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Abstract. Abeut—2/3—ef-all-densely—populated—areas—-e-

- id-tal 1 stal ¢ } are FBpFBE'eﬁfed inthe é
purposely built deep learning algorithm for the Verification
of Earth-System ParametERisation (VESPER) is used to
s agsess recent upgrades of the global physiographic datasets
underpinning the quality of the Integrated Forecasting Sys-
tem (IFS) of the European Centre for Medium-Range

Weather Forecasts (ECMWF)meodel,—by—the—Fresh-water

30 1S used both in numerical weather prediction and climate
reanalyses. A neural network regression model is trained

to_learn_the mapping between the surface physiographic
dataset plus the meteorology from ERAS, and the MODIS
satellite skin temperature observations. Once trained, this
tool is_applied to rapidly assess the quality of upgrades
of the land-surface scheme. Upgrades which improve the
prediction accuracy of the machine learning tool indicate a
reduction of the errors in the surface fields used as input to
the surface parametrisation schemes. Conversely, incorrect
specifications of the surface fields decrease the accuracy with
which VESPER can make predictions. We apply VESPER
to_assess the accuracy of recent upgrades to—the—Flake
and-the-eapaeity-of the permanent lake and glaciers covers

as well as planned upgrades to represent seasonally vary-
ing water bodies (i.e. ephemeral lakes). We show that for

grid-cells where the lake fields have been updated, the pre-
diction accuracy in the land surface temperature improves

by-0-45-(i.e mean absolute error difference between updated

and original physiographic datasets) improves by 0.37 K
on average, whilst for the subset of points where the lakes

have been exchanged for bare ground (or vice versa) the
improvement is +342-0.83 K. We also show that updates
to the glacier cover improve further—the prediction accu-
racy by 944—K—¥he—melﬂﬂeﬁef—%ea%eﬂakwa$eﬁs—%hewn
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deve}epmeﬂt—OZZ K We h1 h11 ht how neural networks
such as VESPER can assist the research and development
of surface parametrizations and their input physiography to

better represent Earth’s surface coupled processes in weather
and climate models.

o

1 Introduction

Accurate knowledge of the global surface physiography,
including land, water and ice covers, and their characteristics,
o strongly determines the quality of surface and near-surface
temperature simulations in weather and climate modelling.
For_instance, water bodies exchange mass and energy
with_the atmosphere and their thermal inertia_strongly
influence the lower boundary conditions such as_skin

15 temperatures, and surface fluxes of heat and moisture
near the surface. Globally, there are ~ 117 million lakes -

defined as inland water bodies without lateral movement of
water - making up around 3.7% of the Earth’s land surface
Verpoorter-et-al«(20+4)(Verpoorter et al., 2014). Their dis-
tribution is highly anisetrepienon-uniform, with the majority
of lakes located between 45 — 75°N in the Boreal and Arctic
regions. Lakes are highly important from the perspective of
both numerical weather prediction and climate modelling as
part of the EC-Earth model. For the latter, lakes generally
influence the global carbon cycle as both sinks and sources
of greenhouse gases; the majority of lakes are net het-
erotrophic ;—(i.e. over saturated with carbon dioxide, CO»),
as a result of in lake respiration and so emit carbon into the
atmosphere  Paee-andPrairie(2005); Tranviket-al-(2009)
(Pace and Prairie, 2005; Tranvik etal., 2009). Total CO,
emission from lakes is estimated at 1.25—2.30 Pg
of €O2-equivalents—annually—DelSentro-et-al-(2018)
COg-equivalents annually (DelSontro et al., 2018), nearly
20% of global COs fossil fuel emissions, whilst lakes
ss account for 9-24 % of CH, emissions, the second
largest natural source after wetlands Sauneis-et-al+2020)
(Saunois et al., 2020). These rates of greenhouse gas
emission are expected to rise further if the eutrophication
(i.e. nutrient concentration increase) of the Earth’s lentic
systems continues. With regards to weather, freezing and
melting of the lake surface modifies the radiative and
conductive properties and consequently affects the heat
(latent, sensible) exchange and surface energy balance

. Considering particular examples, over Lake Victoria

convective activity is suppressed during the day and

peaks at night, leading to intense, hazardous thunder-
s ; Lake Ladoga can generate low level clouds which

can cause variability in the 2m temperature of up
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to 10 K Eerolaetal2044)(Eerola et al., 2014); the
Laurentian Great Lakes can cause intense winter

SNOwW storms Vavrus-et-al-20H3) Netaro-et-al-20H3
Notaro et al., 2013; Vavrus et al., 2013). Moreover, as a

result of the 1ncreased temperatures due to climate change,
lakes become more numerous due to the melting of glaciers
and permafrost. Additionally, the higher temperatures mean
that previously permanent lake bodies become seasonal or
intermittent. There is then evidently a huge potential return
in the ability to accurately model the location, morphology
and properties of lakes in weather and climate models.

