
First of all, we would like to thank Dr. Vaughan for his thorough analysis and in-depth review 

of our manuscript. In the new version, we tried to address all the issues identified in his 

review. The responses to major and minor comments are given below. We marked the 

reviewer’s and the author’s comments by “RC:” and “AC:”, respectively. 

We would like to preface our answers with the following introduction, which partially covers 

some of the comments and at the same time draws attention to one of the key elements of the 

methodology presented in the manuscript. It is traditionally considered that the advantage of 

an HSRL lidar is its capability to measure two backscatter components independently. Indeed, 

the possibility to split and measure the molecular and particulate backscatter signals is 

invaluable, but, and we want to stress it here, both signals are not noise-free. At the same 

time, the amount of information about the clouds is much higher for the particulate channel 

than for the molecular one. If there is a method of cloud detection, which makes the cloud 

retrieval at 355 nm consistent with the existing one at 532 nm and if the noise of the useful 

signal could be reduced by replacing the noisy measured molecular backscatter by a noise-

free calculated one, then we should use this method even though it is equivalent to using the 

measured molecular backscatter in a noise-free case. All this does not make the molecular 

channel measurement redundant, but we suggest to exclude it from cloud detection. 

Major comments 

RC: The authors do not enumerate the uncertainties inherent in the ATLID measurement 

technique, nor do they address the potential effects of these uncertainties in their cloud 

detection scheme. … Potential biases in this formulation will come from imperfect knowledge 

of (1). the electro-optic gains for the HSRL molecular and particulate channels and the 

perpendicular channel; (2). the particulate vs. molecular signal crosstalk in the two HSRL 

channels, and (3). the parallel vs. perpendicular signal crosstalk in the perpendicular channel 

and the HSRL particulate channel. 

AC: We agree that we did not discuss this in the manuscript. Moreover, we did not consider 

the perpendicular channel in our simulations since this would have added an extra layer of 

complexity, which is not related to the comparison of cloud detection capacity of the 

instruments. The overarching goal of this study was to determine whether the clouds retrieved 

from both lidars are comparable and whether one can use them to create a continuous, self-

consistent, and long-term cloud record. We assume that the clouds depolarize the same way at 

355 nm and 532 nm and that one can always get back to total backscatter by summing the 

parallel and perpendicular components. Therefore, we did not consider the perpendicular 

channel separately. As for the (2)nd point, we considered the whole signal chain, including 

error propagation in our estimated of noise in cloud detection. Indeed, the calibration issues 

leading to biases in cross-talk coefficients will lead to biases in cloud detection. The same 

way, any issue with CALIOP calibration will also lead to biases. But, the calibration is 

performed onboard and we assume that on average all the calibration coefficients are known 

with an accuracy, which is beyond the cloud detection accuracy requirements. However, the 

single-shot noise of a given spaceborne lidar cannot be reduced, and our task was to compare 

how these two instruments compare in terms of signal-to-noise when it comes to cloud 

detection. We have added corresponding explanations to the end of the Introduction. 

RC: Some fundamental assumptions are not identified. In particular, the transformation of the 

ATLID attenuated scattering ratios from 355 nm to 532 nm requires that both the cloud 

backscatter and extinction coefficients are spectrally independent. Beyerle et al. (2001) 

suggest that this is generally true for cirrus. On the other hand, Voudouri et al. (2020) offer 

evidence to the contrary. 



AC: On the one hand, this is true and to generalize the conversion one has also add a color 

ratio to the corresponding backscatter and extinction terms. On the other hand, this color ratio 

is not well-known for an arbitrary cloud particle. In addition, the continuation of the Aeolus 

cloud retrieval activity (Feofilov et al., 2022) showed that it is enough to compensate for 

depolarized component missing in ALADIN’s measurements, and for diurnal cycle to get a 

good agreement between the clouds retrieved from CALIOP and ALADIN (see the 

description of the method in presentation Feofilov et al., 2023), so we assume that color ratio 

play a secondary role compared to other terms. Moreover, we had a look at the numbers 

provided in Voudouri et al. (2020) and we did not find a strong wavelength difference of 

backscatter and extinction coefficients, considering the error bars provided in this article. Still, 

we added a short discussion and the suggested references after Eq. 7 in Section 2.3.  

RC: Related to the above, the authors do not make a convincing case for converting ATLID 

355 nm measurements to their approximate realizations at 532 nm. Assuming the electro-optic 

gains (AKA, calibration coefficients) are accurately known for all three channels, one can 

derive the authors’ equation (1) at 355 nm by summing equation (2), equation (3), and the 

perpendicular channel analog of equation (3). This approach obviates the need for accurate 

knowledge of the crosstalk parameters. (My guess is that imprecise knowledge of crosstalk 

(i.e., in computing the ratio between equation (2) and equation (3)) could be the dominant 

source of detection uncertainty.) Invoking the assumption in item b. (i.e., that βp,355(z) = 

βp,532(z)), one can readily derive the 355 nm threshold that is equivalent to the GOCCP 

threshold of 5 used at 532 nm (1 + 4/5.33 ≈1.75) 

AC: We agree that the conversion should work both ways and instead of converting the 

optical properties themselves one could have converted the threshold. But, the way we do it 

has two advantages over the “inverted” procedure suggested by the reviewer: (1) in our 

approach, the molecular backscatter and attenuation at 532nm are used both in the numerator 

and denominator and in the difference term of Eq. 5, and the SR becomes less noisy because 

the only remaining source of noise is the particulate backscatter. As we discuss in the article, 

the information about the clouds is carried by the photons backscattered from the particles and 

if we can get an extra source of noise-free information on molecular backscatter and 

attenuation, we should use it instead of measured molecular backscatter noisy signal; (2) only 

one set of rules is applied to SR and ATB and one can easily change them without further 

recalculation.  

RC: On several occasions the authors assert that ATLID signals will suffer much less than 

CALIOP from solar background noise. What’s missing from the manuscript are explanations 

for this improved daytime performance and how the simulated cloud fields were converted to 

lidar measurements. 

AC: We do not state that the solar noise in CALIOP observations is significantly stronger than 

that of the estimated ATLID observations. Still, we claim that the daytime SNR is in favor of 

ATLID and this allows to put the cloud detection threshold somewhat lower than for 

CALIOP. To answer this question and associated sub-questions below, we added the whole 

chain of signal generation and error estimate, see “3.2.2 Estimating lidar signals and noise” in 

the updated version of the manuscript. 

RC: I’d very much like to see Section 3 expanded to include: high level descriptions of the 

differences between the ATLID and CALIOP detectors  

AC: In the new Section 3.2.2, we provided the formalism necessary to estimate the noise in 

ATLID and CALIOP channels. 



RC: some comments on how synthetic noise is generated for each instrument (note: per Liu et 

al., 2006, Poisson-distributed noise is not quite correct for the “analog-mode APD and PMT 

detectors” used by CALIOP.)  

AC: This is a strong point and we admit that we did not consider some of the effects 

mentioned in this article. In the new version of the manuscript, we provide more details about 

the noise generation, and, indeed, it is worth more discussion, especially the NSF (noise scale 

factor) issue. As the aforementioned work of Liu et al., (2006) shows, the photomultiplier 

tubes (PMT) are characterized not only by the enhanced noise factor (ENF), which is related 

to variation of the gain, but also by the NSF, which represents the effects of the convolution 

(not the sum!) of several stochastic processes in the PMT. As a result of these processes, the 

noise still can be considered as Poisson-distributed, but it should be scaled in accordance with 

NSF. However, there’s a controversy regarding the value of NSF, which should be used in the 

calculations. For example, Eq.9 o this article tells us that NSF=sqrt(ENF x gain) = sqrt(1.5 

x1.5e6)=1500 that makes little sense. If we assume that there's a typo and that it's not a total 

gain like it is said right after Eq.6, but a single-stage gain, which is about 4.15 = 1.5e61/10, 

then it makes more sense: NSF=sqrt(1.5x4.15)=2.45. At the same time, there's a NSF=5.14, 

which is retrieved from the variability of the real signal and saved along with CALIPSO L1 

data. According to Eq. 22 of (Liu et al.,2006), there's no compensation like square root or 

whatsoever, the NSF goes straight to the retrieved quantities and is supplemented with the 

second combination term in Eq. 22, so it's easy to get high noise in the simulated product if 

the NSF is off. To avoid this, we performed a series of tests, the results of which are shown in 

Fig. 1 and are summarized in Table 1. As one can see, using purely ENF in NSF calculation 

(NSF=sqrt(1.5)=1.22) like we did in the original version of the manuscript is not enough 

whereas using the value retrieved from atmospheric observations is too much, so we ended up 

with NSF=3.16, which reproduces the daytime noise and at the same time does not spoil the 

nighttime noise. 

