4. The spectral slope β is equal to − 5 3⁄ . Figure 2c shows the gamma-like PDF of 

the IWC (we ignored null values) and Fig. 2d shows the mean power spectra of IWP (and IWC) along 𝑥 and y directions (and 

z direction), with 1-D spectral slope close to −2.0 (−1.3) between of 𝐿𝑜𝑢𝑡 = 20 km and finest spatial resolution. As expected, 300 

values of spectral slope of IWP are smaller than those of IWC (i.e. IWP signal is “smoother” than IWC signal) because the 

IWP is the vertically integral quantity of the IWC. One can note that the IWC spectral slope is slightly smaller than the 
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prescribed theoretical value 𝛽̂ = − 5 3⁄  because of the many null values of the IWC; we plan to remove this bias in the final 

version of 3DCLOUD_V3. 

3.2 Numerical chain to simulate of cloud observations by CALIOP and ATLID at high resolution 305 

3.2.1 Creating pseudo-orbits 

We performed the following numerical experiment, outlined in a flowchart in Fig. 3. First, we created a gridded global 

atmosphere from the output of the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM) atmosphere 

model (EAM) version 1 (EAMv1; Rasch et al., 2019) for the conditions of autumn equinox in Northern Hemisphere. Since we 

wanted to address both high- and low-level cloud detection, we picked up only the tropical part of the orbit between 5°S and 310 

5°N and used this data as a set of smooth “background” profiles. Since this model does not provide the small-scale variability 

needed for our experiment, we used the subgrid model described in Section 3.1, which generates realistic cloud profiles at grid 

comparable or finer than the distance between two consecutive footprints of studied lidars. To address the most challenging 

observation conditions, we picked up two cloud types: (1) thin cirrus with optical depths (τ) of about 0.03−0.1 per layer (Sassen 

and Comstock, 2001) and (2) stratocumulus clouds with their high horizontal variability and large optical depths (up to 30, but 315 

with about one third of semi-transparent clouds). These clouds were simulated using an updated 3DCLOUD_V3 model (see 

Sect. 3.3) and provided as gridded sets of ice water content (IWC) and liquid water content (LWC) values for cirrus and 

stratocumulus clouds, respectively. We do not consider another challenging case, a thin cloud layer above a highly reflective 

cloud, but the daytime noise estimated for stratocumulus scene will give an idea of what background noise will be interfering 

with the useful cloud signal in this case. 320 

These gridded sets were converted to pseudo orbits by slicing them along the diagonal lines and arranging the slices into “lidar 

curtains”, each comprising 20000 individual profiles and split to daytime and nighttime parts, 10000 profiles each. This way 

we got almost seamless cloud distributions, which followed the variability prescribed by 3DCLOUD_V3 model and at the 

same time resembled parts of real lidar orbits. We show the most representative parts of these pseudo orbits in Fig. 4 and 5 for 

cirrus and stratocumulus clouds, respectively, and we discuss them below. 325 
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Figure 3: Flowchart explaining the numerical experiment on comparing clouds retrieved from CALIOP and ATLID observations. 

Green boxes list the input and output data. Black text between boxes describes actions performed on each dataset. Blue text in the 

boxes marks the datasets used in the estimation. White text in square brackets in the boxes indicates horizontal (H) and vertical (V) 

resolutions of the datasets. Note that the ATLID SR’ values are estimated at 532nm (see Sect. 2.3). 330 

With these two datasets covering both the daytime and the nighttime scenes, we performed a full series of simulations, 

explained in Fig. 3. Namely, we fed the high-resolution atmospheric inputs described above to the CALIOP and ATLID 

simulators (Chepfer et al., 2008; Reverdy et al., 2015) included into the Cloud Feedback Model Intercomparison Project 

Observational Simulator Package, v2 (COSP2) simulator (Swales et al., 2018). These simulators do not account for 

instrumental noise effects, so their outputs were processed by a third part of the simulation chain (Fig. 3), which estimates 335 

noise and its propagation in the lidar system. 

 3.2.2 Estimating lidar signals and noise 

As mentioned above, the outputs of COSPv2 simulator are the noise-free 𝐴𝑃𝐵(355𝑛𝑚, 𝑧) and 𝐴𝑀𝐵(355𝑛𝑚, 𝑧) profiles for 

ATLID and noise-free 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) profiles for CALIOP, both calculated at the horizontal resolution of 300 m and vertical 

resolution of 20 m. To estimate the noise for these profiles and to propagate it further to 𝑆𝑅(532𝑛𝑚, 𝑧) for CALIOP and to 340 
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recalculated 𝑆𝑅′(532𝑛𝑚, 𝑧) for ATLID, we calculated the signals from the scratch using the corresponding instrumental 

parameters introducing measurement noise as follows.  

We start with a laser emission and estimate the number of emitted photons per sounding pulse, measured at the output of the 

sounding unit: 

𝑁𝑒𝑚 =
𝐸𝑝𝑢𝑙𝑠𝑒

ℎ𝑐/𝜆
× 𝜍      (10) 345 

where 𝐸𝑝𝑢𝑙𝑠𝑒  is the energy per laser pulse, h is Planck’s constant, c is the speed of light, λ is the wavelength, and ς is an 

effective coefficient of optical throughput of the emission path of the lidar. In the present work, it is assumed that there is no 

optical loss in the emission path and ς is equal to 1. The numerical solution of the equations (1)−(3) yields the number of 

photons per range gate (𝑡𝑖 , 𝑡𝑖 + ∆𝑡𝑖), which we will denote as 𝑡𝑖 , coming through the CALIOP’s receiver or through the 

ATLID’s receiver before splitting to molecular and particulate components in HSRL module (compare to Eqs. (2) and (3)):   350 

𝑁𝑟𝑒𝑐
𝑡𝑜𝑡(𝑡𝑖) = 𝑁𝑟𝑒𝑐

𝑚𝑜𝑙(𝑡𝑖) + 𝑁𝑟𝑒𝑐
𝑝𝑎𝑟(𝑡𝑖)     (11) 

𝑁𝑟𝑒𝑐
𝑚𝑜𝑙(𝑡𝑖) = 𝑁𝑒𝑚 × 𝛽𝑚𝑜𝑙(𝑖) × ∆𝑧𝑖 × Ω(𝑧𝑖) × ξ𝑟𝑒𝑐 × 𝑒−2 ∑ (𝛼𝑚𝑜𝑙(𝑗)+𝜂𝛼𝑝𝑎𝑟𝑡(𝑗))𝛥𝑧𝑗

𝑖
𝑗=0     (12) 

𝑁𝑟𝑒𝑐
𝑝𝑎𝑟(𝑡𝑖) = 𝑁𝑒𝑚 × 𝛽𝑝𝑎𝑟(𝑖) × ∆𝑧𝑖 × Ω(𝑧𝑖) × ξ𝑟𝑒𝑐 × 𝑒−2 ∑ (𝛼𝑚𝑜𝑙(𝑗)+𝜂𝛼𝑝𝑎𝑟𝑡(𝑗))𝛥𝑧𝑗

𝑖
𝑗=0   (13) 

𝛺(𝑧𝑖) = 𝜋 ×
(𝑑𝑡𝑒𝑙/2)2

𝑧𝑖
2      (14) 

where  𝑁𝑟𝑒𝑐
𝑚𝑜𝑙(𝑡𝑖) 𝑎𝑛𝑑 𝑁𝑟𝑒𝑐

𝑝𝑎𝑟(𝑡𝑖) are the photons backscattered by molecules and particles, respectively, Ω(𝑧𝑖) is an altitude-355 

dependent solid angle with 𝑧𝑖 corresponding to time-of-flight 𝑡𝑖 between the satellite and the measured layer i, and  ξ𝑟𝑒𝑐 is the 

receiver’s transmission.  

For an HSRL lidar, the molecular and particulate components are supposed to be registered individually, but this separation is 

not ideal because of the cross-talk between the channels: a part of molecular backscatter comes at the same wavelength as the 

original laser radiance and it “contaminates” the particulate channel, which is centered at this wavelength. Overall, the HSRL 360 

system is characterized by four crosstalk coefficients, 𝐶𝑚𝑚 , 𝐶𝑝𝑝, 𝐶𝑚𝑝 , and 𝐶𝑝𝑚 . The first two show a contribution of the 

molecular and channels to themselves, and in the ideal HSRL they should be equal to 1. The second pair shows how much 

energy “leaks” from a molecular channel to a particulate one and vice versa. In the ideal HSRL, these coefficients should be 

equal to 0. In the operational retrieval, these coefficients will be determined through a continuous calibration procedure 

performed on the orbit. For this exercise, we estimated these coefficients from the Fabry-Perot interferometer spectral curves 365 

(Cheng et al., 2013): 𝐶𝑚𝑚 = 0.815, 𝐶𝑝𝑝 = 0.60, 𝐶𝑚𝑝 = 0.185, and 𝐶𝑝𝑚 = 0.40. In the case of non-ideal HSRL, the number 

of photoelectrons produced by each detector per range gate is as follows: 

