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Abstract. About 2/3 of all densely populated areas (i.e.
at least 300 inhabitants per km2) around the globe are
situated within a 9 km radius of a permanent waterbody
(i.e. inland water or sea/ocean coast) , since inland water
sustains the vast majority of human activities. Water bodies5

exchange mass and energy with the atmosphere and need
to be accurately simulated in numerical weather prediction
and climate modelling as they strongly influence the lower
boundary conditions such as skin temperatures, turbulent
latent and sensible heat fluxes and moisture availability10

near the surface. All the non-ocean water (resolved and
sub-grid lakes and coastal waters) are represented in the

:
A

::::::::
purposely

::::
built

:::::
deep

:::::::
learning

::::::::
algorithm

:::
for

:::
the

::::::::::
Verification

::
of

::::::::::::
Earth-System

:::::::::::::::
ParametERisation

::::::::::
(VESPER)

::
is

:::::
used

::
to

:::::
assess

:::::
recent

::::::::
upgrades

:::
of

:::
the

:::::
global

::::::::::::
physiographic

:::::::
datasets15

:::::::::::
underpinning

:::
the

::::::
quality

::
of

:::
the

:
Integrated Forecasting Sys-

tem (IFS) of the European Centre for Medium-Range
Weather Forecasts (ECMWF)model, by the Fresh-water
Lake (FLake) parametrisation, which treats ∼ 1/3 of the
land. It is a continuous enterprise to update the surface20

parametrization schemes and their input fields to better
represent small-scale processes. It is, however, difficult
to quickly determine both the accuracy of an updated
parametrisation, and the added value gained for the purposes
of numerical modelling. The aim of our work is to quickly25

and automatically assess the benefits of an updated lake
parametrisation making use of a neural network regression
model trained to simulate satellite observed surface skin
temperatures. We deploy this tool to determine ,

::::::
which

:
is
:::::

used
::::
both

:::
in

:::::::::
numerical

:::::::
weather

:::::::::
prediction

::::
and

::::::
climate30

:::::::::
reanalyses.

::
A

::::::
neural

::::::::
network

:::::::::
regression

::::::
model

::
is

::::::
trained

::
to

:::::
learn

:::
the

::::::::
mapping

::::::::
between

:::
the

:::::::
surface

::::::::::::
physiographic

::::::
dataset

::::
plus

:::
the

:::::::::::
meteorology

::::
from

::::::
ERA5,

::::
and

:::
the

:::::::
MODIS

::::::
satellite

::::
skin

:::::::::::
temperature

:::::::::::
observations.

::::::
Once

:::::::
trained,

:::
this

:::
tool

::
is
:::::::

applied
:::

to
:::::::
rapidly

:::::
assess

::::
the

::::::
quality

:::
of

::::::::
upgrades 35

::
of

:::
the

:::::::::::
land-surface

:::::::
scheme.

:::::::::
Upgrades

::::::
which

:::::::
improve

:::
the

::::::::
prediction

::::::::
accuracy

::
of

:::
the

::::::::
machine

:::::::
learning

::::
tool

:::::::
indicate

:
a

::::::::
reduction

::
of

:::
the

:::::
errors

::
in
:::

the
:::::::

surface
:::::
fields

::::
used

::
as

:::::
input

::
to

the
::::::
surface

:::::::::::::
parametrisation

::::::::
schemes.

::::::::::
Conversely,

::::::::
incorrect

:::::::::::
specifications

::
of

:::
the

::::::
surface

:::::
fields

:::::::
decrease

:::
the

:::::::
accuracy

::::
with 40

:::::
which

::::::::
VESPER

::::
can

:::::
make

::::::::::
predictions.

:::
We

:::::
apply

::::::::
VESPER

::
to

::::::
assess

:::
the

:
accuracy of recent upgrades to the FLake

parametrisation, namely the improved permanent lake cover
and the capacity

::
of

:::
the

:::::::::
permanent

::::
lake

::::
and

:::::::
glaciers

:::::
covers

::
as

::::
well

::
as

::::::::
planned

::::::::
upgrades to represent seasonally vary- 45

ing water bodies (i.e. ephemeral lakes). We show that for
grid-cells where the lake fields have been updated, the pre-
diction accuracy in the land surface temperature improves
by 0.45

::
(i.e

:::::
mean

:::::::
absolute

:::::
error

::::::::
difference

:::::::
between

:::::::
updated

:::
and

:::::::
original

::::::::::::
physiographic

::::::::
datasets)

:::::::::
improves

:::
by

::::
0.37

:
K 50

on average, whilst for the subset of points where the lakes
have been exchanged for bare ground (or vice versa) the
improvement is 1.12

::::
0.83

:
K. We also show that updates

to the glacier cover improve further the prediction accu-
racy by 0.14 K. The inclusion of seasonal water is shown 55

to be particularly effective for grid points which are highly
time variable, generally improving the simulation accuracy
by ∼1 K. The neural network regression model has proven
to be useful and easily adaptable to assess unforeseen
impacts of ancillary datasets, also detecting inappropriate 60

changes of high vegetation to bare ground, which would
lead to decreased the skin temperature simulation accuracy
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by 0.49 K, proving to be a valuable support to model
development.

:::
0.22

:::
K.

::::
We

::::::::
highlight

::::
how

::::::
neural

::::::::
networks

::::
such

::
as

::::::::
VESPER

::::
can

:::::
assist

:::
the

::::::::
research

:::
and

:::::::::::
development

::
of

::::::
surface

::::::::::::::
parametrizations

::::
and

::::
their

:::::
input

:::::::::::
physiography

::
to

:::::
better

:::::::
represent

::::::
Earth’s

:::::::
surface

::::::
coupled

:::::::::
processes

::
in

::::::
weather5

:::
and

::::::
climate

:::::::
models.

:

1 Introduction

:::::::
Accurate

::::::::::
knowledge

:::
of

:::
the

::::::
global

:::::::
surface

::::::::::::
physiography,

::::::::
including

::::
land,

:::::
water

:::
and

:::
ice

::::::
covers,

:::
and

::::
their

::::::::::::
characteristics,

:::::::
strongly

:::::::::
determines

:::
the

::::::
quality

:::
of

::::::
surface

::::
and

::::::::::
near-surface10

::::::::::
temperature

:::::::::
simulations

:::
in

:::::::
weather

:::
and

:::::::
climate

:::::::::
modelling.

:::
For

::::::::
instance,

::::::
water

::::::
bodies

:::::::::
exchange

:::::
mass

:::::
and

::::::
energy

::::
with

:::
the

:::::::::::
atmosphere

::::
and

:::::
their

:::::::
thermal

:::::::
inertia

:::::::
strongly

:::::::
influence

::::
the

::::::
lower

:::::::::
boundary

::::::::::
conditions

:::::
such

:::
as

::::
skin

:::::::::::
temperatures,

::::
and

:::::::
surface

::::::
fluxes

:::
of

:::::
heat

::::
and

::::::::
moisture15

:::
near

::::
the

:::::::
surface. Globally, there are ∼ 117 million lakes -

defined as inland water bodies without lateral movement of
water - making up around 3.7% of the Earth’s land surface
Verpoorter et al. (2014)

:::::::::::::::::::
(Verpoorter et al., 2014). Their dis-

tribution is highly anisotropic
::::::::::
non-uniform, with the majority20

of lakes located between 45− 75◦N in the Boreal and Arctic
regions. Lakes are highly important from the perspective of
both numerical weather prediction and climate modelling

:
as

:::
part

:::
of

:::
the

::::::::
EC-Earth

::::::
model. For the latter, lakes generally

influence the global carbon cycle as both sinks and sources25

of greenhouse gases; the majority of lakes are net het-
erotrophic ,

:::
(i.e.

:
over saturated with

::::::
carbon

:::::::
dioxide,

:
CO2:

),
as a result of in lake respiration and so emit carbon into the
atmosphere Pace and Prairie (2005); Tranvik et al. (2009)

::::::::::::::::::::::::::::::::::::
(Pace and Prairie, 2005; Tranvik et al., 2009). Total CO230

emission from lakes is estimated at 1.25− 2.30 Pg
of CO2-equivalents annually DelSontro et al. (2018)

:::::::::::::
CO2-equivalents

::::::::
annually

:::::::::::::::::::::
(DelSontro et al., 2018), nearly

20% of global CO2 fossil fuel emissions, whilst lakes
account for 9-24 % of CH4 emissions, the second35

largest natural source after wetlands Saunois et al. (2020)

:::::::::::::::::
(Saunois et al., 2020). These rates of greenhouse gas
emission are expected to rise further if the eutrophication

:::
(i.e.

:::::::
nutrient

::::::::::::
concentration

::::::::
increase)

:
of the Earth’s lentic

systems continues. With regards to weather, freezing and40

melting of the lake surface modifies the radiative and
conductive properties and consequently affects the heat
(latent, sensible) exchange and surface energy balance
Huang et al. (2019); Lu et al. (2020); Franz et al. (2018)

::::::::::::::::::::::::::::::::::::::::::::
(Franz et al., 2018; Huang et al., 2019; Lu et al., 2020)45

. Considering particular examples, over Lake Victoria
convective activity is suppressed during the day and
peaks at night, leading to intense, hazardous thunder-
storms Thiery et al. (2015, 2017)

:::::::::::::::::::::
(Thiery et al., 2015, 2017)

; Lake Ladoga can generate low level clouds which50

can cause variability in the 2m temperature of up

to 10 K Eerola et al. (2014)
::::::::::::::::
(Eerola et al., 2014); the

Laurentian Great Lakes can cause intense winter
snow storms Vavrus et al. (2013) Notaro et al. (2013)

::::::::::::::::::::::::::::::::
(Notaro et al., 2013; Vavrus et al., 2013). Moreover, as a 55

result of the increased temperatures due to climate change,
lakes become more numerous due to the melting of glaciers
and permafrost. Additionally, the higher temperatures mean
that previously permanent lake bodies become seasonal or
intermittent. There is then evidently a huge potential return 60

in the ability to accurately model the location, morphology
and properties of lakes in weather and climate models.

The Integrated Forecasting System (IFS) at the European
Centre for Medium Range Weather Forecasts (ECMWF) 65

is used operationally for numerical weather prediction and
climate modelling. Earth-system modelling in the IFS can
be broadly categorised into large-scale and small-scale
processes. Large-scale processes can be described by nu-
merically solving the relevant set of differential equations, to 70

determine e.g. the general circulation of atmosphere. Con-
versely, small-scale processes such as clouds or land-surface
processes are represented via parametrisation. Accurate
parametrisations are essential for the overall accuracy of the
model. For example, the parametrisation of the land surface 75

determines the sensible and latent heat fluxes, providing the
lower boundary conditions for the equations of enthalpy and
moisture in the atmosphere Viterbo (2002)

::::::::::::
(Viterbo, 2002).

Lakes are incorporated in Earth-system models via 80

parametrisation. At ECMWF the representation of lakes via
parametrisation was first handled by introducing the Fresh
water Lake model FLake Mironov (2008)

:::::::::::::
(Mironov, 2008)

into the IFS. FLake treats all resolved inland waterbodies (i.e.
lakes, reservoirs, rivers which are dominating in a grid-cell) 85

and unresolved or sub-grid water (i.e. small inland water-
bodies and sea/ocean coastal waters which are present but
not dominating in a grid-cell). Note that lake parameters
are also an important part of the FLake model so when
we refer in this work to “lake parametrisation" we mean 90

both the model and the parameters
::
Its

:::::
main

:::::::
drivers

:::::
(input

:::::
fields)

:::
are

:::::
lake

:::::::
location

::::
and

::::
lake

:::::
mean

:::::
depth. The broad

impact of the FLake model
:::
(i.e.

:::::
areas

::::::
where

::
it

::
is

::::::
active)

and the important role that waterbodies play in human life
can be illustrated by analysing ECMWF maps

::::
fields

:
of the 95

fractional land sea mask and the inland waterbody cover
alongside maps of the population density

:::
field

:
(i.e. inhabi-

tants per km2) based on the population count for 2015 from
the Global Human Settlement Layers (GHSL), Population
Grid 1975-2030 Schiavina et al. (2022); Freire et al. (2016) 100

::::::::::::::::::::::::::::::::::
(Freire et al., 2016; Schiavina et al., 2022) at 9 km horizon-
tal resolution.

Globally FLake is active over 11.1% of the grid-cells, with
only 1.2% of them being resolved inland waters (i.e. water
covers ≥50% of the grid-cell); considering only non-ocean 105

(i.e. land )
::::
land grid-cells, then FLake is active over 32.4%
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of the grid-cells with only 3.5% of them being resolved
waters

:::::
points. According to the population data, only 4% of

land is densely populated (i.e.
::::::
64.5%

::
of

:::::::
densely

::::::::
populated

::::
areas

::
(at least 300 inhabitants per km2) ; 64.5% of these

areas being
::
are

:
situated within a 9 km radius of a permanent5

waterbody (i.e. inland water or sea/ocean coast)with half
of it (i.e. ,

::::
with

:
31.2% of densely populated areas) being in

the vicinity of at least 1 km2 waterbody - emphasising how
essential waterbodies are in human life. In some regions
this role may be even more crucial than in the others. For10

example , only 2% of the North American region (similar
for South American and North Asian regions) is densely
populated with

:
in

:::::
North

::::::::
America

:
45.7% (33.9% and 37.9%

respectively) of the areas being in vicinity of at least 1
km2 waterbody; for Europe even though it has more

:
of

:::
the15

densely populated areas (16% of land is densely populated)
still 37.4% of the population are in the vicinity of at least a
1 km2 waterbody; for a rather dry continent like Africa only
5% of land is densely populated with 22.2% of these areas
being close to at least

:::
are

::::
close

::
to

:
a 1 km2 waterbody; most20

striking in this sense is
::
in Australia where only 0.5 % of the

land is populated, with two thirds of the population living

:::
live within 9 km radius of a permanent waterbody of at least
1 km2, with the majority of people living on the ocean coast.

25

It is a continuous enterprise to update the lake parametriza-
tion schemes and their input data

::::
input

:
fields to better rep-

resent small-scale surface processes. It is however challeng-
ing to accurately represent lakes in these parametrisations;

::
do

::
it

:::::::::
accurately

::
as

:
the majority of lakes which are resolved30

at a 9km grid spacing have not had their morphology accu-
rately measured, let alone monitored, whilst 28.9% of land
and coastal cells are treated for sub-grid

:::
(i.e.

::::::::
covering

:::
half

::
or

:::
less

:::
of

:
a
::::

grid
:::::

cell) water. When introducing an updated
lake representation it is difficult apriori to determine the ad-35

ditional value gained through doing so. There are two key
factors here:

– Are the updated fields accurate
:::::
closer

::
to

:::::
reality?

– Are
:::
Do

:
the updated fields informative

:::::::
increase

:::
the

:::::::
accuracy

::
of

:::
the

::::::
model

:::::::::
predictions?40

The first point is straightforward; we want our
parametrisation fields to better represent reality. If the
lake depth of some lake is updated from 10m to 100m we
want to be sure that 100m is closer to the true depth of the
lake. For the second point, even if the updated fields are45

accurate, are they informative in the sense that they enable
us to make more accurate predictions? For instance, the main
target of lake parametrization is to reproduce lake surface
water temperatures (and therefore evaporation rates). If a
lake parametrisation scheme is

:::
lake

:::::::::::::
parametrisation

:::::
input50

::::
fields

:::
are

:
updated to better represent different types of inland

waterbodies, the time variability of inland waterbodies
and/or the lake morphology fields use more in situ mea-

surements, does this additional information allow for more
accurate predictions of the lake surface water temperatures? 55

Is it therefore worthwhile to update the parametrisation
in this way

:::::
spend

::::::
several

:::::::::::::
person-months

:::
to

:::::::::::
update/create

:
a
::::::::::
lake-related

:::::
field? Since the resulting updated fields are

ultimately used operationally, it is essential to ensure the
accuracy of the fields and prevent any potential degradation 60

or instability of the model. This problem of quickly and au-
tomatically verifying

::::::::
checking the accuracy and information

gain of updated lake parametrisations
:::::::::
lake-related

:::::
fields

:
is

the aim of this work.
65

Numerical weather prediction and climate modelling
are fields

:::::::
domains

:
that are inherently linked with large

datasets and complex, non-linear interactions. It is there-
fore an area that is particularly well placed to benefit
from the deployment of machine learning algorithms. At 70

ECMWF, advanced machine learning techniques have been
used for parametrisation emulation via neural networks
Chantry et al. (2021)

:::::::::::::::::
(Chantry et al., 2021), 4D-Var data

assimilation Hatfield et al. (2021)
:::::::::::::::::
(Hatfield et al., 2021)

and the post-processing of ensemble predictions 75

Hewson and Pillosu (2021)
::::::::::::::::::::::
(Hewson and Pillosu, 2021)

. Indeed, the early successes of these machine learning
methods have led to the development of a 10-year roadmap
for machine learning at ECMWF Düben et al. (2021)

::::::::::::::::
(Düben et al., 2021), with machine learning methods look- 80

ing to be integrated into the operational workflow and
machine learning demands considered in the procurement
of HPC facilities; the

:
.
::::
The ongoing development of novel

computer architectures (e.g. GPU, IPU, FGPA) motivates
utilizing algorithms and techniques which can efficiently 85

take advantage of these new chips and gain significant
performance returns. In this work we will demonstrate a
new technique for the Verification of Earth-System Param-
etERisation (VESPER) based on a deep learning neural
network regression model. This tool enables the accuracy of 90

an updated water body parametrization
::::::::::
body-related

::::
field

:
to

be rapidly and automatically assessed, and the added value
that such an updated parametrization brings

::::::
updated

:::::
fields

::::
bring

:
to be quantitatively evaluated.

95

This paper is organized as follows. In Section 2 we describe
the construction of the VESPER tool - the raw input data, the
processing steps and the construction of a neural network re-
gressor. In Section 3 we then deploy VESPER to investigate
and evaluate updated lake parametrisation

:::::::::
lake-related

:
fields. 100

Discussion and concluding remarks are made in Sections ??
:
4
:
and 5 respectively.

2 Constructing VESPER

In order to rapidly check the added value and accuracy of
a new parametrisation field we will construct

:::::
assess

:::
the 105
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:::::::
accuracy

::
of

::::
new

::::::
surface

::::::::::::
physiography

:::::
fields

:::
and

::
if

::::
their

:::
use

::
in

:::
the

:::::
model

:::::::
increase

:::
the

::::::::
accuracy

::::
with

:::::
which

:::
we

::::
can

::::
make

:::::::::
predictions,

:
a neural network regression model

::::::::
(VESPER,

::::::::
hereafter)

:
that can learn the mapping between a set of

features, x̄, and targets , ȳ
::::
input

:::::::
features

::
x

::::
and

::::::
targets

:
y
::

is5

:::::::::
constructed. In this case the features are the simulated model
variables - such as 2m temperature - and the parametrization
fields such as the orography or the vegetation .

:::::::::
atmospheric

:::
and

::::::
surface

::::::
model

:::::
fields

:::::
(such

::
as

::
2

:::::
metre

::::::::::
temperature

::::
from

:::::
ERA5

:::::::::
reanalysis)

::::
and

:::
the

::::::
surface

::::::::::::
physiographic

:::::
fields

::::
(such10

::
as

:::::::::
orography

:::
and

:::::::::
vegetation

::::::
cover

::::
used

::
to
::::::::

produce
:::::
ERA5

:::::::::
reanalysis).

::::
See

:::::
Table

::
1
:::
for

:::
the

::::
full

:::
list

::
of

::::::::
variables

:::::
used.

The target is the empirical
::::::
satellite

:
land surface temperature

(skin temperature). A trainedmodel
::::
LST;

::::
skin

::::::::::
temperature

::::
from

:::::::
MODIS

:::::
Aqua

::::
Day

:::::::::
MYD11A1

:::::
v006

::::::::::
collection).

::::
Once15

::::::
trained,

:::::::::
VESPER

:
can then make predictions about the

skin temperature given a set of input climate variables .

:::::::
variables

::::
(i.e.

:::::::::::
atmospheric

::::
and

:::::::
surface

::::::
model

:::::
fields,

::::
and

::::::
surface

::::::::::::
physiographic

::::::
fields).

:
In turn, these predictions can

then be compared against the true empirical observations20

and the model
::::::::::
observations

:::
(i.e.

:::::::
satellite

::::
skin

:::::::::::
temperature)

:::
and

:::::::::
VESPER’s

:
accuracy evaluated. By varying the

::::::
number,

:::
type

::::
and values of the input features to our model

:::::::
VESPER

and observing how the accuracy of the model
::
its

:
predic-

tions change, we can explore whether a new or updated25

feature generally adds value (i. e. increases the prediction
accuracy).

::::
some

:::::::::::
conclusions

:::
on

::
if
::::

and
::::
how

::::::::
features

:::
can

:::::::
increase

:::::::::::
predictability

::
of

:::
an

::::::
actual

::::::::::
atmospheric

::::::
model

:::
can

::
be

::::::
drawn.

:
Moreover, by isolating geographic regions where

the predictions get worse with the addition of a newfield, we30

can identify areas where the new field might be less accurate
or additional information is needed to describe the area.

::::::::::
new/updated

::::::
surface

::::::::::::
physiographic

::::::
fields,

::::
areas

::::::
where

::::
these

::::
fields

::::::
might

:::
be

:::::::::
erroneous

::
or

::::
not

::::::::::
informative

:::::::
enough

:::
can

::
be

:::::::::
identified.

::::
Due

::
to

::::
the

:::::::
inherent

:::::::::::
stochasticity

::
of

:::::::
training35

:
a
::::::
neural

:::::::
network

:::::::::
regression

::::::
model

::
it
:::

is
::::
also

:::::::
possible

:::
for

:::::::
different

::::::
models

:::
to

:::::
settle

::
in

::::::::
different

:::::
local

:::::::::
minimums

:::
i.e.

::
the

::::::::
network

::::::::::::
variance/noise.

:::
To

::::::::::
understand

:::
the

::::::::::
significance

::
of

::::
this,

::::
every

::::::::
VESPER

::::::::::::
configuration

:::
was

::::::
trained

::::
four

:::::
times,

::::
each

::::
time

::::
with

:
a
:::::::
different

:::::::
random

:::::
seed.40

In this section we will now describe the data used for the fea-
tures and targets in the

:
x

:::
and

::::::
targets

::
y

::
in

:::
the

:::::
neural

:::::::
network

regression model, how these disparate datasets
:::::
various

::::
data

::::
types

:
are joined together, and the details of the neural45

network model used.
::::::::
VESPER’s

:::::::::::
construction.

:

2.1 Raw Data

We have two primary setsof

2.1
:::::::

Features
::::
and

::::::
targets

:::::::::
VESPER’s

::::
input

:::::::
feature

:::::::
selection

::::
(see

:::::
Table

::
1)

::::::::
followed

::
(i)50

::::::::::
permutation

:::::::::
importance

::::::
results

:::
for

::::::::::
atmospheric

::::
and

::::::
surface

:::::
model

:::::
fields

:
-
::::
only

:::::
fields

:::::
with

:::
the

::::::
highest

::::::::::
importance

::::
were

::::::
chosen;

::::
and

::::
(ii)

::::::
expert

::::::
choice

:::
for

:::::::
surface

::::::::::::
physiographic

:::::
fields.

:::
As

:
a
::::

first
:::::::

attempt
::
it
::::
was

:::::::
decided

::
to

::::
test

:::
the

::::::
current

:::::::::::
methodology

:::
for

::::
lake

::::::
related

:::::::::::
information,

::::::::
therefore

:::::
fields 55

:::
that

:::::
could

:::
be

:::::
most

::::::::
affected

:::
by

:::
the

::::::::
presence

:::
or

:::::::
absence

::
of

:::::
water

:::::
were

::::::::
selected,

::::
e.g.

::
if
:::::

lake
::::
had

::
to
:::

be
::::::::

removed

:::
then

::::::
some

:::::
other

::::::
surface

::::
had

::
to

:::::::
appear

::::
(like

::::
bare

:::::::
ground,

::::
high

::
or

::::
low

:::::::::
vegetation,

::::::
glacier

:::
or

::::
even

::::::
ocean)

::::
and

::::::
surface

:::::::
elevation

::::
had

::
to

:::::::
change.

::::::::
Changes

::
to
::::

the
:::::::::
orographic

:::::
fields 60

:::
will

:::::
have

::::::::
important

:::::::::
influences

:::
on

::::::::::
temperature

:::::::
through

:::
e.g.

:::::
wind,

:::::
solar

:::::::
heating,

::::
etc.

:::::
Lake

:::::
depth

:::::::
changes

:::
are

::::::::
similarly

::::::::
important,

::::::::::
influencing

:::::
how

::
a
::::
lake

:::::::
freezes,

:::::::
thaws,

:::::
mixes

:::
and

::
its

:::::::
overall

::::::::
dynamical

::::::
range.

:::::::::
VESPER’s

::::::
target

:::::::
selection

:::::::
followed

:::::::
globally

::::::::
available

::::::
criteria

::::
and

:::
the

:::::::
satellite

::::
LST

::
is 65

::::
quite

::::
well

::::::::
observed

:::::::
globally

:::
and

::::
with

:::::
high

:::::::
temporal

::::::
pattern

:::::
(daily

::
or

::::
even

::::::
several

:::::
times

:
a
:::
day

:::::::::
depending

::
on

:::
the

::::::::
location).

2.2
::::
Data

::::::
sources

:

:::::
There

::::
are

:::::
three

::::::
main

:::::::
sources

::::
of

:
data. The first is 70

a selection of
:::::::
selection

::::
of

::::::::
surface

:::::::::::::
physiographic

fields from ERA5 Hersbach et al. (2020). These
can be thought of as our featuresor inputs to the
model

:::::::::::::::::::
(Hersbach et al., 2020)

:::
and

:::::
their

::::::::
updated

::::::::
versions

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Choulga et al., 2019; Boussetta et al., 2021; Muñoz Sabater et al., 2021a)75

::::
used

::
as

::::::::::
VESPER’s

:::::::
features.

:::
As

::
a
:::::::::
shorthand

:::
we

::::
will

::::
refer

::
to

:::
the

::::::
original

::::::
ERA5

::::::::::::
physiographic

:::::
fields

::
as

:::::::
version

:::::
“V15"

:::
and

:::
the

::::::::
updated

:::::::
versions

:::
as

::::::
“V20". The second is land

surface temperature
:
a

:::::::
selection

:::
of

::::::::::
atmospheric

::::
and

::::::
surface

:::::
model

:::::
fields

:::::
from

::::::
ERA5,

::::
also

::::
used

::
as

::::::::::
VESPER’s

:::::::
features. 80

:::
The

::::
third

::
is
::::::::
day-time

::::
LST measurements from the Moderate

Resolution Imaging Spectroradiometer (MODIS) GSFC
onboard the Aqua satellite . This will be the model target
variable.

::::::
(GSFC)

:
,
::::
used

::
as

:::::::::
VESPER’s

:::::
target

::::::::
variable.

2.2.1
:::::::
Surface

::::::::::::
physiographic

:::::
fields 85

::::::
Surface

::::::::::::
physiographic

::::::
fields

::::
have

:::::::
gridded

:::::::::::
information

::
of

::
the

:::::::
Earth’s

::::::
surface

:::::::::
properties

::::
(e.g.

::::::::
land-use,

::::::::
vegetation

::::
type

:::
and

:::::::::::
distribution)

::::
and

:::::::::
represent

:::::::
surface

::::::::::::
heterogeneity

::
in

::
the

::::::::
ECLand

::
of

:::
the

:::::
IFS.

::::
They

::::
are

::::
used

::
to

::::::::
compute

::::::
surface

:::::::
turbulent

::::::
fluxes

:::
(of

:::::
heat,

:::::::::
moisture

:::
and

:::::::::::
momentum)

::::
and 90

:::
skin

:::::::::::
temperature

::::
over

::::::::
different

::::::::
surfaces

::::::::::
(vegetation,

::::
bare

:::
soil,

::::::
snow,

::::::::::
interception

::::
and

::::::
water)

::::
and

:::::
then

::
to

::::::::
calculate

::
an

::::::::::::
area-weighted

:::::::
average

:::
for

::::
the

:::::::
grid-box

:::
to

::::::
couple

::::
with

::
the

:::::::::::
atmosphere.

::::
To

::::::
trigger

::::
all

::::::::
different

:::::::::::::
parametrization

:::::::
schemes

:::
the

::::::::
ECMWF

::::::
model

::::
uses

::
a
::::
sets

::
of

::::::::::::
physiographic 95

:::::
fields,

::::
that

:::
do

:::
not

:::::::
depend

:::
on

:::::
initial

:::::::::
condition

::
or

:::::::
forecast

::::
step.