The Integrated Forecasting System (IFS) at the European
Centre for Medium Range Weather Forecasts (ECMWF)
is used operationally for numerical weather prediction and
climate modelling. Earth-system modelling in the IFS can
be broadly categorised into large-scale and small-scale
processes. Large-scale processes can be described by nu-
merically solving the relevant set of differential equations, to
determine e.g. the general circulation of atmosphere. Con-
versely, small-scale processes such as clouds or land-surface
processes are represented via parametrisation. Accurate
parametrisations are essential for the overall accuracy of the
model. For example, the parametrisation of the land surface
determines the sensible and latent heat fluxes, providing the
lower boundary conditions for the equations of enthalpy and
moisture in the atmosphere Viterbo-(2002)(Viterbo, 2002).

Lakes are incorporated in Earth-system models via
parametrisation. At ECMWF the representation of lakes via
parametrisation was first handled by introducing the Fresh
water Lake model FLake Mironov(2008)-(Mironov, 2008)
into the IFS. FLake treats all resolved inland waterbodies (i.e.
lakes, reservoirs, rivers which are dominating in a grid-cell)
and unresolved or sub-grid water (i.e. small inland water-
bodies and sea/ocean coastal waters which are present but
not dominating in a grid-cell). Nete—thattakeparameters
be%larfhe—medel—dﬁd—ﬂee—pammeteﬁ Wt
fields) are lake location and lake mean depth. The broad

impact of the FLake model (i.e. areas where it is active)
and the important role that waterbodies play in human life
can be illustrated by analysing ECMWF maps-fields of the
fractional land sea mask and the inland waterbody cover
alongside maps-ef-the population density field (i.e. inhabi-
tants per km?) based on the population count for 2015 from
the Global Human Settlement Layers (GHSL), Population
Grid 1975-2030 Schiavina-et-al+2022); Freire-et-al(2016)-
(Freire et al., 2016; Schiavina et al., 2022) at 9 km horizon-

tal resolution.
Globally FLake is active over 11.1% of the grid-cells;with

only1-2%-of them-being resolved-inland-waters-(G-e—water

eovers—>50%of thegrid-eell); considering only nen-ecean
{e—tand--land grid-cells, then FLake is active over 32.4%
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of the grid-eells—with—enly3-5%of thembeing—resoelved
waterspoints. According to the population data, enly-4%-of

land-is-densely-populatedi-e—064.5% of densely populated
areas (at least 300 inhabitants per km?) :—64:5%of-these
areas-being-are situated within a 9 km radius of a permanent
waterbody (i.e. inland water or sea/ocean coast)with—half
ofit(e—, with 31.2% eFdeﬂseerLpeptHafedafeas—}bemg in
the vicinity of at least 1 km? waterbody - emphasising how
essential waterbodies are in human life. In some regions
10 this role may be even more crucial than in the others. For

example -eﬂl-y%%—ﬂf—{—he—NeﬁhﬁAﬂﬁeﬂC—&ﬂ—fegiﬁﬂ—fﬂfﬂﬂﬂf

o

populated-with-in North America 45.7% (%%4)%711%}%%9%
respeetively)—ofthe—areas—being—in—vieinity—ofatJeast—1
15 km?-waterbody:for Burope-even-though-tt-has-mere—of the
densely populated areas %%%hfxdrt&deﬂse}ypeptﬂa{edﬁ

Lk ﬂz waterbody:for-a-ratherdry-continent tike Afriea eﬁ]il
20 being-close-to-at-teast-are close to a 1 km? waterbody; mest

striking-in-this-sense-is-in Australia where only 0.5 % of the
land is populated, with-two thirds of the population living

live within 9 km radius of a permanent waterbody of at least

1 km?, with the majority of people living on the ocean coast.
25
It is a continuous enterprise to update the lake parametriza-
tion schemes-and-their-input-data-input fields to better rep-
resent small-scale surface processes. It is however challeng-
ing to 3 S ¢
do it accurately as the majonty of lakes which are resolved
at a 9km grid spacing have not had their morphology accu-
rately measured, let alone monitored, whilst 28.9% of land
and coastal cells are treated for sub-grid (i.e. covering half
or less of a grid cell) water. When introducing an updated
lake representation it is difficult apriori to determine the ad-
ditional value gained through doing so. There are two key
factors here:

3
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3
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— Are the updated fields aceuratecloser to reality?