𝑁𝑑𝑒𝑡
𝑚𝑜𝑙(𝑡𝑖) = 𝛾 × ξ𝑟𝑒𝑐 × (𝑁𝑟𝑒𝑐

𝑚𝑜𝑙(𝑡𝑖) × 𝑐𝑚𝑚 + 𝑁𝑟𝑒𝑐
𝑝𝑎𝑟(𝑡𝑖) × 𝑐𝑝𝑚)   (15) 
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𝑁𝑑𝑒𝑡
𝑝𝑎𝑟(𝑡𝑖) = 𝛾 × ξ𝑟𝑒𝑐 × (𝑁𝑟𝑒𝑐

𝑚𝑜𝑙(𝑡𝑖) × 𝑐𝑚𝑝 + 𝑁𝑟𝑒𝑐
𝑝𝑎𝑟(𝑡𝑖) × 𝑐𝑝𝑝)   (16) 

where 𝛾 and ξ𝑟𝑒𝑐 are the detector’s quantum efficiency and transmittance of the optical path, respectively. To come back to 370 

“pure”  𝑁𝑟𝑒𝑐
𝑚𝑜𝑙(𝑡𝑖) and 𝑁𝑟𝑒𝑐

𝑝𝑎𝑟(𝑡𝑖) used in the retrieval, one has to solve this system: 

𝑁𝑟𝑒𝑐
𝑚𝑜𝑙(𝑡𝑖) = 𝑁𝑑𝑒𝑡

𝑚𝑜𝑙(𝑡𝑖) × 𝑘𝑎 + 𝑁𝑑𝑒𝑡
𝑝𝑎𝑟(𝑡𝑖) × 𝑘𝑏    (17) 

𝑁𝑟𝑒𝑐
𝑝𝑎𝑟(𝑡𝑖) = 𝑁𝑑𝑒𝑡

𝑚𝑜𝑙(𝑡𝑖) × 𝑘𝑐 + 𝑁𝑑𝑒𝑡
𝑝𝑎𝑟(𝑡𝑖) × 𝑘𝑑    (18) 

𝑘𝑎 =
𝑐𝑝𝑝

𝜅
; 𝑘𝑏 =

−𝑐𝑝𝑚

𝜅
; 𝑘𝑐 =

−𝑐𝑚𝑝

𝜅
; 𝑘𝑑 =

𝑐𝑚𝑚

𝜅
; 𝜅 = 𝛾 × ξ𝑟𝑒𝑐 × (𝑐𝑚𝑚𝑐𝑝𝑝 − 𝑐𝑝𝑚𝑐𝑚𝑝)  (19) 

Besides the components related to atmospheric backscatter properties, the 𝑁𝑑𝑒𝑡
𝑚𝑜𝑙(𝑡𝑖) and 𝑁𝑑𝑒𝑡

𝑝𝑎𝑟(𝑡𝑖) are affected by “parasite” 375 

solar backscattered photons during the daytime, which are not correlated with the laser shots. To estimate solar background 

add-on to 𝑁𝑑𝑒𝑡
𝑚𝑜𝑙(𝑡𝑖) and 𝑁𝑑𝑒𝑡

𝑝𝑎𝑟(𝑡𝑖), one has to solve the radiative transfer equation for the radiation emitted by the Sun, 

backscattered by air and particles in the atmosphere and by the surface in the direction of the spaceborne lidar, and attenuated 

by the atmospheric layers: 

   𝑁𝑠𝑜𝑙(𝑡𝑖) =  𝛥𝑡𝑖 × 𝑁𝑠𝑜𝑙
𝑇𝑂𝐴(𝜆) × [𝑅𝑠𝑜𝑙

𝑎𝑡𝑚 + 𝑅𝑠𝑜𝑙
𝑠𝑢𝑟𝑓

]    (20) 380 

𝑅𝑠𝑜𝑙
𝑎𝑡𝑚 = ∫ (𝛽𝑚(𝑧) × 𝜙𝑚(𝑆𝑍𝐴) + 𝛽𝑝(𝑧) × 𝜙𝑝(𝑆𝑍𝐴))

0

𝑍𝑠𝑎𝑡

× cos(𝑆𝑍𝐴)−1 × 

exp {−2 ∫ (𝛼𝑚(𝑧′) + 𝛼𝑝(𝑧′)) cos (𝑆𝑍𝐴)−1𝑧

𝑧𝑠𝑎𝑡
dz′} dz    (21) 

𝑅𝑠𝑜𝑙
𝑠𝑢𝑟𝑓

= Α𝑠𝑢𝑟𝑓 × 𝜙𝑠𝑢𝑟𝑓(𝑆𝑍𝐴) × exp {− ∫ (𝛼𝑚(𝑧) + 𝛼𝑝(𝑧)) cos (𝑆𝑍𝐴)−1𝑧

𝑧𝑠𝑎𝑡
dz} × ∫ (𝛼𝑚(𝑧) + 𝛼𝑝(𝑧)) 𝑑𝑧

0

𝑍𝑠𝑎𝑡
 (22) 

where 𝑁𝑠𝑜𝑙
𝑇𝑂𝐴(𝜆)  is a top of atmosphere solar flux at wavelength 𝜆  and for filter width ∆𝜆 , 𝑅𝑠𝑜𝑙

𝑎𝑡𝑚  and 𝑅𝑠𝑜𝑙
𝑠𝑢𝑟𝑓

represent the 

proportion of the incoming solar radiance reflected in the direction of lidar, 𝜙𝑚(𝑆𝑍𝐴), 𝜙𝑝(𝑆𝑍𝐴) , and 𝜙𝑠𝑢𝑟𝑓(𝑆𝑍𝐴) are the 385 

scatter plots for the angle between the sun and the nadir view of lidar for molecular scattering, scattering on particles, and 

scattering from surface, respectively, 𝑧𝑠𝑎𝑡  is the altitude of a satellite, and Α𝑠𝑢𝑟𝑓 is the surface albedo. We assumed Lambertian 

scattering from the surface with albedo equal to 0.08 for ocean and 0.15 for land (arbitrary values), we used Rayleigh scattering 

phase function for the molecular component, and we used the geometric optics phase function approximation for particulate 

scattering. 390 

The solar photons pass through the optical system and HSRL, hit the detectors, and produce the “solar noise photoelectrons”: 

𝑁𝑑𝑒𝑡.𝑠𝑜𝑙.
𝑚𝑜𝑙 (𝑡𝑖) = 𝛾 × ξ𝑟𝑒𝑐 × ξ𝑚𝑜𝑙.𝑠𝑜𝑙. × 𝑁𝑠𝑜𝑙(𝑡𝑖)    (23) 

𝑁𝑑𝑒𝑡.𝑠𝑜𝑙.
𝑝𝑎𝑟 (𝑡𝑖) = 𝛾 × ξ𝑟𝑒𝑐 × ξ𝑝𝑎𝑟.𝑠𝑜𝑙 × 𝑁𝑠𝑜𝑙(𝑡𝑖)    (24) 
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where ξ𝑚𝑜𝑙.𝑠𝑜𝑙. and ξ𝑝𝑎𝑟.𝑠𝑜𝑙. represent the convolution of the solar filter spectral curve with the interferometric spectral curve 

for a given channel (see the comment on solar filter bandwidth in Table 1). In addition to solar noise, there is always a dark 395 

current of the detector, 𝑁𝑑𝑎𝑟𝑘, and readout noise, RON, which are added to the signal. Since the 𝑁𝑑𝑒𝑡.𝑠𝑜𝑙.
𝑚𝑜𝑙 (𝑡𝑖) and 𝑁𝑑𝑒𝑡.𝑠𝑜𝑙.

𝑝𝑎𝑟 (𝑡𝑖), 

𝑁𝑑𝑎𝑟𝑘, and RON are registered along with 𝑁𝑑𝑒𝑡
𝑚𝑜𝑙(𝑡𝑖) and 𝑁𝑑𝑒𝑡

𝑝𝑎𝑟(𝑡𝑖) during daytime, they enter the Eqs. (15) and (16) and affect 

the retrieval. For the non-HSRL lidar: 

𝑁𝑑𝑒𝑡.𝑠𝑜𝑙.(𝑡𝑖) = 𝛾 × ξ𝑟𝑒𝑐 × ξ𝑡𝑜𝑡.𝑠𝑜𝑙. × 𝑁𝑠𝑜𝑙(𝑡𝑖)    (25) 

where 𝛾  and  ξ𝑟𝑒𝑐  stand for the corresponding parameters of non-HSRL lidar and ξ𝑡𝑜𝑡.𝑠𝑜𝑙.  represents the transmission 400 

coefficient of a solar rejection filter, which is equal to a ratio of an integral of the spectral transmission curve of the filter to a 

full spectral width of the filter. A quick back-of-envelope estimate of the ratio of solar photons coming to the particulate 

detector of ATLID to number of solar photons reaching the surface of CALIOP’s detector per same sampling interval is: 

 
𝑁𝑠𝑜𝑙

𝑇𝑂𝐴(355𝑛𝑚)×𝑑𝑡𝑒𝑙.𝐴𝑇𝐿𝐼𝐷
2 ×𝑑𝑓𝑝.𝐴𝑇𝐿𝐼𝐷

2 ×𝑍𝐶𝐴𝐿𝐼𝑂𝑃
2 ×ξ𝑟𝑒𝑐.𝐴𝑇𝐿𝐼𝐷×ξ𝑝𝑎𝑟.𝑠𝑜𝑙.