 

Fig. 1. A comparison of cloud- and aerosol-free tropical ATB profile measured by CALIOP 

and simulated with our lidar model for different NSF values.  



Table 1. Noise r.m.s. values for the 23-28km vertical interval of measured and simulated ATB 

profiles, [km-1 sr-1] 

Day/night CALIOP Simulated, 

NSF=1.22 

Simulated,  

NSF=3.16 

Simulated,  

NSF=5.14 

Night 1.5e-4 1.7e-4 1.8e-4 1.9e-4 

Day 1.8e-3 6.2e-4 1.5e-3 2.4e-3 

Because of this update, we had to switch from showing the instantaneous profiles in Fig. 6-9 

to 1 km averages, otherwise the daytime figures become too noisy. This change, however, 

does not affect the conclusions of the article.  

RC: an accounting of the differences in solar background rejection between ATLID and 

CALIOP  

AC: In the new section, we provide the formulae for solar noise and we do a “back-of-

envelope” estimate of a ratio of solar photons reaching the detector’s surface for ATLID and 

CALIOP per same range gate. According to this estimate, the ratio is in favor of ATLID (~2.5 

times less solar photons come per unit time). This is not the end of the story because this 

number has to be compared to number of “signal” photons, and the back-of-envelope estimate 

is more complex, but in any case, the signal-to-solar-noise ratio is in favor of ATLID.  

RC: diagnostic comparisons of simulated CALIOP signals and the real thing; one informative 

example would be the SNR computed for 1500 km along track in clear skies between 19 km 

and 20 km. 

AC: Please, see our comment to synthetic noise generation two comments above. With an 

adjusted NSF, our nighttime and daytime noise values in the aerosol-free stratosphere are 

comparable. 

RC : On last idle question about noise characteristics: will ATLID be affected by the South 

Atlantic Anomaly in the same way that CALIOP is? (Hunt et al., 2009) 

AC : this question is difficult to answer in the framework of our modeling, so we can only 

speculate here. As far as we understand, the SAA region affects the operation of lidar in two 

ways: by affecting the measurement path (detector and amplifiers) and by affecting the laser 

pulse generation (coronal arcing of Q-switch, leading to lower pulse energy). Since the 

ATLID does not use PMTs, which amplify any electron emitted by photocathode, including 

those provoked by high energy particles, we would assume that the electronic noise of ATLID 

should be less affected by SAA. As for the laser radiance generation, it depends on the 

peculiarities of the laser system design, and this question is beyond our competence. 

RC: Lots of work obviously went into constructing the simulated cloud data. I just wish I had 

a handy dandy metric for evaluating the representativeness of these simulations with respect 

to things a lidar directly measures (e.g., attenuated backscatter coefficients and volume 

depolarization ratios as functions of temperature/altitude). How well do these simulations 

capture the natural variability of cloud backscatter? What is the distribution of optical depths 

for stratocumulus clouds? What is the lower limit of the attenuated backscatter coefficients 

within the simulated cirrus? And how do these characteristics of the simulated data sets 

compare to real-world values harvested from CALIOP measurements? 

AC: This major remark is related to the following minor remarks: Line 222, Line 245, and 

Line 280, so we give a general answer both to the major and to the three minor remarks here. 

Please, also see the individual replies to these comments below. The reviewer is right: the 

development, improvement and the validation of the fast, flexible and realistic three 



dimensional cloud generator 3DCLOUD (Szczap et al., 2014 ; Alkasem et al., 2017), and the 

last version 3DCLOUD_V3 needed a huge amount of work. Applications of a such cloud 

generator are numerous. We have carried out sensibility analysis of 3D cloudy atmosphere 

radiative properties to 3D microphysical and optical properties and have quantified 3D 

radiative effect on the measurements and cloud retrievals in the framework of IIR/CALIPSO 

(Fauchez et al., 2014, 2015), of CALIOP/CALIPSO (Alkasem et al., 2017), of 

MODIS/AQUA (Fauchez et al., 2016, 2017, 2018a,b) and POLDER/PARASOL (Cornet et 

al., 2010, 2013, 2018). The development of 3DCLOUD_V3 was initiated two years ago 

(funding by ONERA - The French Aerospace Lab French) in order to provide ice water 

content of 3D cirrus cloud for the radiative transfer code MATISSE that can help to 

design/realize optronic sensor and develop detection algorithm.  

When the reviewer asks “but was it really necessary ?”, we answer that 3DCLOUD (Szczap et 

al., 2014 ; Alkasem et al., 2017) and 3DCLOUD_V3 fulfilled the requirements requested to 

carry out this study (i.e.realistic 3D water content of cirrus and stratocumulus at very high 

spatial resolution ∆x≈∆y≈100 m and ∆z≈20 for 100 km large horizontal extension).  

The reviewer suggested to use “CALIOP/CATS/GLASS backscatter profiles” or “cirrus 

profile measurements acquired by an airborne HSRL” because “doing this should capture 

"natural variability" in cloud scattering intensity”. We think it is a good alternative to use such 

kind of measurements in order to retrieve information or cloud 2D vertical profiles of water 

content or 3D water content with assumptions about horizontal spatial redistribution. For 

example, as point out on Fig.3 in Fauchez et al. (2014), The scale-invariant properties of 

cirrus are controlled by a −5/3constant spectral slope at all the scales and altitude levels 

according to the cirrus backscattering coefficient at 532 nm measured at different altitudes by 

the lidar CALIOP/CALIPSO. But the retrieval of full 3D cirrus or cumulus water content 

from 2D lidar measurement is a very difficult task for us. Actually, and for this study, we had 

3DCLOUD and a robust version of 3DCLOUD_V3.  

Therefore, as we are experts of 3DCLOUD and of 3DCLOUD_V3, we prefer to use 

3DCLOUD and of 3DCLOUD_V3 for this study. We also chose to present quickly 

3DCLOUD_V3 in this paper. 3DCLOUD_V3 will be published in detail elsewhere.  

RC: Figures 4 and 5. Comparisons of the ATLID and CALIOP measurements shown in these 

figures are more difficult to interpret than one would like simply because they show two 

different quantities: attenuated particulate backscatter for ATLID and attenuated total 

backscatter for CALIOP. I believe these plots would be much more useful to readers if they 

showed apples-to-apples comparisons of the signals that are actually used the detection 

algorithm; i.e., either 532 nm attenuated scattering ratios or (perhaps better?) 532 nm 

attenuated backscatter coefficients.  

AC: We see the point, but we have deliberately chosen particulate backscatter for the same 

reason as we have chosen 355 to 532 nm conversion of optical properties instead of 532 to 

355 nm conversion of detection threshold. Please, see our answer to the third major comment 

above. We would like to draw the reader’s attention to the fact, that the information content of 

these two instruments is different in the sense that the molecular component measured by 

CALIOP along with particulate one, does not carry information about the cloud. It is just 

adding magnitude to the signal, but it is not useful per se. On the other hand, the ATLID 

offers a component, which is directly related to the observed quantity, and it is interesting to 

show the properties of this very component. 

RC: I also believe they would be much more informative if the colors were rendered using a 

log scale. 



AC: We agree that the log scale is sometimes helpful. Unfortunately, we cannot apply it here 

because of the noise, which sometimes makes the values negative. We tried log scale with an 

offset of initial data, but the log compression is low in this approach, and the rendered plots 

are not more informative than the initial ones. Nevertheless, we changed the offsets to me the 

plots more readable. 

RC: Here’s a specific example illustrating both points….But second and more important, this 

same kind of day–night comparison will not be useful for ATLID, simply because the ATLID 

panels (5g and 5h) show attenuated particulate backscatter. Since there is no molecular 

contribution to the ATLID signal, the SNR is close to zero in both cases, irrespective of the 

magnitude of the noise. 