— Are—Do the updated fields informativeincrease the
40 accuracy of the model predictions?

The first point is straightforward; we want our
parametrisation—fields to better represent reality. If the
lake depth of some lake is updated from 10m to 100m we
want to be sure that 100m is closer to the true depth of the
lake. For the second point, even if the updated fields are
accurate, are they informative in the sense that they enable
us to make more accurate predictions? For instance, the main
target of lake parametrization is to reproduce lake surface
water temperatures (and therefore evaporation rates). If a
so take—parametrisation—scheme—is—lake parametrisation input

fields are updated to better represent different types of inland

waterbodies, the time variability of inland waterbodies

and/or the lake morphology fields use more in situ mea-

4

o

surements, does this additional information allow for more
accurate predictions of the lake surface water temperatures? ss

Is it therefore worthwhile to update—the—parametrisation

in—this—wayspend several person-months to update/create
a lake-related field? Since the resulting updated fields are

ultimately used operationally, it is essential to ensure the
accuracy of the fields and prevent any potential degradation e
or instability of the model. This problem of quickly and au-
tomatically verifying-checking the accuracy and information
gain of updated lake-parametrisations—lake-related fields is
the aim of this work.

65
Numerical weather prediction and climate modelling
are fields—domains that are inherently linked with large
datasets and complex, non-linear interactions. It is there-
fore an area that is particularly well placed to benefit
from the deployment of machine learning algorithms. At o
ECMWEF, advanced machine learning techniques have been
used for parametrisation emulation via neural networks

Chantry et al., 2021), 4D-Var data

a551m11at10n Hatfield-et-al-(202H-(Hatfield et al., 2021
and the post—processmg of ensemble predictions 7s

501 ¢ S Hewson and Pillosu, 2021

Indeed the early successes of these machine learning
methods have led to the development of a 10-year roadmap
for machine learning at ECMWF Dibenetal+202hH
(Diiben et al., 2021), with machine learning methods look- e
ing to be integrated into the operational workflow and
machine learning demands considered in the procurement
of HPC facilities;-the-. The ongoing development of novel
computer architectures (e.g. GPU, IPU, FGPA) motivates
utilizing algorithms and techniques which can efficiently es
take advantage of these new chips and gain significant
performance returns. In this work we will demonstrate a
new technique for the Verification of Earth-System Param-
etERisation (VESPER) based on a deep learning neural
network regression model. This tool enables the accuracy of s

an updated water bedy-parametrization-body-related field to
be rapidly and automatically assessed, and the added value

that such an—updated-parametrization-brings-updated fields
bring to be quantitatively evaluated.

95
This paper is organized as follows. In Section 2 we describe
the construction of the VESPER tool - the raw input data, the
processing steps and the construction of a neural network re-
gressor. In Section 3 we then deploy VESPER to investigate
and evaluate updated take-parametrisation-lake-related fields.
Discussion and concluding remarks are made in Sections 22
4 and 5 respectively.

00

2 Constructing VESPER

In order to rapidly eheek—the-added—value-and-aceuracyof
a—new—parametrisation—field—we—will-construet—assess _the 10
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accuracy of new surface physiography fields and if their use

in the model increase the accuracy with which we can make
predictions, a neural network regression model (VESPER,

hereafter) that can learn the mapping between a set of
features;—;-andtargets—yinput features x and targets y is
constructed. In this case the features are the simulated-model
variables—such-as2m-temperatare—and-the parametrization
fields-such-as-the-orography-or-the-vegetation—atmospheric
and surface model fields (such as 2 metre temperature from
ERAS reanalysis) and the surface physiographic fields (such
as orography and vegetation cover used to produce ERAS
reanalysis). See Table 1 for the full list of variables used.
The target is the empirieal-satellite land surface temperature
(%mpe%e%&%m&md&]éww