:::::
Most

:::::
fields

:::
are

::::::::
constant;

:::::::
surface

::::::
albedo

::
is
::::::::

specified

::
for

:::
12

:::::::
months

:::
to

:::::::
describe

:::
the

::::::::
seasonal

::::::
cycle.

:::::::::
Dependent

::
on

::::
the

::::::
origin,

::::::
initial

::::
data

::::::
comes

:::
at

::::::::
different

:::::::::
resolutions

:::
and

::::::::
different

::::::::::
projections,

::::
and

::
is

::::
then

::::
first

:::::::::
converted

:::
to

:
a 100

::::::
regular

:::::::::::::::
latitude-longitude

::::
grid

::::::::::::
(EPSG:4326)

::
at

:::
∼

::::
1km

::
at

::::::
Equator

::::::::::
resolution,

::::
and

::::::::
secondly

:::
to

:
a
::::::::

required
::::

grid
::::

and
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:::::::::
Atmospheric

::::
and

:::::
surface

:::::
model

::::
fields

:::
(11

:::::
fields)

: :::::::
Pressure:

::::::
surface

::::::
pressure

:
(
::
sp,

:::
Pa

:
),

::::
mean

:::
sea

::::
level

::::::
pressure

:
(
:::
msl,

::
Pa

:
),
:

::::
Wind

:
:
::
10

:::::
metre

::
U

::::
wind

::::::::
component

:
(
::::
10u,

:::
m/s

:
),

::
10

:::::
metre

::
V

::::
wind

::::::::
component

:
(
:::
10v,

:::
m/s

:
),

::::::::::
Temperature:

::
2
:::::
metre

:::::::::
temperature

:
(
::
2t,

::
K

:
),

:
2
:::::
metre

:::::::
dewpoint

:::::::::
temperature

:
(
:::
2d,

:
K
:
),

:::
skin

:::::::::
temperature

:
(
:::
skt,

::
K

:
),

::
ice

:::::::::
temperature

:::::
layer

:
1
:::
(the

::::::
sea-ice

:::::::::
temperature

::
in
::::
layer

::
0-7

::::
cm;

::::
istl1,

:
K
:
),
:::
ice

:::::::::
temperature

::::
layer

::
2

:::
(the

:::::
sea-ice

:::::::::
temperature

::
in
::::
layer

::::
7-28

:::
cm;

::::
istl2,

:
K
:
),
:

::::::
Surface

::::::
albedo:

::::::
forecast

:::::
albedo

:
(
:::
fal,

:::
0-1

:
),

:::::
Snow:

::::
snow

::::
depth

:
(
:::
sd,

:
m

:
of

:::::
water

::::::::
equivalent)

:

::::
Main

::::::
surface

::::::::::
physiographic

:::::
fields

::
(19

:::::
fields)

: :::::::::
Orographic

:::::
fields:

::::::
standard

::::::::
deviation

::
of

::::::
filtered

:::::::
subgrid

::::::::
orography

:
(
::::
sdfor,

::
m
:
),

::::::
standard

:::::::
deviation

:::
of

::::::::
orography

:
(
:::
sdor,

::
m
::
),

::::::::
anisotropy

::
of

::::::::::
sub-gridscale

::::::::
orography

:
(
::
isir,

:::
-),

::::
angle

:::
of

::::::::::
sub-gridscale

::::::::
orography

:
(
::::
anor,

::::::
radians

:
),
:::::

slope
::
of

::::::::::
sub-gridscale

:::::::
orography

::
(
:::
slor,

:
-
:
),
:::::::::
geopotential

::::
(the

:::::::::
gravitational

:::::::
potential

::::::
energy

::
of

:
a
::::

unit
::::
mass,

:
at
::
a
:::::::
particular

:::::::
location,

::::::
relative

::
to

::::
mean

:::
sea

:::::
level;

::
at

:::
the

:::::
surface

::
of
:::

the
:::::
Earth,

:::
this

:::::::
parameter

:::::
shows

:::
the

:::::::
variation

:
in
::::::::::
geopotential

::::::
(height)

::
of

::
the

:::::::
surface,

:::
and

:
is
::::::
referred

:
to
::
as
:::
the

::::::::
orography;

:
z
:
,
:::::::
m2s−2),

::::
Land

:::::
fields:

::::::
land-sea

::::
mask

::::
(the

::::::::
proportion

::
of

::::
land,

::
as

:::::::
opposed

::
to

::::
ocean

::
or
:::::
inland

:::::
waters

:::
(i.e.

:::::
lakes,

::::::::
reservoirs,

:::::
rivers,

:::::
coastal

::::::
waters),

::
in
::
a

:::::::
grid-cell;

:::
lsm,

:::
0-1

:
),
:::::
glacier

::::
mask

:::
(the

::::::::
proportion

::
of

:
a
:::::::
grid-cell

::::::
covered

::
by

::::::
glacier;

::::
glm,

::
0-1

::
),

:::::
Water

:::::
fields:

:::
lake

:::::
cover

:::
(the

:::::::::
proportion

::
of

:
a
:::::::

grid-cell
:::::::

covered
::
by

::::::
inland

::::
water

:::::
bodies;

:::
cl,

:::
0-1

:
),

:::
lake

::::
total

:::::
depth

::::
(the

::::
mean

:::::
depth

::
of

:::::
inland

:::::
water

::::::
bodies;

::
dl,

::
m
:
),

::::::::
Vegetation

:::::
fields:

::
low

::::::::
vegetation

:::::
cover

:
(
::
cvl,

:::
0-1

:
),
::::
high

::::::::
vegetation

::::
cover

::
(
::

cvh,
:::

0-1
:
),

:::
type

::
of

:::
low

::::::::
vegetation

:
(
::
tvl,

::
-),

::::
type

::
of

::::
high

:::::::
vegetation

::
(
::

tvh,
::
-),

:

:::
Soil

:::::
fields:

:::
soil

::::
type

:
(
:
slt

:
,
::
-),

::::::
Albedo

:::::
fields:

:::
UV

:::::
visible

:::::
albedo

::
for

:::::
direct

:::::::
radiation

:
(
::::
aluvp,

::::
0-1),

:::
UV

:::::
visible

:::::
albedo

::
for

:::::
diffuse

:::::::
radiation

:
(
::::
aluvd

:
,
:::
0-1),

::::
near

::
IR

:::::
albedo

:::
for

::::
direct

:::::::
radiation

:
(
::::
alnip,

::::
0-1),

:::
near

::
IR

:::::
albedo

:::
for

:::::
diffuse

:::::::
radiation

:
(
::::
alnid,

:::
0-1)

:

::::::::
Additional

::::::
surface

::::::::::
physiographic

:::::
fields

::::::::
Difference

::
for

::
all

::::
main

::::::
surface

:::::::::::
physiographic

::::
fields

::::::
between

::::
V15

:::
and

:::
V20

::::
field

:::
sets,

::::::::
Difference

::::::
between

::::
V20

::::
static

:::
lake

:::::
cover

:::
and

::::::
monthly

::::::
varying

::::
lake

::::
cover

:::
(12

::::
maps

:
in
:::::
total),

::::
Saline

::::
lake

::::
cover

:::
(the

::::::::
proportion

::
of

:
a
:::::::
grid-cell

::::::
covered

::
by

:::::
saline

::::
inland

:::::
water

:::::
bodies;

::::
units:

:::
0-1)

:

Table 1.
:::
Input

:::::::
features

::::
used

::
for

::::::
training

:::
the

:::::
neural

:::::::
network

:::::
model

:::::::
VESPER;

::::::::::
atmospheric

:::::
model

::::
fields

::::
(time

:::::::
varying)

::::
were

::::
kept

::
the

:::::
same

:
in
:::
all

:::::::::
simulations,

:::::
surface

:::::::::::
physiographic

::::
fields

::::::
(static)

::::
were

::::::
updated

::::
when

:::::
going

::::
from

::
the

:::::::
original

:::
data

::::
based

:::
on

::::::::::::::::::::
GlobeCover2009/GLDBv1

::::
(V15

:::
field

:::
set)

::
to
:::::::::::::
GSWE/GLDBv3

::::
(V20

::::
field

:::
set);

::
in
:::::::
brackets

::
are

:::::::
variables

:::::::::
description

:::::
(where

:::::::
needed),

::::
short

::::
name

::::::::
(according

::
to
:::
the

:::::
GRIB

:::::::
parameter

:::::::
database)

:::
and

:::::
units.
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::::::::
resolution.

:::::::
Surface

:::::::::::::
physiographic

:::::
fields

::::
used

:::
in

:::
this

:::::
work

::::::
consist

::
of

::::::::::
orographic,

:::::
land,

:::::
water,

::::::::::
vegetation,

::::
soil,

::::::
albedo

::::
fields

::::
and

::::
their

:::::::::
difference

:::::::
between

::::::
initial

::::
V15

:::
and

:::::::
updated

:::
V20

:::::
field

::::
sets.

:::
See

::::::
Tables

:
1
::::

and
:
2
:::

for
:::
the

::::
full

:::
list

::
of

::::::
surface

:::::::::::
physiographic

:::::
fields

::::
and

::::
their

::::
input

:::::::
sources;

:::
for

:::::
more

:::::
details5

:::
see

:::
IFS

:::::::::::::
documentation

:::::::::::::::
(ECMWF, 2021).

:::
As

::::
this

:::::
work

::
is

::::::
focused

:::
on

::::::::
assessing

:::::::
quality

::
of

::::::
inland

::::::
water

::::::::::
information,

::::
main

:::::::
surface

::::::::::::
physiographic

:::::
fields

:::
are

:::::
lake

:::::
cover

:::::::
(derived

::::
from

:::::::
land-sea

:::::
mask)

::::
and

::::
lake

::::
mean

:::::
depth

::::
(see

:::::
Table

:::
2).

::
To

:::::::
generate

::::
V15

:::::::::
fractional

::::
lake

:::::
cover

:::
the

:::::::::::::
GlobCover200910

:::::
global

::::::
map

::::::::::::::::::::::::::::::::::::
(Bontemps et al., 2011; Arino et al., 2012)

:
is

::::
used.

::::
This

:::::
map

:::
has

::
a
:::::::::
resolution

::
of

::::::
300m,

::::::::::
corresponds

:::
for

::
the

:::::
year

::::
2009

::::
and

::::::
covers

::::::::
latitudes

::::::::::
85°N-60°S;

:::::::::
corrections

::::::
outside

:::::
these

::::::::
latitudes

:::
for

:::
the

:::::
polar

:::::::
regions

::::
are

:::::::
included

::::::::
separately.

:::
In

:::
the

:::::
Arctic

:::
no

::::
land

:
is
::::::::
assumed,

::
in
:::
the

::::::::
Antarctic15

:::
data

:::::
from

:::
the

:::::::::::::
high-resolution

::::::::
Radarsat

::::::::
Antarctic

::::::::
Mapping

::::::
Project

::::::
digital

::::::::
elevation

:::::
model

:::::::
version

::
2
:::::::::
(RAMP2;

:::
Liu

::
et

::
al.,

::::::
2015)

::
is
:::::

used.
:::

To
::::::::

generate
::::
V20

:::::::::
fractional

::::
lake

:::::
cover

::::
more

::::::
recent

:::::
higher

:::::::::
resolution

:::::::
datasets

:::
and

:::::::
updated

:::::::
methods

::::
have

::::
been

::::
used

::::::::::::::::::
(Choulga et al., 2019)

:
.
:::
The

:::::
main

::::
data

:::::
source20

:
is
:::
the

:::::
Joint

::::::::
Research

:::::
Centre

::::::
(JRC)

:::
the

::::::
Global

::::::
Surface

:::::
Water

:::::::
Explorer

::::::::
(GSWE)

::::::
dataset

::::::::::::::::
(Pekel et al., 2016)

:
.
::::::
GSWE

:::
is

:
a

::::
30m

::::::::
resolution

:::::::
dataset

::::
from

::::::::
Landsat

:::
5,7

::::
and

::
8,

::::::::
providing

:::::::::
information

:::
on

:::
the

:::::
spatial

::::
and

:::::::
temporal

:::::::::
variability

::
of

::::::
surface

::::
water

:::
on

:::
the

:::::
Earth

:::::
since

::::::
March

:::::
1984;

::::
here

::::
only

:::::::::
permanent25

::::
water

::::
was

:::::
used

:::
for

:::::
lake

:::::
cover

::::::::::
generation

::
as

::
it
::::::::

provided

:
a
:::::
more

::::::::
accurate

::::::
inland

:::::
water

::::::::::
distribution

::::
on

:::
the

::::::
annual

::::
basis

::::::::::::::::::
(Choulga et al., 2019)

:
.
::::::::::
Differences

:::::::
between

:::::
V20

:::
and

:::
V15

::::
lake

:::::
cover

:::::
fields

::::
(see

::::::
Figure

::
1)

:::
are

:::::::::
consistent

::::
with

:::
the

::::
latest

::::::
global

::::
and

:::::::
regional

:::::::::::
information:

::
(i)

::::::::
increase

::
of

::::
lake30

::::::
fraction

:::
in

::::
V20

:::::::::
compared

::
to

:::::
V15

::::
over

::::::::
northern

:::::::
latitudes

:
is
::::

due
:::

to
::::::::::
permafrost

::::
melt

:::::::
leading

:::
to

:
a
:::::

new
::::::::::
thermokarst

:::
lake

::::::::::
emergence,

::::
and

::::
due

::
to

::::::
higher

::::::::
resolution

:::::
input

::::::
source

:::
and

:::
its

:::::
better

::::::::
satellite

::::::
image

::::::::::
recognition

:::::::::::::
methodologies;

::
(ii)

:::::::::
reduction

:::
of

::::
lake

:::::::
fraction

:::
in

::::
V20

:::::::::
compared

:::
to

::::
V1535

:::
can

:::
be

::::::::
explained

::::
with

:::::::
several

:::::::
reasons,

::::
like

::::::::::::
anthropogenic

:::
land

::::
use

:::::::
change

:::::
(e.g.

:::::
Aral

::::
Sea,

::::::
which

::::
lies

:::::::
across

:::
the

:::::
border

::::::::
between

:::::::::::
Uzbekistan

::::
and

:::::::::::
Kazakhstan,

::::
has

:::::
been

::::::::
shrinking

::
at

::
an

::::::::::
accelerated

::::
rate

::::
since

:::
the

::::::
1960s

:::
and

::::::
started

::
to

:::::::
stabilise

:::
in

:::::
2014

::::
with

:::
an

::::
area

:::
of

:::::
7660

:::::
km2,

::
9
:::::

times40

::::::
smaller

::::
than

:::
its

:::::
size

::
in

::::::
1960.

::::::::::::::
GlobCover2009

::::::::
describes

::
the

:::::
Aral

::::
Sea

::
in

:::::
1998,

:::::
when

::
it
::::

was
::::

still
::::::

“only”
::::

two
:::::

times

::::::
smaller

::::
than

:::
its

:::::
1960

::::::
extent,

::::::::
whereas

:::::::
GSWE

::::::::
provides

:
a

::::
more

:::
up

::
to

::::
date

::::::
map.),

::::
use

::
of

:::::
only

:::::::::
permanent

:::::
water

::::
(e.g.

::::::::
Australia,

::::::
where

::::::::::::::
GlobCover2009

::::::::::::::
over-represents

::::::
inland45

:::::
water,

::
as

:::::
most

::
of

:::::
these

::::
lakes

::::
are

:::::
highly

::::::::::
ephemeral,

:::
e.g.

:::
the

::::::::
endorheic

::::
Kati

:::::::::::
Thanda–Lake

:::::
Eyre

:::
fills

::::
only

::
a
:::
few

:::::
times

:::
per

::::::
century.

::::
The

::::::
GSWE

:::::::
updates

::
to

::::
this

:::::
region

::::::::
therefore

::::::
include

::::
only

::::::::
generally

::::::::::
permanent

::::::
water,

:::::::::
removing

:::
all

::::::::
seasonal

:::
and

::::
rare

:::::::::
ephemeral

:::::::
water.),

::::
and

::::::
change

:::
in

:::
the

::::::
ocean

:::
and50

:::::
inland

:::::
water

::::::::
separation

:::::::::
algorithm

::::
(e.g.

::::::::
north-east

::
of

:::::::
Russia).

::
To

:::::::::
generate

::::::
V15

:::::
lake

:::::::
mean

::::::
depth

::::::
(see

:::::::
Figure

::
2)

:::::
the

:::::::::
Global

::::::::
Lake

:::::::::::
DataBase

:::::::::
version

::::
1

:::::::::::::::::::::::::::::
(GLDBv1; Kourzeneva et al., 2012)

::
is

:::::::
used.

::::::::::
GLDBv155

:::
has

::
a

:::::::::
resolution

::
of

::::::
1km

::::
and

::
is

:::::
based

:::
on

:::::::
13000

:::::
lakes

::::
with

::
in

::::
situ

::::
lake

::::::
depth

:::::::::::
information;

:::::::
outside

::::
this

::::::
dataset

::
all

:::::::
missing

::::
data

:::::::::
grid-cells

:::
(i.e.

:::::
over

:::::
ocean

::::
and

:::::
land)

::::
have

::
25

:::::
meter

::::::
value;

::::
field

::::::::::
aggregation

::
to
::

a
:::::::
coarser

::::::::
resolution

::
is

::::
done

::
by

:::::::::
averaging.

:::::::::::::
Overestimation

::
of

::::
lake

:::::
depth

::
in
:::::::
summer 60

:::::
season

::::
can

:::::
result

::
in

::::::
strong

::::
cold

:::::
biases

::::
and

::
in

:::::
winter

::::::
season

:
–
::::
lack

::
of

::::
ice

:::::::::
formation.

::
To

::::::::
generate

::::
V20

::::
lake

:::::
mean

:::::
depth

::
an

:::::::
updated

::::::
version

:::::::::
GLDBv3

::::::::::::::::::
(Choulga et al., 2014)

::
is

::::
used.

:::::::
GLDBv3

::::
has

:::
the

:::::
same

:::::::::
resolution

:::
of

::::::
∼1km,

::::
but

::
is

:::::
based

::
on

:::
an

::::::::
increased

:::::::
number

:::::::
(∼1500)

:::
of

::::
lakes

:::::
with

::
in

:::
situ

::::
lake 65

::::
depth

:::::::::::
information

:::
(in

:::::::
addition

:::
to

::::::::::
bathymetry

::::::::::
information

:::
over

:::
all

:::::::
Finnish

:::::::::
navigable

::::::
lakes),

::
it

:::::::::
introduces

:::::::::
distinction

:::::::
between

:::::::::
freshwater

::::
and

::::::
saline

:::::
lakes

:::::
(this

::::::::::
information

::
is

:::::::
currently

::::
not

::::
used

:::
by

:::::::
FLake),

:::
and

::::::::
suggests

:::
the

:::::::
method

::
to

:::::
assess

:::
the

:::::
depth

:::
for

:::::
lakes

::::::
without

::
in

::::
situ

::::::::::
observations

:::::
using 70

::::::::
geological

::::
and

::::::
climate

::::
type

::::::::::
information;

::::
field

::::::::::
aggregation

::
to

:
a
::::::
coarser

:::::::::
resolution

:
is
:::::
done

::
by

:::::::::
computing

:::
the

::::
most

::::::::
occurring

:::::
value.

::::::::::
Verification

:::
of

::::::::
GLDBv1

::::
and

::::::::
GLDBv3

::::
lake

::::::
depths

::::::
against

:::
353

:::::::
Finnish

:::
lake

::::::::::::
measurements

::::::
shows

:::
that

::::::::
GLDBv3

::::::
exhibits

::
a
:::
52

::
%

::::
bias

:::::::::
reduction

::
in

:::::
mean

::::
lake

::::::
depth

:::::
values 75

::::::::
compared

::
to

::::::::
GLDBv1

:::::::::::::::::::
(Choulga et al., 2019).

::::
For

:
a
::::::
further

:::::
details

:::
on

::::
lake

::::::::::
distribution

:::
and

::::::
depth,

:::
the

::::::::::::
representation

::
of

::::
lakes

:::
by

::::::::
ECMWF

::
in

:::::::
general

:::
see

::::::::::::::::::
Choulga et al. (2019)

:::
and

::::::::::::::::::
Boussetta et al. (2021).

:

80

::
To

:::::::
expand

:::::
V15

::::
and

::::
V20

:::::
lake

::::::::::
description

:::
(to

::::::
V15X

:::
and

::::::
V20X

:::::::::::
respectively)

::::
their

:::::::
salinity

::::
and

::::
time

:::::::::
variability

:::::::::
information

::::
was

::::::::::
generated.

:::::
Even

::::::
though

:::::
static

:::::::::
permanent

::::
water

::::
fits

:::::
better

:::
to

::::::::
describe

::::::
inland

:::::
water

::::::::::
distribution

:::
on

::::::
average

:::
all

::::
year

::::::
round,

:::::
some

:::::
areas

:::
(in

:::::::
Tropics

:::::::::
especially) 85

::::
could

:::::::
benefit

::::
from

::::::
having

::::::::
monthly

:::::::
varying

::::::::::
information

::
as

:::
they

:::::
have

:
a
::::
very

::::::
strong

:::::::
seasonal

:::::
cycle,

:::::
when

::::
size,

:::::
shape

:::
and

::::
depth

:::
of

:
a
::::
lake

:::::::
changes

::::
over

:::
the

::::::
course

::
of

:::
the

:::::
year,

::::::
leading

::
to

:
a
::::::::::

significant
::::::
change

::
in
:::::::::

modelling
::::

the
::::
lake

::::::::::
temperature

:::::::
response.

:::::::::
Similarly,

:::::
saline

:::::
lakes

:::::::
behave

::::
very

:::::::::
differently

::
to 90

::::
fresh

:::::
water

:::::
lakes

:::::
since

::::::::
increased

::::
salt

::::::::::::
concentrations

:::::
affect

::
the

:::::::
density,

:::::::
specific

::::
heat

:::::::
capacity,

:::::::
thermal

:::::::::::
conductivity,

:::
and

:::::::
turbidity,

:::
as

::::
well

:::
as

::::::::::
evaporation

:::::
rates,

::::
ice

:::::::::
formation

:::
and

::::::::
ultimately

:::
the

:::::::
surface

::::::::::
temperature.

::::::
These

:::
two

:::::::::
properties

::
of

::::
time

::::::::
variability

::::
and

::::::
salinity

::::
are

::::
often

:::::::
related;

::
it

::
is

:::::::
common 95

::
for

::::::
saline

:::::
lakes

:::
to

:::
fill

::::
and

::::
dry

::::
out

:::::
over

:::
the

:::::::
course

::
of

::
the

:::::::
season,

::::::
which

::::::::
naturally

::::
also

::::::
affects

:::
the

:::::::
relative

:::::
saline

:::::::::::
concentration

::
of

:::
the

::::
lake

:::::
itself.

:::
To

:::::
create

::
a

:::::::
monthly

::::::
varying

:::
lake

:::::
cover

::::
first

:::
12

:::::::
monthly

::::::::
fractional

::::::::
land-sea

:::::
masks

:::::
based

::
on

::::
JRC

::::::::
Monthly

::::::
Water

::::::
History

:::::
v1.3

:::::
maps

:::
for

:::::::::
2010-2020 100

::::
were

:::::::
created.

::::
Since

:::
the

::::::
annual

::::
lake

::::
maps

:::::
were

::::::
created

:::::
taking

:::
into

:::::::
account

:
a
:::
lot

::
of

::::::::
additional

:::::::
sources

:::
the

::::
extra

::::::::
condition

::
on

::
the

::::::::
monthly

::::
maps

::::
that

:::
the

:::::::
monthly

:::::
water

::
is
:::::
equal

::
or

::::::
greater

:::
than

::::::::::
permanent

:::::
water

::::::::::
distribution

::::
from

:::::::::
fractional

:::::::
land-sea

::::
mask

::
is
::::::::
enforced.

:::
To

::::::
create

::
an

::::::
inland

::::
salt

::::
lake

:::::
cover

::::
map, 105

::
the

::::::::
GLDBv3

::::
salt

:::
lake

:::
list

::::
was

::::
used.

:::::
First,

::
in

:::::
order

::
to

::::::
identify

:::::::
separate

:::::
lakes

::
on

:::
∼

::::
1km

:::::::::
resolution

::::
lake

::::::
cover

:::
(by

:::::
“lake

:::::
cover"

:::
we

:::::
refer

:::
the

::::::::
maximum

::::
lake

::::::::::
distribution

:::::
based

:::
on

::
12

:::::::::::::
monthly-varying

::::
lake

:::::::
covers),

:::::
small

:::::::
sub-grid

:::::
lakes

:::
and

::::
large

:::
lake

::::::
coasts

::
are

:::::::
masked,

:::
i.e.

::::::::
grid-cells

::::
that

::::
have

:::::
water

::::::
fraction 110
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::::
Field

:::::::
category

:::
V15

::::::
(initial)

:::
V20

:::::::
(updated)

:

::::::::
Orographic

:

:::::::
SRTM30

::::::
Shuttle

::::::
Radar

::::::::::
Topography

::::::::
Mission

::::
over

::::::::
60°N-60°S;

:::::::::
GLOBE:

::::::
Global

::::::
Land

:::::::
One-km

:::::
Base

:::::::
Elevation

:::::::
Project

:::::
data

:::::
over

:::::::::
90-60°N;

::::::::
RAMP2:

:::::::::::
high-resolution

::::::::
Radarsat

::::::::
Antarctic

::::::::
Mapping

::::::
Project

:::::
Digital

:::::::
Elevation

::::::
Model

:::::
version

::
2
:::
data

:::::::::::::
(Liu et al., 2015)

:::
over

:::::::
60-90°S;

::::::
BPRC:

::::
Byrd

:::::
Polar

:::::::
Research

::::::
Center

:::
over

::::::::
Greenland;

::
IS

::::
50V:

:::::
Digital

::::
Map

:::::::
Database

::
of

::::::
Iceland

:::
over

:::::
Iceland

:

::
As

::::
V15,

::::
with

::::::::
corrections

::
of

::::::::
erroneous

:::
shift

:

::::
Land

:::
glm:

::::::
GLCC:

::::::
Global

::::::
Land

::::::
Cover

::::::::::::
Characteristics

:::::
version

:::
2.0

:::::
over

::::::::
90°N-90°S

::::::
except

:::::::
Iceland;

:::::::
Icelandic

:::::::::::
Meteorological

:::::
Office

::::::
(IMO)

::::::
glacier

:::::
mask

::::
2013

::::
over

:::::
Iceland

:

:::
lsm:

:::::::::::
GlobCover2009

::::::::::::::::::::::::::::::::
(Bontemps et al., 2011; Arino et al., 2012)

:::
over

::::::::::
85°N-60°S;

::::::::
RAMP2:

:::::::::::::
high-resolution

:::::::
Radarsat

:::::::
Antarctic

::::::::
Mapping

::::::
Project

::::::
Digital

::::::::
Elevation

::::::
Model

:::::
version

::
2
::::
data

:::::::::::::
(Liu et al., 2015)

:::
over

::::::::
60-90°S;

::
no

::::
land

::::::
assumed

::::
over

::::::
90-85°N

:

:::
glm:

:::::::
Norwegian

:::::::
Institute

::::::
glacier

::::
data

:::::
over

:::::::
Svalbard;

:::::::
Icelandic

::::::::::::
Meteorological

:::::
Office

::::::
(IMO)

::::::
glacier

:::::
mask

::::
2017

::::
over

:::::::
Iceland;

::::::
GIMP:

:::::::::
Greenland

::::
Ice

:::::::
Mapping

:::::
Project

::::::
data

:::::::::::::::::
(Howat et al., 2014)

:::
over

::::::::::
Greenland;

:::::::
CryoSat-2

::::::::
satellite

::::::
glacier

:::::
data

:::::::::::::::
(Slater et al., 2018)

:::
over

:::::::::
Antarctica

:::
(+
:::::::

manual
:::::

gap
:::::::

filling);
:::::::

GLIMS:

:::::
Global

:::::
Land

::::
Ice

::::::::::::
Measurements

:::::
from

::::::
Space

::::
data

:::::::::::::::::::::::::::::::
(GLIMS and NSIDC, 2005, updated 2018)

:::
over

::::
rest

:::
of

::
the

:::::
globe

:::
lsm:

:::::
GSWE:

:::::::
Global

::::::::
Surface

:::::::
Water

::::::::
Explorer

::::::::::::::
(Pekel et al., 2016);

:::
glm

:

::::
Water

: ::
cl:

:::
lsm

:::::
(ocean

::
is

:::::::
separated

::
at

:::::
actual

:::::::
resolution

::
by

::::::
seeding

:::
and

::::::::
removing

:::
all

::::::::
connected

:::::::::
grid-cells,

:::::::
includes

:::
the

::::::
Caspian

:::
Sea,

:::
the

::::
Azov

::::
Sea,

:::
The

::::::::
American

::::
Great

:::::
Lakes)

:

::
dl:

:::
The

::::::
Caspian

::::
Sea

:::::::::
bathymetry;

::::::
Global

:::::
Relief

:::::
Model

:::::::
ETOPO1

::::::::::::::::::::::
(Amante and Eakins, 2009)

:::
over

::::
the

:::::
Great

:::::
Lakes,

:::
the

:::::
Azov

::::
Sea;

::::::
GLDB:

::::::
Global

:::::
Lake

:::::::
DataBase

:::::
version

::
1

:::::::::::::::::::
(Kourzeneva et al., 2012)

:::
over

:::
rest

::
of

::
the

:::::
globe;

::
25

:::::
meters

:::::::
assumed

:::
over

::::::
missing

::::
data

:::::::
grid-cells

::
cl:

:::
lsm

:::::
(ocean

::
is

:::::::
separated

:
at
::::

1km
::::::::
resolution

::
by

:::::::
upgraded

::::::
flooding

:::::::
algorithm

::::::::
following

::::::::::::::::
Choulga et al. (2019)

::
dl:

::::::
GEBCO:

::::::::
General

::::::::::
Bathymetric

::::::
Charts

::::
of

:::
the

:::::
Ocean

:::::::::::::::::::
(Weatherall et al., 2015)

:::
over

:::
the

:::::::
Caspian

::::
Sea

:::
and

:::
the

:::::
Azov

:::::
Sea;

::::::
Global

:::::
Relief

::::::
Model

::::::::
ETOPO1

::::::::::::::::::::
(Amante and Eakins, 2009)

:::
over

:::
the

::::
Great

::::::
Lakes;

:::::
GLDB:

:::::
Global

::::
Lake

::::::::
DataBase

::::::
version

:
3
:::::::::::::::::

(Choulga et al., 2014)

:::
over

::::
rest

:::
of

:::
the

::::::
globe;

::::::
indirect

::::::::
estimates

:::::
based

:::
on

:::::::
geological

::::::
origin

:::
of

:::::
lakes

:::::::::::::::::
(Choulga et al., 2014)

:::
over

::::::
missing

:::
data

:::::::
grid-cells

:

::::::::
Vegetation

:::::
GLCC:

::::::
Global

::::
Land

:::::
Cover

::::::::::::
Characteristics

::::::
version

:::
1.2.