AC: We did not get why the “same kind of day–night comparison will not be useful for 

ATLID”. This channel is affected by solar radiance in (almost) the same way as the molecular 

one, so the day-night difference makes perfect sense. We deliberately do not mix up two 

sources of noisy data (see above) because we believe that one should use only the particulate 

backscatter in the analysis whereas the molecular one, needed for cloud definition, might be 

(and should be) taken from a noise-free source. 

RC: In addition to the remarks above, I am also attaching an annotated version of the 

manuscript into which I have inserted a fairly large number of additional comments, 

questions, and suggestions. 

AC: We transferred these remarks to this document to improve the readability and to answer 

them point by point in a “conventional” manner. Please, see the “Minor comments” section 

below. 

Minor comments 

RC, Line13 : a picky point, perhaps, but one might argue that "the era of space-borne optical 

active sounding of the Earth’s atmosphere" actually began with the flight of LITE on NASA's 

space shuttle; see https://science-data.larc.nasa.gov/LITE/.&#xD;&#xD;the first Earth-

observing atmospheric lidar to fly on a dedicated satellite was GLAS; see 

https://attic.gsfc.nasa.gov/glas/ and 

https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.ICESAT1; 

AC: Strictly speaking, this is true, but it was not a long-term campaign. To keep the abstract 

short, we just added “long-term” before the “space-borne”. 

RC, Line 25: these two lidars use different wavelengths and that fact should be noted at the 

outset.  so consider revising this sentence as follows: "virtual ATLID (at 355 nm) and 

CALIOP (at 532 nm) measurements" 

AC: Fixed, thanks. 

RC, Line 28: how well do the CALIOP simulated daytime measurements compare to the real 

thing? I hope this is discussed in some detail in the main body of the paper. 

AC: Please, see the answer to the comment on synthetic noise generation. Also see the Fig. 1 

and Table 1 above.  

RC, Line 30: since a particulate scattering ratio (βparticulate / β molecular) of X at 532 nm 

will be reduced to a bit less than 0.2 X at 355 nm, claiming improved daytime detection of 

faint targets by ATLID implies that the solar background noise would be reduced by more 

than a factor of 5 relative to CALIOP.  I hope this too is explored in detail in the main body of 

the paper. 



AC: This is not that straightforward, given that we exclude the noise in molecular channel. 

What we estimate with a help of a simple ratio is that the number of solar photons hitting the 

surface of the detector is ~2.5 times less for ATLID. 

RC, Line 31: what is the ATLID-ST?  how is it different from the CLIMP-ST?  (or is it?) 

AC: Indeed, the original phrasing could lead to a confusion. We have rewritten these two 

sentences.  

RC, Line 32: in the current literature, there are hundreds of publications that use CALIOP 

data to investigate optically thin clouds and PSCs, so it's not clear what specific advances the 

authors envision. 

AC: In this paragraph, we discuss the possibility of lowering the detection threshold that 

should be a step forward in definition of the cloud and in cloud detection. Let’s imagine that 

there is a non-zero amount of the clouds, which we miss. Wouldn’t it be interesting to get a 

reliable distribution of thin clouds, which we miss, and estimate their radiative effect, for 

example?  

RC, Line 32: if "ice polar clouds" actually refers to PSCs, then improved daytime detection 

won't be highly relevant, as PSCs are a nighttime phenomenon. 

AC: we agree that the improved daytime performance will not change the detection of these 

clouds, so we removed this part of the phrase. 

RC, Line 33: I don't understand the motivation for this conversion.  why not work directly 

with the ATLID 355 nm signals? 

AC: Please, see the answer to the 3rd major comment. 

RC, Line 39: is ATLID expected to achieve a 4-to-7 year lifetime? 

AC: The initial lifetime of the mission is 3 years, but, as the Aeolus shows, it can be expanded 

beyond the planned end of life date. At the moment, we cannot say anything definite about it, 

so we added a short comment in the brackets. 

RC, Line 59: Winker et al. 2010 (https://doi.org/10.1175/2010BAMS3009.1) might be a 

better reference, as it provides a more comprehensive science overview than the 2009 

algorithm paper 

AC: We have replaced the reference. 

RC, Line 81: why not? surely the general principles apply, yes?  (e.g., a simple thresholding 

algorithm applied to profiles of attenuated scattering ratio, as described in Chepfer et al., 

2013) so one might expect that a change of threshold level (necessary to accommodate the 

larger molecular scattering at 355 nm) would be sufficient. 

AC: Please, see the answer to the 3rd major comment. 

RC, Line 85: given the focus on long-term measurement records, I think it’s essential that the 

authors mention ATLID's design lifetime somewhere in his paper. 

AC: Please, see the comment to line 39.  

RC, Line 94: are the authors referring to spatial changes in cloud occurrence/coverage or to 

changes in cloud microphysics or both?  the discussion thus far seems to be focused entirely 

on spatial properties. 



AC: We mean only the cloud occurrence/coverage here. Detection of trends in microphysics 

is another challenging task. For the sake of simplicity, we do not precise anything in this 

paragraph, but we added a short disclaimer at the beginning of Section 3.2.3. 

RC, Line 108: not averaging horizontally reduces the sensitivity to high thin clouds (e.g.,  

subvisible cirrus).  likewise, vertical averaging to 480 m reduces the sensitivity to 

geometrically thin layers (e.g., subvisible cirrus again).  have the authors considered 

implementing two-dimensional retrieval schemes such as those proposed by Hagihara et al. 

2010 (https://doi.org/10.1029/2009JD012344) and Vaillant de Guelis et al., 2021 

(https://doi.org/10.5194/amt-14-1593-2021), which can mitigate some of these shortcomings 

by implicitly accounting for cloud aspect ratio?  I realize that doing this would require a major 

update to the GOCCP algorithm.  but would the improved detection of thin and/or attenuated 

layers be worth the effort? 

AC: This can be explored and eventually implemented to the algorithm, but this is out of the 

scope of the present work, and this won’t change the conclusions on the 

comparability/sensitivity of the instruments. 

RC, Line 108: but CLIMP-ST doesn't need to maintain consistency with CloudSat, does it?  

shouldn't it instead be designed to be consistent with the cloud profiling radar resolution? (42 

m???) 

AC: This is correct, CLIMP-ST doesn’t need to be 480m vertically as stated in the same 

paragraph: “This value of 480m can be different in CLIMP as it can be changed in 

COSP/lidar, but averaging le lidar signal vertically before cloud detection should remain the 

way to increase ATLID SNR when needed for climate mode evaluation“.  

Note that CLIMP is not the only cloud product from ATLID (there is another one that makes 

full use of ATLID capability and not dedicated to climate model evaluation). But, CLIMP-ST 

is dedicated to climate model evaluation, therefore we can only average the signal vertically 

to increase the SNR (we cannot average horizontally as this is not consistent with COSP 

subgridding module that transfer the modeled cloud at the GCM grid size to smaller scales). 

Keeping 480m vertical resolution in this paper is a first attempt, if after launch ATLID SNR is 

better than expected, we will reduce this vertical resolution (with always keeping full 

horizontal resolution). 

RC, Line 115: I find this statement confusing, as the noise characteristics of daytime space-

based lidar data are very definitely scene-dependent.  since daytime background levels (and 

hence profile SNR) are so strongly scene dependent, maximizing correct detections while 

minimizing false detections during daytime operations would seem to require a threshold that 

*is* scene-dependent. sampling biases are inherent in either approach.  e.g., per Chepfer et al., 

2010, using a constant (i.e., scene-independent) threshold ends up rejecting ~30% of all 

daytime profiles. (though perhaps this value has changed in subsequent algorithm updates?)  

and these are not randomly distributed, but instead occur in profiles measured above 

especially bright scattering targets (e.g., dense water clouds and snow/ice surfaces).  the 

question is, which biases have the most pernicious impacts on the science conclusions derived 

from the resulting data sets? 

AC: From a pure observation perspective, this comment is right. But, for model evaluation, 

we need to use a scene-independent threshold because we need to use the same threshold in 

observations and in COSP, otherwise the clouds are not defined the same way in model and 

observations, and the model clouds cannot be evaluated against observations anymore.  