W can then make predictions about the
skin temperature given a set of input climate—variables—

variables (i.e. atmospheric and surface model fields, and
surface physiographic fields). In turn, these predictions can
then be compared against the—true—empirical-observations

and-the-medel-observations (i.e. satellite skin temperature)
and VESPER’s accuracy evaluated. By varying the number,

type and values of the input features to eur-medel-VESPER
and observing how the accuracy of the-medel-its predic-

tions change, we—can—explore—whether—a—new—or—updated
aceuracy)—some_conclusions on if and how features can
increase predictability of an actual atmospheric model can
be drawn. Moreover, by isolating geographic regions where
the predictions get worse with the-addition-of-a-newfield;we
doni : .
new/updated surface physiographic fields, areas where these
fields_might be erroneous or not informative enough can
be identified. Due to_the inherent stochasticity of training
a neural network regression model it is also_possible for
different models to settle in different local minimums i.e.
the network variance/noise. To understand the significance

of this, every VESPER configuration was trained four times,
each time with a different random seed.

In this section we will now describe the data used for the fea-

tures and-targets-in-the-x and targets y in the neural network
regression model, how these-disparate-datasets-various data
types_are joined together, and the details of the—neural

network modelused-VESPER's construction.

2.1 RawData
‘Me ha‘le EWG pﬁ'maff‘ E‘etfef
2.1 Features and targets

so VESPER’s input feature selection (see Table 1) followed (i)

ermutation importance results for atmospheric and surface

Kimpson et al.: VESPER

model fields - only fields with the highest importance were
chosen; and (i) expert choice for surface physiographic
fields. As a first attempt it was decided to test the current
methodology for lake related information, therefore fields
that could be most affected by the presence or absence
of water were selected, e.g. if lake had to be removed
then_some other surface had to appear (like bare ground,
high or low vegetation, glacier or even ocean) and surface
elevation had to change. Changes to the orographic fields
will have important influences on temperature through e.g.
wind, solar heating, etc. Lake depth changes are similarly
important, influencing how a lake freezes, thaws, mixes
and its overall dynamical range. VESPER's target selection
followed globally available criteria and the satellite LST is
quite well observed globally and with high temporal pattern
(daily or even several times a day depending on the location).

2.2 Data sources

There are three _main sources of data. The first is
a—-seleetion—of—selection of surface physiographic
fields from ERAS  Hersbachetal(2020)—These
can—be—theught—of —as—our—featuresor—inputs—to—the
medel(Hersbach et al., 2020) and their updated versions

Choulga et al., 2019; Boussetta et al., 2021; Mufioz Sabater et=al., 2021

used as VESPER'’s features. As a shorthand we will refer

{0 the original ERAS physiographic fields as version “V15"
and the updated versions as “V20". The second is land

surface-temperature-a _selection of atmospheric and surface
model fields from ERAS, also used as VESPER's features.

The third is day-time LST measurements from the Moderate
Resolution Imaging Spectroradiometer (MODIS) GSEC-

onboard the Aqua satellite —TFhis—will-be-the-modeltarget
vartable:(GSFC), used as VESPER’s target variable.

2.2.1 Surface physiographic fields

Surface physiographic fields have gridded information of
the Earth’s surface properties (e.g. land-use, vegetation type
and distribution) and represent surface heterogeneity in

the ECLand of the IFS. They are used to compute surface

turbulent fluxes (of heat, moisture_and momentum) and

skin_temperature over different surfaces (vegetation, bare
soil,_snow, interception and water) and then to calculate
an area-weighted average for the grid-box to couple with
the_atmosphere. To_trigger all different parametrization
schemes the ECMWE model uses a sets of physiographic
fields, that do not depend on initial condition or forecast
step. Most fields are constant; surface albedo is _specified
for 12 months to_describe the seasonal cycle. Dependent
on the origin, initial data comes at different resolutions
and different projections, and is then first converted to a
regular_latitude-longitude grid (EPSG:4326) at ~ lkm at
Eguator _resolution, and secondly to a required grid and
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Atmospheric and surface model fields (11 fields) ~ Pressure: surface pressure (sp, Pa), mean sea level pressure (msl, Pa),
Wind: 10 metre U wind component (10u, m/s). 10 metre V wind component (10v,
m/s)..
Temperature: 2 metre temperature (27, K), 2 metre dewpoint temperature (2d, K).
skin temperature (skr, K). ice temperature layer 1 (the seaice temperature in layer
istl2, K),
Surface albedo: forecast albedo (fal, 0-1)