𝑁𝑠𝑜𝑙
𝑇𝑂𝐴(532𝑛𝑚)×𝑑𝑡𝑒𝑙.𝐶𝐴𝐿𝐼𝑂𝑃

2 ×𝑑𝑓𝑝.𝐶𝐴𝐿𝐼𝑂𝑃
2 ×𝑍𝐴𝑇𝐿𝐼𝐷

2 ×ξ𝑟𝑒𝑐.𝐶𝐴𝐿𝐼𝑂𝑃×ξ𝑡𝑜𝑡.𝑠𝑜𝑙.
 = 

(1162.8×355)×0.62×6902×292×0.62×(0.35×0.87)

(1900.0×532)×1.02×3932×9020.67×(0.04×0.85)
= 0.38 (26) 

so, at the first sight, the ATLID’s retrieval should be less solar-contaminated than CALIOP. But, this ratio alone is not enough 405 

for such a conclusion because the solar photons should be compared to useful signal. Below, we show the results of simulations 

for two atmospheric scenarios which consider two-way radiative transfer both for solar radiance and for lidar sounding radiance 

and add the noise of the remaining detection path.  

Now, when all the components of the signal are known, we can estimate the daytime and nighttime signal and noise and 

propagate them to the retrieved parameters. It is important to mention that the instruments compared in this work use the 410 

detectors of different types. Namely, CALIOP lidar uses a photomultiplier tube (PMT) whereas ATLID lidar detects the 

backscatter with the help of charge-coupled device (CCD). Besides different characteristics like gain or dark current (see 

Table 1), these detectors are not the same in terms of applicable noise statistics (Liu et al., 2006). Even though the incoming 

photon flux distributions for both instruments are Poisson, the photoelectrons produced by the PMT do not follow a strict 

Poisson distribution. It is known that for Poisson-distributed signals, a one-to-one relationship exists between the mean and 415 

the variance of the photocurrent. As Liu et al., (2006) show, the mean and the variance of the PMT photocurrent are also 

proportional, but not one to one, and the corresponding noise scale factor (NSF) has to be applied to estimate random errors 

for lidar systems using PMTs or avalanche detectors. The NSF is linked to an excess noise factor, ENF, but it is not equal to 

it. For the PMTs with identical gain factors m for each dynode, the ENF is given by (Kingston, 1978; Liu and Sugimoto, 2002):  

𝐸𝑁𝐹 =
𝑚

𝑚−1
       (27) 420 

For the analog detection, the NSF in the multiplied-photoelectron domain can be either calculated from the detector’s ENF 

and gain or estimated from the solar-noise dominated signals (Liu et al., 2006): 
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𝑁𝑆𝐹 =
𝜎(𝑁𝑑𝑒𝑡)

√〈𝑁𝑑𝑒𝑡〉
=

√𝑣𝑎𝑟(𝑁𝑑𝑒𝑡)

√〈𝑁𝑑𝑒𝑡〉
       (28) 

where 𝜎(𝑁𝑑𝑒𝑡), 𝑣𝑎𝑟(𝑁𝑑𝑒𝑡), and 〈𝑁𝑑𝑒𝑡〉 are a standard deviation, variance, and mean of the signal, respectively. The NSF value 

provided in the CALIPSO L1 version 4.10 files is equal to 5.14. However, using this value in synthetic noise calculations leads 425 

to an overestimation of the daytime noise, so for the calculations below we took a more conservative value 𝑁𝑆𝐹 = 3.16, which 

better represents real CALIOP nighttime and daytime noises in the aerosol-free stratosphere. One can write the expressions 

for the variances of CALIOP and ATLID signals in the analog detection domain through the number of photoelectrons 

calculated for each channel: 

𝑣𝑎𝑟(𝑁𝑑𝑒𝑡
𝑚𝑜𝑙) = 𝐸𝑁𝐹 × (𝑁𝑑𝑒𝑡

𝑚𝑜𝑙 + 𝑁𝑑𝑎𝑟𝑘 + 𝑁𝑑𝑒𝑡.𝑠𝑜𝑙.
𝑚𝑜𝑙 )+RON   (29) 430 

𝑣𝑎𝑟(𝑁𝑑𝑒𝑡
𝑝𝑎𝑟

) = 𝐸𝑁𝐹 × (𝑁𝑑𝑒𝑡
𝑝𝑎𝑟

+ 𝑁𝑑𝑎𝑟𝑘 + 𝑁𝑑𝑒𝑡.𝑠𝑜𝑙.
𝑝𝑎𝑟

)+RON   (30) 

𝑣𝑎𝑟(𝑁𝑑𝑒𝑡
𝑡𝑜𝑡) = 𝑁𝑆𝐹2 × (𝑁𝑑𝑒𝑡

𝑡𝑜𝑡 + 𝑁𝑑𝑎𝑟𝑘 + 𝑁𝑑𝑒𝑡.𝑠𝑜𝑙.
𝑡𝑜𝑡 )+RON   (31) 

We draw the reader’s attention to the fact that the detector’s parameters in (Eq. 31) are not equal to those in (Eqs. 29, 30) and 

that for real calculations one has to use the values from Table 1 or similar source. The variances of molecular, particulate, and 

total incoming photon fluxes, which are finally used in the optical property retrievals, are estimated in accordance with the 435 

standard error propagation formulae applied to equations above: 

𝑣𝑎𝑟(𝐴𝑀𝐵) = 𝑘𝑎
2 × 𝑣𝑎𝑟(𝑁𝑑𝑒𝑡

𝑚𝑜𝑙)+𝑘𝑏
2 × 𝑣𝑎𝑟(𝑁𝑑𝑒𝑡

𝑝𝑎𝑟
) + 2 × 𝑘𝑎 × 𝑘𝑏 × 𝑐𝑜𝑣(𝑁𝑑𝑒𝑡

𝑚𝑜𝑙 , 𝑁𝑑𝑒𝑡
𝑝𝑎𝑟

)   (32) 

𝑣𝑎𝑟(𝐴𝑃𝐵) = 𝑘𝑐
2 × 𝑣𝑎𝑟(𝑁𝑑𝑒𝑡

𝑚𝑜𝑙)+𝑘𝑐
2 × 𝑣𝑎𝑟(𝑁𝑑𝑒𝑡

𝑝𝑎𝑟
) + 2 × 𝑘𝑐 × 𝑘𝑑 × 𝑐𝑜𝑣(𝑁𝑑𝑒𝑡

𝑚𝑜𝑙 , 𝑁𝑑𝑒𝑡
𝑝𝑎𝑟

)   (33) 

𝑣𝑎𝑟(𝐴𝑇𝐵) =
1

𝜅2 × 𝑣𝑎𝑟(𝑁𝑑𝑒𝑡
𝑡𝑜𝑡)      (34) 

where the 𝑐𝑜𝑣(𝑁𝑑𝑒𝑡
𝑚𝑜𝑙 , 𝑁𝑑𝑒𝑡

𝑝𝑎𝑟
) represents the covariance of molecular and particulate channels. This term is required because the 440 

signals in the channels are coupled through a non-zero cross-talk. 

When the variances are known, the original noise-free AMB, APB, and ATB profiles are modified by random noise, which is 

modulated by the standard deviation calculated from the variances, and the results are saved. If the horizontal or vertical signal 

averaging is involved, the noise is scaled inversely proportional to a square root of the number of samples within the averaging 

interval. 445 

3.2.3 Useful lidar signals and their SNRs 

To address the information content of the backscattered radiance, it makes sense to define a useful signal and to estimate the 

SNR for this signal. For CALIOP the useful signal is represented by 𝐴𝑇𝐵(𝜆, 𝑧) (see Eq.1) whereas the ATLID can measure 

the molecular and particulate backscattered radiances separately, so it would be logical to call the 𝐴𝑃𝐵(𝜆, 𝑧) (see Eq. 2) a 

signal, which carries the information about the cloud, and look at its SNR. For the sake of simplicity, we do not discuss here 450 
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the perpendicular channels of these two space lidars assuming that the backscattered depolarized radiance is detected the same 

way, and adding the processing of this component to the formalism above would not change the conclusions of this work. 

Another aspect that we do not discuss here is the change in cloud microphysics, which can also affect the cloud detection and 

cloud radiative effects. We consider and model only the cloud occurrence, cloud cover, and cloud detectability. 

For the simulated CALIOP signals, we estimate SR(z) at 532 nm and CF(z) according to Eqs. 6 and 7. The simulated ATLID 455 

signals are converted to equivalent 532-nm SR’(z) (see Sect. 2.2 and Feofilov et al., 2022). Then we calculate CF(z) for ATLID 

using the same Eqs. 6 and 7 with the same thresholds, and then we analyze the resulting cloud fraction. 