Applying the same set of scene-dependent thresholds in both the observations and in COSP 

would work if the model had already very realistic clouds (e.g. water cloud at the right 



location and time and with the right optical depth every day), which is not the case. In these 

conditions using the same set of scene dependent thresholds in both the observations and in 

COSP would lead to confusing model-vs-observation comparison no more useful to evaluate 

the cloud description in climate models as we would not be able to say if differences are due 

to default in model cloud description or differences in the threshold use at this location this 

day for this cloud. 

The rejection of 30% of day-time profiles in (Chepfer et al. 2010) is mostly due to not 

allowing horizontal averaging before cloud detection, this is not pernicious as soon as we 

know, which clouds are missed in daytime observations (Chepfer  et al. 2013).  

RC, Line 132: nominal orbit altitude at launch was 705 km, but was lowered to 688 km in 

September 2018 to maintain formation flying with CloudSat. 

AC: We added this information, thanks. 

RC, Line 133: define acronym 

AC: Fixed, thanks. 

RC, Line 136: Figure 1 in Hunt et al., 2009 shows a block diagram of CALIOP.  Is there a 

publication showing a similar diagram for ATLID?  If so, the authors should provide pointers 

to both of these references somewhere in this section.  (Figure 5 in do Carmo et al., 2021 is 

close but not quite as detailed (perhaps because ATLID is a more complex instrument?)) 

AC: We added a reference to Fig. of (Hunt et al., 2009) and to Fig. 2 (not Fig. 5) of (do 

Carmo et al., 2021) to the corresponding paragraphs. We believe that the latter plot is 

sufficient to get a general understanding of the operation of this space-borne lidar/  

RC, Line 142: and, like CALIOP, ATLID is polarization-sensitive 

AC: fixed, thanks. 

RC, Line 145: this is a badly outdated reference (e.g., lidar ratios for “desert aerosols” are 

given as “between 17 and 25 sr for 532 and 1064 nm” which we now know are wildly 

incorrect).  maybe instead consider this CALIPSO-HSRL comparison 

(https://doi.org/10.5194/amt-7-4317-2014) or this new AMTD preprint 

(https://doi.org/10.5194/amt-2022-306) or some of the many references therein. 

AC: We opted to take (Rogers et al., 2014), thanks. 

RC, Line 148, Table 1: given as 705 km on line 132 above.  perhaps explain the discrepancy 

(i.e., due to CALIOP's orbit altitude change) in the table caption? 

AC: we added this information both to the text and to the table caption. 

RC, Line 148, Table 1: 1 m; see Hunt et al., 2009 

(https://doi.org/10.1175/2009JTECHA1223.1) 

AC: Fixed, thanks. 

RC, Line 148, Table 1: 480 m seems like an awkward choice for comparing the the two 

sensors.  why not 300 m instead?  can the current COSP/GOCCP models be run at ~300 m 

resolution? 

AC: We agree that the number might seem to be strange, but it’s a tradeoff related to noise 

characteristics of CALIOP lidar. Comparison with the model forbids horizontal averaging 

(Chepfer et al., 2010, Feofilov et al., 2022), so the only option is vertical averaging, and we 

already know that 480 m assures reliable SNR. 



RC, Line 148, Table 1: quantum efficiency?  do Carmo et al., 2021 says 0.79 for the 

molecular and co-polarized particulate channels and 0.75 for the cross-polarized particulate 

channel 

AC: Fixed, thanks. The calculations have been redone with these numbers 

RC, Line 148, Table 1: 0.11 @ 532 nm; see Hunt et al., 2009 

(https://doi.org/10.1175/2009JTECHA1223.1) 

AC: Fixed, thanks.  

RC, Line 149, I believe these data should be taken instead from tables 1 and 2 in Hunt et al., 

2009 (https://doi.org/10.1175/2009JTECHA1223.1) 

AC: Fixed, thanks. 

RC, Line 149: this needs much more explanation.  table 1 in the do Carmo 2021 reference 

gives a per pulse energy of 35 mJ @ 51 Hz. I find no mention of doubling the energy at half 

the rep rate in that work. 

AC: These are the values for the laser itself, but the data will be collected, averaged, and 

downloaded for two pulses, so it is fair to halve the effective repetition rate and to double the 

effective pulse energy. We explain this in the caption and we provide both the original and the 

modified values, so that the reader can compare him- or herself. 

RC, Line 153: I don't think this is correct.  since scattering ratios calculation require using the 

ATLID molecular channel and the molecular channel has a wider solar filter bandwidth, I'd 

think the noise in the molecular channel would dominate the "clear sky" scattering ratios and 

hence be the dominant factor when separating weakly scattering cloud signals from the 

ambient noise. 

AC: This would be true if we used measured molecular backscatter in our calculations. 

However, in our approach we use only the information from the particulate channel whereas 

the noisy molecular backscatter and extinction are replaced with smooth profiles estimated 

from the concentration. 

RC, Line 178: this discussion should make a clear distinction between multiple scattering for 

ice clouds and multiple scattering for water clouds.  the present discussion only discusses ice 

clouds. 

AC: We added this information to the discussion, thanks. 

RC, Line 173: while I appreciate the authors' desire to cover "only the basic definitions 

needed for understanding", I still think more foundation is necessary here.  in particular, since 

ATLID is a polarization-sensitive system, the authors should acknowledge that fact by 

providing equations describing all three measurement channels and by briefly explaining how 

the parallel and perpendicular channel measurements of particulate backscatter are combined. 

AC: In the updated version of the manuscript, we provide a polarization-related “disclaimer” 

in the Introduction. The manuscript in its current form is already saturated with the equations, 

and adding another set of lines for perpendicular component will make it more difficult for 

understanding without changing the main message. 

RC, Line 182: it's important to recognize that this statement applies to ice clouds only.  

CALIOP's mulitple scattering factors for water clouds are derived from the relationship 

developed in Hu et al., 2007 (https://doi.org/10.1364/OE.15.005327; also see Table 4 in 

Young et al., 2018) 

AC: We added this information to the paragraph, thanks. 



RC, Line 187: this statement is perhaps open to misinterpretation.  if the CALIOP and ATLID 

multiple scattering factors can be varied independently by ±0.1 without changing the 

conclusion, then presumably using CALIOP = 0.675 (i.e., 0.6 + 0.075) and ATLID = 0.675 

(0.75 - 0.075) give results that are largely identical to CALIOP = 0.6 and ATLID = 0.75.  

since I doubt this is what is actually meant, some clarifications of the text would be most 

welcome. 

AC: In the new version, we specify “the conclusions of the present work do not change if we 

vary η within ±0.1 for CALIOP or for ATLID.”  

RC, Line 190: please add a sentence explaining the purpose of this additional constraint.  off 

the top of my head, I believe it will limit the detection of weakly scattering clouds at higher 

altitudes by, in effect, enforcing a larger scattering ratio for detection in regions where the 

molecular attenuated backscatter is weaker.  is that actually its intended function? 

AC: We added an explanation after new Eq. 6. The purpose of this additional criterion is to 

get rid of false positive cases in the upper troposphere. 

RC, Line 193: Since the need for this conversion is not immediately apparent, the authors 

should clearly explain their motivation for using “recalculated 532 nm values of ATB”.  

Assuming sufficiently accurate radiometric calibrations and corrections for interferometer 

crosstalk have been applied to the measured data (and that equation (2) represents the sum of 

both parallel and perpendicular contributions), the sum of equations (2) and (3) divided by 

equation (4) yields the same quantity as equation (1).  And since the denominator in equation 

(5) is readily available from model data, instead of converting the 355 nm measurements to 

“recalculated 532 nm values of ATB”, why not simply convert the threshold to a value 

appropriate for use at 355 nm (i.e., ~1.75)?  If this simple conversion is not a feasible 

approach, please explain why.  What is the rationale for the additional computational 

complexity?  and what subsequent benefits are derived by using this (seemingly convoluted) 

approach.  if this is discussed in depth in some other publication, please also recapitulate the 

salient points here.  (having not yet read ahead in the paper, at this point I can only speculate 

that it has to do with multiple scattering differences and the estimated penetration depths into 

opaque layers.) 

AC: Please, see the answer to the 3rd major comment. 