Snow: snow depth (sd, m of water equivalent)

Main surface physiographic fields (19 fields) Orographic fields: standard deviation of filtered subgrid orography (sdfor, m),
standard deviation of orography (sdor_m). anisotropy of sub-gridscale orography
(isir, ). angle of sub-gridscale orography (anor, radians), slope of sub-gridscale
Land fields: land-sea mask (the proportion of land, as opposed to ocean or inland

waters (i.e. lakes, reservoirs, rivers, coastal waters), in a grid-cell; Ism, 0-1), glacier

mask (the proportion of a grid-cell covered by glacier; glm, 0-1),

Water fields: lake cover (the proportion of a grid-cell covered by inland water

bodies; ¢l 0-1). lake total depth (the mean depth of inland water bodies: dl, m),

Vegetation fields: low vegetation cover (cvl, 0-1), high vegetation cover (cvh, 0-1),
Soil fields: soil type (/7. -),

Albedo fields: UV visible albedo for direct radiation (aluyp, 0-1), UV visible albedo
for diffuse radiation (aluvd. 0-1), near IR albedo for direct radiation (a/nip, 0-1), near
IR albedo for diffuse radiation (alnid, 0-1)_

Additional surface physiographic fields
Difference for all main surface physiographic fields between V15 and V20 field sets,

Difference between V20 static lake cover and monthly varying lake cover (12 maps

in total),

Saline lake cover (the proportion of a grid-cell covered by saline inland water bodies;
Table 1. Input features used for training the neural network model VESPER; atmospheric model fields (time varying) were kept the same
in all simulations, surface physiographic fields (static) were updated when going from the original data based on GlobeCover2009/GLDBv1
(VIS field set) to GSWE/GLDBv3 (V20 field set); in brackets are variables description (where needed), short name (according to the GRIB.
parameter database) and units.




resolution. Surface physiographic fields used in this work
consist of orographic, land, water, vegetation, soil, albedo
fields and their difference between initial V15 and updated
V20 field sets. See Tables 1 and 2 for the full list of surface

s physiographic fields and their input sources; for more details
see IFS documentation (ECMWE, 2021). As_this work is
focused on assessing guality of inland water information,
main_surface physiographic fields are lake cover (derived
from land-sea mask) and lake mean depth (see Table 2).

0 To generate V15 fractional lake cover the GlobCover2009
global map__(Bontemps et al, 2011; Arino et al., 2012) is
used. This map has a resolution of 300m, corresponds for
the year 2009 and covers latitudes 85°N-60°S; corrections
outside these latitudes for the polar regions are included

s separately. In the Arctic no land is assumed, in the Antarctic
data from the high-resolution Radarsat Antarctic Mapping
Project digital elevation model version 2 (RAMP2; Liu et
al;, 2015) is used. To generate V20 fractional lake cover
more recent higher resolution datasets and updated methods

20 have been used (Choulga et al., 2019). The main data source
is the Joint Research Centre (JRC) the Global Surface Water
Explorer (GSWE) dataset (Pekel et al., 2016). GSWE is a
30m resolution dataset from Landsat 5.7 and 8, providing
information on the spatial and temporal variability of surface

»s water on the Earth since March 1984; here only permanent
water_was_used for lake cover generation as it provided
a more accurate inland water distribution _on_the annual
basis (Choulga et al., 2019). Differences between V20 and
V15 lake cover fields (see Figure 1) are consistent with the

w latest global and regional information: (i) increase of lake

fraction in V20 compared to V15 over northern latitudes

is_due to permafrost melt leading to a new thermokarst
lake emergence, and due to higher resolution input source
and its better satellite image recognition methodologies;

(ii)_reduction of lake fraction in V20 compared to V15

can be explained with several reasons, like anthropogenic

land use change (e.g. Aral Sea, which lies across the
border between Uzbekistan and Kazakhstan, has been
shrinking at an accelerated rate since the 1960s and started

« to_stabilise in 2014 with an area_of 7660 km?, 9 times
smaller_than_its_size in_1960. GlobCover2009 describes

the Aral Sea in 1998, when it was still “only” two times
smaller_than its 1960 extent, whereas GSWE provides a
more up to date map.), use of only permanent water (e.g.
s Australia, where GlobCover2009 _over-represents inland
water, as most of these lakes are highly ephemeral, e.g. the
endorheic Kati Thanda-Lake Eyre fills only a few times per
century. The GSWE updates to this region therefore include
only_generally permanent water, removing all_seasonal
s and rare ephemeral water.), and change in the ocean and
inland water separation algorithm (e.g. north-east of Russia).