:::
Note

::::
that

::::::::
vegetation

::::
type

:::::::
represent

::::
only

::::::::
dominant

:::
type

:::
over

:::::::
grid-cell

::
As

::::
V15

:::
Soil

:

::::::
DSMW:

::::::::::::
FAO/UNESCO

::::::
Digital

:::
Soil

::::
Map

:::
of

::
the

:::::
world

:::::::::
(FAO, 2003)

:
.
:::
Note

::::
that

:::
soil

:::
type

:::::::
represent

::::
only

:::::::
dominant

:::
type

::::
over

::::::
grid-cell

:

::
As

::::
V15

:::::
Albedo

:

::::::
MODIS

:::::::
5-year

:::::::::::
climatology

:::::::::::::::::
(Schaaf et al., 2002);

::::::::::::::::::::::
RossThickLiSparseReciprocal

::::::
BRDF

:::::
model.

:::::
Note

:::
that

:::::
Albedo

:::::
values

:::::::
represent

:::::
snow

:::
free

:::::
surface

::::::
albedo

::
As

::::
V15

Table 2.
:::
List

::
of

::::
input

::::::
datasets

:::
for

:::
the

:::::
surface

:::::::::::
physiographic

::::
fields

:::
for

:::
V15

:::
and

::::
V20

:::
field

::::
sets.

:::::
V15X

:::
and

:::::
V20X

::
are

:::::::
identical

::
to

:::
V15

:::
and

::::
V20

:::::::::
respectively,

:::
but

:::
with

:::
the

::::::
addition

::
of

:::::
saline

:::
lake

:::::
cover,

:::
and

:::::::
monthly

::::::
varying

:::
lake

::::
cover

:::::
fields.

:
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:::
less

::::
than

:::::
0.25.

::::
Next,

:::::::
number

::
of

:::::::::
connected

::::::::
grid-cells

::
in

::::
each

:::
lake

::::
(i.e.

::::::::::
connected

::::
with

:::::
sides

:::::
only)

:::
is

:::::::::
computed.

:::::
Then

::::
only

::::
lakes

::::
that

::::
have

::::
100

::::
and

::::
more

:::::::::
connected

::::::::
grid-cells

:::
are

:::::::::
vectorised,

::
as

::
at
::::::
ERA5

:::::::::
resolution

::
of

:::::::
∼31km

:::
the

::::::::
grid-cells

::
are

:::::
quite

:::::
large

::::
and

::::
can

:::::::
include

::
a
:::::::

mixture
:::

of
:::::::::
freshwater5

:::
and

::::::
saline

:::::
lakes.

:::::::
Finally,

::::::
saline

::::
lake

:::::::
vectors

:::
are

:::::::
selected

::
by

:::::::
filtering

:::::::
vectors

::::::
which

::::
have

:::
no

:::::
saline

:::::
lake

:::::
point

::::
from

:::::::
GLDBv3

:::::::
located

:
–
::
in

::::
total

::::
147

::::
large

:::
salt

::::
lake

:::::::
vectors,

:::::
which

::::
were

::::::
further

::::
used

::
to

::::
filter

:::::::::
non-saline

:::::
lakes

:
at
:::::

1km
::::::::
resolution

:::
lake

::::::
cover,

::::::
finally

::::::::::
aggregated

::
to

::::::
31km

::::::::::
resolution.

::
In

:::
the10

:::::
future

:
it
::

is
:::::::

planned
:::
to

:::::
revisit

::::
this

::::
field

:::
and

::::::
extend

:::
the

:::
list

::
to

::::::
include

::::::::
additional

:::::
data.

::::
Note

:::
that

:::
all

:::::::
non-lake

::::::
related

::::::
climate

::::
fields

:::::
such

::
as

:::::::::
vegetation

:::::
cover

:::
or

:::::::::
orography

::::
were

:::::::
updated

::
in

::::
V20

::::
field

:::
set

:::::::::
compared

:::
to

::::
V15

::::
only

:::
in

:::::::
relation

::
to

:::
the

:::::::
changing

::::
lake

:::::
fields

::::
(i.e.

::
if
:::::::
fraction

::
of

::::
lake

:::
in

:::
the

::::
grid

:::
cell15

::::::::
increased

::::
then

::::
other

::::::::
fractions

:::
like

:::::::::
vegetation

::
or

::::
bare

::::::
ground

:::::
should

:::::
have

::::::::
increased

:::::::::::
accordingly).

2.2.2 ERA5

Climate reanalyses combine observations and mod-
elling to provide calculated values of a range of cli-20

mactic variables over time. ERA5 is the fifth gen-
eration reanalysis from ECMWF. It is produced
via 4D-Var data assimilation of the atmospheric
Integrated Forecast system

:::
IFS

:
cycle 41R2, coupled to

a land-surface model (ECLand, Boussetta et al., 2021)25

::::::::::::::::::::::::::
(ECLand, Boussetta et al., 2021)

:
,
:::::::

which
:::::::::

includes
:::::

lake

:::::::::::::
parametrization

:::
by

::::::
FLake

:::::::::::::::
(Mironov, 2008) and an ocean

wave model (WAM). The resulting data product provides
hourly values of climatic variables across the atmosphere,
land and ocean at a resolution of approximately 31km30

with 137 vertical sigma levels, up to a height of 80km.
Additionally, ERA5 provides associated uncertainties of the
variables at a reduced 63km resolution via a 10-member
Ensemble of Data Assimilations (EDA). We take

::
In

:::
this

::::
work

:
ERA5 surface fields on an hourly grain on

:::::
hourly35

::::::
surface

:::::
fields

::
at

::
∼

:::::
31km

:::::::::
resolution

:::
on a reduced Gaussian

grid , with a highest resolution of ∼ 31km. Whilst
:::
are

::::
used.

:::::::
Gaussian

:::::
grid’s

:::::::
spacing

:::::::
between

:::::::
latitude

::::
lines

::
is

:::
not

::::::
regular,

:::
but

::::
lines

::::
are

::::::::::
symmetrical

::::::
along

:::
the

::::::::
Equator;

:::
the

:::::::
number

::
of

:::::
points

::::::
along

::::
each

:::::::
latitude

::::
line

:::::::
defines

::::::::
longitude

:::::
lines,40

:::::
which

::::
start

:::
at

::::::::
longitude

::
0
::::

and
::::

are
::::::
equally

:::::::
spaced

:::::
along

::
the

:::::::
latitude

:::::
line.

::
In

::
a
:::::::
reduced

::::::::
Gaussian

:::::
grid,

:::
the

:::::::
number

::
of

:::::
points

:::
on

:::::
each

:::::::
latitude

:::
line

:::
is

::::::
chosen

:::
so

:::
that

::::
the

::::
local

:::::::
east-west

:::::
grid

::::::
length

:::::::
remains

::::::::::::
approximately

::::::::
constant

:::
for

::
all

::::::::
latitudes

:::::
(here

::::::::
Gaussian

::::
grid

::
is

::::::
N320,

::::::
where

::
N

::
is

:::
the45

::::::
number

:::
of

::::::
latitude

:::::
lines

:::::::
between

::
a
::::
Pole

::::
and

:::
the

::::::::
Equator).

:::
The

:::::
main

:::::
field

:::::
used

:::::
from

:
ERA5 has extensive vertical

coverage across 37 pressure levels, for our purposes we
will deal solely with surface fields. The

:
is
::::
skin

::::::::::
temperature

:::
(i.e.

::::::::::
temperature

:::
of

:::
the

:::::::::
uppermost

::::::
surface

:::::
layer,

::::::
which

:::
has50

::
no

::::
heat

::::::::
capacity

:::
and

::::::::::::::
instantaneously

::::::::
responds

::
to

:::::::
changes

::
in

::::::
surface

:::::::
fluxes)

::::
that

::::::
forms

::::
the

::::::::
interface

::::::::
between

:::
the

:::
soil

::::
and

:::
the

::::::::::
atmosphere.

:::::
Skin

::::::::::
temperature

::
is
::

a
:::::::::
theoretical

(a)

(b)

Figure 1.
::
At

::
∼
:::::
31km

::::::::
resolution

::
(a)

::::
V20

:::::::
fractional

::::
lake

::::
cover

:::
and

::
(b)

::::::::
difference

:::::::
between

::::
V20

:::
and

::::
V15

:::
lake

::::::
covers.

:::::
Over

::::::
northern

::::::
latitudes

:::::
inland

:::::
water

:::::::
increase

::
in

::::
V20

::::::::
compared

::
to

::::
V15

::
is

:::
due

:
to
::::::

higher
::::::::
resolution

:::::
input

:::::
source

::::
and

::
its

::::::
better

::::::
satellite

:::::
image

::::::::
recognition

:::::::::::
methodologies

:::
as

:::
well

:::
as

::::::
thawing

:::::::::
permafrost;

:::::
inland

::::
water

:::::::
reduction

::
in
::::

V20
::::::::
compared

::
to

:::
V15

::
is
:::
due

::
to
:::::::::::

anthropogenic

:::
land

:::
use

:::::::
changes

:::
(e.g.

::::
Aral

::::
Sea)

::
or

:::
due

::
to
:::
use

::
of
::::

only
::::::::
permanent

::::
water

::::
(e.g.

::::::::
Australia)

:::::
which

:::
was

:::::
proven

::
to
:::::

better
:::::::
represent

:::::
inland

::::
water

:::::::::
distribution

::
on

:::::
annual

:::::
basis.
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(a)

(b)

Figure 2.
::
At

::
∼

:::::
31km

:::::::
resolution

:::
(a)

:::
V15

::::
lake

::::
mean

::::
depth

::
in

:::::
meters

:::
and

:::
(b)

::::::::
difference

::::::
between

::::
V20

::::
and

::::
V15

:::
lake

:::::
mean

::::::
depths.

::
In

:::::
general

::::
lake

::::
mean

::::
depth

:::
has

:::::::
decreased

::
in
::::
V20

:::::::
compared

::
to

:::
V15

:::
due

:
to
:::
the

:::
use

::
of

::::
mean

:::::
depth

::::::
indirect

:::::::
estimates

::::
based

::
on

::::::::
geological

:::
and

:::::
climate

::::::::::
information,

::::::
instead

::
of

:::::
default

:::
25

:::::
meter

::::
value

::::
over

::::
lakes

::::::
without

:::
any

:::::::::
information.

::::::::::
temperature

:::::::::
computed

:::
by

:::::::::
linearizing

::::
the

:::::::
surface

::::::
energy

::::::
balance

::::::::
equation

:::
for

:::::
each

::::::
surface

:::::
type

:::::::::
separately,

::::
and

::
its

:::::::
feedback

:::
on

:::
net

::::::::
radiation

:::
and

:::::::
ground

::::
heat

:::
flux

::
is
::::::::
included;

::
for

::::::
more

:::::::::::
information

::::
see

::::
IFS

::::::::::::::
Documentation

:::::::
(2021).

:::::
ERA5

::::
skin

:::::::::::
temperature

::::::::::
verification

::::::
against

::::::::
MODIS

::::
LST5

::::::::
ensemble

::::
(i.e.

:::
all

::::
four

::::::::
MODIS

:::::::::::
observations

:::::
were

:::::
used,

::::::
namely

:::::
Aqua

::::
Day

::::
and

::::::
Night,

:::::
Terra

::::
Day

::::
and

::::::
Night)

::::
over

:::::::::
2003-2018

::::::
period

:::::::
showed

:::::
good

::::::::::
correlation

:::::::
between

::::
two

:::::::
datasets;

:::::
errors

::::::::
between

:::::
ERA5

::::
and

:::::::
MODIS

::::
LST

::::::::
ensemble

::
are

:::::
quite

:::::
small,

:::
i.e.

::::::::
spatially

:::
and

:::::::::
temporally

::::::::
averaged

::::
bias

:
is10

::::
1.64

::
K,

:::::::::
root-mean

::::::
square

::::
error

::::::::
(RMSE)

::
is

::::
3.96

::
K,

:::::::
Pearson

:::::::::
correlation

:::::::::
coefficient

:::
is

:::::
0.94,

::::
and

::::::::
anomaly

::::::::::
correlation

::::::::
coefficient

::
is
::::
0.75

:::::::::::::::::::::::::
(Muñoz Sabater et al., 2021b).

::::::
ERA5

:::
skin

::::::::::
temperature

::::::::::
verification

:::::::
against

:::
the

::::::::
Satellite

::::::::::
Application

::::::
Facility

:::
on

::::::
Land

:::::::
Surface

::::::::
Analysis

:::::::::::
(LSA-SAF)

:::::::
product15

:::
over

:::::::
Iberian

:::::::::
Peninsula

:::::::
showed

::
a
:::::::
general

:::::::::::::
underestimation

::
of

:::::::
daytime

::::
LST

::::
and

:::::::
slightly

::::::::::::
overestimation

:::
at

:::::::::
night-time,

::::::
relating

:::
the

:::::
large

:::::::
daytime

:::::
cold

::::
bias

::::
with

:::::::::
vegetation

:::::
cover

:::::::::
differences

:::::::
between

::::::
ERA5

::::::
surface

::::::::::::
physiography

:::::
fields

:::
and

::
the

:::::::::
European

::::::
Space

:::::::::
Agency’s

:::::::
Climate

:::::::
Change

::::::::
Initiative 20

:::::::::
(ESA-CCI)

::::::
Land

::::::
Cover

:::::::
dataset;

::::
use

:::
of

:::::::::
ESA-CCI

::::
low

:::
and

::::
high

::::::::::
vegetation

:::::
cover

:::::::
instead

:::
of

::::::
ERA5

::::
ones

::::
led

::
to

:
a
::::::::
complete

:::::::::
reduction

::
of

::::
the

:::::
large

:::::::::
maximum

::::::::::
temperature

:::
bias

::::::::
during

::::::::
summer

::::::::::::::::::::::
(Johannsen et al., 2019).

:::::::
ERA5

data is obtained via the Copernicus Climate Data Store 25

(CDS, Munoz Sabater, 2019)
::::::::::::::::::::::::
(CDS; Munoz Sabater, 2019).

2.2.3 Aqua-MODIS

AquaParkinson (2003)

::::
Aqua

::::::::::::::::
(Parkinson, 2003) is a NASA satellite mission which

makes up part of the Earth Observing System (EOS). Oper- 30

ating at an altitude of 700 km
::::::
700km, with orbital period of

99 minutes, its orbital trajectory passes south to north with
an equatorial-crossing times in general of 13.30

::::::
1.30pm. This

post-meridian crossing time has led to it sometimes being
denoted as EOS PM. Launched in 2002 with an initial ex- 35

pected mission duration of 6 years, Aqua has far exceeded
its initial brief and continues to transmit

::::
until

:::::::
recently

:::
has

::::
been

::::::::::
transmitting information from 4 of the 6 observation in-

struments on board. In this work we will concern ourselves
with only one of these instruments: MODIS

::::
Here

:::
we

:::
use 40

:::::::::
information

::::
only

:::::
from

:::::::
MODIS

:::::::::
instrument. MODIS can take

surface temperature measurements at a spatial resolution of
1km

:::
(the

:::::
exact

::::
grid

::::
size

::
is
::::::::

0.928km
:::
by

::::::::
0.928km), operat-

ing in the wavelength ranges of between ∼ 3.7− 4.5µm and
∼ 10.9− 12.3µm

::::::::::
∼3.7-4.5µm

::::
and

:::::::::::::
∼10.9-12.3µm. In addi- 45

tion to surface temperature measurements
:::
that

:::::
were

::::
used

::
in

:::
this

:::::
work, MODIS can take observations of cloud proper-

ties, water vapour, ozoneetc., however for this work we will
focus exclusively on the surface temperature measurements.
We take

:
,
::::
etc.

:::::
Here

:
MYD11A1 v006 Wan et al. as our 50

MODIS data product throughout this work which provides
daily Land Surface Temperature (LST )

::::::::::::::
(Wan et al., 2015)

::::::::
collection

::::
that

:::::::
provides

:::::
daily

::::
LST

:
measurements at a spa-

tial resolution of 1km on a sinusoidal projection grid SR-
ORG:6974 , which

:
(takes a spherical projection ellipsoid 55

but a WGS84 datum ellipsoid. For our purposes, daily
information over several years is needed, so to

:
)
::
is

::::::::
exercised.

::::
Daily

:::::::
global

::::
LST

:::::
data

::
is

:::::::::
generated

:::
by

::::
first

::::::::
applying

::
a

:::::::::::
split-window

::::
LST

::::::::
algorithm

:::::::::::::::::::::
(Wan and Dozier, 1996)

::
on

::
all

:::::::
nominal

::::
(i.e.

::::
1km

::
at
::::::

nadir)
:::::::::
resolution

:::::
swath

:::::::
(scene)

::::
with 60

:
a
:::::::
nominal

::::::::
coverage

:::
of

::
5
:::::::
minutes

:::
of

:::::::
MODIS

:::::
scans

:::::
along

::
the

:::::
track

::::::::
acquired

:::
in

::::::::
daytime,

:::
and

::::::::
secondly

:::
by

::::::::
mapping

:::::
results

:::::
onto

::::::::::
integerized

::::::::::
sinusoidal

:::::::::
projection;

::::
for

:::::
more

:::::
details

:::
see

:::::::::::::::
Wan et al. (2015)

:::
and

::::::
Figure

::
3.

:::::::::
Validation

::
of

:::
this

::::::
product

::::
was

:::::::
carried

:::
out

::::::
using

:::::::::::::::
temperature-based

:::::::
method 65

:::
over

::::::::
different

::::
land

:::::
cover

:::::
types

:::::
(e.g.

:::::::::
grasslands,

:::::::::
croplands,

:::::::::
shrublands,

::::::
woody

:::::
areas,

::::
etc.)

:::
in

::::::
several

::::::
regions

::::::
around

:::
the

::::
globe

:::::
(i.e.

::::::
United

::::::
States,

:::::::::
Portugal,

::::::::
Namibia,

::::
and

::::::
China)
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(a)

Figure 3.
::
A

:::
brief

::::::::::
step-by-step

::::::::
explanation

::
of

:::
the

:::
LST

::::::::
algorithm

::
for

::::::::
MYD11A1

::::
v006

::::::::
collection.

:
at
::::::::

different
::::::::::
atmospheric

::::::
and/or

:::::::
surface

:::::::::
conditions;

:::
the

::::
best

:::::::
accuracy

::
is
::::::::

achieved
::::
over

:::::::
United

:::::
States

:::::
sites

::::
with

::::::
RMSE

:::::
lower

::::
than

:::::
1.3K

::::::::::::::::
(Duan et al., 2019).

:::
At

:::::
large

::::
view

::::::
angles

:::
and

::
in

::::::::
semi-arid

:::::::
regions

:::
the

::::
data

::::::
product

::::
may

:::::
have

::::::
slightly

:::::
higher

::::::
errors

::::
due

::
to
::::::

rather
:::::::::

uncertain
::::::::::::::::
classification-based5

::::::
surface

::::::::::
emissivities

::::
and

::::::
heavy

:::::
dust

::::::::
aerosols

:::::::
effects.

::
In

:::::::
addition,

:::
the

:::::::
MODIS

:::::
cloud

:::::
mask

::::::::
struggles

:::
to

::::::::
eliminate

::
all

::::
cloud

::::::
and/or

:::::
heavy

:::::::
aerosols

:::::::::::
contaminated

::::::::
grid-cells

:::::
from

::
the

:::::::
clear-sky

:::::
ones

::::
(LST

::::::
errors

::
in

::::
such

:::::::::
grid-cells

:::
can

:::
be

:::::
4-11K

:::
and

::::::
larger).

:::::::::
Validation

::
of

::::
this

:::::::
product

::::
over

:::
five

::::
bare

::::::
ground10

::::
sites

::
in

:::::
north

::::::
Africa

:::
(in

::::
total

:::
12

::::::::::::::
radiosonde-based

:::::::
datasets

::::::::
validated)

:::::::
showed

:::
that

::::::
mean

::::
LST

::::
error

::::
was

::::::
within

::::::
±0.6K

::::
(with

:::::::::
exception

::
for

::::
one

:::::::
dataset,

:::::
where

:::::
mean

::::
LST

:::::
error

:::
was

:::::
0.8K)

:::
and

::::::::
standard

::::::::
deviation

::
of

::::
LST

::::::
errors

::::
were

::::
less

::::
than

::::
0.5K

::::::::::::::::
(Duan et al., 2019).

::
In

::::
this

:::::
work

::
to reduce the amount15

of data
::::
daily

::::
data

:::
over

:::::::
multiple

:::::
years to store and manipulate,

this data product is then
::::
prior

:::
use

:::::
LST

:::
data

::
is
:::

(i)
:
filtered to

contain only cloud free dataand ,
::::
and

:::
(ii) averaged to a 4 km

::::
4km

::
at

:::
the

::::::
Equator

:
resolution on a regular latitude-longitude

grid, EPSG4326. Only
::::
:4326

:::::
(note

:::
that

::::
only

:
grid cells which20

have 8 or more valid observations at 1km resolution are av-
eraged over, otherwise they are classified as missing data).

2.3 Joining the data

For a given hour in time we have a selection of
::
To

::::
join

::::::
selected

:
ERA5 data that covers the entire globe at a “low" (31 25

km) resolution
:::::
global

:::::
fields

:
on a reduced Gaussian grid and

a strip of MODIS data at “high" (4km) resolution
:
at
::
∼

:::::
31km

::::::::
resolution

:::::::::::
(information

::
in

::::::
UTC,

::
24

:::::::
hourly

:::::
maps

:::
per

::::
day)

::::
with

::::::::::::
Aqua-MODIS

:::::
global

:::::
LST

::::
data

:
on a regular grid. We

want to be able to join these two datasets in both space and 30

time. That is to say, given a location on the Earth’s surface
at a particular point in time, what is the observed MODIS
LST and the values of corresponding ERA fields? This step
is key if we then want to train a model to learn the mapping
between ERA5 and MODIS. 35

In order to proceed it is first
::::::::::::::
latitude-longitude

::::
grid

::
at

::::
4km

::::::::
resolution

:::::::::::
(information

::
in

::::
local

:::::
solar

:::::
time,

:
1
::::

map
::::

per
::::
day),

::::
both

:::::::
datasets

::::
need

::
to
:::

be
::
at

:::
the

:::::
same

::::
time

::::::
space.

::::
First

::
it
::

is
necessary to determine the absolute time (i.e. UTC) at which
the MODIS observations were taken. Since

::
in

:::::::
general all 40

Aqua observations are taken at a
::::::
1.30pm

:
local solar timeof

13.30, we can relate this straightforwardly ,
::
it

:::
can

::
be

::::::
related

to a UTC via the longitudeof observations as,
:::::::::
observation

::::::::
longitude,

::::::::
following

::::
Eq.

::
1:

UTC = Local solar time− longitude
15

, (1) 45

where the
:::::::
longitude

:::
is

::
in

:::::::
degrees,

::::
and

:
UTC is rounded to

the nearest hour. Naturally, this
:::
This

:
conversion is inexact

since there is an additional correction as a function of the
latitude, but we follow

::
yet

::::::::::::
recommended

:::
by

:
the official

MODIS Products User’s Guide Wan et al. (2015) which 50

recommends converting between longitude and UTC in
this way

::::::::::::::
(Wan et al., 2015); given the short orbital period of

Aqua these
::::::::
additional higher order corrections are expected

to be typically small . We have also confirmed the accuracy
of this

:::
and

::::
for

:::
our

::::::::
purposes

::::
can

:::
be

:::::::::
neglected.

:::::
Also,

:::
the 55

assumption that all Aqua observations are taken at a
::::::
1.30pm

local solar time of 13.30 (see Fig. ??
:::
was

:::::::
checked

::::
(see

:::::
Figure

:
4). The annually averaged mean difference

::::
time

::::::::
difference

:
at
:::::::

31km
:::::::::
resolution

::::
(i.e.

:::::
daily

::::::::::
differences

:::::::
between

:::::
local

::::
solar

::::
time

:::
of

:::::::::::
observations

::::
and

:::::::
1.30pm

::
at

::::
1km

:::::::::
resolution 60

::::
were

::::
first

:::::::::
aggregated

:::
to

:::::
31km

:::::::::
resolution

:::::
using

:::::::::
averaging,

:::
and

::::
then

:::::::::
aggregated

::
in

::::
time

::::
over

::
a
::::
year)

:
is 0.16 or

::::
hours

::
or

10 min (MAEis
:::::::
minutes,

::::
with

:::::
mean

:::::::
absolute

:::::
error

::::::
(MAE)

::::
being

:
0.46 or

::::
hours

:::
or

:
28 min, RMSE is

::::::
minutes

::::
and

:::::
RMSE

::::::
being

:
0.61 or

:::::
hours

::
or

:
37 min

::::::
minutes

:::::::
(current 65

:::::
values

:::::::::
correspond

::::::::
70N-70S

::::::
region

::::
year

:::::
2019,

:::
but

::::::::
confirmed

::
to

::
be

:::::::::::::
approximately

:::::::
identical

::::
for

::::
each

::::
year

:::
of

:::::::::
2016-2019

:::::
period). Since the ERA5 data has a temporal resolution of
an hour, this level of accuracy is sufficient. The conversion
generally

:::::
ERA5

::::
data

::
is

::::::
hourly,

:::
the

:::::::::::
assumptions

:::::::
inherent

::
to 70

::
Eq

::
1
:::
are

::::::::::
sufficiently

:::::::
accurate.

:::::
Over

:::
the

:::::
poles

::::
(i.e.

:::::::
90-70°N

:::
and

::::::::
70-90°S)

:::::::
satellite

:::::::
sweeps

::::::
overlap

:::::::::::
significantly

::::
and

::
in

::::::
general

::::::::::
conversion

:
becomes less accurate as one moves

towards the poles; on a daily timescale differences at the
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poles
:::::
(daily

::::
time

::::::::::
differences can reach more than ±

:
±

:
3.5

hours, for this reason we restrict our analysisthroughout this
work to grid points with |θ|< 70◦

:
),

::
so

:::::
these

:::::
areas

::::
were

:::
not

:::::::
included

::
in

:::
the

:::::::
analysis.