RC, Line 197: I suspect equation (8) in Feofilov et al., 2022 is what's actually used in the 

detection scheme.  my suggestion is to minimize potential reader confusion by reproducing 

that same equation in this manuscript.  the development given here could be challenging for 

readers who are not already well versed in the authors' previous publications. 

AC: We copied the Eq. 8 to this article. 

RC, Line 199: please explain how opaque layers are detected.  is opacity inferred from the 

failure to detect a surface return in any profile?  if so, is the search of a surface return also 

conducted using data averaged vertically to 480 m? 

AC: We added a definition to new Eq. 9.  

RC, Line 203: the wording here is somewhat unclear. is Copaque also reported at single 

profile resolution?  i.e., for each profile, we not only know CF(z), we also know whether the 

profile contained an opaque layer. (or maybe Copaque is something to be inferred from 

Zopaque? e.g., Zopaque is a fill value when no opaque layer is detected?) 

AC: The OPAQ algorithm of (Guzman et al., 2017) operates on instantaneous profiles, and 

we write about it in this paragraph “For an individual lidar profile, …” 



RC, Line 216: please provide a concise overview of this methodology.  references are fine for 

readers who want to explore details, but the broad outlines of the technique(s) should also be 

summarized in this manuscript. 

AC: The updated version of the manuscript contains all necessary details, so we just added a 

reference to Section 3.2.2 in this paragraph. 

RC, Line 212: can be retrieved from … but cannot be obtained from 

AC: We changed the wording, thanks. 

RC, Line 219: consider adding some references that describe the importance of these clouds 

in modulating the Earth's energy balance (e.g., maybe Berry et al., 2019; 

https://doi.org/10.1175/JCLI-D-18-0693.1) 

AC: we agree with the suggested reference, and we added it to the text. 

RC, Line 222: this sounds like a huge and impressive amount of work.  but was it really 

necessary?  could the same effects be obtained by ingesting CALIOP (or CATS or GLAS) 

backscatter profiles?  or perhaps cirrus profile measurements acquired by an airborne HSRL?  

(or, for transparent layers, by an uplooking HSRL.)  doing this should capture "natural 

variability" in cloud scattering intensity (which is what really matters for detection) about as 

well as could be possibly be done. 

AC: Please, see the answer to a corresponding major remark. 

RC, Line 223: only strato-cu and cirrus?  or are other cloud types also simulated? 

AC: 3DCLOUD (Szczap et al., 2014) and 3DCLOUD_V2 (Alkasem et al., 2017) can generate 

stratocumulus, fair weather cumulus and cirrus cloud.  It is not possible to control the cloud 

coverage of cirrus with 3DCLOUD and 3DCLOUD_V2. During a master’s internship, we 

modified 3DCLOUD in order to simulate Arctic mixed phase cloud (this work is not yet 

published). 3DCLOUD_V3 (used and shortly present in his paper) is devoted to the 

generation of cirrus cloud with the control of the cloud coverage. In the updated version of the 

manuscript, we added the following to this line: “… spatial structures of stratocumulus, fair 

weather cumulus and cirrus…” 

RC, Line 224: this seems like a limited and esoteric list.  one hopes that more mundane 

properties such as top and base heights, vertical and horizontal extents, and optical depths are 

also realistically rendered in the simulated data set.  it would be helpful to have some remarks 

in the text to explain how these essential parameters are derived. 

AC: In 3DCLOUD and 3DCLOUD_V2, 3D water content of cloud are generated in two 

distinct steps (see Fig.1 in Szczap  al., 2014). During the first step, mean vertical profiles of 

3D cloud water content (and consequently cloud top and base heights) are driven by the 

humidity, pressure and temperature vertical profiles provided by the user. Theses 

meteorological vertical profiles and cloud coverage are assimilated, and basic atmospheric 

equation are resolved, that provide cloud general 3D shape. The maximum horizontal 

extension, which mainly depends on the horizontal spatial resolution of the pixel, must not 

exceed a few tens of km. The vertical extension generally does not exceed 2 km.  

We have demonstrated the robustness of 3CLOUD for DYCOM2-RF01 BOMEX case for 

stratocumulus and for cirrus by comparison with the work of Starr et al. (2000) and Hogan et 

Kew (2005).  

In the second step, stochastic processes, based on Fourier framework, are used to ingest the 

scale invariant properties observed in the real cloud, such as the power spectra of the 

logarithm of their microphysical or optical properties , that typically exhibits a spectral slope 



β̂ of around −5/3 (Davis et al., 1994, 1996, 1997, 1999; Cahalan et al., 1994; Benassi et al., 

2004; Hogan and Kew, 2005; Hill et al., 2012; Fauchez et al., 2014) from small scale (a few 

metres) to the “integral scale” or the outer scale  𝐿𝑜𝑢𝑡 (few tenths of a kilometer to one-

hundred kilometers), where the spectrum becomes flat (i.e. decorrelation occurs). The spectral 

slope β̂ value characterizes spatial organization of clouds patterns and/or spatial correlation of 

cloud variability. But these techniques do not strictly quantify intensity of cloud variability. 

From practical point of view, an interesting definition of the measure of cloud variability is 

the “relative variance” as proposed by Davis et al. (1997) or the so-called “cloud 

inhomogeneity parameter” 𝜌 as defined in Szczap et al. (2000a, b, c). For a variable 𝑋, the 

cloud inhomogeneity parameter is defined as the standard deviation of 𝑋 normalized by its 

mean value such as 𝜌𝑋 = 𝜎𝑋 �̅�⁄ . This “cloud inhomogeneity parameter” is also called the 

“fractional standard deviation” (Shonck et al., 2010 ; Hill et al., 2012, 2015; Bouttle et al., 

2014 ; Ahlgrimm and Forbes, 2016, 2017) or the “relative dispersion” (Liu and Daum, 2000 ; 

Huang et al., 2014) or the “relative standard deviation” (Los and Duynkerke, 2001). The 

square of the cloud inhomogeneity parameter is called the “fractional variance” in Hogan and 

Illingworth (2003). 

If the number of voxels is large, the 3DCLOUD and 3DCLOUD_V2 are very time-consuming 

(see Table 1 in Szczap et al., 2014) and cannot assimilate the fractional coverage for cirrus 

cloud. Therefore, we have developed 3DCLOUD_V3 that overcomes these two drawbacks for 

the cirrus cloud. 3DCLOUD_V3 do not need anymore the vertical profiles of the pressure, 

temperature and humidity but more simply the vertical profile of the ice water content. This 

model will be published in detail elsewhere. 

In a general way, 3DCLOUD, 3DCLOUD_V2 and 3DCLOUD_V3 generate water content, 

not the optical depth. Therefore, we have to do assumption in order to simulate 3D optical 

properties from 3D water content. In 3DCLOUD, 3DCLOUD_V2, optical depth 𝜏 of 

stratocumulus is simply derived from the formula 𝜏 = 3𝐿𝑊𝑃 2⁄ 𝜌𝑅𝑒𝑓𝑓, where LWP is the 

liquid water path, 𝜌 is the density of water and 𝑅𝑒𝑓𝑓 the effective radius. We have to note that 

the exact tailoring of the cloud parameters to reproduce all the peculiarities of a certain cloud 

scene was not the goal of using 3DCLOUD in this work. The main goal was to have a noise-

free cloud dataset at the resolution finer than the distance between consecutive shots of the 

lidar, which shares some statistical properties observed in real clouds. Then we launch the 

same simulator for the same high-resolution scenes with the parameters corresponding to two 

different lidars and compare their performances. 

RC, Line 225: are there some special symbols that are missing here? 

AC: No symbol is missing. It was a typo, which has been corrected for the present version of 

the manuscript. 

RC, Line 225: in earlier sections of the paper beta is also used to denote backscatter 

coefficients.  to minimize the potential for confusion, I suggest changing this instance of beta 

to some other symbol. 

AC: We understand that this might be a source of confusion, but the spectral slope symbol is 

also an established one. In the revised paper, the spectral slope “beta” or “β” is now written as 

�̂� to avoid the confusion. 

RC, Line 227: perhaps add a citation demonstrating that this assumption is reasonable?  (not 

being a cloud modeler, I don't have a clue) 

AC: From the 18-month midlatitude 94-Ghz radar dataset, Hogan and Illingworth (2002) 

found that PFD of IWC is well represented by lognormal or gamma distribution. From aircraft 



measurement of tropical and extratropical cirrus, Kärcher et al (2018) found that observed 

PDF of total water content are reasonably well approximated by Gamma distribution. In the 

revised paper, we added both aforementioned references. 