3

&

To enerate V15 lake mean depth (see Figure

2 the Global Lake DataBase version 1
ss (GLDBv1; Kourzeneva et al., 2012)is  used. GLDBvl1

Kimpson et al.: VESPER

has a resolution of 1km and is based on 13000 lakes

with_in_situ lake depth information; outside this dataset
all missing data grid-cells (i.e. over ocean and land) have
done by averaging. Overestimation of lake depth in summer e
season can result in strong cold biases and in winter season
= lack of ice formation. To generate V20 lake mean depth
an updated version GLDBv3 (Choulga et al., 2014) is used.

GLDByv3 has the same resolution of ~1km, but is based
on an increased number (~1500) of lakes with in situ lake e

depth_information (in_ addition to bathymetry information
over all Finnish navigable lakes), it introduces distinction
between freshwater and saline lakes (this information is
currently not used by FLake), and suggests the method to
assess the depth for lakes without in situ observations using 7
geological and climate type information; field aggregation to
a coarser resolution is done by computing the most occurring
value, Verification of GLDBv1 and GLDBYV3 lake depths
against 353 Finnish lake measurements shows that GLDBv3
exhibits a 52 % bias reduction in mean lake depth values 7
compared to GLDBvI (Choulga et al., 2019). For a further
details on lake distribution and depth, the representation of
lakes by ECMWE in general see Choulga etal. (2019) and
Boussetta et al. (2021).
80
To expand V15 and V20 lake description (to V15X
and V20X respectively) their salinity and time variability
information_was_generated. Even though static permanent
water fits better to describe inland water distribution_on
could benefit from having monthly varying information as
they have a very strong seasonal cycle, when size, shape and
depth of a lake changes over the course of the year, leading
to_a significant change in modelling the lake temperature
response. Similarly, saline lakes behave very differently to s
fresh water lakes since increased salt concentrations affect
the density, specific heat capacity, thermal conductivity, and
turbidity, as well as evaporation rates, ice formation and
ultimately the surface temperature. These two properties of
time variability and salinity are often related; it is common
for_saline lakes to fill and dry out over the course of
lake cover first 12 monthly fractional land-sea masks based
on JRC Monthly Water History v1.3 maps for 2010-2020
were created. Since the annual lake maps were created taking
into account a lot of additional sources the extra condition on
the monthly maps that the monthly water is equal or greater
than_permanent water distribution from fractional land-sea
mask is enforced. To create an inland salt lake cover map,
the GLDBV3 salt lake list was used. First, in order to identify
separate lakes on o lkm resolution lake cover (by “lake
cover” we refer the maximum lake distribution based on 12
monthly-varying lake covers), small sub-grid lakes and large
lake coasts are masked, i.e. grid-cells that have water fraction 1o
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Field category

V15 (initial

V20 (updated)

Orographic.

SRTM30_ Shuttle  Radar Topography Mission over
60°N-60°S; GLOBE: Global Land One-km Base
Elevation Project data over 90-60°N: RAMP2:
high-resolution Radarsat Antarctic Mapping Project
Digital Elevation Model version 2 data (Liu et al,, 2013)
over 60-90°S; BPRC: Byrd Polar Research Center over
Greenland; IS 50V: Digital Map Database of Iceland over

Iceland

As V13, with corrections of erroneous shift

Land

glm: GLCC: Global Land Cover Characteristics

version 2.0 over 90°N-90°S except Iceland; Icelandic
Meteorological Office (IMO) glacier mask 2013 over

Iceland

glm: Norwegian Institute glacier data over Svalbard;
Ieelandic Meteorological Office (IMO)_glacier mask
2017 _over Iceland; GIMP: Greenland Ice Mapping
Project data (Howatetal. 2014) over Greenland;