5

Average (a) Local solar time of MODIS Aqua day, (b)
Error relative to the assumed local solar time of 13.30 for
the year 2019 at a 31km resolution. The errors are generally
sub-hr and grow at greater latitudes. We exclude data with
latitudes |θ|< 70◦ and take 13.30 as a constant local solar10

time.
Average error in the MODIS LST measurement at a

31km resolution. The raw MODIS data at a 1km resolution
provides categorical LST errors with bins ≤ 1K, 1− 2K
2− 3K and > 3K. When averaging to 31km resolution we15

compute a weighted average over the 1km grid cells, where
we take the median bin value, and 5K for the > 3K bin.
With the MODIS data converted to an hourly UTCit is then
straightforward to match this to the corresponding hour in
the ERA dataset. In order to then match in space we select20

an hour of data and do the following
::::
Once

::::::::::::
Aqua-MODIS

::::
time

::
of

:::::::::
observation

::
is
:::::::::
converted

::
to

:::::
UTC,

::::::::::::
Aqua-MODIS

:::
data

:
at
:::
∼

::::
4km

::::::::
resolution

::
is
::::::::
matched

::
in

::::
time

::::
and

:::::
space

::
to

:::::
ERA5

:::::::::
information

::
in
::

a
::::::::
following

::::
way:

1. Take a single MODIS
:::::::::::
Aqua-MODIS

:
LST observation25

at a particular point on the MODIS grid. ;
:

2.
:::::
Select

::::::::
ERA5

:::::::
global

::::::::
hourly

::::::
map

::::::::::
matching

:::::::::::
Aqua-MODIS

::::
LST

::::::::::
observation

::::
time

::
in
:::::
UTC;

:

3. Find the nearest point on the ERA5 grid to that MODIS
grid point. ;

:
30

4. Repeat for every MODIS observation
:::::::
previous

:::::
steps

::
for

::::
every

::::::::::::
Aqua-MODIS

:::::::::::
observation;

5. Group
::::::
matched

::::
data

:::::
pairs by the ERA5 grid points, av-

eraging over all the MODIS
::::::::::::
Aqua-MODIS observations

that are associated with each ERA5 point.35

The result
::
At

:::
the

:::
end

:
of this process is then for every set of

::::::
selected

:
ERA5 input fields at a particular point in space and

time , we have an empirical LST “observation " which is
an average over n MODIS observations (see e. g. Fig ??) .
We take this averaged observation as the ground truth

::::
fields40

::
are

::::::::
mapped

::
to

::
a

:::::
single

::::::::::::
Aqua-MODIS

:::::
time

::
of

::::::::::
observation

:::
and

:::::::::::::
Aqua-MODIS

:::::
LST

::::
data

:::
is

::::::::
mapped

::::
(i.e.

::::::::
multiple

:::::::::::
Aqua-MODIS

::::::::::::
observations

:::::
could

:::
be

:::::::::
averaged

:::::
over,

:::
see

:::::
Figure

:::
5a)

:::
to

:
a
:::::::
reduced

::::::::
Gaussian

::::
grid

::
at
::::::

31km
:::::::::
resolution;

:::::::
averaged

:::::::::::::
Aqua-MODIS

:::::::::::
observations

::::
are

::::::::::
considered

:::
as45

::::::
ground

::::
truth

::::
(i.e.

:::::::
targets

:
ythat we are

:
)
::::
that

::::::::
VESPER

::
is

trying to predict
:
.
:::
To

:::::
better

:::::::::
understand

::::::::::
VESPER’s

:::::::
grid-cell

:::::
results

:::
at

:::::::
31km

:::::::::
resolution

:::::::::
additional

:::::::::::
information

::::
was

::::::::
computed

:::::
from

:::::::::::::
Aqua-MODIS,

:::::::
namely

:::
(i)

:::::
total

:::::::
number

::
of

::::
valid

:::::::::::
observations

::::
per

::::::
month

:::
and

::::
year

::::
(see

:::::::
Figure

:::
5a),50

:::
and

:::
(ii)

:::::::
average

::::
LST

:::::
error

:::::
based

:::
on

::::::::::::
Aqua-MODIA

::::::
quality

Figure 4.
:::
The

:::::::
annually

::::::::
averaged

:::::
mean

:::::
time

:::::::::
difference

::
of

::::::::::
Aqua-MODIS

:::
and

:::::::
assumed

::::
local

::::
solar

::::
time

::
of

::::::
1.30pm

::
for

:::
the

:::
year

::::
2019

:
at
::::::

31km
::::::::
resolution.

::::
Time

::::::::
differences

:::
are

:::::::
generally

:::::::
sub-hour

:::
and

::::
grow

::
at

:::::
greater

:::::::
latitudes,

::
so

::::
data

:::
over

:::::::
90-70°N

:::
and

:::::::
70-90°S

:
is

:::::::
excluded.

:::::::::
assessment

::::
(i.e.

:::::::
quality

:::::
flag,

:::
see

:::::::
Figure

::::
5b).

::::::
Based

:::
on

:::
this

:::::::::
additional

::::::::::
information

::
it
::::
can

::
be

::::::::::
concluded

:::
that

:::::
areas

::::
with

:::::
sparse

:::::::
number

:::
of

:::::::::::
observations

::
in

:::::::
general

::::
have

:::::
more

:::::::
uncertain

:::::
LST

:::::::
values;

::::::::::
exceptions

:::
are

:::::::
Alaska

:::
in

::::::
United 55

:::::
States

:::
and

::::::::::
Anadyrsky

:::::::
District

::
in

::::::
Russia

::::
(area

::::
30°

::::
east

:::
and

::::
west

::::
from

::::::
180°E

::::::
around

:::::::::
70-60°N),

::::::
deserts

::
of

::::::::
Australia

:::
and

:::::::
Kalahari

::::::
desert

::
in

::::::::
Namibia,

:::::::::
Botswana

::::
and

::::::
South

::::::
Africa,

:::::
where

::::::::
majority

::
of

::::
vast

:::::::
number

:::
of

::::::::::
observations

:::::
have

::::
only

::::
good

::
or

:::::::
average

::::::
quality.

:
60

:::
For

::::
step

:::
(3)

:
in our regression model. Step 2 in the join-

ing pipeline uses
::::::
process,

:::
we

::::
use

:
a GPU-accelerated k-

nearest neighbours algorithm RAPIDS (v22.04.00), where
“nearness"

:::::::::
“nearness”

:::
on

:::
the

::::::
sphere

:::::::
between

::::
two

:::::
points

:
is 65

measured via the Haversine metric,
:
i.e. the geodesic distance

on the sphere between two points:
::
H ,

::::::::
following

::::
Eq.

::
2:

H = 2arcsin(d)


√
sin2

(
δθ

2

)
+cosθ1 cosθ2 sin

2

(
δϕ

2

)
::::::::::::::::::::::::::::::::


(2)

where

d=

√
sin2

(
δθ

2

)
+cosθ1 cosθ2 sin

2

(
δϕ

2

)
70

for two points with coordinate latitudes θ1,2, longitudes ϕ1,2

and δθ = θ2 − θ1 and δϕ= ϕ2 −ϕ1 .
Mean daily number of MODIS observations mapped to

each ERA5 data point for 2019. The swath of the Aqua
satellite is clearly visible, with more observations at more 75
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(a)

(b)

Figure 5.
:::
For

::::
2019

:
at
::
∼

:::::
31km

::::::::
resolution:

::
(a)

:::::
Mean

::::
daily

:::::
number

::
of

::::::::::
Aqua-MODIS

::::::::::
observations

::::::
mapped

::
to

::::
each

:::::
ERA5

:::
data

:::::
point.

:::
The

::::
swath

::
of

:::
the

::::
Aqua

::::::
satellite

:
is
::::::
clearly

:::::
visible,

::::
with

::::
more

:::::::::
observations

:::
over

:::::::
70-60°N

::::
and

::::::
60-70°S

:::::
areas

::
as

:::::
Aqua

::::::
follows

:
a
:::::

polar
::::
orbit,

::::
south

::
to

:::::
north,

:::
and

::::
with

:::
less

::::::::::
observations

::::
over

:::::::
Equator,

::::::
complex

:::::::
orography

:::::
areas

::::
(such

::
as

:::
the

::::::::
Himalayas,

:::
the

:::::
Andes

:::
and

:::
the

:::::
Rocky

:::::::::
Mountains),

:::
and

::
the

:::::::
Siberian

:::::
Tundra

::::
(due

:
to
::::::::
increased

::::
cloud

:::::
cover);

::
(b)

:::::::
Average

:::
error

::
in
:::
the

:::::::::::
Aqua-MODIS

:::
LST

:::::::::::
measurement.

:::
The

:::
raw

::::::::::
Aqua-MODIS

::::
data

::
at
:::::

1km
::::::::
resolution

:::::::
provides

::::::::
categorical

::::
LST

::::
errors

::::
with

::::
bins

::
≤

:::
1K,

:::::
1-2K,

::::
2-3K

:::
and

::
>

:::
3K.

:::::
When

:::::::
averaging

::
to

::
the

::::::
coarser

:::::::
resolution

::
a
:::::::
weighted

::::::
average

:::
over

:::
the

::::
1km

:::::::
grid-cells

:
is

::::::::
computed,

::::
where

:::
the

::::::
median

::
bin

:::::
value

:
is
:::::
used,

:::
and

::
5K

:::
for

::
the

::
>

::
3K

:::
bin.

:::
This

:::::::::
information

:::::
helps

::
to

::::::::
understand

:::
that

:::::::
abundant

::::::
number

::
of

::::::::
observation

::::
does

:::
not

::::::::::
automatically

:::::
mean

:::
high

::::::
quality

::
of

::::
LST

:::
(e.g.

::::::::
Australia).

extreme latitudes as Aqua follows a polar orbit, south to
north. In addition to the expected increased sparsity of
observations at the equator, there are also notably fewer
observations in regions of greater orography such as the
Himalayas, the Andes and the Rocky Mountains as well as 5

the Siberian Tundra, due to increased cloud cover.

2.4 Constructing a regression model

We have our features x̄ and target y data in a related
format. We are now in a position to train a regression
model to

:::::::
VESPER

::
is
::::::
trained

:::
to learn the mapping between 10

x̄ and
::::::
features

::
x
::::

and
::::::

targets
:
y .

:::
(i.e.

::::::::
mapping

::::::
ERA5

::
to

::::::::
MODIS),

:
a
:::::::::
regression

::::::::
problem.

:
For this purpose we use a

sequential
:
a
:::::::::::::
fully-connected

:
neural network architecture ,

implemented on Tensorflow Abadi et al. (2015)
::::
(also

::::::
known

::
as

::
a

::::::::::
multi-layer

::::::::::
perceptron),

::::::::::::
implemented

::
in
::::::::::

Tensorflow 15

::::::::::::::::
(Abadi et al., 2016)

:::
was

:::::
used. Whilst more advanced ar-

chitectures and regression models are available, for our
purposes the sequential model is more than sufficient
and it

::
the

:::::::::
purposes

::
of

::::
this

:::::
work

::::
the

::::::
model

::
is

::::::::
sufficient

::::::
enough,

:::::::
which

:
exhibits generally fast and dependable 20

convergence. We take as our canonical structure a network
where the

::::
The

::::::::
networks

:::::
built

::::
have

::::::::
differing

::
number of

nodes in the input layeris equal to ,
::::::::::

depending
:::
on

:
the

number of training features, a single node in the output
layer corresponding to the LST and

::::::::
predictors

::::
(see

:::::
Table 25

::
3).

::::
For

:::
all

::::::::
networks

::::::::::
constructed

::::
we

:::
use

:
4 hidden layers

where the number of nodes in each layer is equal to the
half the number of input nodes. For our optimisation
schemewe use ADAMKingma and Ba (2014) and set the
learning rate

::
and

::
a
:::::

layer
::::::

width
::
is

::::
half

::::
that

:::
of

:::
the

:::::
input 30

::::
layer

:::::::
width.

:::::::
ADAM

:::::::::::::::::::::
(Kingma and Ba, 2014)

:
is
:::::

used
:::

as

::
an

:::::::::::
optimisation

:::::::
scheme,

::::::::
learning

::::
rate

::
is

:::
set

:
to 3× 10−4,

and
:::::
default

::::::
values

::::
for

:
the exponential decay rate for the

1st and 2nd moment estimates take default values of
0.90 and 0.999

:::
are

:::
set

:::
to

:::::
0.900

::::
and

::::::
0.999

:::::::::::
respectively. 35

The network is not trained for a fixed number of epochs,
but instead trained until the validation error reaches a
minimum. Techniques for maximising the performance
of a network via hyperparameter optimisation are now
well established Bischl et al. (2021); Yu and Zhu (2020). 40

Howeverfor our purposes we do not try in any meaningful
way to tune our hyperparameters , instead just take

:::::::::::::::::::::::::::::::
(Yu and Zhu, 2020; Bischl et al., 2021)

:
.
:::::::::

However,
::::

for
:::
the

:::::::
purposes

:::
of

:::
this

:::::
work

:::
no

:::::::
attempt

::
to

::::
tune

::::::::::::::
hyperparameters

:::
was

::::::
made,

::::
just some reasonable default values which we 45

judge to be “good enough”. Some shallow
::::
were

::::::
applied

:::::
which

::::
were

::::::::
assumed

::
to

::
be

:::::
“good

::::::::
enough”.

:::::
Some exploration

of different hyperparameter configuration was undertaken,
but for this data the prediction accuracy is mostly inde-
pendent of the hyperparameter configuration, subject to 50

standard and reasonable hyperparameter choices. Whilst
a more advanced automatic hyperparameter optimization
method may have enabled slightly more performance to be
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squeezed out of the model
:::::
higher

::::::::::
performance

:::
of

::::::::
VESPER,

our ultimate purpose is not to generate the most absolutely
accurate prediction possible, but instead to have two predic-
tive models which we can compare. Additionally, as we will
see,

::
can

:::
be

:::::::::
compared.

::
In

:::
the

::::::
result

::::::
section

:::::
below

::
it
::::
will

::
be5

:::::
shown

::::
that the variation in performance due to modifications

to the input features
::::
input

::::::
feature

::::::::::::
modifications is far greater

than the variation due to the hyperparameter choices.

With a fully trained network we can then deploy the model10

to make predictions of the LST over the whole globe. An
example of the error in the predicted LST relative to the true
MODIS LST, is presented in Figure 6. The model

:::::::
VESPER

was trained on a year of
:::::::
selected

::::::::::
atmospheric

::::
and

::::::
surface

:::::
model

:::::
fields

:::::
from

:
ERA5 data from 2016 and then made15

predictions of the LST in
:::
for

:::::
2016

::::
(see

:::::
Table

:::
1),

::::::
certain

::::
static

:::::::
version

::
of

:::
the

:::::::
surface

:::::::::::
physiographic

:::::
fields

::::
(see

:::::
Table

::
2),

::::
and

::::::::::::
Aqua-MODIS

:::::
LST

:::
for

:::::
2016.

:::::
Once

::::::::
VESPER

::::
was

::::
fully

::::::
trained

:
it
::::
was

::::
used

::
to

::::::
predict

::::
LST

::::
over

:::
the

:::::
whole

:::::
globe

::
for

:
2019. We can compare the error in the model predictions20

with the error in the predicted skin temperature that is derived

:::::
Going

::::::::
forward,

::
as

::
a
:::::::::
shorthand

:::
we

::::
will

:::::
refer

::
to

::::::::
VESPER

::::::
trained

:::::
using

:::
the

::::
e.g.

::::
V 15

:::::
field

:::
set

::
as
:::::::::::::

VESPER_V15
:::

(in

::::::
general

::::
VM

::
is
::

a
::::
field

:::
set

:::::::
version

::::
and

::::::::::::
VESPER_VM

:::
is

:
a

:::::::
VESPER

::::::
model

::::::
trained

:::::
using

::::
the

:::::
fields from

::
the

::::
VM

::::
field25

:::
set).

::::
See

:::::
Table

:
3
:::
for

::
an

:::::::
explicit

::::::::
definition

::
of

:::
all

::
the

::::::::
VESPER

::::::
models.

::::
The

::::::::
training

:::
and

::::
test

:::::
years

:::::
were

:::::::
chosen

::::::
simply

::
as

::::::
recent,

:::::::::::::
non-anomalous

:::::
years

::
so

::::
that

:::
the

:::::::
updated

::::::
surface

:::::::::::
physiographic

:::::
fields

:::::
could

::
be

::::::::
checked.

:::
All

:::::::
VESPER

:::::::
versions

::
are

:::::::
trained

::::
with

:
ERA5 . It is evident from Figure 6 that30

the trained model generally enjoys increased accuracy over
the

:::::
fields

:::
for

:::::
2016

::::
and

::::
with

:::::
main

:::::::
surface

::::::::::::
physiographic

::::
fields

:::::
from

::::
V15

:::::
field

:::
set.

:::::
Then

::::::::::
depending

::
on

::::
the

::::::
version

::::
some

::
or

:::
all

::::::::
additional

::::::
surface

::::::::::::
physiographic

:::::
fields

::::
(see

::::
Table

::
1)

:::
are

::::::
added.

::::::::::
VESPER’s

::::::::::
predictions

:::
can

:::
be

:::::::::
compared

::
to35

::
the

::::::
initial

:
ERA5 predictions,

:::
skin

:::::::::::
temperatures

::::
and

:::::
actual

:::::::::::
Aqua-MODIS

:::::
LST

:::
for

::::::
2019.

::::::
Figure

::
6
::::::

shows
::::

the
:::::

mean

:::::::
absolute

:::::
errors

:::::::
(MAE)

:::::::
globally

::
in

:::
the

:::::::::::::
VESPER_V15

::::
LST

:::::::::
predictions,

:::::::
relative

:::
to

:::
the

::::::::::::
Aqua-MODIS

:::::
LST

:::::
along

::::
with

::
the

:::::::::::::
corresponding

:::::
MAE

::
in

::::
the

::::::::
predicted

::::
skin

::::::::::
temperature40

::::
from

::::::
ERA5.

::::
We

::::
can

:::
see

::::
that

:::::::::::::
VESPER_V15

::::
was

::::
able

::
to

::::
learn

::::::::::
corrections

::
to

::::::
ERA5, especially in the Himalayas and

sub-Saharan Africa as well as Australia and the Amazon
basin. For this particular example, the mean annual error,
averaged over all grid points was

:::::
Africa

::
as

::::
well

:::
as

:::::::
Australia45

:::
and

:::
the

::::::::
Amazon

::::::
basin,

:::::::
leading

::
to

::::
the

:::::::
globally

::::::::
averaged

::::
MAE

:::::::::
reduction

:::
for

:::::::::
predicted

:::::
LST;

:::
the

::::::
MAE

:::::::
relative

::
to

:::::::::::
Aqua-MODIS

:::::
LST,

::::::::
averaged

::::
over

::
all

::::
grid

::::::
points,

::::
was 3.9K

for the ERA5 prediction and 3.0 K for the model prediction.
This serves as a useful sanity check to give us confidence that50

the network is performing as expected and gives generally
reasonable predictive performance, at least as good - if not
better - than then derived skin temperature predictions from
ERA5 . More fundamentally, this also indicates that there is
some information captured in the input fields to the network55

that is not expressed through the current ERA5 reanalysis
modelling.This again motivates the development of updated
parametrization schemes that better represent small scale
processes and better capture this information.

Prediction error relative to MODIS Aqua observations 60

in the land surface temperature (δK) for 2019, averaged
over the year, for (a) Trained Neural Network and (b)
ERA5. It can be seen that the network generally outperforms
the ERA5 predictions, which generally struggles in regions
with complex surface fields such as the Himalayas (lots 65

of orography) sub-Saharan Africa (lots of vegetation) and
the Amazon Basin (lots of water + vegetation). In contrast
the network demonstrates generally good performance, with
some drop off in the Himalayas and the eastern cost of
Australia, but still outperforming ERA5. 70

3 Evaluating Updated Lake Fields

As discussed, at ECMWF parametrised lake representation
in the IFS is handled by FLake.The primary physiographic
dataset used in the IFS to generate the lake parameters
is the GlobCover2009 global map Bontemps et al. (2011) 75

Arino et al. (2012). This map has a resolution of 300m and
covers latitudes from 60◦S to 85◦N; corrections outside this
latitude band for the polar regions and Iceland are included
separately. In the Arctic no land is assumed, whilst in the
Antarctic data from version 2 of the Radarsat Antarctic 80

Mapping Project (RAMP2) digital elevation model (DEM) is
usedLiu et al. (2015). For Iceland, data from the Digital map
database of Iceland (IS 50V) is used.

More recently, new datasets and methods for
updating the lake fields for the IFS have been 85

proposedChoulga et al. (2019). These new datasets include
the Global Surface Water Explorer (GSWE) dataset from the
Joint Research centre (JRC)Pekel et al. (2016). GSWE is a
30m resolution dataset from Landsat 5,7 and 8, providing
information on the spatial and temporal variability of surface 90

water on the Earth since March 1984. This then allowed
for particular geographical regions to be updated with
more up-to-date, high resolution data, providing additional
information that is not captured by GlobCover2009. Whilst
multiple lake areas were updated based on this new data, 95

particularly noteworthy regions include:

– Aral Sea. The Aral Sea lies across the border between
Uzbekistan and Kazakhstan and was at one point the 4th
largest lake in the world. However, the Aral Sea has long
been shrinking, at an accelerated rate since the 1960s. It 100

started to stabilise in 2014 with an area of 7660km2, 9
times smaller than its size in 1960, and its eastern basin
is now known as the Aralkum Desert. The water map
from GlobCover2009 describes the Aral Sea in 1998,
when it was still “only" 2 times smaller than its 1960 105

extent, whereas GSWE provides a more up to date map.
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– Australia. GlobCover2009 over-represents inland
water in Australia, which generally has a huge number
of lakes. However, some of these lakes are highly
ephemeral; the endorheic Kati Thanda–Lake Eyre fills
only a few times per century. The GSWE updates to5

this region therefore include only generally permanent
water, removing all seasonal and rare ephemeral water.

The lake depth is not specified by GlobCover2009/GSWE,
instead being described by the Global Lake DataBase
(GLDB) Kourzeneva et al. (2012). Lake depth is recognized10

as being an important field in the IFS, since over estimates
can result in strong cold biases in hotter seasons or else a
lack of ice formation. Under the program to continuously
update the parametrisation schemes, recently the original
version of the dataset, GLDBv1,with coarse resolution15

aggregation technique MEAN, has been superseded by
GLDBv3Choulga et al. (2014), with coarse resolution
aggregation technique MODE. GLDBv3 increases the
total number of lakes with in situ information by ∼ 1500,
introduces a depth distinction between freshwater and saline20

lakes, and updates the method by which the lake depth is
calculated based on climate type and geological origins.
Consequently, whilst the updated fields when going from
GlobCover2009 to GSWE applied at particular geographic
regions, the lake depth field is generally updated globally.25

Verification of the updated lake depth fields against 353 lakes
in Finland shows that GLDBv3 exhibits a 52% bias reduction
compared to GLDBv1Choulga et al. (2019). For a thorough
discussion of the upgraded lake fields, the lake depth, and
the representation of lakes generally by ECMWF we refer30

the reader toChoulga et al. (2019); Boussetta et al. (2021).

::::
3.0K

:::
for

:::::::::::::
VESPER_V15.

This distinction between the original lake maps based on
GlobCover2009 and GLDBv1 data and the updated lake35

maps which have been corrected using GSWE and GLDBv3
data provides an ideal test bed to deploy and demonstrate
our tool. Can we use VESPERto evaluate the added value of
these new fields?

2.1 V15 vs V2040

In order to ascertain the accuracy and information content of
the updated lake fields we will proceed as follows. We will
train two permutations of the regression model, one where
the

By comparing the accuracy of the predictions of the two45

models we can then discern the value gained from updating
these static surface fields.
There is an inherent noise in the regression model due to the
stochasticity of the network; training the model twice with
the same architecture, inputs and parameters can find two50

different minima. Moreover, for the majority of the globe the
lake fields have not been updated, since there are no lakes
there! By inspecting the predictions at a grid point where the

fields have not been updated in going from V15 to V20 we
obviously don’t learn anything, instead just measuring the 55

intrinsic model noise, i.e. the different optimisation minima
discovered by the model. By comparing two models with
the same network structure, trained on the same data, we
estimate the noise bias to be 0.04 K over all grid points.
Instead we want to restrict our analysis to

::
As

:::
the

:::::
focus

::
of

:::
this 60

::::
study

::
is
::::::::::

lake-related
::::::

fields,
::::
and

::::
lakes

:::::::
occupy

::::
only

:::::
1.8%

::
of

::
the

:::::::
Earth’s

::::::
surface

:::
and

:::
are

::::::::::
distributed

::::
very

:::::::::::::
heterogeneously

:::::::::::::::::
(Choulga et al., 2014)

:
,
:::::::
analysis

::
of

::::
the

:::::
results

::::
was

::::::::
restricted

::
to

:
areas where there have been a significant changes in

the fields. More quantitively, we consider a
::::::
surface

::::
lake 65

:::::::::::
physiographic

::::::
fields.

:::
By “significant change" to be

:::
we

::::
mean

a change in
:::
any

::
of

:
the surface field when going from V15

to V20 of ≥ 0.1
:::
(and

:::
to

:::::
V15X

::
or

:::::::
V20X)

::
of

::
≥

::::
10%

:::
(≥

:::
0.1

for fractional fieldsof ≥ 10% for non-fractional quantities.
So for example , if the field for the lake cover (cl) - which 70

describes the fraction of the grid box which is classified
as a lake - changes

:
);
:::
for

::::::::
example

::
if
:::::

lake
::
or

:::::::::
vegetation

::::
cover

::::::::
changed

:
from 0.1 in V15 to 0.3 in V20 this would

be classified as a significantchange. Similarly, if the lake
depth - a non fractional quantity - changes from 10m to 75

20m, this would also be a significant change. Naturally the
choice of ≥ 10% is a somewhat arbitrary tolerance

::::
field

::
set

:::
this

::::::
change

::
is

::::::::
classified

::
as

:::::::::
significant.

::::
The

::::::
choice

::
of

::
≥

::
10

::
%

::
as

:
a
::::::::::
significance

:
cut-off , but it balances the

:::
was

:::::::
adopted

::
as

:
it
::::::
proved

::
to
:::

be
:
a
:::::

good
:
trade off between having a sufficient 80

number of grid points to inspect and the strength of the ef-
fect of changing the input field. As the tolerance increases
we isolate points where the fields have been changed more
severely, but have fewer points,

:::::
cut-off

:::
%

::::::::
increases

::::
less

:::::
points

:::
are

:::::::
selected,

:::::
albeit

:::::
with

::::
more

::::::
severe

:::::::
changes

::
to

::::
their 85

::::::
surface

:::::
fields, whereas when the tolerance decreases we have

more points but it is
:::::
cut-off

:::
%

::::::::
decreases

:
more

:::::
points

:::
are

::::::
selected

::::
but

::
it
::::::::
becomes

:::::
more

:
difficult to disentangle the

change in the prediction accuracy from the model noise
. Alternative tolerances

:::::::::
VESPER’s

:::::::
training

:::::
noise

:::::::
(training 90

::::
noise

::
is

::::::::
discussed

:::::::
below).

:::::::::
Alternative

::::::
cut-off

::
%

:
were briefly

explored, but our conclusions are
:::::::::
conclusions

::
of

::::
the

:::::
results

:::::::
remained

:
broadly unchanged.