RC, Line 245: are arbitrary shapes accommodated?  e.g., could one extract IWC profiles from 

CALIOP level 2 profile data to use in 3DCLOUD_V3? 

AC:  Yes, they are. In 3DCLOUD_V3, the user can provide, as input of 3DCLOUD_V3, 

either the 3D mean IWC and the shape model of vertical profiles among the rectangular, 

upper triangle, lower triangle and isosceles trapezoid model, as proposed in (Feofilov et al., 

2015) based the analysis of collocated satellite or either its own vertical profile of the IWC, 

which could be extracted from CALIOP level 2 profile data. In the revised paper, we moved 

the sentence “The shape of the vertical profile of IWC can also be stipulated (rectangular, 

upper triangle, lower triangle and isosceles trapezoid (Feofilov et al., 2015) » from line 251 of 

the old paper to the line discussed in this comment. 

RC, Line 245: does the model include an explicit relationship between IWC and extinction?  

how are backscatter and extinction coefficients and depolarization ratios specified? 

AC: In a general way, all 3DCLOUD versions generate only water content. In order to 

compute optical properties (extinction, single scattering albedo, phase function), the user has 

to define the nature (liquid or solid water) of particles, the particle size distribution PDF and 

the shape of particle (generally spherical for droplets). In order to compute lidar backscatter 

and depolarization ratio profiles, one need a lidar forward model. In this study, extinction, 

single scattering and phase function are computed in the lidar simulator (see the new section 

dedicated to signal calculations). 

RC, Line 262: suggestion: either move figure A2 into the main body of the text or (much less 

desirable) move this paragraph of text into the appendix.  the goal is to have the description 

very close to the images so readers (and reviewers!) don't have to jump back and forth over 

~20 pages of manuscript real estate to carefully track the correspondences between the two.  

readers (and reviewers) interested in how well the simulations capture the natural variability 

of the cloud fields will appreciate having the description and the images close together. 

AC: We opted to move the figures from Appendix A to the main text 

RC, Line 274: what's the relevance of picking the equinox if your focus is on the tropics? 

AC: There was no special reason to pick up this very atmosphere, this was just the question of 

data availability and we felt obliged to describe the data we used. We believe that the results 

in the tropics will be the same for the summer solstice or any other season. 

RC, Line 278: I’m afraid it’s not entirely clear to me what's being done in this simulation.  are 

the authors constructing a two-layer scene – i.e., thin cirrus over dense stratus?  that would 

certainly qualify as one of "the most challenging observation conditions".  and it would also 

be genuinely interesting, especially for low SES angles that would generate very high levels 

of solar background noise and make daytime cirrus detection especially challenging.  or are 

they instead building two different scenarios; i.e., (1) thin cirrus in otherwise clear skies and 

(2) dense stratus in otherwise clear skies.  this pair of scenes would provide the necessary 

baseline for comparing retrieval performance in the two-layer scene.  but neither of these 

single layer scenes would be as challenging at the two-layer option.  please clarify the text to 

eliminate potential confusion about the intended simulation scenes. 

AC: For the sake of simplicity, we do not consider a two-layer scene even though it is 

technically possible. To clarify the text, we added the following phrase to this paragraph: “We 

do not consider another challenging case, thin cloud layer above a highly reflective cloud, but 



the daytime noise estimated for stratocumulus scene will give an idea of what background 

noise will be interfering with the useful cloud signal in this case.” 

RC, Line 280: what's the minimum optical depth of the simulated stratocumulus?  according 

to Leahy et al., 2012 (https://doi.org/10.1029/2012JD017929) over half the low clouds over 

oceans are transparent to CALIOP.  does the simulated distribution agree with this 

experimental finding? 

AC: As one can see from the updated version of the plot with stratocumulus clouds (Fig. 5cd 

in the new version of the manuscript), there are some clouds, which are semi-transparent 

(optical depth is less than 3). The statistical analysis of cloud columns tells that for a given 

dataset the number of semi-transparent clouds is about 38% (check the probability density 

function in Fig. 2 below). 

 

Fig. 2. Probability density function for the optical depths of stratocumulus clouds used in this 

study, accumulated in vertical columns.  

The aforementioned article is dedicated to optically thin marine clouds, so we are not sure 

whether one should validate our results versus the numbers given in article. Technically, one 

can adjust the parameters of the model to fit the observations, but this would require 

additional iterations without any specific outcome for the purposes of this work. The figures 

and the statistics related to the stratocumulus clouds would have remained the same. We 

added the reference and a short discussion to the paragraph related to Fig. 5. As for the 

minimum optical depth, we found that the accumulated optical depth of the faintest cloud 

show in Fig. 5 is 3e-4, but we afraid that this value itself is not very meaningful, considering 

the number of thick clouds generated for this scene. 

RC, Line 289, Figure 1: how is the noise generated?  is it generated for each single shot 

profile prior to averaging?  and what surface albedos are used for daytime data? 

AC: The Poisson noise (or NSF-modulated Poisson noise in the case of CALIOP) is generated 

for each single shot and saved. If the profile corresponds to an average of several shots, the 

noise is scaled as an inverse square root of number of shots. Please, see the answer to the 6th 

major comment and the new section 3.2.2 in the manuscript. 

RC, Line 289, Figure 1: I thought detection was done at 480-m? 

AC: This is true, we have updated the figure, thanks. 

RC, Line 296: please expand the description of the processes involved in this "third part of the 

simulation chain".  in particular, please explain (a) the differences (if any) between ATLID 



and CALIOP detectors; CALIOP uses analog detection.  does ATLID use photon counting? 

(b) the differences in solar background rejection capabilities (I suspect these differences 

explain a huge fraction of the SNR improvement of ATLID relative to CALIOP). the goal of 

additional description would be to provide readers with a basic understanding of *why* the 

ATLID daytime SNR is expected to be better than CALIOP's; 

AC: In the updated version of the manuscript, we have a new section dedicated to all these 

issues. We also provide a back-of-envelope estimate of the ratio of solar photons coming to 

particulate detector of ATLID to number of solar photons reaching the surface of CALIOP’s 

detector per same sampling interval. This ratio is equal to 0.38, and since we do not use the 

molecular channel (which measures at least the same number of photons), we do not increase 

the noise. If one adds the molecular channel with its noise, the ratio will be close to 1, but we 

do not suggest using the molecular channel for cloud detection. 

RC, Line 299: accurate characterization of this crosstalk is critically important for retrieving 

reliable estimates of βpart(355nm, z) 

AC: This is true, but, as we already stated, calibration issues are out of the scope of this work. 

RC, Line 306: (a) this statement should be made earlier in the manuscript (i.e., in section 2.2, 

if not earlier) ;(b) don't ask the readers to *assume* the perpendicular detection and 

calibration is done the same way in both systems; instead, tell them (briefly!) how it is done 

and point to references from which they can obtain additional detail 

AC: We added an explanation to the introduction: “For the sake of simplicity, we do not 

discuss the depolarized component of the radiation backscattered by particles, assuming that it 

is backscattered the same way at these wavelengths and that one can always consider a sum of 

parallel and perpendicular backscatter for cloud detection. ” 

RC, Line 313: false negative 

AC: added, thanks 

RC, Line 314: false positive 

AC: added, thanks 

RC, Line 320: do you mean "arbitrarily"? 

AC: Fixed, thanks. 

RC, Line 326, Figure 2: consider adding additional annotations to label the night data (a, c, 

and e) from the day data (b, d, and f) 

AC: We have labeled the left hand side and right hand side panels as “Nighttime scene” and 

“Daytime scene”, respectively 

RC, Line 331, Figure 3: should be "liquid water content", yes? 

AC: Fixed, thanks. 

RC, Line 331, Figure 3: check spelling of "accumulated" 

AC: Fixed, thanks. 

RC, Line 331, Figure 3: consider using a log scale for the optical depths; these should span a 

range from ~1 to ~50 

AC: We have switched to log scale, but since it’s an accumulated optical depth, it increases 

rapidly, and the log scale does not help that much. Still, one can tell demi-transparent clouds 

from totally opaque ones. 