To quantify the lidar cloud detection agreement and disagreement regarding the reference cloud dataset, we distinguish four 

cases: (1) when the lidar detects the actually cloudy layer as cloudy (YES_YES case), (2) when there is no cloud and the lidar 

does not detect a cloud (NO_NO), (3) when the lidar does not detect an existing cloudy layer (YES_NO or false negative), and 460 

(4) when the lidar detects a cloud whereas the layer does not contain a cloud (NO_YES or false positive). We will define their 

occurrence ratios as: 

𝑅𝑌𝐸𝑆_𝑌𝐸𝑆(𝑧) =
𝑁𝑌𝐸𝑆_𝑌𝐸𝑆(𝑧)

𝑁𝑡𝑜𝑡(𝑧)
 ; 𝑅𝑁𝑂_𝑁𝑂(𝑧) =

𝑁𝑁𝑂_𝑁𝑂(𝑧)

𝑁𝑡𝑜𝑡(𝑧)
 ; 𝑅𝑌𝐸𝑆_𝑁𝑂(𝑧) =

𝑁𝑌𝐸𝑆_𝑁𝑂(𝑧)

𝑁𝑡𝑜𝑡(𝑧)
 ; 𝑅𝑁𝑂_𝑌𝐸𝑆(𝑧) =

𝑁𝑁𝑂_𝑌𝐸𝑆(𝑧)

𝑁𝑡𝑜𝑡(𝑧)
  (35) 

The sum of all four ratios in (Eq. 35) yields unity. A perfect match between the cloud distribution in the atmosphere and the 

product retrieved from the measurement would be when 𝑅𝑌𝐸𝑆_𝑌𝐸𝑆(𝑧) + 𝑅𝑁𝑂_𝑁𝑂(𝑧) = 1 and 𝑅𝑌𝐸𝑆_𝑁𝑂(𝑧) = 𝑅𝑁𝑂_𝑌𝐸𝑆(𝑧) = 0. 465 

3.3. Simulated ATLID and CALIPSO lidar profiles over cirrus and stratocumulus scenes 

The most representative parts of pseudo orbits generated with the help of 3D_CLOUDV3 model (Section 3.3) are shown in 

Fig. 4 and 5 for cirrus and stratocumulus clouds, respectively. We arbitrarily split the “cloud curtain” generated from the output 

of this model (Sect. 3.2) to “daytime” and “nighttime” by setting the solar zenith angle (SZA) to 45º and 120º, respectively. 

These values are not linked with the cloud formation mechanisms in the 3D_CLOUDV3 model, they are just needed for a 470 

second half of the simulator chain (see noise-related boxes in Fig. 3). In Fig. 4ab, one can see a fine structure of modeled cirrus 

clouds. Looking at Fig. 4cd, one can say that the clouds are optically thin. This combination makes the detection of the clouds 

marked in Fig. 4ef challenging.  
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Figure 4: Example of cirrus cloud (a) input data from 3DCLOUD model used in the simulation: Ice water content (IWC), night 475 
corresponds to one piece of orbit; (b) IWC, day corresponds to another piece of orbit; (c) accumulated optical depth starting from 

the cloud top, night; (d) same as (c), day; (e) cloud mask, night; (f) cloud mask, day. We set the cloud mask to 1 whenever IWC>0. 

The cloud masks presented here are called “reference dataset” in the rest of the paper. 
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Figure 5: Same as Fig. 4, but for stratocumulus cloud scenes. Note the color scale difference between Fig. 4 and Fig. 5. 480 

The stratocumulus clouds shown in Fig. 5 belong to another category of challenging observations. The clouds are closely 

spaced along the horizontal axis and at the same time they are optically thick: about two-thirds of the clouds have optical 

thickness larger than 3 (Fig. 5cd), but the scene also contains about one third of semi-transparent clouds like the ones that were 

reported in (Leahy et al., 2022). From the Fig. 5cd, one can conclude that at present there is no space-based measurement that 

can retrieve all the optical properties of cloud layers shown in Fig. 5ef. Another problem of these clouds is that their horizontal 485 

averaging might bias the estimated cloud fraction (see e.g. Fig. 4 of Feofilov et al., 2022 and its discussion). 

In Fig. 6 and 7, we demonstrate the differences between two lidars for four scenes (cirrus/stratocumulus clouds, day/night) 

using the simulated backscatter signal. For the cirrus cloud scene (Fig. 6), both the 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) of CALIOP and the 

𝐴𝑃𝐵(355𝑛𝑚, 𝑧) of ATLID show a detectable signal in the areas marked by a cloud mask in Fig. 6ef. But, if one defines the 

signal detection level as three sigmas, one will see that a part of thin clouds will be missing. This is not surprising since we 490 

compare a “pure” modeled cloud with its noisy representation in the measuring system. What can be estimated from the image 

is the potential reliability of cloud detection from ATLID and CALIOP: according to the SNR values (Fig. 6gh vs Fig. 6cd), 

the 𝐴𝑃𝐵(355𝑛𝑚, 𝑧) signal from ATLID (Fig. 6ef) reaches higher SNR values than the 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) signal from CALIOP 
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(Fig. 6ab). This gives a hint that the cloud detection from this instrument might be somewhat better than from CALIOP, and 

that one can lower the detection threshold and still get the cloud instead of noise. This is a subject of one of the experiments 495 

described below. As for the daytime vs nighttime difference, we do not see a big change between the left-hand-side and right-

hand-side panels for ATLID (Fig. 6e-h) whereas the CALIOP shows higher noise in Fig. 6bd. We note here that the 

calculations were performed for the cases when only a thin cirrus cloud was present in the atmospheric column, whereas the 

rest of it corresponded to clear sky conditions. In the real life, though, the second cloud layer beneath cirrus might increase the 

solar noise (see the right-hand-side panels of Fig. 7), and this will adversely affect the thin cloud detection, especially from the 500 

CALIOP measurements. This is explained by a larger field of view of CALIOP lidar (see Table 1). In our exercise, we wanted 

to estimate the best achievable results for a given cloud scene for each instrument and to compare the lidar performances. This 

way, the conclusions made below for the daytime scenes refer to the minimal differences between the two instruments.
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 505 

Figure 6: Signals and signal-to-noise ratio for cirrus cloud scene. CALIOP: (a) ATB(532nm, z), night for one piece of orbit; (b) 

ATB(532nm, z) day for another piece of pseudo-orbit; (c) SNR, night; (d) SNR, day; ATLID: (e) APB(355nm, z), night; (f) 

APB(355nm, z) day; (g) SNR, night; (h) SNR, day. Note that the scene contains only these clouds and a clear sky below. For the 

reflective clouds beneath the cirrus layer, the daytime noise will be higher (see the right-hand-side panels of Fig. 7). 



 

23   

 

 510 
Figure 7: Same as Fig. 6, but for stratocumulus cloud scenes. 

As for the stratocumulus clouds (Fig. 7), both the signals and SNRs are strong for both lidars, day and night. The altitudes 

beneath these clouds correspond to areas without useful signal: at these heights, the signal is already attenuated by a cloud 

above, and the attenuation is so strong that even the cloud base is not visible at optical wavelengths (e.g. Guzman et al., 2017). 

Another remarkable feature shown in this plot is higher daytime noise for CALIOP (Fig. 7bd). Even though this high noise 515 

level does not affect the stratocumulus cloud detection itself, it might affect the aforementioned higher-level cloud detection 

and, from this point of view, ATLID has an advantage over CALIOP.  

Summarizing, one can say that the 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) signals of CALIOP and the 𝐴𝑃𝐵(355𝑛𝑚, 𝑧) signals of ATLID carry 

similar type information for the same cloud scenes, but their SNRs suggest that (a) the daytime cloud detection from ATLID 

should be more reliable and (b) that one can lower the detection threshold for this instrument without admixing numerous 520 

noise-triggered clouds. Let’s now see how the signal quality transforms into the product quality and, in particular, to cloud 

detection quality.  

3.4. Capability of ATLID to detect optically thinner clouds than CALIPSO 

Here, we describe the test we performed seeking to answer whether the cloud detection limits (Eq. 6) defined in (Chepfer et 

al., 2010) could be lowered to detect thinner clouds. For this test, we followed the second half of the flowchart (Fig. 3) and 525 
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calculated the 𝑆𝑅(532𝑛𝑚, 𝑧) for CALIOP and the CALIOP-like 𝑆𝑅(532𝑛𝑚, 𝑧) for ATLID (Eqs. 2-3), but we changed the 

cloud detection thresholds of (Eq. 6) to the following ones: 

𝑆𝑅(532𝑛𝑚, 𝑧) > 3 and 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) − 𝐴𝑇𝐵𝑚𝑜𝑙(532𝑛𝑚, 𝑧) > 1.5 × 10−6 𝑚−1 𝑠𝑟−1   (36) 

Then we estimated the cloud fractions and statistical agreement with the source cloud data (Eqs. 6,7). The threshold in the left-

hand side of (Eq. 36) implies that the particulate backscatter in a layer, which we call a cloudy one, is twice the molecular one.  530 

The threshold in the right-hand side of (Eq. 36) corresponds to the absolute values of 𝐴𝑇𝐵(532𝑛𝑚, 𝑧)  recalculated for 

𝑆𝑅(532𝑛𝑚, 𝑧) = 3 at the height of 8 km (Chepfer et al., 2010), but overall the rationale for selecting these very values is 

based on the SNR values levels we observed in the test simulations. Further lowering the threshold will lead to an increased 

number of false-positive cloud detections in ATLID. 