Grid points
::
All

::::::::
grid-cells

:::::::
selected

:::
for

:::
the

::::::::
analysis can be

classified according to how the surface fields are updated 95

when going from V15 to V20 . We will examine 3 illustrative
categories

::::
(note

::::
that

:::::::::
categories

::::::::
represent

:
a
::::::::::

systematic
:::
and

::::::::
consistent

::::::
update

::::::
across

:::::::
multiple

::::::
related

::::::
fields,

:::
and

:::
do

:::
not

::::::
include

:::
any

::::::::::
restrictions

::
on

:::::
other

::::::
surface

:::::
fields

::::
apart

:::
the

::::
ones

:::::::::
mentioned): 100

– Lake Updates. The change in the lake cover cl and
lake depth dl are significant, but the

:::::::
changes

::
in

:
ocean

and glacier
:::
glm fractions are not. This corresponds to

grid boxes where inland
::::::::
grid-cells

::::::
where

:
lakes have

been added or removed. We will also use
::::::::::
Lake-Ground 105

:::::::
Updates

::
is
::

a sub-category Lake-Ground Updates
where we have the

:::::
where additional constraint that the



Kimpson et al.: VESPER 15

Model ERA5 atmospheric and
surface fields

Main surface physio-
graphic fields, V15

Main surface physio-
graphic fields, V20

Additional surface physio-
graphic fields

VESPER_V15 ✓ ✓ - -
VESPER_V15X ✓ ✓ - ✓
VESPER_V20 ✓ ✓ ✓ -
VESPER_V20X ✓ ✓ ✓ ✓

Table 3.
:::
List

::
of

::::
input

::::
files

::
for

:::::::
different

:::::::
VESPER

:::::::
versions.

:::
c.f.

::::
Table

::
1

(a)
:

(b)

Figure 6.
::::

Mean
::::::
absolute

::::
error

::::::
(MAE,

::::
δK)

::
of

:::
LST

:::::::::
predictions

:::
for

::::
2019

::
at

:::::
31km

::::::::
resolution

::::
based

:::
on

::::::::
differences

:::::::
between

::
(a)

:::::
ERA5

::::
skin

:::::::::
temperature

:::
and

:::::::::::
Aqua-MODIS

::::
LST

:::
and

:::
(b)

:::::::
between

:::::::::::
VESPER_V15

::::
(i.e.

:::::::
VESPER

::::::
trained

::::
with

:::
V15

::::::
surface

:::::::::::
physiographic

:::::
fields)

::::
and

::::::::::
Aqua-MODIS

::::
LST.

::
It
:::
can

::
be

::::
seen

::::
that

:::::::::::
VESPER_V15

:::::::
managed

::
to

::::
learn

:::::::::
corrections

:::
over

::::::
regions

::::
with

:::::::
complex

:::::
surface

:::::
fields

::::
such

::
as

:::
the

::::::::
Himalayas

:::
(lots

::
of

:::::::::
orography)

:::::::::
sub-Saharan

:::::
Africa

::::
(lots

::
of

::::::::
vegetation)

:::
and

:::
the

::::::
Amazon

:::::
Basin

::::
(lots

::
of

::::
water

::
+

::::::::
vegetation).

:

change in the high/low vegetation fractions
:::::
cvh/cvl are

not significant
:
is
:::
in

::::
place. This then corresponds to the

exchange of lakes for bare ground, or vice versa.

– Vegetation Updates. The change in the high vegetation
fraction

:::
cvh is significant, but the change in lake cover5

:
cl is not significant. This corresponds to grid boxes

::::::::
grid-cells where large features like forests and wood-
lands have been updated, exchanged for bare ground or
low vegetation.

– Glacier Updates. The change in the glacier cover10

si10
:::
glm is significant. This corresponds to any areas

where the fraction of glacier ice has been updated.

These categories are naturally broad, and have no restrictions
on all of the other features listed in Table ??. For instance,
changes to the orography will have important influences15

on temperature through e. g. wind, solar heating etc. Lake
depth is similarly important, influencing how a lake freezes,
thaws, mixes and its overall dynamical range. We therefore
emphasise that these categories do not correspond to grid
points where only the fields that define the categories20

have been updated, but instead represent a systematic and
consistent update across multiple related fields.

We train the model over the entire globe for the year
2016 and make predictions of the land surface temperature
for 2019. For each entry in the test set we can determine 25

the prediction accuracy of both the
:::
The

:::::::
training

::
of

::
a
:::::
neural

:::::::
network

::
is

:::::::::
inherently

::::::::
stochastic

::
-
:::
the

:::::
same

::::::
model

::::::
trained

::::
twice

::::
with

:::
the

:::::
same

::::
data

:::
can

:::::
settle

::
in
::::::::
different

::::
local

::::::
optima

:::
and

::
so

:::::
make

::::::::
different

::::::::::
predictions.

::
To

:::::
make

:::
our

::::::::::
conclusions

:::::
robust

::::::
against

::::
this

:::::::
training

::::::
noise,

::::
each

::::::::
VESPER

::::::
model

::
is 30

::
in

::::
turn

::::::
trained

::
4

:::::
times.

::::
For

::::
each

:::::::
MODIS

:::::::
ground

::::
truth

:::
we

:::
then

:::::
have

::
4
:::::

LST
::::::::::

predictions
::::

per
::::::
model.

::::
We

::::::
define

:::
the

::::::
training

:::::
noise

::
as

::::
the

:::::::
standard

:::::::::
deviation,

::
σ,

::
in

:::
the

::::::::
VESPER

:::::::::
predictions

:::
for

:::
the

::::
same

:::::
input

:::::
fields

:::
i.e.

::::
each

::::::::::::
VESPER_VM

:::::
model

::::
will

:::::
have

:
a
:::::::::::::

corresponding
:::::::
training

:::::
noise

:::::
σVM.

:::
To 35

:::::
assess

:::
the

:::::::
changes

:::
of

::::
LST

:::::::::::
predictability

::::
due

::
to

::::
the

:::
use

::
of

::
the

:::::::
updated

::::::
surface

::::::::::::
physiographic

:::::
fields

::::::
instead

::
of

:
V15

:::
field

::
set

::::::::
(default)

:::
we

::::::::
compare

:::
the

:::::
mean

::::::::
absolute

:::::
error

::::::
(MAE)

:::::::
between

:::::::
different

::::::::
VESPER

:::::::
models

:::::
using

:::
the

::::::
simple

:::::
metric

::::
δVM:

:
40

δVM = MAEVESPER_VM −MAEVESPER_V15
:::::::::::::::::::::::::::::::::::::

(3)

:::::
where

::::
VM

:::::::::
represents

::::
one

:::
of

:::
the

:::::
field

:::
set

:::::::
versions

:::::
V20,

:::::
V20X

:::
or

::::::
V15X,

::::
and

:::::
MAE

:::
is

:::::::::
computed

::::
over

:::
the

::::::
whole

::::::::
prediction

::::::
period

:::
of

:::::
2019.

:::
In

::::
turn,

::::
the

:::::
MAE

::
is
::::

the
::::
error
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:::::::
between

:::
the

::::::::
prediction

::
of

::
a

:::::::
VESPER

::::::
model and V20 models

. We will use a simple metric δM to quantify the difference
between an updated model M and the baseline V15 model

::
the

::::::::::::
Aqua-MODIS

:::::
LST, i.e.

δM =M prediction error−V15 prediction error .5

MAEVESPER_VM =
1

N

N∑
i=1

|LSTi,VESPER_VM −LSTi,MODIS|
::::::::::::::::::::::::::::::::::::::::::::::::::

(4)

So for example, δV20 describes the gain of the V20 model
relative to the V15 model

::
for

:::::
total

:::::::
number

:::
of

:::::::::
predictions

::
N ,

::::::
within

::
a
:::::
given

::::::::
grid-cell

:::::::::::
classification. A negative δV2010

therefore
::::
δVM ::::

then
:

indicates that the V20
:::::::::::
VESPER_VM

::::
LST

:
prediction is more accurate

:::
than

::::
the

::::::::::::
VESPER_V15

::::::::
prediction, and vice versa. The results for the selected grid
point categories are presented in Table ??.

3
::::::
Results15

3.1
:::::::::

Evaluation
::
of

:::::::
updated

:::::
lake

::::
fields

::
To

::::::::::
understand

:::
if

:::::
there

::
is
:::

a
::::
way

:::
to

::::::::::::
automatically

::::
and

::::::
rapidly

:::::
assess

::::
the

:::::::
accuracy

:::
of

:::::::
updated

::::::
and/or

::::
new

::::::
surface

:::::::::::
physiography

::::::
fields,

::::
and

::
if

:::::
their

:::
use

:::
in

::::
the

::::::::::
atmospheric

:::::
model

:::::::
increase

::::::::::::
predictability,

::
we

::::
can

:::::::
compare

:::
the

::::::::
prediction20

:::::::
accuracy

:::
of

::::::::
different

:::::::::::::
VESPER_VM

::::::::
models.

:::::::::
Generally

:::::::::
VESPER’s

:::::::
training

:::::
noise

::
is
:::::::::

confirmed
:::
to

::
be

:::::::
smaller

::::
than

:::::::::
differences

:::
in

:::::
LST

::::::::::
predictions

::::
by

::::::::
different

:::::::::
VESPER

::::::::::::
configurations,

:::
so

::::::::
changes

::::
in

:::::
LST

::::::::::::
predictability

::::
can

::
be

::::::::::::
meaningfully

:::::::::
attributed

:::
to

::::
the

::::::::
changes

:::
in

:::::::
surface25

:::::::::::
physiographic

::::::
fields.

::::::::
Particular

::::::::
situations

::::::
where

:::
the

::::::
training

::::
noise

::::::::
becomes

:::::::::
significant

::
are

:::::::::
discussed

:::::
below.

:

Category
::
As

::
a
::::

first
:::::::

attempt
:::::::::::

lake-related
::::::::::
information

::
is

:::::::
assessed,

:::::::
namely

::::
lake

:::::
cover

::::
(and

:::::::
land-sea

:::::
mask

:::
and

::::::
glacier30

::::
cover

:::
as

::::
they

:::
are

:::::
used

:::
for

::::
lake

:::::
cover

::::::::::
generation)

:::
and

::::
lake

::::
mean

::::::
depth,

:::::
that

:::::
were

:::::::
created

:::::
from

::::::
scratch

::::::
using

::::
new

::::::::
up-to-date

:::::::::::::
high-resolution

::::
input

:::::::
datasets

::::
(see

:::::
Table

::
2)

::
for

:::
the

:::
V20

::::
(and

:::::::
V20X)

::::
field

:::
set;

::::
other

:::::::
surface

::::::::::::
physiographic

::::
fields

:::
(see

:::::
Table

::
1)
:::::

were
::::::::::
regenerated

::::
from

:::
the

:::::
same

:::::
input

::::::
sources35

::
as

::
in

:::
the

:::::
initial

:::
V15

::::
field

::::
set,

:::
but

:::::
taking

::::
into

::::::
account

::::
that

:::
lake

:::::
related

:::::
fields

:::::
were

::::::::
changed.

::
In

:::::
cases

:::::
when

:::::::
existing

::
in

::::
V15

:::
lake

:::::
cover

:::::
water

::::
was

::::::::
removed

::
in

:::::
V20,

:
it
:::::
could

:::
be

:::::::
replaced

::
by

:::
any

:::
of

::::
high

::
or

:::
low

::::::::::
vegetation,

:::::
glacier

:::
or

::::
bare

::::::
ground.

:::
We

:::
now

:::::::
analyse

:::
the

::::::
results

:::
for

::::
each

:::
of

:::
the

:
4
:::::::::

categories
::
of
::::

grid40

:::
cell

::
in

:::::
detail

::::
(see

::::::
Table

:
4
::::

for
:::
the

::::::
results

::
of

:::::
each

:::::::
category

:::::::::
aggregated

::::
over

:::
the

:::::
whole

::::::
globe).

:

3.1.1 Category: Lake Updates
:::::::
updates

Figure 7.
:::::::::
Distribution

::
of

::::::::
prediction

:::::
errors

::
in

:::
the

::::
LST,

:::
for

::::
each

:
of
:::

the
::

4
:::
grid

:::::
point

::::::::
categories,

:::
for

::::
each

::::::
iteration

::
of

::::
V15

:::
and

::::
V20.

::
For

:::::
Lake,

::::::::::
Lake-ground

:::
and

::::::
Glacier

::::::::
categories

::
the

::::::::::
improvement

::
in

:::
V20

::::::
relative

::
to

:::
V15

::
is
:::::
much

:::::
greater

::::
than

::
the

:::::::
intrinsic

:::::
model

::::
noise,

:::
with

::
all

::::
V20

::::::::
predictions

:::::::::::
outperforming

::
all

::::
V15

:::::::::
predictions.

:::
For

::
the

::::::::
Vegetation

::::::
category

:::
the

::::::::
predictions

::
of

::::
V15

:::
and

:::
V20

:::
are

::::
much

::::
more

::::
noisy

:::
and

::
it

:
is
::::::
difficult

::
to
::::
draw

:::
any

:::::::::
conclusions

:::
for

:::
the

::::::
category

::
as

:
a
:::::
whole.

:::
The

:
Lake Updates category . These points are presented

in Figure 9. We can see that there have been significant 45

improvements globally (the mean improvement in the
prediction accuracy when using the

:::::
shows

:::::::::
significant

:::::::::::
improvements

:::
in

::::
LST

:::::::::::
predictability

::
if

:::::
using V20 fields was

0.45 K, over
::::
field

::
set

:::::::
instead

::
of

::::
V15

::
–
:::::::::
prediction

:::::::
accuracy

::::::::
increased

:::::::
globally

:::::
(over 1631 grid points), most notably in 50

Australia and the Aral sea. These were two of the major
regions that we discussed earlier where in

::::::::
grid-cells)

:::
on

::::::
average

:::
by

::::::
0.37K.

:::
For

:::
the

:::::
lakes

::::::::
category,

:::
the

:::::::
training

::::
noise

::
in

:
V20 we have removed the ephemeral water (e.g. for

Australia) and corrected lake sizes (e.g. for the Aral sea). 55

By providing this updated information to the model that
there is less water than initially thought in these regions,
the model can then make more accurate predictions. This is
a clear example of a verification of the updated fields

:::
was

:::::::
generally

:::::
small

:::::::::::
σV20 ∼ 0.02

:::
K,

::::
with

:::
the

::::
V15

::::::::::
predictions

:
a 60

::::
little

::::
more

:::::
noisy

::::
with

:::::::::::
σV15 ∼ 0.07

::
K,

:::
but

::::
this

:::::
noise

:
is
:::::
much

:::
less

::::
than

:::
the

:::::::::::
improvement

:
- it gives us confidence that these

new fields are indeed more accurate and are also informative
(i.e.predictive)with respect to surface temperatures.

::
as

:::
can

::
be

::::
seen

::
in

::::
Fig.

:
7
:::::
every

::::
V20

:::::::
iteration

:::::::::::
significantly

::::::::::
outperforms 65

::::
every

:::::
V15

::::::::
iteration.

::
In

::::
Fig.

::
8
:::

we
::::

plot
::::

the
::::::::::
distribution

::
of

::
the

:::::
mean

:::::
LST

::::
error

:::::::::
(averaged

::::::
across

::::
each

::
of

:::
the

::
4
::::::
trained

:::::::
VESPER

:::::::::
iterations)

:::
for

::
all

::::
lake

::::
grid

:::::
points,

:::
for

::::
both

::::
V15

:::
and

::::
V20.

::::::::
Evidently

:::
the

::::
V20

:::::
field

::::::::::
significantly

:::::::
improve

:::
the

::::
high
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Category Number of grid cells
σVM, K δVM, K

V15 V15X V20 V20X V15X V20 V20X
Lake 1631 0.07 0.02 0.02 0.02 -0.20 -0.37 -0.37

Lake-Ground 546 0.15 0.05 0.04 0.06 -0.56 -0.83 -0.84
Vegetation 58 0.04 0.10 0.15 0.21 -0.00 0.04 -0.00

Glacier 1057 0.03 0.08 0.02 0.06 -0.01 -0.22 -0.28
Table 4.

::::::
Globally

:::::::
averaged

:::::::::
differences

::::
δVM ::::::

between
:::::
mean

::::::
absolute

::::
error

::::::
(MAE)

::
of
::::::::::::

VESPER_VM
:::
and

:::::::::::
VESPER_V15

::::
LST

:::
for

::::
2019

::
at

::::
31km

::::::::
resolution

:::::
(where

:::
M

::::::
denotes

:::::
V15X,

::::
V20,

:::::
V20X

::::
field

::::
sets)

::
per

:::::::
grid-cell

:::::::
category.

:::::::
Negative

::::
δVM:::::

values
::::::
indicate

::
an

:::::::
increase

::
of

::::
LST

::::::::::
predictability

:::
due

::
to

:::
the

:::
use

::
of

::
the

:::::::
updated

:::::
surface

:::::::::::
physiographic

:::::
fields

:::::
instead

:::
of

:::
V15

::::
field

:::
set

:::::::
(default),

::::::
positive

::::
δVM:::::

values
::::::
indicate

::
a

::::::
decrease

::
in

:::
the

::::
LST

::::::::::
predictability

:::
and

:::::::
suggests

:::
the

::::::
presence

:::
of

:::::::
erroneous

:::::::::
information

::
in
:::

the
::::::
surface

:::::::::::
physiographic

:::::
fields.

::::::
Training

:::::
noise

:::::
values,

:::::
σVM,

:::
are

:::::::
generally

:::::
much

::::::
smaller

::::
than

:::
the

::::::
variance

:::::::
between

:::::::
different

:::::::
VESPER

::::::::::::
configurations,

::::::::
indicating

:::
that

:::::::
changes

::
in

::::
LST

::::::::::
predictability

::
are

::::::
mainly

:::
due

::
to
:::::::
changes

::
in

::
the

::::::
surface

:::::::::::
physiographic

:::::
fields.

:::
The

::::::
quoted

::::
noise

::
is
:::
the

:::::::
standard

:::::::
deviation

::
of

:::
the

::::::::
prediction

::::
errors

::
of

:::
Fig.

::
7.

Figure 8. Mean δ for
:::::::::
Distribution

::
of

::::::::
prediction

:::::
errors

::
in the V20

model relative to the V15 model across the globe
:::
LST for

::
all grid

points where all
:
in
:
the lake fields have changed significantly (“Lake

Update”
:::::

Updates
:

category )
::
for

::::::::::::
VESPER_V15

:::
and

:::::::::::
VESPER_V20.

Generally
:::
Each

::::::::
prediction

:::::
errors

::
is

::
in

:::
turn

:
the updated V20 fields

enable
::::::
average

::
of

:
4
:::::
trained

:::::::
iterations

::
of

:
the

:::::::
VESPER modelto make

more accurate .
::::

The predictions , for example in the Aral sea and
Australia, indicating that these updated fields

::
of

:::::::::::
VESPER_V20 are

informative
:::::::
evidently and accurate. In contrast

:::::::::
improvement

::::
over

:::::::::::
VESPER_V15, there are some regions where the predictions get
worse,

::::::::
especially for example at higher latitudes which is likely

due to these being regions where lakes have more complex, time
variable behaviour (e.g. freezing/thawing) and MODIS satellite data
is sparse e.g. due to clouds. 7

:::
grid

:
points (two are overlaid in

sub-Saharan Africa) where the V20 prediction gets notably worse
than V15 are highlighted with green circles and discussed in the
text

:::
large

::::
LST

:::::
errors.

The first category where we see significant improvements is for the

:::
tail

::::::::
behaviour

::::::
relative

:::
to

::::
V15,

::
as

::::
well

::
as

:::::::
shifting

:::
the

::::::
median

::
of

:::
the

::::::::::
distribution

::
to

:::::
lower

::::::
errors.

::::::::
Particular

:::::::
regions

:::::
where

::
the

::::
V20

::::::::::::
physiographic

:::::
fields

:::::::
notably

::::::::
improved

::::::::::
performance

::::
were

::
in

::::::::
Australia

::::
and

:::
the

::::
Aral

::::
sea

::::
(e.g.

::::
Fig.

:::
9).

:::::
These

:::
are

:::
two

::::::
major

::::::
regions

::::::
where

::::::::::
ephemeral

:::::
lakes

::::
were

::::::::
removed 5

:::
and

::::::
inland

:::::
water

:::::::::
distribution

:::::
made

::::::::::
up-to-date,

::
as

::::::::
discussed

::
in

:::::::
Section

:::::
2.2.1.

:
In addition to the areas where there is

::::
with a notable improvement in the prediction accuracy, there
are also some noteworthy regions where the predictions get
worse (

:::
got

:::::
worse

::::
(see

:
red points in Fig.

::::::
Figure 9) suggest- 10

ing inaccuracies or lack of information in the new fields. We
can take a

:::::::
updated

::::::
surface

::::::::::::
physiographic

:::::
fields.

::
A few of the

most noteworthy points (highlighted by
::::::::
grid-cells

::::
(see

:::
red

:::::
points

:::::::::
highlighted

:::::
with green circles in Fig. 9 ) in turn

:::::
Figure

:
9
:::
and

::::
also

::::::
Figure

:::
11)

:::
are: 15

– Tanzania
::::::::
Northern

::::::
India. . There are two grid points

here where the V20 predictions are less accurate, both
at Lake Natron, in Tanzania, which lies to the south-east
of Lake Victoria. One grid point lies on the northern
edge of the lake, and the other is more central. For 20

the central point, the
:::
This

::::::::
grid-cell

:::
lies

::
in
::::

the
::::
state

::
of

::::::
Gujarat,

::::::
India,

:::::
close

::
to

:::
the

::::::
border

::::
with

::::::::
Pakistan.

::::
Here

::::::::::::
δV20 =+4.21,

:::::
with

:::::::::::
σV15 = 2.54

::::
and

::::::::::::
σV20 = 0.416.

:::
The

:
lake fraction was increased from 0.04

:::
0.59

:
in V15

to 0.39
::::
0.71 in V20 . However Lake Natron is a highly 25

saline lake that often dries out, with high temperatures,
high levels of evaporation and irregular rainfall. It is
a highly complex and variable regime that is not well
described by simply increasing the static lake fraction
field , and indeed these results suggest that it may in 30

fact be beneficial for the current lake parametrisation
scheme to keep the lake fraction low here (see e.g.
Fig 10c). Similar arguments apply for the grid point
at the northern edge, where the lake fraction has also
been increased, along with a small decrease (∼ 0.1) in 35

cvl
::::
field

:::
set,

::::::
along

::::
with

::::
the

::::
lake

:::::
depth

::::::::
increase

::::
from

:::::
2.58m

:::
to

::::::
3.76m.

:::::::::
However,

:::
this

:::::
point

::::
lies

:::
on

::
a
::::
river

::::
delta

::::::
within

:::
the

::::::
Great

:::::
Raan

:::
of

::::::
Kutch,

::
a
:::::

large
::::

area

::
of

:::
salt

::::::::
marshes

::::
(see

::::::
Figure

:::::
10a),

:::::::
known

:::
for

::::::
having
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:::::
highly

::::::::
seasonal

:::::::
rainfall,

::::
with

:::::::
frequent

:::::::
flooding

::::::
during

::
the

::::::::
monsoon

::::::
season

::::
and

:
a
::::
long

:::
dry

::::::
season.

::::
The

::::::
surface

::::
itself

::::
also

::::::::
undulates

::::
with

:::::
areas

::
of

::::::
higher

:::::
sandy

::::::
ground

:::::
known

:::
as

:::::::
medaks,

::::
with

::::::
greater

:::::
levels

::
of

:::::::::
vegetation.

– Australia. This grid cell lies in South Australia and5

contains Lake Blanche. In going from V15 to
:
It
::

is

:::::::
evidently

::
a
:::::::
complex

::::
and

::::::
highly

::::
time

:::::::
variable

::::
area

:::
and

::::::::
additional

:::::
static

:::::::
fraction

:::
of

:::::
fresh

:::::
water

::::::::
provided

:::
via

V20 all water was removed, with the lake fraction
decreasing from 0.44 to 0 and the lake depth reduced10

from 5.5m to 1m. This water is then replaced with
vegetation; the low vegetation fraction cvl increasing
from 0.53 to 0.97. Whilst the removal of ephemeral
water is generally accurate for Australia, for this grid
point it causes the V20 predictions to become worse.15

Lake Blanche is a salt lake that lies within a wetlands
system and so will retain some surface water which will
influence the temperature response. The lake itself also
lies below sea level, but the orography fields in V15
or V20 do not reflect this. Satellite imagery (e.g. Fig20

??) suggests that the area surrounding Lake Blanche is
also fairly devoid of any obvious vegetation. The V20
description of a completely dry region covered short
grass (low vegetation) is then insufficiently accurate,
and results in worse predictions

::::
field

::
set

::
is

:::
not

::::::::
sufficient.25

– Salt Lake City, North America. This grid point lies
:
.
::::
This

:::::::
grid-cell

::::
lies

:::::
within

:::
the

::::::
Great

:::
Salt

:::::
Lake

::::::
Desert,

just to the west of the Great Salt Lake, Utah, within
the Great Salt Lake Desert. All water

:::
US.

:::::::::
Predictions

::
of

::::::::::::
VESPER_V20

:::
are

::::::
worse

::::
than

:::::::::::::
VESPER_V15,

::::
with30

:::::::::::
δV20 =+2.91

::::::::::::
(σV15 = 0.26

:::
and

::::::::::::
σV20 = 0.92).

::::::
Whilst

::
the

::::::::
training

:::::
noise

::
is
::::::::::

significant
::::
here,

:::
it

::
is

::::
less

::::
than

::
the

:::::
δV20::::::

value,
:::
and

:::
we

::::
can

:::
see

:::::
from

::::
Fig

::
11

::::
that

:::
the

::::::::::::
VESPER_V20

::::::::::
predictions

::::::::::
consistently

::::::::::::
underperform

::
the

:::::::::::::
VESPER_V15

::::::::::
predictions.

::::
The

::::
lake

:::::::
fraction

:
was35

completely removed when going from
::::
from

::::
over

::::
0.50

::
in V15 to

:::
0.00

::
in

:
V20 (cl from ≳ 0.5 to 0). The

:::
field

:::
set,

:::::::
meaning

::::
that

::
the

::::::::
grid-cell

:
is
:::::
fully

::::::
covered

::::
with

::::
bare

::::::
ground

::
in

:
V20 model then treats this region simply as

bare ground
::::
field

:::
set. Whilst this area primarily is bare40

ground, satellite imagery also suggests the presence of
a presumably highly saline lake (Fig 10b).This region
also

:::
see

::::::
Figure

:::::
10b);

::
in

:::::::
addition

::::
area

:
has a large de-

gree of orography and high elevation (∼ 1300 m) which
will also further complicate

::::::::
∼1300m)

::::::
which

:::::::
probably45

:::::
further

:::::::::::
complicates

:
the surface temperature response.

Again, a
::
A more accurate description that accounts for

the seasonality of the surface water and the salinity is
necessary here.

– Afghanistan
::::::::
Tanzania. This grid point lies in the50

south west of Afghanistan, close to the border with
Iran. The only notable change when updating from

:::::
There

:::
are

:::::
two

:::::::::
grid-cells

:::
of

:::::::
interest

::
at
::::

the
::::::

centre

:::
and

::::::::
northern

::::
edge

:::
of

:::::
Lake

:::::::
Natron,

::::::
which

:::::
itself

:::
lies

::
to

:::::::::
south-east

:::
of

::::::
Lake

::::::::
Victoria,

:::
in

:::::::::
Tanzania.

::::
For 55

::::
both

:::::
these

:::::
points

:::::::::::::
VESPER_V20

::::::::::
predictions

:::
are

::::
less

:::::::
accurate

::::
than

::::::::::
VESPER_V15

:
;
::::

for
:::
the

:::::::
central

:::::
point

:::::::::::::::::::::::
(δV20 =+2.45,σV15 = 0.12

:::
and

:::::::::::
σV20 = 0.81,

:::
see

::::
also

:::::
Figure

:::::
10c)

::::
the

::::
lake

::::::::
fraction

::::
was

:::::::::
increased

:::::
from

::::
0.04

::
in

:::::
V15

:
to

:::
0.39

:::
in

:
V20 was the removal of 60

the water,with
:::
field

::::
set;

:::
for

::::
the

::::::::
northern

::::
edge

:::::
point

:::::::::::::::::::::::
(δV20 =+1.57,σV15 = 0.13

:::
and

:::::::::::
σV20 = 0.51)

:
the lake

fraction decreasing from 0.11 to zero
:::
was

:::
also

::::::::
increased

::
in

::::
V20

:::::::::
comparing

::
to

::::
V15

:::::
field

::
set

::::::
along

::::
with

:
a
:::::

small

:::::::
decrease

::::::
(∼0.1)

::
in
::::

the
:::
low

::::::::::
vegetation

:::::::
fraction. How- 65

ever, this area in fact has an extensive network of
mountain tributaries which feed an ephemeral lake (e.
g. Fig. ??). There is therefore likely some surface water
for parts of the year, especially during the rainy season,
and completely removing all water for this grid point 70

is an overcorrection.
::::
Lake

:::::::
Natron

::
is
::

a
:::::::

highly
:::::
saline

:::
lake

::::
that

:::::
often

::::
dries

::::
out,

::::
with

:::::
high

:::::::::::
temperatures,

::::
high

:::::
levels

::
of

::::::::::
evaporation

:::
and

:::::::
irregular

:::::::
rainfall.