RC, Line 335: suggested revision: “at present there is no space-based measurement that can 

retrieve all of the optical properties of...”  

AC: We have updated the sentence, thanks for the suggestion. 

RC, Line 343: which panels show which signals?  please state this in the text.  also please 

correct the figure caption. 

AC: Fixed, thanks. 

RC, Line 348: what surface type/albedo was used? 

AC: In the new section dedicated to the calculation of signals and noise, we write “the surface 

with albedo equal to 0.08 for ocean and 0.15 for land (arbitrary values)”. 

RC, Line 350: only from CALIOP?  are the authors claiming that the ATLID signals are not 

at all affected by solar background noise? 

AC: We have added the word “especially” before “for the CALIOP” to stress that both will be 

affected, but for CALIOP the effect will be stronger. 

RC, Line 350: while FOV differences may play a part, this is not a sufficient explanation.  if 

FOV was the sole deciding criteria, then CATS (FOV = 110 microradians) would have had 

somewhat better daytime SNR than CALIOP (FOV = 130 microradians).  but, as seen in 

Figure 1 of Pauley et al., 2019; (https://doi.org/10.5194/amt-12-6241-2019), this is 

demonstrably false: CATS' daytime SNR is much worse than CALIOP's.  given the 

importance of solar background rejection (or lack thereof!) for daytime detection of faint 

features, I believe the authors should provide much more detail to explain the differences 

between CALIOP and ATLID background levels. (note too that CATS also flew at a 

substantially lower altitude than CALIOP, which, all things being equal, should also lead to 

better SNR than CALIOP.  but since all things are not equal, more detailed explanations of 

the instrument differences are required if readers are to understand the differences in the 

simulated signals and the cloud detection results being presented here.) 

AC: Please, see the new section and the back-of-envelope estimates of ratio of daytime 

noises, where we list the components related to the number of photons hitting the surface of 

the detector. This is not the end of the story because the NSF ~=5 further aggravates the 

situation for CALIOP, but this number alone (0.38) tells us that one has to expect lower solar 

noise for ATLID. 

RC, Line 359: yikes!  which set of panels belongs to CALIOP and which set belongs to 

ATLID?  according to the caption, panels a) through d) show data from both instrument while 

panels e) through h) are not attributed to either instrument. 

AC: Fixed, thanks. 

RC, Line 360, Figure 5: I think readers could extract much more useful detail from these 

figures if they used a log color scale 

AC: Please, see our answer on using log scale in major comments section. 

RC, Line 366: is this true even for estimates of apparent base altitude (i.e., Zopaque) and 

cloud fraction? 

AC: We did not check this specifically, but the signal from stratocumulus clouds is strong, so 

we do not expect any adverse effects here.  

RC, Line 383: I'd think the authors' choice of threshold would be driven by the magnitude of 

the noise in the signal, not by some arbitrary partitioning of the relative contributions of the 



molecular and particulate components of the total backscatter. what was the rationale for the 

choice of 5 as the threshold for GOCCP?  I'd think that applying those same considerations to 

the ATLID simulations would yield a more useful threshold for use in this exercise; 

presumably it's ATLID's lower daytime noise that permits the use of the lower threshold.  So 

an in-depth discussion of noise magnitudes would be extremely useful here in helping to 

understand the rationale for choosing a specific value for the threshold used in the simulation 

study. 

AC: We changed the wording of this paragraph to make it closer to the suggested explanation. 

Indeed, we based our choice on the SNR values, and added the explanation with partitioning 

only later. 

RC, Line 390: the effect of this second condition is simply to raise the detection threshold 

substantially above its nominal value of 3 

AC: Not exactly. Please, see our explanation to line 190. The detection threshold will be 

raised only in the upper layers. 

RC, Line 403: thank you for this. (this sentence answers my earlier question about whether 

the authors had constructed a multi-layer scene in addition to the two single layer scenes.) 

AC: yes, and we’ve added a sentence on two-layer cloud scene.  

RC, Line 406, Figure 6: this choice of colors makes it difficult to distinguish between "no 

cloud" and "missed".  using white or a very pale gray for "no cloud" regions would help 

enormously (e.g., see figures 5.5 and 5.7 in the CALIPSO layer detection ATBD at 

https://dev-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part2_rev1x01.pdf) 

AC: We updated the color scheme, and on our monitors the bright blue “missed” cases are 

now clearly distinguishable from black “no cloud” points.  

RC, Line 406, Figure 6: a log color scale would better highlight regions where a purely 

molecular atmosphere transitions to a faint cloud.  these regions will be the most interesting 

when discussing possible detection improvements of ATLID relative to CALIOP. 

AC: Please, see our comment to log scale plots in the main comments section. We shifter the 

color scale to make the features visible. 

RC, Line 406, Figure 6: consider rearranging the plots so that scattering ratios are on the left 

(i.e., beneath the scattering ratio color bar) and cloud detection results are on the right (i.e., 

beneath the cloud detection color bar).  put the nighttime data on top and the daytime data 

underneath. 

AC: thanks for the suggestion. Indeed, it’s more logical like this, so we have rearranged the 

plots. 

RC, Line 409, Figure 7: are these estimated attenuated scattering ratios derived using equation 

5?  or are they particulate scattering ratios derived by dividing equation 2 by equation 3?  I'd 

expect somewhat more noise for the attenuated scattering ratio estimates. 

AC: No, these are the SR values as we define them in Eq, 5, but the AMB component is 

calculated without noise. This is, as we said before, one of the advantages of our method. 

RC, Line 412, Table 2: 90? 

AC: There are rounding errors in this table, because we wanted to stay with zero digits after 

the decimal point. The new table is also prone to the same issue, but in our opinion it’s 

already too busy. 



RC, Line 420: please clarify: this is a 1 km along-track distance, correct?  (I note that at cirrus 

altitudes the CALIOP data is averaged on-board to a 1-km (3 shot) along track resolution.  if 

ATLID will be downlinking data without horizontal averaging, (a) ATLID will be able to 

probe cirrus small scale variability that CALIOP cannot, but (b) to faithfully compare 

CALIOP to ATLID for CLIMP-LT requires some along-track averaging of the ATLID data 

prior to detecting layers. also provide more detail.  for CALIOP, averaging to 1 km along-

track equates to averaging the backscatter from 3 consecutive laser pulses.  but the nominal 

distance between consecutive ATLID footprints is 285 m, and 3 x 285 = 855 and 4 x 285 = 

1140.  (1000/285 = 3.5088) so how many ATLID laser pulses were averaged? 

AC: To compare apples to apples in terms of signal statistics, we took 4 laser shots of 

CALIOP and 4 laser shots of ATLID that are equivalent to two “effective” doubled laser shots 

(see the answer to the comment to line 149). We added this information to the text. 

RC, Line 404: but, per the previous comment, since CALIOP data above ~8.2 km is averaged 

to 1km along-track resolution prior to being downlinked, these 1-km averages are a much 

more accurate representation of CALIOP's actual performance. 

AC: this is true, and with the updated noise estimates we do not show the profiles without 

averaging, even though we discuss them. 

RC, Line 433: it might be very interesting/useful to estimate ATLID's "minimum detectable 

backscatter", as is done initially in CALIOP's layer detection ATBD (https://dev-

calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part2_rev1x01.pdf) and subsequently 

verified in McGill et al. 2007 (https://doi.org/10.1029/2007JD008768) 

AC: We thank the reviewer for this idea. We have estimated the MDB value using the 

following approach: in the simulated dataset, we have scanned the noisy ATB profiles altitude 

per altitude and for each subset we took only the points which contained the clouds. Then we 

analyzed the remaining subset by moving a 5km window and analyzing the signal and noise 

in this window. The signal values for the points with SNR = 1±0.1 were stored in an array, 

which was analyzed after all altitudes and subsets have been scanned this way. Namely, we 

have built a histogram of these minimum signal values and analyzed its peak near zero. Its 

location and halfwidth were used as the MDB value and its uncertainty. For the ATLID, the 

approach was different in a sense that we used noisy APB at 355nm summed with noise-free 

AMB at 532nm to imitate the ATB signal at 532 nm to compare with MDB for CALIOP.  