Since the “native” CALIOP profiles are averaged over 3 points above 8 km, we applied an averaging procedure over ~1 km 535 

distance to all simulated signals and repeated the analysis. To compare apples to apples in terms of signal statistics, we averaged 

over 4 CALIPSO shots and over 2 effective ATLID shots, yielding the actual average over 1330 m and 1140 m, respectively. 

To reduce the number of plots, we do not show the instantaneous profiles without the averaging, but in Table 2 we provide the 

estimates for them (seek columns marked with Averaged=N). 

In Fig. 8ab, the 𝑆𝑅(532𝑛𝑚, 𝑧) has the same patterns as the 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) signals in Fig. 6ab. But, the daytime noise is more 540 

pronounced in this presentation, partially because of the chosen color scale. However, not all the noise from Fig. 8b propagates 

to Fig.8d. This is because of a second condition of (Eq. 36): the variations are partially filtered out by imposing a condition on 

the 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) signals w.r.t. 𝐴𝑇𝐵𝑚𝑜𝑙(532𝑛𝑚, 𝑧). Still, the daytime scene contains a lot of false detections marked by 

red in Fig. 8d. The overall characteristics of CALIOP cloud detection for this scene estimated over the whole simulated cloud 

dataset can be found in the 2nd and 6th columns of Table 2. The bottom two lines of this table refer to the detectability of a 545 

cloud in the whole layer: if some values of the 𝑆𝑅(532𝑛𝑚, 𝑧) triggered cloud detection, we calculated the cloud fraction 

similar to (Eq. 7) and then compared the resulting series of cloud fractions with the reference one defined from the source 

dataset. The “total score” line refers to the cloud detection statistics and is defined in the caption. As one can see, the strong 

daytime noise of CALIOP prevents the correct cloud detection, mostly due to large number of false positive cloud detections 

(NO_YES). The bias and the r.m.s. rows show the biggest change when passing from nighttime to daytime conditions. 550 

The same analysis performed for ATLID (Fig. 9) shows less daytime noise (compare Fig. 9b with Fig. 8b), and the cloud 

detection quality for the clouds defined using (Eq. 36) is better than that of the CALIOP (compare Fig. 9d with Fig. 8d). The 

corresponding columns of Table 2 tell us that for ATLID the number of false detections during day and night is approximately 

the same, whereas for CALIOP using the Eq. 36 for the detection dramatically increases the amount of false detections during 

daytime. We should also stress here that the obtained result is a lower estimate because we used the scenes without underlying 555 

clouds, which could reflect more solar radiance and further contaminate the observations. For these scenes, the difference 

between ATLID and CALIOP will be even larger. 
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Figure 8: Scattering ratio and cloud detection estimated for cirrus clouds observed by CALIOP using Eq. 36: (a) scattering ratio, 

night; (b) cloud detection, night; (c) scattering ratio, day; (d) cloud detection, day. Note the color scale difference for (ac) and (bd). 560 
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Figure 9. Same as Fig. 8, but for ATLID 
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Lidar CALIOP ATLID 

Day/Night Night Day Night Day 

Cloud Ci Sc Ci Sc Ci Sc Ci Sc 

Averaged N Y N Y N Y N Y N Y N Y N Y N Y 

YES_YES 7 7 8 8 8 7 10 9 8 8 8 8 7 7 8 8 

NO_NO 80 78 82 86 69 72 68 80 83 81 86 86 78 78 86 86 

YES_NO 10 14 6 6 13 18 4 5 9 11 6 6 13 15 5 5 

NO_YES 2 0 4 0 10 3 18 6 0 0 0 0 2 0 0 0 

Tot. score 85 85 88 93 56 71 69 87 91 89 94 93 81 83 94 94 

Bias 11 -4 -1 -6 21 11 16 2 -5 -8 -6 -6 8 2 -5 -5 

R.m.s. 18 13 8 6 23 21 9 6 10 9 6 6 21 18 6 5 

Table 2: Cloud detection statistics for CALIOP and ATLID when the cloud definition corresponds to as 𝑆𝑅(532𝑛𝑚, 𝑧) > 3 

and 𝐴𝑇𝐵(𝜆, 𝑧) − 𝐴𝑇𝐵𝑚𝑜𝑙(𝜆, 𝑧) > 1.5 × 10−6 𝑚−1 𝑠𝑟−1  (Eq. 36). The bias and r.m.s. values are defined for the clouds 565 

detected in the columns (see text) and we define the total score in % as 100% × (1 −

(𝑌𝐸𝑆_𝑁𝑂 + 𝑁𝑂_𝑌𝐸𝑆) (𝑌𝐸𝑆_𝑌𝐸𝑆 + 𝑁𝑂_𝑁𝑂)⁄ ).  

The same type plots built for the stratocumulus clouds (Fig. A1 and A2 in the Appendix A for CALIOP and ATLID, 

respectively) show a different picture. Strong signals and large SNRs shown in Fig. 5 help to unambiguously identify the cloud. 

Large fraction of underestimated clouds shown in blue in Fig. A1cd and Fig. A2cd corresponds to cloud parts below the opaque 570 

cloud top layer, which are not accessible for the instruments observing the scene from above. As with cirrus clouds, the false 

detections rate is higher for CALIOP during daytime.  

For CALIOP, the 1 km averages reduce the number of false detections and improve the total score for daytime simulations for 

cirrus. For ATLID with its lower daytime noise, the averaging procedure does not change the cloud detection quality that 

much. For the stratocumulus clouds, the averaging procedure is not required for ATLID since sometimes it can lead to 575 

overestimate the cloud fraction (e.g. Chepfer et al. 2008, Feofilov et al. 2022). For CALIOP, it improves the score because of 

suppression of sporadic-noise-induced “clouds” above the real cloud layer (Fig. A1d).  

Overall, the ATLID-related columns in Table 2 demonstrate more consistency between daytime and nighttime cloud amounts 

and reference data than the CALIOP-related ones, and ATLID daytime cloud quality is better than that of CALIOP whereas 

the nighttime results are comparable. Our tests show that if the CALIOP-like solar filter were used in ATLID, one could lower 580 

the thresholds of Eq. 36 down to 𝑆𝑅(532𝑛𝑚, 𝑧) > 2 and 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) − 𝐴𝑇𝐵𝑚𝑜𝑙(532𝑛𝑚, 𝑧) > 1.0 × 10−6 𝑚−1 𝑠𝑟−1 

without losing the quality of cloud retrievals, whereas the same thresholds applied to CALIOP would give completely 

unacceptable results for daytime conditions. 

Of course, the examples considered in this section do not cover the whole range of high-, middle-, and low-level clouds, but 

they draw a line between the threshold values that can be used for cloud definition for CALIOP and ATLID and show that the 585 
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difference is linked to noise characteristics of the instruments. This result suggests that ATLID should be able to observe 

optically thinner clouds than CALIOP in daytime at full horizontal resolution.  

To illustrate this point, we used the available data set for cirrus and estimated the minimal detectable backscatter (MDB) for 

ATLID in terms of equivalent 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) for comparison with CALIOP values obtained for 5 km horizontal averaging 

of cirrus measured at 15 km height (McGill et al., 2007). For this numerical experiment, we used noisy 𝐴𝑃𝐵 and noise-free 590 

𝐴𝑀𝐵 to keep the consistency with our approach of cloud detection using only one noisy component, the particulate one. For 

this horizontal averaging, we obtained MDB=3.0±1.0x10-7 m-1 sr-1 for the nighttime and MDB=4.0±1.0x10-7 m-1 sr-1 for the 

daytime in equivalent 𝐴𝑇𝐵(532𝑛𝑚) values, whereas for CALIOP we obtained MDB=4.0±2.0x10-7 m-1 sr-1 for the nighttime 

and MDB=1.3±0.2x10-6 m-1 sr-1 for the daytime in its native 𝐴𝑇𝐵(532𝑛𝑚). The daytime value estimated for CALIOP is in 

good agreement with the measured one (McGill et al., 2007) whereas the estimated nighttime value is somewhat lower than 595 

the measured MDB=8.0±1.0x10-7 m-1 sr-1. From this comparison, we cannot conclude that the ATLID will provide better 

sensitivity to thin clouds during nighttime, but we can conclude that its daytime thin cloud detection at 5 km averaging capacity 

should be comparable to that of CALIOP for the nighttime, and this will be an important achievement for daytime vs nighttime 

cloud comparison. Using the cloud detection thresholds defined by Eq. 36 and refined for the real data flow using the 

methodology outlined above, the CLIMP short-term product will be produced.  600 

4. The CLIMP long-term dataset  

 