::
It

:
is
::
a
:::::
highly

:::::::
complex

:::
and

:::::::
variable

::::::
regime

::::
that

::
is

:::
not

::::
well

::::::::
described

::
by

::::::
simply

:::::::::
increasing

::::
the

:::::::
fraction

::
of

::::::::::
permanent

::::
fresh 75

:::::
water,

:::
and

::::::
indeed

::::::
results

:::::::
suggest

:::
that

::::
with

::::::
current

::::
lake

:::::::::::::
parametrization

::::::
scheme

::
it
:::::

may
:::
be

::::::::
beneficial

:::
to

::::
keep

::
the

::::
lake

:::::::
fraction

::::
low

::
or

::::::::
introduce

:::::
extra

:::::::::
descriptor,

:::
e.g.

::::::
salinity.

:

– Northern India
::::::
Algeria. This grid point lies in the state 80

of Gujarat, close to the border with Pakistan. The lake
fraction cl was increased from 0.59 to 0.71 and the
lake depth dl increased from 2.58m to 3.76m. That is

::::::
Algeria,

:::
at

:::
the

::::::::
northern

::::
edge

:::
of

:::
the

:::::
Chott

:::::::
Felrhir,

::
an

::::::::
endorheic

:::
salt

::::
lake

::::::::::::
(δV20 =+2.20, the

::::::::::
σV15 = 0.41

:::
and 85

:::::::::::
σV20 = 0.49).

:::::::
Similar

::
to

::
the

:::::
Great

::::
Salt

::::
Lake

::::::
Desert,

:::
the

:::
lake

:::::::
fraction

::::
was

:::::::::
completely

:::::::
removed

:::::
from

:::
0.33

::
in
::::
V15

::
to

:::
0.0

::
in V20corrections suggest that there should be a

larger degree of lake cover in this grid box. However,
this point appears to lie on a river delta within the Great 90

Raan of Kutch, a large area of salt marshes (Fig 10a).
This area is known to have highly seasonal rainfall,
with frequent flooding during the monsoon season and
a long dry season. The surface itself also undulates with
areas of higher sandy ground known as medaks, with 95

greater levels of vegetation. It is evidently a complex
and .

:::::::::
However,

:::::
Chott

:::::::
Felrhir

:::::
goes

:::::::
through

:::::::
frequent

::::::
periods

::
of

:::::::
flooding

::::::
where

:::
the

::::
lake

::
is

:::::
filled

::
by

:::::::
multiple

::::
large

:::::
wadi,

::::
and

::::::::::::
corresponding

::::
dry

::::::
periods

::::::
where

:::
the

:::
lake

::::::::
becomes

::
a

:::
salt

::::
pan.

:::
As

::::
with

::::
the

:::::
Great

::::
Salt

::::
Lake 100

:::::
Desert

::
it

:
is
::::
also

:
a
::::::
highly

:::::::
variable,

:::::::
complex

::::
area

::::
that

:::
may

::::::
require

::::::::
additional

::::::::::::
consideration

::
of

:::
the

:::::::
salinity

:::
and

:::
the

:::::::::
seasonality.

:

–
::::
Lake

::::::
Chad

::::
This

::::
grid

:::::
point

::::::::
contains

:::::
Lake

:::::
Chad,

::
a

::::::::
freshwater

:::::::::
endorheic

:::
lake

::
in
:::
the

::::::
central

::::
part

::
of

:::
the

::::
Sahel 105

::::::::::::
(δV20 =+1.74,

:::::::::::
σV15 = 0.33

::::
and

:::::::::::::
σV20 = 0.98).

::::
Here

::
the

:::::
lake

:::::::
fraction

::::
was

::::::::
modestly

:::::::
reduced

:::::
from

::::
0.63

::
to
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::::
0.47.

::::::::
However,

:::::
Lake

:::::
Chad

::
is

:::::
again

:
a
:
highly time vari-

able area and the additional static information provided
via the

:::::
regime

:::::
with

:::::::
seasonal

:::::::
droughts

::::
and

:::
wet

:::::::
seasons.

:
It
::
is

::
a

::::::
marshy

:::::::
wetland

::::
area

:::
but

:::
the

:::::::::
vegetation

:::::::
fractions

::
in

::::
both

::::
V15

::::
and

:
V20 fields is either not accurate or5

not predictive/informative enough in such a variable
regime

:::
here

:::
are

:::::
zero.

::::::::
Satellite

:::::::
imagery

:::::
also

::::::
shows

:
a

::::
large

:::::::
fraction

:::
of

::::
the

::::::
surface

::::::::
covered

:::
by

:::::
water

::::
and

::::::::
vegetation

:::::::
(Figure

::::
10e).

– Egypt
::
Al

::::::::
Fashaga This grid point lies in the south10

of Egypt, to the west of the River Nile . Again,
all water has been removed from this region, with

:
a

:::::::
disputed

:::::
region

::::::::
between

:::::
Sudan

::::
and

:::::::
Ethiopia

::::::
called

::
Al

:::::::
Fashaga,

:::::
close

::
to

:
a
:::::::
tributary

:::
of

::
the

::::
Nile

:::::::::::::
(δV20 =+0.94,

::::::::::
σV15 = 0.14

:::
and

::::::::::::
σV20 = 0.29).

::::
The

:::::::
updated

::::
V20

::::
fields15

::::::::
increased the lake fraction reducing from 0.36 in V15
to zero in V20. The lake depth has been similarly
decreased from 25m to 6m. However, whilst this is a
very dry region, this grid cell also contains a section
of the Toshka Lakes (Fig ??), a collection of endoheic20

lakes, newly formed (and growing) due to overflow
from Lake Nasser. These lakes are known to be highly
time variable, with a periodic seasonality on top of
the general increasing lake sizes, and the formation of
surrounding wetlands. These lakes rapidly fill and dry25

out;
:
at

::::
this

::::
point

:::::
from

:
0
:::
to

::::
0.14.

::::
The

::::
grid

:::
cell

:::::::
contains

::
the

::::::
Upper

::::::
Atbara

::::
and

:::::
Setit

::::
Dam

:::::::::
Complex.

::::::::
However,

::
the

:::::
dam

::::
was

::::
only

:::::::
recently

::::::::::
completed

::
in

:::::
2018

:
-
:

dur-
ing the training and validation years - along with the
decade before - the lakes were mostly dryTos, whereas30

during the testing year they were filled. Whilst these
are the major regions where the

:::::
period

:::
the

::::::
damn

:::
was

:::
still

:::::
under

:::::::::::
construction.

::::::::::::
Consequently

::::::
whilst

:::
the

:
V20

prediction is significantly worse than the
::::
field

::::
may

::
be

::::
more

::::::::
accurate

::
at

:::
the

:::::::
current

:::::
time,

::::::
during

:::
the

::::::
period35

::
the

::::::
model

::::
was

:::::::
training

::::
the V15 prediction, there are

other regions of note where the underperformance is
less severe. For example in parts of northern Canada
there is a notable population of red points, where for
the Northwest Territories the mean δV20 is +0.02K. This40

difference is slight and it is hard to draw any definitive
conclusions - whilst some grid points get better, some
get worse. For these high latitude regions there is a large
variability over the course of the year as

:::
field

::::
was

::::
more

:::::::
accurate,

:::::
since

:::
the

:::::
damn

:::
was

:::
not

:::
yet

:::::
built.45

–
::::
Lake

::::
Tuz

:
.
::::
This

::::
grid

::::
cell

:::::::
contains

::
a
:::::
large

:::::::
fraction

::
of

::::
Lake

::::
Tuz

::
as

::::
well

::
as

::::
the

::::::
smaller

:::::
Lake

::::::::
Tersakan,

:::::
saline

::::
lakes

::
in

::::::
central

::::::
Turkey

:::::::::::::::::::::::
(δV20 =+0.85,σV15 = 0.25

:::
and

:::::::::::
σV20 = 0.34).

:::::
Here

::::
the

:::::::
updated

:::::::::::::
physiographic

::::
field

::::::::
effectively

:::::::::
removed

:::
all

::::
lake

::::::
water,

:::::
with

:
the water50

freezes in the cold season and then melts during the
summer. Such a time variability is not ideally captured
by lake parametrisation which is likely the cause of the
issues here, along with the greater uncertainty and error

in the observations in these regions with increased cloud 55

cover. Another interesting location is the north eastern
edge of the Caspian Sea, where there are 4 grid points
with a mean δV20 =+0.65K.This is the Astrakhan
Nature Reserve, an extensive wetlands region. In going
from V15 to V20, the lake fractions have generally 60

been decreased and the vegetation fractions increased
correspondingly

:::
lake

:::::::
fraction

::::::::::
decreasing

:::::
from

::::
0.14

::
to

:::::
0.005.

::::::
Whilst

:::
the

:::
lake

::
is
:::::::
shallow

:::
and

::::
does

:::
dry

:::
out

::
in
:::
the

:::::::
summer,

:::::
there

::
is

:::
also

::
a
:::::
large

:::::::
fraction

::
of

::::::
surface

:::::
water

::::::
present

::::
(e.g.

::::
Fig

::::
10d)

::::
and

::
it

::
is

:::
an

::::
over

:::::::::
correction

::
to 65

:::::::::
completely

::::::
remove

:::
all

::::
lake

:::::
water

::
at

:::
this

:::::
point.

:

–
::::
Lake

:::::::
Urmia

:
.
::::
This

:::::
grid

::::
cell

:::::::
contains

::::::
Lake

::::::
Urmia,

:::::
which

::
is
:::::::

another
::::::

saline
::::
lake

:::
in

::::
Iran

:::::::::::::
(δV20 =+0.81,

::::::::::
σV15 = 0.12

::::::
and

::::::::::::::
σV20 = 0.73).

:::::
The

:::::::::
updated

:::::::::::
physiographic

::::::
fields

:::::::::
decreased

::::
the

::::
lake

::::::::
fraction

::
at 70

:::
this

:::::
point

::::
from

:::::
0.77

::
to

:::::
0.39.

::::
This

::::
was

::
in

::::::::
response

::
to

::
the

:::::::::
shrinking

:::
of

:::::
Lake

::::::
Urmia

::::
due

:::
to

::::::::::::
long-timescale

:::::::
droughts

::::
and

:::
the

::::::::
damming

::
of

:::::
rivers

:::
in

::::
Iran. However,

since these are wetlands there is likely a large degree of
water present and the updated V20 lake fields may be 75

insufficiency informative and an extra map of wetlands
may be necessary.

:::
this

:::::::
drought

:::::
broke

::
in

::::
2019

::::
and

::::
Lake

:::::
Urmia

::
is

::::
now

::::::::
increasing

::
in

::::
size

:::::
again

:
-
::::::
satellite

:::::::
imagery

:::
now

::::::
shows

::
a

::::
large

:::::::
fraction

::
of

:::
the

::::
grid

::::
cell

:::::::
covered

::
by

::::
water

:::::::
(Figure

::::
10f).

:
80

We can also inspect the subclass of the Lake Updates
category,

:::
The

:
Lake-Ground Updates , and restrict our

:::::::::::
sub-category,

:::::
which

:::::::
restricts

:
analysis to only points where

there was
::::
with no significant change in the vegetation. This

then
:
, allows us to more clearly see the effect of adding/re- 85

moving water without the additional influence due to the
change in vegetation. In this case the mean improvement
in the prediction accuracy when using the

:::::::
on/from

::::
bare

::::::
ground.

::::
This

:::::::::::
sub-category

::::::
shows

::::
even

:::::
larger

::::::::::::
improvements

::
in

::::
LST

::::::::::::
predictability

::
if

:::::
using

:
V20 fields is stronger than 90

the Lake category, with δV20 =−1.12 K
::::
field

:::
set

::::::
instead

::
of

:::
V15

::::
(see

:::::
Table

:::
4)

:
–
:::::::::

prediction
::::::::
accuracy

::::::::
increased

:::::::
globally

::::
(over

::::
546

::::::::
grid-cells)

:::
on

:::::::
average

::
by

::::::
0.83K

:::::::::::
(σV15 = 0.15

:::
and

:::::::::::
σV20 = 0.04,

:::
see

::::
also

::::::
Figure

::
7). This indicates that whilst

the updated lake fields are globally accurate and informative, 95

providing on average over the globe, over a year, more than

:::::
nearly an extra Kelvin of predictive performance, the updates
to the vegetation fields tamper this performance gain. This
suggests at a ,

:::::::::
indicating

:
potential problem with the vegeta-

tion fields 100

, which we will now explore further.

3.1.2 Category: Vegetation Updates

Whilst the edits to the V15 lake fields generally act to
increase the prediction accuracy, indicating that these
fields are accurate and informative, changes to the vegetation 105

generally give worse predictions.We can see from from Table
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Figure 9.
::::::::
Differences

::
in

:::
the

::::::::
prediction

::::
error

:::::
MAE,

:::::::
between

:::::::::::
VESPER_V20

:::
and

::::::::::::
VESPER_V15,

:::
(i.e.

:::::::
δV20),for

:::::
2019

::
at

:::::
31km

::::::::
resolution

::
for

:::::
‘Lake

:::::::
Updates’

::::::
category

::::
(i.e.

::::
where

::::
lake

::::
cover

:::::::
changed

::::::::::
significantly).

::::::::
Generally,

:::::::::::
VESPER_V20

::::
LST

::::::::
predictions

:::
are

::::
more

:::::::
accurate,

:::
for

::::::
example

::
in

:::
the

:::
Aral

:::
sea

:::
and

::::::::
Australia,

:::::::
indicating

::::
that

:::
V20

::::
field

::
set

::
is

:::::::::
informative

:::
and

:::::::
accurate.

:::::::
Particular

:::::
points

:::::
where

:::::::::::
VESPER_V20

::::
LST

:::::::
prediction

::::
gets

:::::
notably

:::::
worse

::::::::
compared

::
to

:::::::::::
VESPER_V15

::
are

:::::::::
highlighted

::::
with

::::
green

:::::
circles

:::
and

::::::::
discussed

::
in

::
the

::::
text.

?? that the mean prediction accuracywhen using the updated
fields decreases by 0.49K over 58 points . For all points
apart from one, the cvh

:::
The

:::::::::
Vegetation

:::::::
updates

::::::::
category,

::::::
restricts

::::::::
analysis

::
to

::::
grid

::::::
points

::::
with

:::::::::
significant

:::::::
change

::
to

::::
high

:::::::::
vegetation

::::::
cover,

::::::
where

::::
the

::::
high

::::::::::
vegetation

:::::
cover5

:
is
::::::::::

substituted
::::
with

::::::
either

::::
low

:::::::::
vegetation

:::
or

::::
bare

:::::::
ground,

:::
and

::::
vice

::::::
versa.

:::
For

::::
this

::::::::
category

:::
the

:::::::::
prediction

::::::::
accuracy

::
of

::::
V20

:::::::::
decreased

::::::::
globally

:::::
(over

:::
58

:::::::::
grid-cells

:::::
only)

:::
on

::::::
average

:::
by

::::::
0.04K.

::::::::
However,

::::
this

::::
shift

::
is

:::::
much

::::::
smaller

::::
than

::
the

::::::::
training

:::::
noise

:::::::
between

::::::::::
successive

::::::::
VESPER

::::::::
iterations10

:::::::::::
(σV15 = 0.04,

::::::::::::
σV20 = 0.15)

::::
and

:::
so

:::
it

::
is
:::::

hard
:::

to
:::::

make

:::::::
definitive

::::::::::
statements

:::::
about

:::
the

:::::::::::
performance

::
of

:::
the

:::::::
updated

::::::::
vegetation

::::::::::::
physiographic

:::::
fields

::
as

::
a
:::::
whole

::::
(see

:::
e.g.

::::
Fig

:::
13).

:::
The

::::
best

:::
we

:::
can

:::
say

::
is

:::
that

:::
the

:::::::
updated

::::
V20

:::::::::
vegetation

::::
fields

::::
offer

::
no

::::::
global

:::::::::::
improvement

::
in

:::
the

::::
LST

::::::::
prediction

::::::::
accuracy.15

:
If
:::
we

::::::
isolate

:::
our

::::::::
analysis

::
to

::::::::
individual

::::
grid

::::::
points

:::::
where

::
the

:::::::
training

:::::
noise

::
is

::::
small

:::::::::::
(highlighted

::
by

::
∗

:::::
points

::
in

:::
Fig

:::
13)

::
we

::::
can

::::::
discern

::::
that

:::::
there

:::
are

::::::::
multiple

::::::::
locations

:::::
where

:::
the

::::
high

:::::::::
vegetation fraction was decreased ,

:
(often quite dras- 20

tically to zero, i.e.
::
),

:
specifying that there should just be

bare groundin these grid boxes. Whilst this may be accurate
for some points, by inspecting ,

:::
but

::::::::
thorough

:::::::::
inspection

::
of

these areas with satellite imagery it is clear that there are
regions which are in fact areas of

:::::::
revealed

:::
that

::::
they

::::::
should 25

::
in

:::
fact

:::
be

:::::::
covered

::::
with high vegetation (

:::
see e.g. Fig

:::::
Figure

12) and that it is inaccurate to simply remove all vegetation
from these grid boxes. It is also notable that the grid
pointswhich have the largest drop in predictive performance
when going from V15 to

:::::::
updating

:::
the V20 are all grid points 30

where the vegetation fraction is severely
:::
high

:::::::::
vegetation

::::
cover

:::::
was

:::::::::
erroneous

:::
for

:::::
these

::::::::::
grid-cells.

:::::::::
Moreover,

:::
for

:::
this

::::::
subset

:::
of

::::
less

:::::
noisy

::::
grid

::::::
points,

::::
the

:::::::
strength

:::
of

:::
the

::::
drop

::
in
:::::

LST
::::::::::::

predictability
:::

in
:::::::::::::
VESPER_V20

:::::::::
comparing

::
to

::::::::::::
VESPER_V15

:::
is

::::::::::::
approximately

::::::::
linearly

:::::::::
dependent

::
to 35

::
the

:::::::
degree

::
of

:::::::::
reduction

::
in

::::
high

::::::::::
vegetation

:::::::
fraction,

:::::
when

::
the

::::::::::
vegetation

::
is

::::::::
replaced

::::
with

:::::
bare

::::::
ground

::::
(i.e.

:::::
δV20::

is

:::::::::
maximally

::::::
positive

:::::
when

:::
the

:::::::
grid-cell

::::
that

:::
was

:::::
fully

::::::
covered
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(a) Gujarat Province, India
:

(b) Great Salt Lake Desert, Utah
:

(c) Lake Natron, Tanzania
:

(d) Lake Tersakan/Lake Tuz
:

(e) Lake Chad
:

(f) Lake Urmia
:

Figure 10. Satellite
:
A
:::::::
selection

::
of

::::::
satellite

:
imagery of

::::
some

::
of

:
the problematic Lake Updates points highlighted in Fig. 9 where the V20

predictions are worse than the V15 predictions. Generally the updated V20 fields remove water, only considering permanent water. However
these regions have highly time variable waters, which are better captured on average by the V15 fields. The images are centred on the grid
box coordinates.Note that the lengthscales are different for some images.
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Figure 11.
::
As

::::
Fig.

:
7
:::

for
::::::
selected

::::::::
locations

::
in

::
the

:::::
lakes

:::
grid

::::
point

::::::
category

:::::
where

:::
the

:::::
added

::::
V20

::::
data

:::::
results

:::
in

:::::
worse

::::::::
predictions

::::
when

:::::::
compared

::
to
::::
V15.

::::
with

:::::
forest

:::::::
becomes

:::::
fully

:::::::
covered

::::
with

::::
bare

::::::
ground

::
–
::::
high

::::::::
vegetation

::::::
cover

::
is
:

reduced to zero. This suggests that
such extreme changes may be strong over-corrections, and
more modest updates to the vegetation fields may be more
accurate. These erroneous

:
).
::::::

These
:::::::::
erroneous

::::::::
grid-cells

::
in5

V20 vegetation fields are likely inherited from initial datasets
used to update vegetation or

::
to

::::::
appear

:
during the interpo-

lation. The errors in these regions will in turn corrupt the
LST predictions and mitigate the gain from a more accurate
representation of the lake water.

:::
The

::::::::
majority

::
of

::::
grid

::::
cells10

::
in

:::
this

::::::::
category

::::::
(57/58)

:::
are

::::::::
modified

::
in

::::
this

::::
way

:::::
where

:::
the

::::
high

::::::::
vegetation

:::::::
fraction

::
is

:::::::
severely

::::::::
reduced,

:::::::
however

:::
due

::
to

::
the

:::::
large

::::::
degree

:::
of

::::::
training

:::::
noise

::::
and

:::
the

:::::
small

:::::::
number

::
of

:::::
points,

::
it
::
is
:::::::

difficult
:::

to
::::
draw

::::
any

::::::::
definitive

::::::::::
conclusions

:::
for

::
the

::::::::
category

::
as

:
a
::::::
whole.

:
15

3.1.3 Category: Glacier Updates

The
:::
The

:::::::
Glacier

::::::::
Updates

::::::::
category

:::
in

:::::::
general

::::::
shows

:::::::::::
improvement

::
in

::::
LST

:::::::::::
predictability

::
in

::::::::
VESPER_V20 updates

to the glacier fraction also generally improve the predictions,
with a mean δV20 =−0.14 K

:::::::::
comparing

::
to

::::::::::::
VESPER_V1520

:::
(see

:::::
Table

::
4)
::

–
:::::::::
prediction

::::::::
accuracy

:::::::
increases

::::::::
globally

:
(over

1057 grid points. These improvements are concentrated

::::::::
grid-cells)

:::
on

::::::
average

:::
by

:::::
0.22K

::::::::::::
(σV15 = 0.03,

:::::::::::
σV20 = 0.02),

::::
most

:::::::
notably around the Himalayas, the land either side of

the Davis strait, as well as British Columbia and the Alaskan25

Gulf. Analogous to the Lakes Updates category whilst the in-
troduction of the V20 fields generally improves the model,
there are some selected regions

:::::
glacier

::::::
cover

::::::::
generally

:::::::
improves

:::::
LST

::::::::::
predictions,

::::
there

::
is

::
a

:::::
small

:::::::
selection

:::
of

:::
grid

:::::
points

:
where the prediction gets worse. These are heav-30

ily concentrated in the southern hemisphere, in particular

(a)

(b)

Figure 12. Satellite imagery of grid boxes
::::::
grid-cells

:
in (a)

::
(a)

Siberut Island, Indonesia and (b)
::
(b)

:
South Island, New Zealand.

For both points it is expected
::::::

grid-cells
:

according to the up-
dated V20 fields that

:::
field

:::
set there is

:::::
should

::
be

:
no vegetation,

just bare ground. VESPER can identify
::::::
identified

:
these erroneous

::::::::
erroneously

:
updated fields

::::
areas.

on the south western
::::::::::::
south-western

:
edge of South Amer-

ica and the South Shetland Islands -
:
(which lie closer to

Antarctica- as well as
:
),

:::
and

:
some parts of the Himalayas.

This deficit
::::::::::
deterioration

:
in performance in these areas is 35

not due to erroneous updated
::::::
update

::
of

:
V20 fields, but

instead is a data quality issue whereby we do not have a lot
of MODIS observations in these areas which have a large
degree or orography and cloud cover.This can be seen in Fig
?? for the above mentioned regions. Consequently the neural 40

net model
::::::
glacier

:::::
cover,

::::
but

::::::
related

:::
to

:::
the

::::::::::::
Aqua-MODIS

:::
data

::::
(i.e.

::::::
sparse

::::::::::
availability

:::
due

::
to
:::::::

clouds,
:::
and

::::
less

::::::
certain

:::
due

::
to

::::::::::
orography,

:::
see

::::::
Figure

::::
5a).

::::::::::::
Consequently,

::::::::
VESPER

finds it difficult to make accurate predictions in this re-
gion , and this iteration of the model has settled into a 45

local minimum for V20 which is worse than
::
and

::::
for

::::
these
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Figure 13.
::::::::
Distribution

:::
of

::::::::
prediction

::::::
errors

::
in

:::
the

:::::
LST,

:::
for

:::::::::::
VESPER_V15

:::
and

::::::::::::
VESPER_V20,

:::
for

:::
all

::
58

::::
grid

:::::
points

::
in
:::

the

:::::::
vegetation

::::::::
category.

:::::
There

::
is

:::::::
evidently

::
a
::::
large

::::::
degree

::
of

:::::
noise,

:::
with

:::::::::
predictions

::::
from

::::
both

:::::::::
generations

::
of

:::::::
VESPER

:::::
model

:::::
highly

:::::::::
overlapping.

:::::
Points

:::
with

:::::::
reduced

:::::
training

:::::
noise

::
are

:::::::::
highlighted

:::
with

:
a
::
∗.

:::::
points

:::::
there

::
is

:::::
often

:
a
:::::

large
::::::
degree

:::
of

:::::::
training

:::::
noise,

::::
with

::::::::::
considerable

:::::::
overlap

:::::::
between

:::::::::
VESPER_V15 in these areas.

If we isolate just grid points where we have a large number
of observations (we take

:::
and

:::::::::::::
VESPER_V20.

::
If
:::::

grid-
::::
cells

::::
with

:::::
scarce

::::::
amount

:::
of

:::::::::::
Aqua-MODIS

:::::::::::
observations

::::
(i.e. mean5

number of MODIS observations per ERA data point > 50)

:::::::::::
Aqua-MODIS

:::::::::::
observations

:::
per

::::
day

::::
over

:::
the

::::
year

:::
per

:::::
ERA5

:::::::
grid-cell

::
is

:::::
>50)

:::
are

::::::::
removed

:::::
from

:::
the

::::::::
analysis

:
then the

worst performing grid points are excluded. In this case
there do remain

:::::::
grid-cells

:::::::
become

:::::::::
excluded,

:::
yet

:
a few ar-10

eas where the
::::::::
VESPER_V20 model underperforms with

respect to
::::::::::::
underperforms

::::::::::
VESPER_V15

::::::
remain. For ex-

ample,
:

there is a grid point in the Alaskan gulf on the
Bering Glacierwith δV20 =+2.16 K. This point

:::::::
grid-cell

::
in

::::::
Chilean

:::::::::
Patagonia

:::
that

:::::::
contains

:::
the

:::::::::
Calluqueo

:::::::
Glacier,

::::
close15

::
to

::::::
Monte

::::
San

:::::::
Lorenzo

::::::
where

:::::::::::
δV20 = 2.49

::::::::::::
(σV15 = 0.38,

:::::::::::
σV20 = 0.62).

:::::
This

:::::::
grid-cell

:
has been updated in V20 to

have a higher glacier proportion (0.68 to 0.92), such that
the grid box should be almost completely dominated by
ice. Nearly all low vegetation was also completely removed20

(cvl from 0.10 to 0.007) and the lake depth increased from
∼ 2m to ∼27, in conjunction with a modest decrease in the
lake fraction, from 0.07 to 0.01. Satellite imagery of the
region (Fig. 14) shows an area that does have a significant
ice fraction , but perhaps not as great as ≳ 90%, suggesting25

that the V20 updates
::::
field

:::
set

:::::::::
comparing

::
to

::::
V15

::
by

:::::::
strongly

::::::::
increasing

::::::
glacier

::::::
cover

::::
from

::::
0.0

::
to

:::::
0.44),

::::::::::
decreasing

:::
low

::::::::
vegetation

::::::
cover

:::::
(from

::::
0.22

:::
to

:::::
0.12)

::::
and

::::
high

:::::::::
vegetation

::::
cover

:::::
(from

::::
0.16

::
to

:::::
0.09)

::
as

::::
well

::
as

::::::::
modestly

:::::::::
decreasing

:::
lake

::::
cover

::::::
(from

::::
0.02

::
to

:::::::
0.007).