According to our estimates made over our cirrus data set, the minimal detectable backscatter 

for CALIOP should be 4.0±2.0x10-7 m-1 sr-1 for the nighttime and 1.3±0.2x10-6 m-1 sr-1 for the 

daytime if we use the same averaging distance as in (McGill et al., 2007). The daytime value 

obtained in our approach for CALIOP is in good agreement with (McGill et al., 2007). The 

nighttime value is somewhat lower than that retrieved from the measurements. For ATLID, 

we obtained 3.0±1.0x10-7 m-1 sr-1 for the nighttime and 4.0±1.0x10-7 m-1 sr-1 for the daytime 

in equivalent ATB at 532nm. Qualitatively, this agrees with the nighttime and daytime 

behavior of CALIOP and ATLID signals in Fig. 8-11. If these results will be confirmed in a 

real mission, the MDB of ATLID will be comparable to that of nighttime MDB of CALIOP 

for 5km averaging. We added a short paragraph with these numbers to the end of Section 3.4. 

RC, Line 460: since CALIPSO data is averaged to 1-km resolution aboard the satellite, I'd 

think that it was the comparisons at 1-km resolution that were really important. 

AC: we agree with this statement, and we changed the discussion accordingly. 

RC, Line 468, Table 3: is this a typo?  should these be 95 instead? 

AC: Please, see our reply to Line 412 above. 



RC, Line 493: please explain how opaque clouds are identified. do the authors expect ATLID 

and CALIOP to have similar performance in identifying opaque clouds?  please explain.  

given that ATLID is supposed to have less noise than CALIOP, especially during daytime, 

one might expect some differences.  how are these differences reconciled in assembling 

CLIMP-LT? 

AC: The COSP simulator described in Section 4.2 takes as input monthly-averaged global 3D 

grids of atmospheric properties generated by GCM, and from them creates consistent grids of 

simulated lidar-derived cloud properties. Note that the COSP simulator chain used in Sect. 4.2 

involves a first step for application on GCM outputs, which is absent from the COSP 

simulator chain that is directly applied on high-resolution synthetic profiles (as in Sect. 3.2). 

The process through which the COSP simulator uses GCM globally gridded outputs, and from 

them generates simulated lidar-derived cloud properties, is described in Chepfer et al. 2008. 

To sum up, this process involves generating for each GCM gridbox an ensemble of subgrid-

scale profiles by generating 50 subcolumns stochastically (using the SCOPS subgrid-scale 

scheme, Klein and Jakob 1999), with the constraint that statistics over the subcolumns should 

respect the initial GCM profile. The lidar simulator is then applied to each of the subcolumns, 

and the 50 simulated profiles are eventually averaged to obtain a single gridbox value. This is 

now clarified in the text.  

About the expected difference in opacity detection between CALIPSO and EarthCARE, we 

understand the reviewer’s concerns, which show we did not make our purpose in Section 4 

clear. In that section, we do not attempt to find ways to make ATLID cloud properties 

consistent with those derived from CALIOP, nor do we try to evaluate how the performance 

of each instrument compare in similar cloud situations. Instead, we start with the hypothesis 

that each instrumental and orbital difference between CALIOP and ATLID are fully 

compensable, that it will be possible to make ATLID and CALIOP cloud properties consistent 

and merge them, and that it will be possible to construct a merged record that combines cloud 

variables from both instruments with perfect intercalibration. Given the possible existence of 

such a perfectly merged record, we investigate how long the ATLID record should be to make 

reliable anthropogenic trends emerge from the merged record. Since it is unlikely that all 

differences between CALIOP and ATLID should be perfectly compensable, our study 

provides a best-scenario prevision of the record length required. 

Following this comment, we have tried to make the purpose of the analysis clearer in the text 

RC, Line 501: I'm surprised that maximum cloud top altitude isn't also one of the diagnostics 

investigated here 

AC: The top altitude is indeed a property that is closely linked to cloud feedbacks on climate. 

Here we have first focused on the altitude of full attenuation as it has already been studied 

extensively in the past. We intend to include the cloud top altitude among the properties we 

will consider in future studies. 

RC, Line 516: this statement throws up all sorts of red flags. I thought the whole point of the 

first part of this paper was to *demonstrate* that ATLID and CALIOP could be fused into a 

relatively seamless time history of cloud heights. 

Indeed, the point of the first part of the paper is to show that ATLID and CALIOP could be 

fused into a relatively seamless time history of cloud heights. However:  

1) The results of this first part are based on simulations, and ATLID signals might 

eventually behave in ways that are today unforeseen.  

2) The first part investigates how ATLID and CALIOP cloud detections could be 

merged. To do this, it investigates how the match in GOCCP cloud detections from 



both instruments can be improved through changes in signal thresholds. Beyond this 

strategy, there remains several differences whose impact on detection should be 

evaluated, for instance the different local time of overpass of both missions. 

Depending on the magnitude of the associated effects, ways to compensate for them 

might be required, whose effects on fusion performance are still unclear. 

3) The first part focuses on the evolution of Scattering Ratios within clouds. The last part 

focuses on statistics of lidar full attenuation due to clouds, since this is a lidar-derived 

cloud property with a clear relationship to cloud radiative effect and climate 

feedbacks. In CALIPSO-GOCCP the altitude of full attenuation is derived from both 

the vertical profile of Scattering Ratios and the surface echo at the finest CALIOP 

horizontal resolution (333m). The behavior of ATLID surface echo compared to 

CALIOP’s in various cloud situations is still not well understood, and making them 

consistent will require further investigation. 

Even though the first part of the paper is a necessary first step towards showing that 

CALIPSO and ATLID cloud detections can be merged, the reasons above suggest these 

results are not sufficient to guarantee that merging will eventually be possible. It thus seems 

to us prudent to remind the reader that further work is still required to make CALIPSO and 

ATLID cloud properties consistent.  

Because we cannot today evaluate completely how each of the points mentioned above will 

affect the continuity of the lidar-derived cloud record, we decide in the rest of the section to 

assume perfect intercalibration will eventually be reached, in order to provide a best-case 

scenario of the record length required to detect an anthropogenic trend in cloud properties.  

Following this comment, we have tried to express our intent in a clearer way in the text. We 

now explain straight away (Section 4.2) that in this section we start from the hypothesis that it 

will eventually be possible to reconcile both CALIPSO and EarthCARE records. 

RC, Line 519: how is Copaque determined? 

AC: Please, see the answer to the previous comment 

RC, Line 522: normal distribution assumed? 

AC: Indeed. This assumption is now made explicit in the text 

RC, Line 548: I can understand excluding CALIOP data prior to November 2007, when the 

off nadir angle was changed from 0.3° to 3.0°.  but what is the rationale for excluding the data 

from 2008 through 2010?  please explain. 

AC: We thank the reviewer for his comment, that highlights poor writing on our part. The two 

first years of CALIOP data (2008 and 2009) are not excluded from the analysis. However, 

during the first two years of the record, trends can only be retrieved from a limited number of 

points and fluctuate wildly. The associated uncertainties are accordingly quite large. To 

represent the large uncertainties of the first two years, the axes in figure 10 and 11 need to be 

scaled up, which makes it a lot harder to decipher the behavior of uncertainties once the 

record gets longer than 2 years (2010 and later). Since the focus here is on what happens 

when the uncertainties get relatively small, i.e. once the record gets longer than ~10 years, we 

decided to mask the uncertainties before 2010 so the later uncertainties would be easier to 

read. The legend of figure 10 now makes explicit 1) that years 2008 and 2009 were part of the 

analysis and 2) the reasons for masking the first two years of trend uncertainties.  

RC, Line 616: two points here.  first, HSRL capability will be especially advantageous for 

aerosol studies, but those are not addressed here.  second, the cloud detection approach 

described in section 2 (i.e., the use of attenuated scattering ratio rather than particulate 



scattering ratio) effectively ignores many of the advantages of HSRL relative to elastic 

backscatter lidar. 

We partially agree with the reviewer’s assessment. Our work does not show explicitly how 

the HSRL technique will benefit cloud studies. However, we believe that the proposed 

technique of excluding the measured (and noisy) molecular component helps to increase the 

daytime SNRs. We have modified the text to rather conclude that our work shows how the 

EarthCARE HSRL can help reconcile its cloud detections with CALIOP’s. 
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