4.1. Capability of CLIMP and CALIPSO-GOCCP to detect the same clouds 

One of the overarching goals of our study is to develop a method for merging the data from several space borne lidars into a 

continuous cloud record to detect long-term changes and get a seamless cloud climatology. Since the low threshold tested in 605 

the previous section revealed the sensitivity mismatch between the two instruments, we had to test whether the cloud detection 

thresholds developed for CALIOP (Chepfer et al., 2010) are applicable to ATLID, and whether the clouds retrieved using these 

thresholds are consistent between the two lidars. For this exercise, we followed the same scheme as in the previous section, 

but this time the clouds were defined in Eq. 6 as in Chepfer et al. (2010) and the follow-up works (e.g. Cesana et al., 2019; 

Guzman et al. 2017).  610 

Figure 10 demonstrates the daytime and nighttime scattering ratios above the detection thresholds (Eq. 6) and the 

corresponding cirrus cloud detection statistics for CALIOP. The 𝑆𝑅(532𝑛𝑚, 𝑧) in Fig. 10ab demonstrates the same patterns 

as the 𝐴𝑇𝐵(532𝑛𝑚, 𝑧) signals in Fig. 6ab. As expected, this time the daytime noise is less pronounced (compare Fig. 10b to 

Fig. 8b). Still, the daytime scene contains a certain number of false detections marked by red in Fig. 10d. The same analysis 

performed for ATLID (Fig. 11) also shows somewhat less noise in daytime (compare Fig. 11b with Fig. 9b). The cloud 615 

detection quality of ATLID is like that of the CALIOP (see Table 3). In this setup, the ATLID is just slightly better than 

CALIOP with its somewhat higher rate of false detections during the day (compare the “c” and “d” panels of Fig. 8, 9, 10, and 

11 and the corresponding columns in Table 3). For stratocumulus clouds (Fig. 1 and Fig. 5), with their strong signals, the 
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agreement between CALIOP and ATLID is also better than for the clouds defined by Eq. 36 (compare the “c” and “d” panels 

of Fig. A1, A2, A3, and A4). The 1 km averaging further improves the agreement between the data sets (Table 3). 620 

Summarizing, using the thresholds (Eq. 6) to define the clouds makes the cloud data sets from CALIOP and ATLID 

comparable. Further adjustment will be needed for real ATLID data to compensate the effects of diurnal cycle (Noel et al., 

2018; Chepfer et al., 2019; Feofilov and Stubenrauch, 2019). Other compensations might be required when the real ATLID 

data become available. Since there is a high chance that there will be no overlapping period for these two satellite instruments, 

an intercalibration procedure will be required. For this, one can use the average cloud amount for low, middle, and high clouds 625 

in different zones (tropics, mid-latitudes, and polar) to track the changes and to introduce feedback to cloud detection algorithm. 

This way, the number of cases measured for each zone will be high, and the uncertainty will be low. The daytime and nighttime 

observations should be considered separately to address the diurnal cycle and daytime noise issues. In the sections below, we 

assume that the intercalibration has been performed and that the cloud datasets agree. 

 630 

Lidar CALIOP ATLID 

Day/Night Night Day Night Day 

Cloud Ci Sc Ci Sc Ci Sc Ci Sc 

Averaged N Y N Y N Y N Y N Y N Y N Y N Y 

YES_YES 7 6 7 8 7 6 9 8 7 6 7 7 6 6 7 8 

NO_NO 82 77 86 86 72 73 79 85 82 80 86 86 79 77 86 86 

YES_NO 11 17 6 7 15 20 5 6 10 14 7 7 15 18 6 6 

NO_YES 0 0 0 0 6 1 7 1 0 0 0 0 0 0 0 0 

Tot. score 88 81 93 93 67 75 85 93 89 85 93 93 83 80 94 94 

Bias -2 -12 -6 -7 13 -2 3 -5 -8 -9 -7 -7 -4 -10 -6 -6 

R.m.s. 14 11 6 6 22 20 7 5 9 9 6 6 18 17 6 5 

Table 3: Cloud detection statistics for CALIOP and ATLID in the case when the cloud is defined as 𝑆𝑅(532𝑛𝑚, 𝑧) > 5 and 

𝐴𝑇𝐵(𝜆, 𝑧) − 𝐴𝑇𝐵𝑚𝑜𝑙(𝜆, 𝑧) > 2.5 × 10−6 𝑚−1 𝑠𝑟−1 (Eq. 6).  
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 635 
Figure 10: Scattering ratio and cloud detection statistics estimated for cirrus clouds observed by CALIOP using Eq. 6: (a) scattering 

ratio, night; (b) cloud detection, night; (c) scattering ratio, day; (d) cloud detection, day. Note the color scale difference for (ac) and 

(bd). 
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Figure 11: Same as figure 10, but for ATLID  640 
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4.2 Numerical chain to simulate long-term lidar record and method to quantify time of emergence 

The previous section shows that ATLID and CALIOP data may be merged to build a long-term dataset, even though their 

instrumental or orbital differences might necessitate further reconciliation. Here we suppose perfect reconciliation will 

eventually be reached, and we build a long-term space lidar synthetic dataset spanning more than 30 years, to examine when 645 

a change in cloud properties attributable to human-induced warming would be detectable in the lidar cloud record according 

to climate model simulations. This approach is directly inspired by the one pioneered in (Chepfer et al. 2018), and later 

expanded in Perpina et al. (2021). 

We use climate predictions from IPSL-CM6 (Boucher et al. 2020) and CESM2 (Community Earth System Model, Hurrell et 

al. 2013), two ocean-atmosphere-coupled GCMs which took part in the Climate Model Intercomparison Project (CMIP) phase 650 

6 (Eyring et al., 2016). We use predictions that start in 2008 and end in 2034, and follow the RCP8.5 scenario, which tracks 

the observed CO2 emissions closely (Schwalm et al., 2020). Predictions are provided as monthly grids with spatial resolutions 

of 1.27°x2.5° on 79 vertical levels (IPSL-CM6) and 1.25°x0.94° on 40 vertical levels (CESM). On these predictions of 

atmospheric conditions, we apply the COSP1.4 lidar simulator (Sect. 3.2), which generates on similar spatial grids the monthly-

averaged cloud properties that would be observed by a spaceborne lidar flying over the simulated atmosphere. In addition to 655 

the simulation steps described in Sect. 3.2, here as a first step of the simulation, for each grid box of the GCM-created 

atmosphere an ensemble of subgrid-scale profiles are stochastically generated by the Subgrid Cloud Overlap Profile Sampler 

(Klein and Jakob, 1999). Each of these profiles is fed to the COSP simulator, which generates a synthetic lidar profile, on 

which cloud detection is performed. All subgrid-scale cloud detection profiles are eventually averaged to generate a single 

vertical profile for each grid box (see Chepfer et al., 2008 for details).   660 

From the synthetic cloud properties, we considered two climate diagnostics whose trend should be related to climate change: 

first the fraction of opaque clouds Copaque, defined as the number of lidar profiles in which an opaque cloud is detected in a 

given lat/lon grid box, divided by the total number of profiles sampled in the same grid box. Opaque clouds are responsible 

for the majority of cloud radiative effect in the Tropics (Vaillant de Guélis et al., 2017) and the cloud amount has been identified 

as one of the main drivers of cloud feedbacks on climate (Zelinka et al., 2016), thus the fraction of opaque clouds should be 665 

closely tied to climate change. Second, we considered the altitude of full attenuation Zopaque (Guzman et al. 2017), averaged 

over all opaque profiles in every grid box. The vertical distribution of clouds is closely linked to their longwave radiative 

impact and to climate change (Vaillant de Guelis et al., 2018), and their altitude is expected to increase by several hundred 

meters per century (Richardson et al., 2022). Altitude is among the cloud properties whose change is expected to be detectable 

the earliest using active remote sensing (Chepfer et al., 2014; Takahashi et al., 2019; Aerenson et al., 2022).  670 

 From the GCM predictions, the COSP lidar simulator generates monthly grids of Copaque and Zopaque, that we spatially average 

over the Tropics (30°S-30°N) to get monthly time series. We deseasonalize those time series to get their monthly anomalies 

over the 2008−2034 period. For any time t along these time series, the record length is equivalent to the period between 2008-

01-01 and t, and we computed the trend 𝑤(𝑡) as the linear regression of the time series of anomalies over that period. The 
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uncertainty 𝜎𝑤(𝑡) in the trend 𝑤(𝑡) at a time t was computed, as in Chepfer et al. (2018), as 𝜎𝑤(𝑡) = 𝜎𝑁√
1+𝜑

1−𝜑
𝑛−

3

2 , with n the 675 

number of years of the record at time t, 𝜑 the lag-1 autocorrelation coefficient of the series between 0 and t, and 𝜎𝑁 the standard 

deviation of the noise remaining in the series between 0 and t once it has been deseasonalized and the auto-correlated part 

removed. 

The following analysis focuses on the tropical regions (30°S-30°N), where the atmospheric circulation will be impacted by the 

weakening of the Hadley and Walker circulations expected in the upcoming century by most climate predictions (Davis and 680 

Rosenlof, 2012; Su et al., 2014; Kjellsson, 2015; Chemke, 2021). These changes will have important effects on the spatial 

distribution of tropical clouds (Su et al., 2014), which provide the basis for our climate diagnostics. Cloud opacity is one of 

the cloud properties most closely linked to their radiative impact (Zelinka et al. 2012), which explains why our diagnostics are 

based on the properties of opaque clouds (as in Perpina et al. 2021). The results below assume it will be possible to process 

ATLID measurements in such a way that CLIMP and GOCCP cloud properties are consistent.  685 

4.3. How many years of ATLID observation are required in addition to CALIPSO to evaluate climate model prediction 

of cloud changes?  