:::::::::
According

::
to

:::::::
satellite

:::::::
imagery 30

:::
(see

::::::
Figure

::::
14a)

:::
the

::::::
glacier

::::
only

:::::::
occupies

::
a
:::::
small

::::::
fraction

::
of

::
the

::::::
overall

::::::::
grid-cell,

::::
and

:::
the

::::::
updated

::::::
glacier

:::::
cover

:
may have

been an over correction. The Bering glacier is also known
to be a time variable region which varies in size over the
course of the season, whilst on longer timescales exhibits 35

a general retreat of the terminus over time, coupled with
periodic surges in the glacier flow around every 20 years
Molnia and Post (2010).It is therefore a complex region not
necessarily well represented by a static fractional field. There
also appears to be some low level vegetation present, and 40

again removing all vegetation for this region may have been
an overcorrection. Another notable grid

:::::::::
Moreover,

:::
this

::
is

::
an

:::::::
complex

:::::::::
orographic

::::
area

::::
with

:::::
snowy

::::::::
mountain

:::::
peaks

::
at
::::
high

::::::
altitude

:::
and

:::::
deep

::::::
valleys,

::::::::
therefore

:::
the

::::::::::
temperature

:::::::
response

:::
due

::
to
::::

the
::::::
glacier

:::::::
feature

:::::
could

:::
be

:::::::
atypical

:::::::::
compared

::
to 45

:::
e.g.

:::
the

::::::::
Alaskan

::::
Gulf

:::
or

:::
the

:::::
Davis

::::::::
straight.

:::::
There

::
is
::::

also

:::::::::
substantial

:::::::::
vegetation

:::::
cover

::
in

:::
the

:::::::
valleys

:::
that

::::
may

::::
not

::
be

::::
being

::::::::
properly

:::::::::
described.

::
A

::::::
similar

:
point is in the Chilean

Andes
:::
(see

::::::
Figure

:::::
14b), by the Juncal Glacier . Here the

ice fraction was increased in
::::
with

::::::::::
δV20 = 1.26

:::::::::::
(σV15 = 0.68, 50

:::::::::::
σV20 = 0.29).

:::::
Here V20

::::::
glacier

:::::
cover

:::
was

::::::::
increased

:
to 0.25

from zero
::::::::
compared

::
to

:::::
0.00

:
in V15, an attempt to better

represent the glacial ice. However, δV20 =+2.67K. In fact,
the glacier itself only occupies .

:::::::
Again,

:::
this

::
is
:::::

may
::::
have

::::
been

:::
an

::::
over

:::::::::
correction,

:::
as

:::
the

:::::::
glacier

:::::::::
constitutes

:::::
only a 55

small fraction of the overall grid box, and the updated field
may have been an over correction. Moreover, this is

:::
grid

:::
cell.

:::
As

::::
with

:::
the

:::::::::
Calluqueo

:::::::
Glacier

:::
this

::
is

::::
also an area with

lots of orography , with snowy mountains at high altitude
and deep valleys. Therefore the temperature response due to 60

the glacier feature could be atypical compared to e. g. the
Alaskan Gulf or the Davis straight. For both these points
we can again see how VESPER ’s ability to identify grid
points where the model predictions become worse in this way
is a powerful tool for identifying updated fieldsor regions 65

which are insufficiently accurate or informative.
:::
and

:::
so

::::
could

::::
have

:::
an

:::::::
atypical

::::::::::
temperature

:::::::::
response.

:::
For

:::::
both

::
of

:::::
these

:::::
points

::::::::
VESPER

::::::::
managed

::
to

:::::::
identify

::::::::
potential

::::::::::
inaccuracies

::
in

:::::::
updated

::::::
glacier

:::::
cover,

::::
and

::::
once

:::::
again

:::::::
proved

::::
itself

:::
as

:
a

:::::
useful

:::
tool

:::
for

::::::
quality

::::::
control

::
of

::::::
surface

::::::::::::
physiographic

:::::
fields. 70

From this example deploying VESPER on the lake
parametrisation fields,

3.2
:::::::::

Evaluation
::
of

::::
new

::::
lake

::::::
fields:

:::::::
Monthly

::::::
water

::
&

:::
salt

::::
lakes 75

::::
From

::::
the

:::::::::
examples

::::::
above

:
it is evident that VESPER

enables the user to quickly identify regions where the
new parametrisation works effectively

::::::
update

::
to
:::::::

surface
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(a)

(b)

Figure 14. Satellite imagery of (a) Bering
::
(a)

::::::::
Calluqueo

:
Glacier,

Alaskan Gulf
:::::::
Patagonia, and (b)

::
(b)

:
Juncal Glacier, Chile. For (a)

it is expected that there is no vegetation and
:
In

:
the grid box to

be primarily (≳ 90%) dominated by ice. For (b) the updated V20
fields specify a ≳ 25% glacier fraction. Evidently

:::
field

:::
set, the V20

fields
:::::::::
assumption for

::::
region

:::
(a)

::
is

:::::
almost

::::
half

::
ice

:::::
cover

::::
with

:::
little

::::::::
vegetation,

::
for

:::::
region

:::
(b)

::
is

:::::
quarter

::::::
covered

::::
with

::::::
glacier; these grid

boxes are
::::::::

assumptions
:::::

seem
::
to

::
be

:
insufficiently accurate or infor-

mative, as identified by VESPER.

:::::::::::
physiographic

:::::
fields

::::
was

:::::::::
beneficial

:
(e.g. Aral Sea) as well

as spotting regions where it is less performant
:::
and

:::::
where

:
it
::::
was

:::
not

:
(e.g. Lake Natron, high vegetation updates). In

turn, those areas where the
:::::
areas

:::::
where

::::
LST

:
predictions do

not improve as expected can be inspected and erroneous or5

sub-optimal representations of the surface
:::::::::::
physiographic

fields identified. This then provides key information on how
to introduce further

:::
and

:::::
where

::
to
:::::::::

introduce
::::::::
additional

:
cor-

rections to better represent these more difficult
:::::::::
challenging

or complex regions. We will now further explore some10

:::::
Some

:
of these problematic areas and demonstrate how

VESPER can guide the development and introduction of
additional surface fields.

::
are

::::
now

::::::::
explored

:::
in

::::
more

::::::
details

:::
and

:::::::::
additional

::::::
surface

::::::::::::
physiographic

:::::
fields

:::::::::
introduced

::::
with

:::
help

:::
of

::::::::
VESPER.

:
15

3.3 V20X: Monthly water & salt lakes

Particular regions where it was difficult for the model to
make predictions -

::::::::
VESPER

:::
was

:::::::::
struggling

::
to

::::
make

:::::::
accurate

::::
LST

:::::::::
predictions

::
–
:

especially with the updated V20 fields 20

::::
field

::
set

:
which only include permanent water -

:
– were either

areas with a large degree of temporal variability (e.g. lakes
which flood and dry out periodically, or freeze and melt) or
else lakes which are salt water rather than fresh water

::::
areas

::::
with

:::::
saline

:::::
rather

::::
than

:::::::::
freshwater

:
lakes. Clearly if the size, 25

shape and depth of a lake are changing over the course of
the year, these are going to be hugely significant factors in
modelling the lake temperature response. Similarly, saline
lakes behave very differently to fresh water

::::::::
freshwater

lakes since increased salt concentrations affect the density, 30

specific heat capacity, thermal conductivity, and turbidity, as
well as evaporation rates, ice formation and ultimately the
surface temperature. These two properties of time variability
and salinity are often related; it is common for saline lakes
to flood and dry out over the course of the season, which 35

naturally also affects the relative saline concentration of the
lake itself.

Currently, neither the
::::::::
VESPER_V15 or

:::::::::
VESPER_V20

models have any information regarding the salinity of the 40

lakes or their time variability. Indeed, FLake is specifically a
fresh water lake model! We can introduce this information by
also

:::
This

::::::::::
information

:::
can

::
be

:::::::::
introduced

:::
by including a global

salt lake map and monthly inland water lake map as
::::
saline

:::
lake

::::::
cover

::::
and

:::::::
monthly

:::::::
varying

::::
lake

::::::
cover

::
as

:::::::::
additional 45

:::::::::
VESPER’s input features, and use VESPER to investigate the
added value of these additional fields . To create a monthly
inland water map we first create 12 monthly fractional land
sea masks based on JRC Monthly Water History v1.3 maps
for 2010-2020. Since the annual lake maps were created 50

taking into account a lot of additional sources we enforce the
extra condition on the monthly maps that the monthly water
is equal or greater than permanent water distribution from
fractional land sea mask. To create an inland salt water map
we used the salt lake list from GLDBv3. First, in order to 55

identify separate lakes on inland water map, we mask small
sub-grid lakes and large lake coasts, i. e. grid-cells that have
water fraction less than 0.25. Next, we compute number of
connected grid-cells in each lake (i.e. connected with sides
only). Then we vectorise only lakes that have 100 and more 60

connected grid-cells, as at ERA5 resolution of ∼ 31 km
the grid-cells are quite large and can include a mixture of
freshwater and saline lakes. Finally, saline lake vectors are
selected by filtering vectors which have no saline lake point
located from GLDBv3. This process resulted in a map at 31 65

km resolution based on 147 large salt lake vectors. In the
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future we plan to revisit the map of salt lakes and extend the
list to include additional data.

We create a new model iteration “
::::
then

:::::
using

::::::::
VESPER

::
to

:::::::
rapidly

::::::
assess

::::
the

:::::::::
accuracy

:::
of

:::::
these

:::::
new

:::::::
surface

:::::::::::
physiography

:::::
fields

::::
and

:::::::
evaluate

::
if
:::::
their

:::
use

::
in

::::
the

:::::
model5

:::::::
increase

::::
LST

:::::::::::
predictability.

:::
We

::::::
define

::
an

:::::::::
additional

::::::
models

:::
(see

:::::
Table

::
3
::::

for
:
a
:::::::::

summary
::
of

:::
all

::::::::
VESPER

:::::::
models

::::
used

::
in

::::
this

::::::
work);

:::::::::
VESPER_V20X " which is analogous to

the
::::
uses

:::
the

:::::
same

::::
field

::::
set

::
is

:::
the

:::::
same

:::
as

:::::::::
VESPER_V20

model, but now also has as input features the monthly10

water (a quasi-time variable field) and the salt lake cover
(a static field). We again train the model on 2016 and make
predictions for 2019. The results are presented alongside the

:::
but

::::
with

:::::::::
additional

:::::
saline

::::
lake

:::::
cover

::::
and

::::::::::::::
monthly-varying

:::
lake

::::::
cover.

::::
The

::::::
results

:::
of

:::
this

::::::
model

:::
in

::::::::::
comparison

::::
with15

::::::::::::
VESPER_V15

::::
and

:::::::::
VESPER_V20 results in Table ??.

:
is

::::::::::
summarised

::
in
:::::::

Tables
::
4,
::

5
::

.
::::

We
::::

will
:::::

now
:::::::
explore

:::
the

:::::::
influence

:::
of

:::
the

:::::::::
additional

::::::
saline

:::::
maps

::::
and

:::::::
monthly

::::
lake

::::
maps

::
in

:::::
more

:::::
detail.

:

3.2.1 Category: Lake Updates
:::::::
updates20

We can see that for the
:::
The

:
Lake Updates category , the

prediction accuracy averaged over the year is effectively
unchanged from the

:::::
shows

::
no

:::::::::
significant

:::::::::
difference

::
in

::::
LST

:::::::::::
predictability

:::::::
globally

::::
when

:::::
using

:::
the

::::::
V20X

::::
field

::
set

::::::
instead

::
of

:
V20model

:
,
:::::

with
::::::::::::::::::::
δV20X = δV20 =−0.37

:::::::::::
(comparable25

::::::
training

::::::
noise). For the Lake-Ground Updates category, the

accuracy has decreased slightly, from δV20 =−1.12 K to
δV20X =−1.09 K, although the difference is so small as to
be within the model noise. The equivalence of the annually
averaged V20X and

:::::::::::
Lake-ground

:::::::
category,

:::::
there

::
is

:
a
::::::
modest30

:::::::
increase,

:::::
with

:::::::::::::
δV20X =−0.84

:::::::::
compared

::
to

::::::::::::
δV20 =−0.83

:::
but

:::
this

::
is

:::::
within

:::
the

:::::::
training

:::::
noise.

:

For Lake Blanche, V20X reduces the prediction error by
2.43K compared to

:::::
some

::
of

:::
the

::::::::::
problematic

::::
lake

::::::::
grid-cells

:::::::::
highlighted

:::
in

:::::
Table

:::
5,

:::
the

::::::::
addition

::
of
::::::

saline
:::::

maps
::::

and35

:::::::
monthly

::::
lake

:::::
maps

:::::
does

::::::::
improve

:::
the

:::::
LST

:::::::::::
predictability

::::::
relative

::
to

::::::::::
VESPER_V20. This is in-spite of the fact that

our salt lake maps do not identify Lake Blanche as a salt
lake, and so all the improvement in the prediction is from
the additional information from the monthly lake maps.40

The salt lake maps are similarly inaccurate for the grid
point in Northern India, failing to recognise the underlying
salt marsh. However, again the information contained in
the monthly lake maps allows the reduction in the error by
2.19K. There are also regions where the saline maps are45

correct to not specify any salinity, such as in Afghanistan
and the Toshka lakes; again the monthly maps provided
sufficient information to allow for a marked improvement by
2.04 K and 2.15 K respectively. This is particularly notable
since the size of the monthly lake corrections is small for50

these points: the mean monthly correction for Afghanistan
is 0.046 and for the Toshka Lakes is 0.001. However, under
the updated V20 both of these areas have had all water

removed and so adding in just a small amount of time
variable water allows for much more accurate predictions. 55

This example illustrates how VESPER both can identify
inaccurate fields and quantify the value of updated fields,
as well as emphasizing the importance of time variable lake
fields more generally. For points where the saline maps do
specify that the underlying lakes are salt lakes - Lake Natron 60

and .
::::
For

:::
the

:::::
Great

:
Salt Lake Desert- it is not possible to

disentangle whether the gain is due to the saline maps or
the monthly maps. The centre of Lake Natron exhibits a
particularly notable improvement by 2.6K, whilst for the
grid point on the northern edge the gain is more modest at 65

0.12K. This is likely due to the fact that the updated monthly
maps provided much stronger corrections at the centre of
the lake (mean correction 0.13) than at the northern edge
(mean correction 0.02). For

:
,
:::::
Chott

::::::
Fehlrir,

:::::
Lake

:::::
Chad

:::
and

::::
Lake

:::::::
Urmia,

::::::::::::::
VESPER_V20X

:::
is

::
a

:::::::
notable

:::::::::::
improvement 70

:::
over

::::::::::::::
VESPER_V20,

::::
with

:::::
δV20X::

=
::::::::::::::::::::
0.248,0.726,0.029,0.22

::::::::::
respectively.

::::
The

:::::::::
difference

:::
in

:::::
δV20X::::

and
:::::
δV20:::

for
:::::

these

:::::
points

::
is
:::::::

greater
:::::

than
:
the

::::::
training

::::::
noise.

:::
If

:::
we

:::::
take

::
as

:
a
::::
case

::::::::
example

:::
the

:
grid point at

::
in

:
the Great Salt Lake

Desert, the improvement is 2.06 K again with
::
in

:::::
using 75

:::::::::::::
VESPER_V20X

:::::
over

::::::::::::
VESPER_V20

:::
is

:::::::
2.667K

::::::
±1.10

::
K.

::
At

::::
this

::::
point

:::::
there

::
is
:
a strong correction from the monthly

lake maps (mean value 0.16) and the salt maps (mean value
0.56). This improvement is to be expected given the known
strong salinity and time variability in the region, and so it 80

is a nice confirmation to have these updated fields verified
by VESPER. It is also notable that the variation in the
monthly lake maps at this point is very large, with a standard
deviation in the lake fraction over 12 months of 0.18. At the
start of the year the corrections from the monthly maps are 85

very large, then as the year progresses the magnitude of the
corrections generally decreases as the lake dries out. Such a
large variation is again difficult to ever capture with a static
field.

90

Other regions of note that we have mentioned previously
are the Northwest Territories and the Nunavut province
in Northern Canada where the

:
It

::
is

::::::::
however

::::::
notable

::::
that

::
a)

:::
for

:::
all

:::
of

::::
the

::::::::::
problematic

:::::
lake

::::::
points

::::
that

::::
we

::::
have

::::::::
discussed

:::::
δV20X::

is
:::::::
positive

::::
and

::
b)

::::
there

::::
are

:::::::
multiple

:::::
points 95

::::
(e.g.

:::::::
Gujarat

::::::::
province)

::::::
where

:::::::::::::
VESPER_20X

:::::::
exhibits

:::
no

:::::::::::
improvement

::::
over

::::::::::
VESPER_V20 model underperformed

relative to V15, with δV20 =+0.02 K. The introduction of
the monthly lake maps modestly improves the predictions
in this area, with δV20X =−0.03K. In these high latitude 100

regions one might expect some time variability due to
freezing and thawing of the lake surfaces, and the addition
of the monthly lake maps to the model then provides some
of this time variable information, allowing for improved
predictions. Whilst this is an improvement, the effect is 105

modest; it is generally difficult to get quality observations
at high latitudes, especially during the cold season, due to
increased cloud cover. Therefore whilst VESPER can say
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Category Grid-cells/location
σVM, K δVM, K

V15 V15X V20 V20X V15X V20 V20X

Lake

Gujarat Province, India 2.54 1.12 0.42 1.04 -1.26 4.21 5.24
Great Salt Lake Desert, Utah 0.26 0.41 0.92 0.62 -0.18 2.92 0.25
Lake Natron centre, Tanzania 0.12 1.48 0.81 0.53 1.35 2.45 2.61
Lake Natron north, Tanzania 0.13 0.37 0.51 0.18 0.72 1.57 1.24
Chott Felrhir 0.41 0.57 0.49 0.58 0.34 2.20 0.73
Lake Chad 0.33 1.21 0.98 0.96 0.29 1.74 0.03
Al Fashaga 0.14 0.08 0.29 0.42 -0.24 0.94 1.06
Tersakan Lake 0.25 0.20 0.34 0.38 -0.00 0.85 0.99
Lake Urmia 0.12 0.54 0.73 0.32 0.54 0.82 0.22

Glacier
Calluqueo Glacier, Patagonia 0.38 0.62 1.60 0.73 0.08 2.49 0.32
Juncal Glacier, Chilean Andes 0.68 0.29 1.06 0.36 0.11 1.26 1.20

Table 5.
::
As

::::
Table

::
4

::
for

::::::
specific

::::
grid

:::::
points

:::::::
discussed

::
in
:::
the

:::
text

:::::
where

:::
the

:::::::::::
VESPER_V20

:::::::::
predictions

:::
are

::::
worse

::::
than

:::::::::::
VESPER_V15

::::
(i.e.

:::
δV20::

is
:::::::
positive).

that the addition of the monthly lake maps does improves
the predictions in these regions, for improved performance
cloud independent data should be used. Additionally, the
corrections from the monthly lake maps are small in these
regions, with amean correction of 0.02 and a generally5

small variance; in actuality time variable fields with greater
variance over the year may be more accurate. Due to the
freezing and thawing, improving ice on/off date prediction
by the lake parametrisation should help better describe the
seasonality and variance.10

It is worth emphasising that whilst the V20 and V20X
models are improvements over V15 globally, and V20X is
generally an improvement over V20 for these problematic
points, there are regions where neither V20 or V20X
outperform V15 (δM is always positive) , such as Lake15

Natron and Northern India
:::::
within

:::::::
training

:::::
noise. Given all

the extra information provided to the more advanced models

::::::::::::
VESPER_20X

::::::
model

:
this is unusual, unless

:
;
::
it

:::::::
suggests

:::
that

::::::
either

::
i)
:::::

some
:::

of
:

the additional information is er-
roneous in these regionsor else ,

:::
or

::::
else

:::
ii)

:
the temper-20

ature response is completely atypical to the rest of the
globeand

:
.
:::
For

:::::
point

:::
ii),

::::
this

::::::
means

:::
that

:
the additional in-

formation is not predictive in these regions. To explore this
hypotheses we

:::::::
Including

::::
this

:::::::::
additional

::::::::::
information

::
in

:::
our

:::::
neural

:::::::
network

::::::::
increases

:::
the

:::::::::
complexity

:::
of

::
the

::::::
model

:::::
which25

:::
may

:::
in

::::
turn

:::::::
increase

:::
its

:::::::
training

::::::
noise.

::::
This

:::
is

:::::
likely

:::
the

:::::
reason

::::::
behind

:::::
point

::
b)

:
-
:::
the

::::::
updated

:::::
fields

:::
are

:::
not

:::::::::
sufficiently

:::::::::
informative

:::
but

:::
do

:::::::
increase

:::
the

:::::::
training

:::::
noise

:::
and

::
so

:::
we

:::
see

::
no

:::::::::::
improvement

:::::
from

:::::
using

::::::::::::::
VESPER_V20X.

::::
For

:::::::
example,

::
for

:::::::
Gujarat

::::::::
province

:::::::::::::
σV20 = 0.416,

:::
but

:::::::::::::
σV20X = 1.04.

::
In30

::::
order

::
to
:::::::

explore
:::
the

:::::::::
hypothesis

::
of
:::::

point
::
i)
:::
we

:
train one fur-

ther model,
::::::::
VESPER_V15X . This

:::::
(again,

:::
see

:::::
Table

::
3
:::
for

:
a

:::::::
summary

:::
of

:::
all

::::::::
VESPER

::::::
models

:::::
used

::
in

::::
this

::::::
work).

::::
This

:::::::
VESPER

::::::::
iteration

:
is analogous to

:::::::::
VESPER_V20X, being

simply the
::::::::
VESPER_V15 model with the additional monthly35

maps and salt lake fields included. Importantly it does not
have the updated

::::::::::::
physiographic correction fields from V20.

Globally, this model performs worse that the V20 models,
as we might expect - for example in the Lake Updates cate-
gory δV15X =−0.25K compared to δ20X =−0.45

:::::
δV15X :

= 40

::::
-0.20

:::::::::::::
(σV15X = 0.02)

:::::::::
compared

::
to

:::::
δV20=

:::::
-0.37 K. However,

::::::::
VESPER_V15X does perform well at these problematic

:
a

::::::
number

::
of

:::
the

:::::
these

::::::::::
problematic

::::
lake points (see Table ??

:
5).

For both the Lake Natron grid pointsV15 outperforms
:
7
:::
out

::
of

:::
the

::
9

:::::::
selected

::::
lake

::::::
points,

::::::::::::::
VESPER_V15X

::::::::::
outperforms 45

::::::::
VESPER_V20X, suggesting that at this location .

::::
For

:::::::
example

::
in
::::::::

Gujarat
::::::::
province

:::
the

::::::::::::
improvement

:::
in

:::::
using

:::::
V15X

::::
over

::::::
V20X

::
is
::::::::::::
6.5K ± 1.53.

::::
This

::::::::
suggests

::::
that

:::
our

:::::::::
hypothesis

:::
for

:::::
point

::
i)
::

is
:::::::

correct
::::
and

::::
that

:::
for

:::::
some

::::
grid

:::::
points

:
the V20 fields are generally less accurate than the 50

V15 fields.
:::
For

::
a
:::::
subset

:::
of

:::::
points

:::::::::
VESPER_V15X however

underperforms relative to
:::
also

:::::::::::
outperforms

:::::::::
VESPER_V15

which also indicates that the monthly maps and the salt lakes
are either inaccurate at this location, or that the temperature
response of Lake Natron is highly atypical.For Northern 55

India, the performance of the V15 model is particularly
striking; whilst the V20 and V20X models struggled to make
more accurate predictions than V15, V15X decreases the
average prediction error by nearly 6K.This again indicates
that for this point the V20 fields are less accurate than V15. 60

Similarly for the Great Salt Lake Desert, δV20 = 1.78 K,
δV20X =−0.28 K but δV15X =−0.86 K, which suggests that
whilst the monthly lake maps and the salt lake fractions are
accurate and informative in this area, the static V20 fields
are not

:::
(e.g.

::::
for

:::::::
Gujarat

::::::::
province

::::::::::::::
δV15X =−1.26)

:::
but

:::
the 65

::::::::
difference

::
is

::::::::
typically

::::::
within

::
or

:::::
close

::
to

:::
the

:::::::
training

:::::
noise

::::
(e.g.

:::
for

:::::::
Gujarat

::::::::::::
σV15X = 1.12)

::::
and

:::
so

::
it

::
is

::::
hard

:::
to

::::
draw

:::
any

:::::
strong

::::::::::
conclusions. These examples illustrates again how

VESPER can identify particular regions where the fields are
inaccurate, as well as emphasising the need more generally 70

for accurate descriptions of seasonally varying inland water
and saline lake maps in Earth system modelling.
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3.2.2 Category: Vegetation Updates

Whilst the Vegetation Updates category explicitly deals with
areas where the lake fraction does not change when go-
ing from V15 to V20, many of the grid points in this
category do contain some kind of waterbody, often ly-5

ing close to the coast or else containing lakes or large
rivers. Information on the salinity and temporal variabil-
ity of these water bodies can

::::
could

:
then influence the pre-

diction accuracy. By providing the additional information
in V20X, the mean δM is reduced from δV20 =+0.049K10

to δV20X = 0.005K. This performance is gained despite the
known errors for some of the grid boxes in the cvh vegetation
updates (e.g. Figure 12), again demonstrating the importance
of salinity and seasonally varying water. The V15X model
is less performant than V20X, with δV15X = 0.11K since15

there are some grid boxes in this category where the
updated V20 fields are accurate and valuable if augmented
by monthly variability. However if we consider just the
worst performing grid points where δV20 > 1 K then
the mean values are δV20 = 2.0 K, δV20X = 0.49 K and20

δV15X = 0.21K. This again demonstrates how the cvh fields
have been erroneously updated for a small selection of
grid points in V20.

::::::::::::
VESPER_20X,

::::
the

:::::
error

:::::::
relative

::
to

::::::::::::
VESPER_V15

::
is

:::::::
reduced

::::::::
modestly

::
to

::::::::::
−3× 10−4

:::::::
although

::
as

:::
we

::::
saw

::::::
before

::::
with

::::
the

:::::::::
vegetation

::::::::
category

:::
the

:::::
noise25

:
is
:::::

large
:::::::::::::
σV20X = 0.21

:::
and

:::
so

::
it
:::

is
:::::::
difficult

:::
to

:::::
draw

:::
any

:::::
further

:::::::::
definitive

:::::::::::
conclusions.

::::::
Similar

::::::::::
arguments

:::::
apply

::
to

::::::::::::
VESPER_15X.

:

3.2.3 Category: Glacier Updates

We would expect the additional information provided by30

::
the

::
V20X

::::
fields

:
to be particularly effective for glacial

grid points. Glacier ice is naturally found next to wa-
terbodies which freeze and thaw over the year, and the
salinity of water will also influence this freezing. There-
fore accurate additional information from the monthly35

lake maps and the saline maps should prove useful in
these more time variable regions. This is indeed what we
observe with the mean delta going from δV20 =−0.13K to
δV20X =−0.24K. Considering the two problematic points
that we discussed previously, in the Alaskan Gulf the40

prediction accuracy relative to V15 has improved from
δV20 =+2.16 K to δV20X =+1.00 K, whilst for the Juncal
Glacier

::
We

:::
do

:::::::
observe

:
a
:::::
small

::::::::::::
improvement

:::::::
globally,

::::
with

:::::::::::::
δV20X =−0.28

::::::::
compared

:::
to

:::::::::::::
δV20 =−0.22,

:::::::
however

::::
this

::::::::
difference

::
is

::::::::::
comparable

::
to

:
the prediction accuracy has also45

improved, with δV20X decreasing to +1.88 K. Despite this
improvement, again for both of these points the prediction
accuracy still lags behind V15. This is on account of the

::::::
training

:::::
noise

:::::::::::::
σV20X = 0.06.

::::
This

:::::::
training

:::::
noise

::::::
could

::
be

::::::
slightly

:::::::::
deceptive;

:
3
:::
out

:::
of

:::
our

:
4
::::::::::::::

VESPER_V20X
::::::::
iterations50

:::::::::
outperform

:::::
every

:::::::::
VESPER_V20 fields being insufficiently

accurate in these areas, as has been discussed. Neither

of these grid points correspond to saline lakes or have
a significant time variability in

:::::::
iteration

:::
in

:::
the

:::::::
Glacier

:::::::
Updates

::::::::
category.

::::
The

::::
4th

:::::::::::::::
VESPER_V20X

::::::::
iteration

::
is 55

::::::::
somewhat

::::::::::
anomalous

:
-
::::

the
::::::::
increased

:::::::
network

::::::::::
complexity

::::
could

::::::
mean

:::
that

::::
the

:::::
model

::::
did

:::
not

::::::::
converge

::::
well

::::
for

:::
that

::::::::
particular

::::::::
iteration,

:::
for

:
the monthly lake fractions and so

are also not improved by a
:::::
glacier

::::
grid

:::::::
points.