Figure 12 shows how the uncertainty in the retrieved trend for Copaque changes with the length of the record of lidar-based cloud 

properties, starting in 2008, according to predictions from IPSL-CM6 (blue) and CESM1 (orange). The uncertainty is generally 

the largest and fluctuates most when the record is short, and decreases and stabilizes as the record gets longer. At any time t, 690 

if we require a 95% confidence level in the prediction and assume trends are normally distributed, the real trend will lie in the 

as 𝑤(𝑡) ± 2𝜎𝑤(𝑡) interval. The sign of the trend will be robust once |
𝑤(𝑡)

𝜎𝑤(𝑡)
| > 2. This is when the uncertainty of the trend 

becomes small compared to the trend itself, and marks the time of emergence of cloud change induced by anthropogenic 

warming. This occurs earlier for strong, stable trends, and might never occur for very small trends or trends whose sign changes 

over time. Times of emergence in the Copaque time series are indicated in Fig. 12 with triangles for three confidence levels (50, 695 

70 and 95%). Reaching a reliable sign requires a longer record if the required confidence level is strong.  

According to predictions from IPSL-CM6 (blue), a reliable trend should emerge from the natural variability at a 50 to 70% 

confidence level between 2030 and 2032. In other words, IPSL-CM6 predicts that revealing a reliable long-term trend in the 

fraction of opaque clouds would require an uninterrupted spaceborne lidar record of 22 years, which would be achievable if 

EarthCARE operates for at least 7 years. Reaching 95% confidence levels on the retrieved trend would require extending the 700 

record beyond 25 years, most probably through another spaceborne lidar mission further in time. CESM1, meanwhile, predicts 

that a reliable long-term trend in the fraction of opaque clouds (at similar confidence levels between 50 and 70%) would be 

reached between 2025 and 2027, requiring 2 to 4 years of EarthCARE operation. A highly reliable trend (95% confidence 

levels) would be detectable in 2029, after 6 years of EarthCARE operation. In summary, if a 50% confidence level is 

acceptable, detecting a reliable trend would either be possible within the EarthCARE nominal operation timeframe (2 years 705 
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after launch), according to CESM1, or would require EarthCARE to operate 4 years beyond its planned lifetime, according to 

IPSL-CM6. 

If we consider the Zopaque diagnostic (Fig. 13), the IPSL-CM6 model now predicts a trend will be detectable at high 95% 

confidence levels in 2024, i.e. one year into EarthCARE's nominal operation period. Meanwhile, according to CESM1 

predictions, detecting a reliable trend (even at a modest 50% confidence level) would require EarthCARE operating for eight 710 

years, 5 years beyond its nominal operation timeframe. This very fast detection of a reliable Zopaque trend predicted by IPSL-

CM6 is consistent with how this model expects important and fast changes in the vertical distribution of opaque clouds in the 

Tropics (Perpina et al. 2021). 

 

Figure 12: Evolution of the uncertainty in the Copaque trend as a function of the length of the spaceborne lidar record, according to 715 

atmospheric conditions predicted by IPSL-CM6 (blue) and CESM (orange) in the period between 2008 and 2034 following the 

RCP85 scenario. The first two years of the record (2008-2010) are considered in the analysis, but trend uncertainties during that 

period are very large, and are masked in the figure to improve the legibility of later years. CALIPSO's planned end of operation 

(2023) is marked by a vertical blue line. Supposing EarthCARE begins operation right afterward, its nominal 3-years operation 

point is marked by a vertical purple line, and an optimistic 10-years operation point is marked by a vertical black line. 720 
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Figure 13 : Same as Fig. 12, but for the altitude of opacity Zopaque instead of Copaque. 
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We sum these results up in Table 4, which in addition provides similar record lengths to detect reliable trends when considering 

grid boxes dominated by either low or high clouds. Tropical low opaque clouds include sparse shallow cumulus (Konsta et al., 725 

2012) and optically thicker stratocumulus along the West coasts of continents (Guzman et al., 2017), both confined to the 

boundary layer and most frequent in subsidence regions. By contrast, tropical high opaque clouds are more localized and 

strongly correlated with deep convection. Since both kinds of clouds are driven by very different processes, it is not 

unreasonable to assume they will probably evolve differently in the upcoming century, which justifies their separate studies. 

In practice, we identified grid boxes dominated by low clouds as those where Zopaque was below 3 km, and high-cloud grid 730 

boxes as those where Zopaque was above 3 km. The results, shown in Table 4, suggest that the nominal ATLID/EarthCARE 

operation will be enough to validate or invalidate the trends in opaque tropical low clouds predicted by CESM. It will be 

possible to validate or invalidate others model-based cloud predictions only if EarthCARE performs beyond its nominal 

lifetime (which is not impossible, as CALIPSO demonstrated), or if measurements from a follow-up spaceborne lidar mission 

after ATLID are included in the cloud profile record. These results are consistent with the trends, uncertainties and times of 735 

emergence found when conducting a relatively simpler comparison of HadGEM2-A predictions in current vs +4K conditions 

(Chepfer et al., 2018). Needless to say, that the treatment of any follow-up mission (like AOS or Aeolus-2) will require the 

compensation for all the differences between the lidars like it is done in this work.   

 Copaque Zopaque 

IPSL-CM6 CESM IPSL-CM6 CESM 

All clouds 2030 (7 years) 2027 (4 years) 2021 2034 (11 years) 

Low clouds only (<3 km) No trend 2024 (1 year) No trend 2025 (2 years) 

High clouds only (>3 km) 2027 (4 years) 2031 (8 years) 2018 No trend 

Table 4: When will a spaceborne lidar record starting in 2008 be long enough to enable a reliable detection (at 70% confidence 

level) of Copaque or Zopaque trends according to predictions from IPSL-CM6 or CESM. The required years of EarthCARE 740 

operation are shown in parentheses, supposing they begin in 2023. The monthly evolution of the trend uncertainties for low 

and high clouds are provided in Figures B1 and B2 of the Appendix B. 

As stated upfront, these results depend on rather strong hypotheses of perfect continuity and perfect intercalibration between 

the consecutive spaceborne lidars that provide the measurements from which the cloud properties are derived. Imperfect 

continuity would occur if, for instance, EarthCARE starts operation later than CALIOP stops. The missing years in the record 745 

would delay the detection of a reliable trend by at least the same time period (Chepfer et al., 2018). Perfect intercalibration 

supposes the effects of instrumental differences in technical specifications (wavelengths, pulse energy, field of view, etc.) and 

orbital characteristics (local time of overpass, altitude) on lidar measurements are reconciled somehow. For instance, ATLID 

operates at 355nm and CALIOP at 532nm, and the impact this has on measurements can be reconciled by converting ATLID 

signal at 532nm as done in the current study, but the costs of this conversion are not completely understood and will require 750 
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re-examination when actual ATLID data will be available. Imperfect intercalibration could lead to offsets in one spaceborne 

lidar's record compared to the other, and would increase the uncertainties of the retrieved trends. Increased delays between the 

operation of both instruments would complicate their intercalibration. The different local times of overpass (01:30/13:30 local 

Solar time, LST, for CALIPSO, 06:00/18:00 LST for EarthCARE) are also quite problematic, since each instrument will 

sample clouds at a different phase of their diurnal cycle (Noel et al., 2018; Chepfer et al., 2019; Feofilov and Stubenrauch, 755 

2019). In particular, this will impact high clouds related to deep convection that exhibit a marked diurnal cycle. It is out of the 

scope of the present work to evaluate how this change could bias the retrieved long-term trends. The same applies to a follow-

up lidar mission, which may or may not operate at the same orbit with the same LST of overpass and may or may not measure 

the depolarized backscatter.  

Finally, the times of emergence presented here must not be understood as definite but as predictions by climate models. It is 760 

worth noting, for instance, that, according to predictions from IPSL-CM6, a reliable trend should already be readily detectable 

in the existing record of Zopaque that is today only built on CALIOP/CALIPSO (Table 4). Such a trend has not been identified 

yet. This is consistent with the fact that in current climate conditions IPSL-CM6 overestimates the altitude of opaque clouds 

in tropical convective regions, and brings them significantly higher (+2 km) near the end of 21st century (Perpina et al., 2021). 

Such rapid changes are not present in CESM predictions. These important model differences highlight the crucial need for 765 

continued long-term cloud lidar observations able to monitor the actual cloud changes, and disambiguate model predictions. 

5. Conclusions 

This study presents the physical basis for the ATLID Cloud CLIMate Product named CLIMP. This product builds on previous 

work on CALIPSO, a space lidar dedicated to cloud and aerosol observations like ATLID. CALIPSO data have been being 

used for 16 years to evaluate the description of clouds in climate models using a dedicated product named GOCCP and a 770 

dedicated lidar simulator named COSP/lidar. The present work also builds on recent work on AEOLUS, a space lidar with 

HSRL capability operating in the UV, like ATLID. Based on this legacy, we have defined the CLIMP short-term (ST) and 

CLIMP long-term (LT) products, both dedicated to cloud climate studies. Both contain the same variables as GOCCP (see 

Table D1 in Appendix D) on the same horizontal and vertical resolutions, but CLIMP-ST and CLIMP-LT have different cloud 

detection thresholds because they aim to tackle slightly different science objectives. 775 

The CLIMP-ST product is designed to make full use of ATLID capability to evaluate cloud description in climate models. 

CLIMP-ST is expected to contain optically thin cloud detected in daytime conditions at full resolution that were not observed 

by former space lidars at such high spatial resolutions during daytime. This new information, if confirmed in actual data, will 

help make progress on our current understanding of processes tied to thin ice clouds in the climate system. It will help evaluate 

the description in climate models of optically thin clouds in regions where they are frequent and important for climate, for 780 

example in the tropics and polar regions. 
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The CLIMP-LT product is designed to detect the same clouds as CALIPSO-GOCCP. Merging CLIMP-LT with GOCCP will 

allow building a multi-decade cloud profile record, useful to monitor the cloud inter-annual natural variability and cloud 

changes induced by human-caused climate warming. This record, if quality is sufficient, will be useful to evaluate climate 

prediction of cloud changes and to help reduce uncertainties in model-based climate feedbacks and climate sensitivity. 785 

To design CLIMP-ST and CLIMP-LT, we examined the differences between CALIOP and ATLID, space lidars that operate 

at different wavelengths and use different observation techniques and detectors. We sought to answer two questions: (1) Can 

the HSRL capability of ATLID help reconcile its cloud retrievals with the CALIOP record? (2) Does the cloud product 

retrieved from ATLID observations compare well with the one retrieved from CALIOP observations, and if so, how many 

years of ATLID observations are needed to detect trends in opaque cloud cover or altitude of opaque clouds, assuming ATLID 790 

operation will follow CALIOP without a gap?  

To answer these questions, we coupled the outputs of the 3DCLOUD model with the COSP2 simulator and added instrumental 

noise for two cloud scenes, thin cirrus clouds at ~15 km in the tropics and stratocumulus clouds at ~1 km height. CALIOP and 

ATLID orbits over these cloud scenes were simulated both for nighttime and daytime conditions, at full vertical and horizontal 

(1/3 km) resolution and at 1 km horizontal resolution. Then, we applied a wavelength conversion algorithm to ATLID 795 

observations to convert UV lidar profiles into 532nm lidar profiles and added synthetic noise generated for each instrument in 

accordance with its characteristics. 

We addressed the first question for CLIMP-ST. We showed that the lower daytime noise of ATLID allows applying more 

sensitive thresholds for cloud detection {𝑆𝑅(532𝑛𝑚, 𝑧) > 3;  𝐴𝑇𝐵(532𝑛𝑚, 𝑧) − 𝐴𝑇𝐵𝑚𝑜𝑙(532𝑛𝑚, 𝑧) > 1.5 ×

10−6 𝑚−1 𝑠𝑟−1} than for CALIPSO at full spatial resolution in daytime without introducing a bias. This suggests that ATLID 800 

may provide new information on optically thin clouds at daytime conditions at full spatial resolution. 

We addressed the second question for CLIMP-LT. We search for consistency between ATLID and CALIPSO-GOCCP in 

cloud detection, therefore we applied the same cloud detection threshold {𝑆𝑅(532𝑛𝑚, 𝑧) > 5;  𝐴𝑇𝐵(532𝑛𝑚, 𝑧) −

𝐴𝑇𝐵𝑚𝑜𝑙(532𝑛𝑚, 𝑧) > 2.5 × 10−6 𝑚−1 𝑠𝑟−1}  to both instruments, then their nighttime cloud products are comparable, 

whereas the daytime CALIOP clouds are characterized by somewhat higher false detection rate. This suggests ATLID and 805 

CALIPSO might observe the same clouds, with some adjustment in the cloud detection scheme. Then we analyzed 24 years 

of predictions from two general circulation models (IPSL-CM6 and CESM2) in the RCP85 scenario, coupled with the COSP 

lidar simulator. We show that IPSL-CM6 predicts the opaque cloud cover trend detection will require 7 years of ATLID 

operation besides the existing CALIOP cloud data set, whereas CESM2 predicts the opaque cloud cover trend can be detected 

in 4 years. For the clouds above 3 km altitude, these numbers change to 4 and 8 years, respectively, and for the altitudes below 810 

3 km the IPSL-CM6 clouds indicate no trend and CESM cloud trend detection will require one year of ATLID operation. 

These differences in climate predictions highlight the need for a multi-decade cloud lidar record.  

The current results rely on a comparison of exactly the same atmospheric scenes “virtually observed” by two space lidars, and 

they were obtained in the framework of comparing the cloud detection capabilities of these two instruments. However, the 

comparison of the actual ATLID measurements with actual CALIOP ones will face with an uncompensated difference linked 815 
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to the local solar time sampling by CALIOP and ATLID. The difference in the diurnal cycle will bias the detected cloud 

amount and height. This is a separate issue that should be compensated for, and this should be a subject of a separate work. 

Moreover, the comparison of actual ATLID measurements with CALIOP ones will probably face unexpected differences other 

than the ones foreseen in this paper. Therefore, the CLIMP algorithm will require an adjustment after ATLID launch to take 

those into account. 820 

That being said, this study suggests that it is likely that ATLID will provide new information useful to help evaluate cloud 

description in climate models beyond the existing space lidar observations. Moreover, merging the ATLID data with the 

CALIOP data will probably provide important information on cloud response to climate warming.  
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Appendix A 

 825 

Figure A1: Scattering ratio and cloud detection statistics estimated for stratocumulus clouds observed by CALIOP using Eq. 36: (a) 

scattering ratio, night; (b) cloud detection, night; (c) scattering ratio, day; (d) cloud detection, day.  
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Figure A2: Same as Fig. A1, but for ATLID.   
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 830 

Figure A3: Scattering ratio and cloud detection statistics estimated for stratocumulus clouds observed by CALIOP using Eq. 6: (a) 

scattering ratio, night; (b) cloud detection, night; (c) scattering ratio, day; (d) cloud detection, day.  
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Figure A4: Same as Fig. A3, but for ATLID.  

  835 
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Appendix B 

 

Figure B1: Same as Fig. 12, but with a separate analysis of high-levels clouds (top) and low-level clouds (bottom) 
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 840 

Figure B2: Same as Fig. 13, but with a separate analysis of high-levels clouds (top) and low-level clouds (bottom) 
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Appendix D 

Variable Name Unit Dimension Remarks 

Time_UTC Seconds Ntime same unit as in ATLID L1B file 

Altitude Meters NZ  

Levels Meters Nlev (4)  

Flags Unitless Nflags (6)  

Lon Degree Ntime  

Lat Degree Ntime  

Surface_elevation Meters Ntime from DEM and/or lidar ground return 

Temperature Degree C Ntime x NZ From ECMWF in ATLID L1B 

Pressure hPa Ntime x NZ From ECMWF in ATLID L1B 

Scattering_ratio Unitless Ntime x NZ  

Layer_identification_mask Unitless (int8) Ntime x NZ See Table D2 

Quality_flags  0/1 (int8) Ntime x NZ x Nflags See Table D3 

Cloud_presence 0/1 (int8) Ntime x Nlev nlev cloud flag at specific vertical levels 

nlev=0 - anywhere in the profile 

nlev=1 - at low levels 

nlev=2 - at mid levels 

nlev=3 - at high levels 

Table D1: Variable definitions for ATLID cloud product. Variables are of type Real (float64) unless specified otherwise. 

Shaded variables are used as dimensions. 845 
 

Bin Corresponding SR values 

0 Fully attenuated region: SR < SR_bins[0] (default 0.01) 

1 Clear-sky region: SR_bins[0] < SR < SR_bins[1] (default value 1.2) 

2 Unclassified region: SR_bins[1] < SR < SR_bins[2] (default value 3.0) 

3 to 11 Cloud region: SR > SR_bins[2]. The actual bin number provides information on  

SR intensity within the cloud, with 3 = weakest signal and 11=strongest signal. Defaults: 

3 4 5 6 7 8 9 10 11 

5 7 10 15 20 25 30 40 50 

Table D2: Layer identification mask description 

 

Flag value Explanation 

0 Missing or unreliable data, according to cross-talk information from ATLID  

level 1b. If Mie, Rayleigh, Geo-localization or atmospheric quality are not good  

enough, the profile will be rejected and be considered as missing or unreliable. 

1 Data located below the surface elevation 

2 Noisy data, according to molecular calibration. If the calibration R is not within  

range, the entire profile is flagged as noisy.  

3 Conflicting cloud detection indicators in the upper troposphere  

SR<3 and ΔATB>1.5e-6 m−1 sr−1. 

4 Presence of very bright clouds (SR> 50) anywhere in the profile 

5 Negative SR (SR<0). Can appear in fully attenuated cloud mask (SR < 0.01) 

Table D3: Quality flag indicator 
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