:::::
Since

:::
the

::::::
updated

:::::
V20

::::::
glacier

:::::
fields

:::
are

::::::::
generally

::::::::
accurate

:::::::
globally, 60

::
we

::::
saw

::
no

:::::::::
particular

:::::::::::
improvement

::
in

:::::
using

::::::::
VESPER_V15X

model.
:
to

:::::::
within

:::
the

::::::::
training

:::::
noise.

:::::
This

::::::::
suggests

::::
that

::
the

:::::::::
additional

::::::::
monthly

::::
lake

::::::
maps

:::
are

:::::
only

::::::
useful

::
if

:::
the

:::::::::
underlying

::::::::::::
representation

:::
of

::::::
static

:::::
water

:::
is

::::::::::
sufficiently

:::::::
accurate.

:::::::::::
Considering

:::
the

::::::::
particular

:::::::
glacier

::::
grid

:::::
points

:::
we 65

::::::::
discussed

:::::::::
previously

::
in

::::::
Section

:::::
3.1.3,

:::
the

::::::::
additional

:::::::
monthly

:::
lake

:::::
maps

::::
were

::::::::::
particularly

::::::
useful

::
for

:::
the

:::::::::
Calluqueo

::::::
glacier,

::::
with

:::::::::::
δV20X = 0.32

:::::::::
compared

::
to

::::::::::
δV20 = 2.49

::::::::::::
(σV20 = 1.59,

::::::::::::
σV20X = 0.73).

::::::::
However

:::
we

::::
saw

::
no

::::::::::::
improvement

::
to

:::::
within

::
the

:::::::
training

:::::
noise

:::
for

:::
the

:::::
Juncal

::::::
glacier

:
70

3.2.4 Timeseries

Thus far we have been focusing mainly on the δM :::
δVM

metric averaged over the entire year of the test set. It is also
of interest to explore how the prediction error for each of the
3 models varies with time. This is demonstrated in Fig 15 75

for each of the 4 updated categories that we have discussed.

For the Lake Updates and Lake-Ground Updates categories
we can see that all the model predictions track the same
general profile, with the error peaking in the northern 80

hemisphere summer months. This is a result of FLake
modelling being least accurate during the summer as the
lake is not fully mixed and so the mixed layer depth for lakes
is too shallow, resulting in skin temperatures with larger
errors. Conversely, in the autumn and spring the lake is fully 85

mixed and predictions have the smallest errors compared
with observations. A clear hierarchy of models is evident;
the

::::::::::::
VESPER_V15

::::
and

::::::::::
VESPER_V20 /V20X models

consistently outperform the
:::::::::
VESPER_V15 model across

the year. This again is solid
:::::
strong

:
evidence, highlighted 90

by VESPER, of the value of the updated fields both static
and seasonally varying. We mentioned

:::::::
discussed

:
previously

how the annually and globally averaged δM :::
δVM:

values
for the Lake Updates category were highly comparable
for

::::::::
VESPER_V20 and

:::::::::
VESPER_V20X, despite V20X 95

significantly improving the worst behaving points. We can
see from the top panel in Figure 15 that the

:::
this

::::::::::
equivalence

:
is
::::

not
:::::::::
consistent

::::
over

:::
the

:::::
year.

:::::::
Instead,

::::::
during

:::
the

::::::
winter

::::::
months

:::
of

::::
the

::::::::
northern

::::::::::
hemisphere

:::::::::::::
VESPER_V20

::::
and

::::::::
VESPER_V20X model is a systematic improvement on 100

::
are

::::::
fairly

::::::::::
equivalent;

::::::::::
VESPER_V20 from around April

onwards, but at earlier times in the year V20 outperforms

::::
tends

:::
to

::::::::::
outperform

:::::::::::::::
VESPER_V20X,

::::
but

:::
the

:::::::::
difference

:
is
::::::

within
:::
the

::::::
model

:::::::
training

::::::
noise.

::::::::
However

::
in

:::
the

::::::
central

::::::
months

:::
of

:::
the

::::
year

::::::::::
VESPER_V20X

::::
starts

::
to
:::

be
:::::::

slightly 105
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::::
more

::::::::
accurate. This is likely for two reasons. Firstly, the

monthly lake maps are in fact a climatology and therefore
insufficiently precise to detect the exact ice on/off dates
during the winter months, where we have a large number of
grid points at high latitudes which will be subject to freezing,5

nullifying any time variability. Secondly,
::::
The

::::::
second

:::::
reason

:
is
:
due to the accuracy of the lake mean depth which strongly

drives the ice on-dates due to its influence on the heat
capacity of the lake. During the warmer months lakes thaw,
the monthly maps are more accurate, as the thawing of lake10

ice is mainly connected to the atmospheric conditions, not
the lake depth, and so the information contained in them can
be used to make more accurate predictions.

The Lake-Ground Updates timeseries broadly follows the15

same general profile as Lake Updates, but the errors are
larger - those grid points where the lakes have been replaced
with bare ground were particularly poorly described in V15.
Additionally, for Lake Updates we see two sharp decreases in
the prediction error during ∼

:
∼

:
April and September, which20

are not as strongly reflected in Lake-Ground. This is due to
the geographic location of the grid points in each of the two
categories; for the Lake Updates category the grid points are
located primarily in the boreal zones and so are subject to
freezing and thawing over the course of the year leading to25

a strong seasonality due to the lake mixing that we have dis-
cussed. The sharp drop in April corresponds to a time where
the lakes are unfrozen and fully mixed. However the lakes
in the Lake-Ground sub-category are less concentrated and
much more evenly distributed over the globe and so do not30

exhibit such a strong seasonality.
Examining the timeseries for Vegetation Updates, whilst

there is a large degree of variability, we again see the trend
previously discussed whereby the V20 fields make the
predictions systematically worse across the entirety of the35

test year. The introduction of the monthly lake maps in
V20X compensates for the erroneous V20 vegetation fields
- the V20X predictions are generally worse than V15 at
the start and end of the year, but better in the middle. This
is due to the fact that the majority of

:::::::::
Consistent

::::
with

:::
our40

:::::::
previous

::::::::::
discussion, the points in the Vegetation Updates

category are in climate zones which have pronounced rainy
and dry seasons e.g. Indonesia, the Amazon. At the start

::::::
training

:::::
noise

::::::
makes

::
it

:::::::
difficult

::
to

::::::::
separate

:::
the

:::::::::
predictions

of the
:::::::
VESPER

::::::
model

:::
for

::::
the

:::::::::
vegetation

::::::::
category

:::::
across45

::
the

:
yearduring .

::::
All

::::::::::
generations

:::
of

::::::::::::
VESPER_VM

::::::
follow

::
the

::::::
same

::::::
general

::::::
trend,

:::::
with

:::::
errors

::::::::
maximal

:::
at

:::
the

::::
start

:::
and

:::
end

:::
of the wet season there is lots of precipitation and

the static V15 fields are generally more accurate. As the
rains abate and the dry season starts the V15 lake fields50

are underestimates which are then improved through the
introduction of additional water via the monthly lake maps.

::::
year,

:::
and

:::::::
minimal

::::::
during

:::
the

::::::
spring

:::
and

::::::
autumn

:::::::
months.

:

For Glacier updates we can
::
For

::::
the

:::::::
Glacier

:::::::
updates 55

:::::::
category,

:::
in

:::::
order

::
to

::::
deal

:::::
with

:::
the

::::::::
separate

::::::::
warming

:::
and

::::::
cooling

::::::::
seasonal

::::::
cycles

:::::
over

:::
the

:::::
year,

:::
we

::
separate grid

points into the northern and southern hemispheres. We again
consider just those points where the number of MODIS
observations at a given instant in time, per ERA data point 60

is greater than 50. For the northern hemisphere the familiar
hierarchy of models is recovered, with the V20X model
generally outperforming V20, which in turn generally
outperforms V15. The errors peak for all models in the
summer, again due to the lakes not being fully mixed. There 65

is also an uptick in the prediction error for all models during
the winter when the freezing is greatest - this indicates how
ice cover can strongly influence the land surface temperature
response.

::::
LST

::::::::
response.

::::
The

:::::::
familiar

::::::::
hierarchy

:::
of

::::::
models

:
is
::::::::::

recovered;
::::::::::::
VESPER_V15

::
is
:::::::::

generally
::::::::::::
outperformed

::
by 70

::
the

::::::
more

:::::::
updated

:::::::
models.

:::
In

:::::
turn

::::::::::::::
VESPER_V20X

::
is
::

a

::::::
general

::::::::::::
improvement

::::
over

:::::::::::::
VESPER_V20

::::::::::
throughout

:::
the

::::
year,

::::::::
especially

::::::
during

:::
the

::::::
winter

::::::
months

::::::
where

:::
the

::::::
training

::::
noise

::
is
::::::::

minimal.
::::::

Since
::::
this

::
is

:::
the

:::::
time

:::::
when

:::::::
freezing

::
is

:::::::
greatest,

:::
this

::::::::
suggests

:::
that

:::
the

:::::::::
additional

:::::::
monthly

:::::
maps

:::
and 75

:::
salt

::::
lake

:::::
maps

:::
are

::::::::::
particularly

::::::
useful

:::::
during

::::
this

:::::
time.

:
For

the southern hemisphere the story is different. The errors
are smallest during the middle of the year when we expect
the freezing to be greatest. During the spring and autumn
the errors are largest - this is correlated with a decrease in 80

the number of observations suggesting that this is due to
poorer data quality due to cloud cover. In the summer when
the weather is clearer the errors start to decrease again.
Given this variation in the data quality due to cloud cover
it is difficult to draw any strong conclusions, and again for 85

stronger performance cloud independent data should be
used. What is obvious for the southern hemisphere glacier
grid points is that the

::::::::
VESPER_V20 and

::::::::
VESPER_V20X

models struggle to improve on
:::::::::
VESPER_V15, unlike in the

northern hemisphere. This suggests that the updated V20 90

fields are still insufficiently accurate for southern latitudes.

Mean prediction error in the surface temperature ∆̄K,
averaged over all grid points, for each of the 3 models
over the course of the test year for (top panel) Lake 95

Updates, (second panel) Lake-Ground Updates, (third
panel) Vegetation Updates, (fourth panel) Glacier Updates,
northern hemisphere and (bottom panel) Glacier Updates,
southern hemisphere. For the Glacier Updates category we
again exclude grid points where the number of MODIS 100

observations per ERA data point is less than 50. For the Lake
categories, all models follow the same general profile, with
the V20X model generally outperforming the V20 model
over the year, which in turn outperforms the V15 model. The
value of the additional V20 correction fields and the V20X 105

monthly lake maps and salt lake maps, is evident.
We have also discussed previously particular grid points

where there is expected to be
:::
that

::::
will

:::::
likely

:::::
show a large de-

gree of temporal variability
:
, or the lakes are saline,

:
and as a
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consequence the static
:::::::::::
physiographic

:
V15/V20 fields strug-

gle to make accurate predictions (e.g. Table ??
:
5). In Fig-

ure 16 we present timeseries for two of these points: Lake
Natron in Tanzania and Gujarat Province, India

:::
the

:::::
Great

:::
Salt

::::
Lake

:::::::
Desert,

::::
Utah

::::
and

:::::
Chott

:::::::
Felrhir,

:::::::
Algeria. Both these5

points were discussed in Sections ?? and ??
::::
3.1.1,

:::::
3.2.1. We

can see that for these two selected points the hierarchy of
models no longer holds. Whilst there is a large degree of
variability, and there is no clear separation between mod-
els that we get when averaging over all grid points as in Fig10

15
::
for

:::::
some

:::::
parts

::
of

:::
the

:::::
year, generally it can be seen that

::::::::::::
VESPER_V20

::::::::
performs

:::::
worse

::::
than

:::::::::::::
VESPER_V15.

:::
For

:::
the

::::
Great

::::
Salt

:::::
Lake

:
the

::::::::
inaccuracy

:::::
when

:::::
using

::::
the V20 model

performs the worst, indicating that the updated fields are not
accurate in these regions. For Lake Natron the

:::::::::::
physiographic15

::::
fields

::
is
:::::
most

::::::::::
pronounced

:::::
during

:::
the

:::::::
summer

:::::::
months.

:::::
April,

::::
May

:::
and

::::
June

:::
are

:::::
some

::
of

:::
the

::::::
wettest

:::::::
months

::
in

:::
this

::::::
region.

:::
But

:::
the

:::::::
updated

:
V20 /V20X models are significantly worse

throughout almost the entire year. The updated models -
which

:::::
fields specify a much larger

::::::
smaller lake fraction than20

in V15 - perform well at the beginning and start of the
year which tend to be the wettest months at Lake Natron.
However, during the summer as the lake dries out the errors
grow significantly

:::::
(∼ 0.5

:::::::::
compared

:::
to

::::
0.0).

::::::::::::
Consequently

:::::
during

::::
this

::::
time

::::
the

::::
V20

:::::
fields

::::
are

:::::::::
maximally

:::::::::
inaccurate25

:::
and

:::
the

:::::::::
prediction

::::
error

:::
of

:::
the

::::::::::::
VESPER_V20

::::::
model

:::::
grows

:::::::::
accordingly.This indicates again that the updated V20 fields
are in fact over-corrections for this area. Similarly, whilst
the V15X model is a significant improvement over V20/

:::
The

:::::::
inclusion

:::
of

::::::::
monthly

::::
lake

::::::
maps

::::
and

::::
salt

::::
lake

::::::
maps

::
in30

::::::::
VESPER_V20X - since it does not have these inaccurate
fields - it is still less performant than the basic V15 again
due to the additional water that V15X specifies. Together this
strongly indicates that there is little surface water at Lake
Natron during 2019.35

For Gujarat Province in Northern India the story is
different. Now the

::::::
notably

::::::::
reduces

::::
the

::::::
error

::::::
during

::::
these

::::::::
summer

:::::::
months.

::::
For

:::::::
Algeria,

::::
we

::::
can

:::
we

::::
can

:::
see

:::
that

::::::::::
VESPER_V20 model is systematically worse than

::::::::::::
underperforms

:::::::::
VESPER_V15 over

:::::::::
throughout

:
the entire40

year, indicating that the static
:
.
:::
For

::::
this

:::
grid

:::::
point

:::
the

::::
lake

:::
was

::::::::::
completely

:::::::
removed

::::::
when

:::::::
updating

::::
the V20 fieldsare

less accurate than the V15 fields. The
:
,
::::
with

::::
the

::::
lake

::::::
fraction

::::::::
reducing

:::::
from

:::::::
∼ 0.35

::
to

::::
0.0.

:::::
This

::::
also

:::::::
appears

::
to

::::
have

:::::
been

:::
an

:::::::::::::
over-correction.

:::::
The

:::::::::
separation

:::::::
between45

::
the

:::::::
models

::
is

:::::
most

::::::::::
pronounced

::
in

:::
the

:::::
early

:::::::
months

::
of

:::
the

::::
year;

::
in
::::

the
::::::
winter

:::::::
months

::::
both

::::
the

:::::::::
prediction

:::::
error

:::
and

::
the

::::::::
variance

::::::::
increase

::
-
:::
this

:::::::
period

::
is

:::
the

::::
wet

:::::::
season

::
in

::::::
Algeria

::::::
where

:::
the

:::::
wadi

::::::
which

::::
feed

:::::
Chott

:::::::
Felrhir

:::
fill

:::
up.

::::::
Similar

:::
to

:::
the

::::::
Great

::::
Salt

:::::
Lake

:::::::
Desert,

:::
the

:::::::::
inclusion

::
of50

::
the

::::::::
monthly

::::
lake

::::::
maps

::
in

::::::::::
VESPER_V20X model shows

a strong time variability, with the errors being smallest
in the summer which is the wet season in Gujarat and
largest in the winter which is the dry season . This
suggests that the monthly maps are most accurate during55

the summer, providing extra information which is missing
from V15/

::::::::
improves

:::
the

::::::::
prediction

::::::::
accuracy,

:::::
most

::::::
notably

::
in

::
the

:::::
early

:::::::
months

:::
of

:::
the

::::
year.

:::::::
Again,

::::
later

:::
in

:::
the

::::
year

:::
the

::::::
training

:::::
noise

::
is

:::::
much

::::::
greater

::::
and

::
so

::
it

:
is
::::::

harder
::
to

:::::::
separate

::
the

::::::::::
predictions

::
of

:::
the

::::::
model,

:::
but

::
on

:::::::
average

:::::::::::::
VESPER_V20X 60

::::::::::
outperforms

:::::::::
VESPER_V20 , but may be overestimates

during the winter. The V15X model has a notably strong
performance, outperforming the other models almost every
month. This again is further evidence of the inaccuracy of
the V20 fields and the value of the time-variable monthly 65

water information
::::
over

:::
the

:::::
entire

::::
year,

:::::::::::
highlighting

:::
the

::::
value

::
of

::::
these

:::::::::
additional

::::::::::::
physiographic

:::::
fields.

:::::::
monthly

:::::
fields.

4 Discussion

We have seen how VESPER can quantitatively evaluate the
value of updates to the lake surface parametrisation as well 70

as identifying areas where the updates are insufficiently
accurate

::::::::
inaccurate. For the former VESPER was able

to show that the major regions where the lake surface
parametrisation fields were updated - such as the Aral sea -
enjoyed more accurate predictions, which verifies both the 75

accuracy of the fields and their information content with
respect to predicting skin temperatures. For the latter VES-
PER was able to identify grid points where the predictions
became worse with the updated fields, indicating that the
updated fields were in fact less accurate. More generally 80

we have also seen how detailed knowledge of surface water
fields (e.g. up to date permanent water distribution, seasonal
water distribution, salt lake distribution, etc.) can notably
improve the accuracy with which the skin temperature can
be modelled, e.g. grid points with significant updates (i.e. 85

where the field has changed by ≥
:
≥

:
10 %) to the lake fields

show a mean absolute error reduction of skin temperature
globally of 0.45

:::
0.37K (Table ??).

:::
4).

:::::
Given

:::
the

::::::::::
performance

::
of

::::::::
VESPER

::
it

::::
may

:::
be

:::::::
possible

:::
in

:::
the

:::::
future

:::
to

::::::
update

::
or

::::::
correct

:::
the

::::
input

:::::
fields

::
at

:
a
:::::
high

:::::::
cadence,

:::
e.g.

::::::
yearly

::
or

::::
even 90

::::
more

:::::::::
frequently.

:

There are multiple possible further extensions of this
work. We have not currently included the errors on the
MODIS observations into the VESPER model. During the 95

“
:
“matching-in-space" step relating the ERA and MODIS

data (Section 2.3
::
2.2), it could be a worthwhile extension to

weight the averaged MODIS points by their corresponding
errors (e.g. Fig. ??

::
5b) when deriving a single MODIS

observation for a given ERA grid point. This would then 100

provide a more accurate and confident representation of the
true surface temperature at a particular space-time point.
Due to the inherent stochasticity of training a model it is
also possible for different models to settle in different local
minimas i. e. the network variance. It

::
we

::::
have

::::
seen

::::
that

::::
some 105

:::
grid

::::::
points

::::
have

:
a
::::::::::
particularly

:::::
large

::::::
training

::::::
noise.

::
To

:::::
better

:::::::
quantify

::::
this

:::::
effect

::::
and

:::
try

:::
to

::::
draw

::::::::
stronger

::::::::::
conclusions
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Figure 15. Variation in the
::::
Mean prediction error for

:
in

:
the

:::::
surface

:::::::::
temperature

:::::::
DeltaK,

:::::::
averaged

::::
over

:::
all

:
grid pointsat ,

:::
for

::::
each

:
of
:::

the
::

3
::::::
models

::::
over

:::
the

:::::
course

:::
of

::
the

::::
test

::::
year

::
for

::
(
::
top

:::::
panel)

Lake Natron
::::::
Updates, Tanzania (top panel

:::::
second

::::
panel) and Gujarat

Province
::::::::::
Lake-Ground

:::::::
Updates, India (bottom panel

::::
third

:::::
panel) .

There is a large degree of variability
:::::::
Vegetation

:::::::
Updates, but for

:
(
::::
fourth

:::::
panel)

::::::
Glacier

:::::::
Updates,

:::::::
northern

:::::::::
hemisphere

:::
and

:
(
:::::
bottom

::::
panel

:
)
:::::
Glacier

:::::::
Updates,

:::::::
southern

::::::::::
hemisphere.

:::
The

::::::
shaded

:::::
regions

::::
show

:::
the

::
1σ

:::::::
training

:::::
noises.

::::
For

::
the

:
Lake Natron

::::::::
categories,

::
all

:::::
models

::::::
follow the

::::
same

::::::
general

::::::
profile,

::::
with

:::
the

::::::::
VESPER_V20

and
::::::::
VESPER_V20X models are generally less performant than

::::::::::
outperforming

:::::::::
VESPER_V15 and V15X, indicating that

::::
model

:::
over

:
the updated V20 fields are less accurate here

:::
year.The

augmented models with saline and monthly lake maps outperform
those without, indicating the value of these fields in these regions.

Figure 16.
:::::::
Variation

::
in

:::
the

::::::::
prediction

::::
error

:::
for

:::
the

::::
grid

:::::
points

:
at
:::::

Great
::::

Salt
:::::
Lake,

::::
Utah

::::
(top

:::::
panel)

:::
and

:::::
Chott

::::::
Felrhir,

::::::
Algeria

::::::
(bottom

::::::
panel).

:::::
There

::
is

::
a
::::
large

::::::
degree

::
of
:::::::::

variability,
:::

but
:::

for

:::
both

::::
grid

:::::
points

:::::::::::
VESPER_V20

:::::
model

:
is
::::::::

generally
:::
less

::::::::
performant

:::
than

::::::::::::
VESPER_V15

:
,
::::::::
indicating

:::
that

:::
the

:::::::
updated

::::
V20

::::
fields

:::
are

:::
less

:::::::
accurate

:::::
here.

:::::::::
Corrections

:::::::::
introduced

:::
by

:::
the

:::::::::
augmented

::::::::::::
VESPER_V20X

::::::
model

::::
with

::::::
saline

::::
and

:::::::
monthly

::::
lake

:::::
maps

::::::::
outperform

:::::
those

::::::
without,

::::::::
indicating

:::
the

:::::
value

::
of

:::::
these

::::
fields

::
in

::::
these

:::::::::
regions.The

:::::
shaded

::::::
regions

::::
show

:::
the

::
1σ

::::::
training

::::::
noises.
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::
for

::::
this

:::::::
subset

::
of

::::::
points

:::
it

:
would also be desirable to

train an ensemble of models (“
:
“ensemble learning") and

combine the predictions from multiple models to reduce
this variance.

:::::::::::
Additionally,

:::
our

:::::::::::
examination

::
of

:::
the

:::::
value

::
of

::
the

::::::::
monthly

::::
lake

::::
maps

::
is
::::
only

::
a
::::::::::
preliminary

:::::
study.

::
It

:::::
would5

::
be

::
of

:::::::
interest

::
to
::::::

follow
::::::::

seasonal
:::::
lakes

::::
over

::
a
::::::
longer

::::
time

:::::
period

:::::
(e.g.

:::::::
decadal)

:::::::
beyond

:::
the

:::
12

::::::
month

:::::
maps

::::
that

:::
we

:::
use,

::
in

:::::
order

::
to

:::::
better

::::::::
quantify

::::
their

::::
time

:::::::::
variability,

::
as

::::
well

::
as

:::
the

::::::::::
differences

:::::::
between

:::::
years

:::::
(e.g.

::
if

:::
the

::::
lake

:::::::
fraction

:::
was

::::::::::
particularly

:::::
high

::
in

:::
the

:::::::
January

:::
of

::::
one

::::
year,

::::
but

:::
low10

::
in

:::
the

:::::::::
subsequent

::::::
year).

::
It

:::::
would

::::
also

:::
be

::
of

:::::::
interest

::
to
:::

try

::
to

:::::::
quantify

::
if
:::::::::

VESPER
::::
and

:::::::
ECLand

:::::::
respond

:::
to

:::::::
changes

::
in

:::
the

:::::
input

::::::::::::::
parametrisations

:::
in

:::
the

:::::
same

:::::
way,

::::::
which

::
is

:::
key

::
to

:::
be

::::
able

:::
to

::::
then

::::::
apply

:::
the

::::::::
VESPER

:::::::
results

::
to

:::
the

:::
full

:::::
earth

::::::
system

::::::
model

::::::::::::
development.

::::::
Since

::::::::
VESPER

::
is15

::::::
trained

::
on

:::::::
ERA5,

::
if

:::
we

:::::
want

::
to

::::::
model

:::
the

:::::::
outputs

::
of

:::
the

:::
IFS

:::
we

:::::
must

:::::::
assume

::::
that

:::
the

:::::::::
statistical

::::::::
behaviour

:::
of

:::
the

::::
input

:::::
fields

:::::
does

:::
not

:::::::
change

:::::
from

::::
ERA

:::
to

::::
IFS.

::::
This

:::
is

:
a

:::
fair

::::::::::
assumption,

::::
but

::
it

:::::
would

:::
be

::::::::::
interesting

::
to

:::::::::
investigate

:::
this

::::::::::
quantitively

:::
in

::::::
greater

::::::
detail.

:
We have focused here20

primarily on hydrological applications, our primary concern
being the ability to evaluate the parametrised water body
representation, however the method would work generally

::::::
general

::::::::::
application

::
of

::::
the

:::::::
method

:
for any updated fields

that we want to assess
::::
could

::::
also

:::
be

::::::::
explored. Extension25

to non-lake hydrological fields like wetland extant
::::
extent

or river bathymetry model parameters, or even non hydro-
logical fields such as orography would be an interesting
further development. The development of a more mature,
integrated pipeline for automatically evaluating updated30

parametrisations could also be a worthwhile pursuit. Another
natural

:::::::
Another

::::::
natural

::::
and

:::::::::
interesting

:
extension of this work

:::::
would

::
be

::
to
::::
use

:::::::
VESPER

::
to
:::::::
perform

::
a
::::::
feature

:::::::::
importance

::
or35

::::::::
sensitivity

:::::::
analysis

:::
for

:::
the

:::::::
various

::::
input

:::::
fields

:::
of

:::
the

:::::
neural

:::::::
network.

:::::::::::
Additionally,

::
an

::::::::
approach

:
which may prove fruitful

in the enterprise for improved parametrised representation of
water bodies is to invert the problem and treat VESPER as a
function to optimise. That is to say, VESPER can be thought40

of as a function which takes some inputs - in this case a lake
parametrisation - and returns a loss metric i.e. how accurate
the predictions are compared to the test set. Given this loss
metric it may then be possible to vary the inputs and use stan-
dard optimisation techniques to learn the optimal parametri-45

sation. Whilst this may be an expensive technique as there are
effectively two nested models over which to optimise (for ev-
ery optimisation step in the higher model, one must train the
VESPER network from scratch) it could be possible given
appropriate hardware or with reduced data focusing just on50

targeted locations (e.g. “What is the best way to represent
the lakes in this area?"

::::::
“What

::
is

:::
the

::::
best

::::
way

::
to

::::::::
represent

::
the

:::::
lakes

::
in
::::

this
::::::
area?"). The loss gradient information can

also be used to tune individual features, informing whether
an input variable should be larger or smaller.55

5 Conclusion

Weather and climate modelling rely
::::
relies on accurate, up-to-

date descriptions of surface fields, such as inland water, so as
to provide appropriate boundary conditions for the numeri-
cal evolution. Lakes can significantly influence both weather 60

and climate, but sufficiently accurate representation of lakes
is challenging and the natural changes in water bodies mean
that these representations need to be frequently updated. A
new method based on a neural network regressor for au-
tomatically and quickly verifying the updated lake fields - 65

VESPER - has been presented in this work. This tool has
been deployed to verify the recent updates to the FLake
parametrisation, which include additional datasets such as
the GSWE and updated methods for determining the lake
depth from GLDBv3. The updated parametrisation fields 70

were shown globally to be an improvement over the origi-
nal fields; for a subset of grid points which have had signifi-
cant updates to the lake fields, the prediction error in the skin
temperature decreased by 0.45

:
a
:::::
MAE

:::
of

::::
0.37K. Conversely,

VESPER also identified individual grid points where the up- 75

dated lake fields were less accurate, enabling these points to
subsequently be corrected, such as

:::::::
incorrect

:::::::
removal

:::
of

:::
lake

::::
water

::::
and

:
losing forests to bare groundleading to errors of

1.1K. Multiple further extensions of this work, including ex-
tension to non lake fields and the development of a more ma- 80

ture integrated pipeline have been discussed.

6 Code

The code used in constructing VESPER, including the
methods for joining the ERA and MODIS datasets and
the construction of the neural network regression model is 85

open-sourced at
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