!\S/WN;I/I\;\/V\GlObCOVGI‘ZOO9 Bontemps et al., 2011; Arino et al., 20C2yoSat-2 satellite glacier data (Slater et al., 2018

over 85°N-60°S; RAMP2: high-resolution Radarsat
Antarctic Mapping Project Digital Elevation Model
version 2 data (Liu et al., 2015) over 60-90°S; no land

assumed over 90-85°N_

over Antarctica (+ manual gap filling); GLIMS:

Global Land Ice Measurements from Space data
GLIMS and NSIDC, 2005, updated 2018) over rest of

the globe.
Ism: GSWE: Global _Surface _Water _Explorer

Pekel et al., 2016); glm

Water

cl: Ism (ocean is separated at actual resolution by seedin
and removing all connected grid-cells, includes the
Caspian Sea, the Azov Sea, The American Great Lakes)

dl: The Caspian Sea bathymetry; Global Relief Model
ETOPO1 (Amante and Eakins, 2009) over the Great

ETOPO1 _(Amante and Eakins, 2009) over _the Greal

Lakes, the Azov_Sea; GLDB: Global Lake DataBase

version 1 (Kourzeneva et al., 2012) over rest of the globe;
25 meters assumed over missing data grid-cells

cl: Ism (ocean is separated at 1km resolution by upgraded
flooding algorithm following Choulga et al. (2019
dl: GEBCO: General Bathymetric Charts of the

Ocean (Weatherall et al., 2015) over the Caspian Sea

(Amante and Eakins, 2009) over the Great Lakes; GLDB:
Global Lake DataBase version 3 (Choulga et al., 2014)
geological origin of lakes (Choulga etal,2014) over

Vegetation

Note that vegetation type represent only dominant type
over grid-cell

AsVIS.

DSMW: FAO/UNESCO Digital Soil Map of the world
FAO, 2003). Note that soil type represent only dominant
type over grid-cell

AsVIS.

Albedo.

MODIS 5-year climatolo (Schaaf et al., 2002);
RossThickLiSparseReciprocal BRDF model. Note that
Albedo values represent snow free surface albedo

AsVIS.

Table 2. List of input datasets for the surface physiographic fields for V15 and V20 field sets. V15X and V20X are identical to V15 and V20
respectively, but with the addition of saline lake cover, and monthly varying lake cover fields.



less than 0.25. Next, number of connected grid-cells in each
lake (i.e. connected with sides only) is computed. Then
only lakes that have 100 and more connected grid-cells are
vectorised, as at ERAS resolution of ~31km the grid-cells
are_quite large and can include a mixture of freshwater
and saline lakes. Finally, saline lake vectors are selected
by filtering vectors which have no saline lake point from
GLDBY3 located — in total 147 large salt lake vectors, which
were further used to filter non-saline lakes at_Ikm resolution
o lake cover, finally aggregated to 31km resolution. In the
future it is planned to revisit this field and extend the list to
include additional data. Note that all non-lake related climate
fields such as vegetation cover or orography were updated
in V20 field set compared to V15 only in relation to the
s changing lake fields (i.e. if fraction of lake in the grid cell
increased then other fractions like vegetation or bare ground
should have increased accordingly).

o

2.2.2 ERAS

Climate reanalyses combine observations and mod-
elling to provide calculated values of a range of cli-
mactic variables over time. ERAS5 is the fifth gen-
eration reanalysis from ECMWE. It is produced
via 4D-Var data assimilation of the atmespherie
Integrated—Foreeast—system—IFS cycle 41R2, coupled to
»sa land-surface model (ECEand;Boussettaetal;2021H-

arametrization by FLake (Mironov, 2008) and an ocean
wave model (WAM). The resulting data product provides

hourly values of climatic variables across the atmosphere,
» land and ocean at a resolution of approximately 31km
with 137 vertical sigma levels, up to a height of 80km.
Additionally, ERAS provides associated uncertainties of the
variables at a reduced 63km resolution via a 10-member
Ensemble of Data Assimilations (EDA). We—take—In this
work ERAS surface—fields—on—an—hourly—grain—on—hourly
grid -with-a-highestreselution-of~3tkm—Whilst-are used.
Gaussian grid’s spacing between latitude lines is not regular,
but lines are symmetrical along the Equator; the number
of points along each latitude line defines longitude lines,
which start_at longitude 0 and are equally spaced along
the latitude line. In a reduced Gaussian grid, the number
of points on each latitude line is chosen so that the local
east-west_grid length remains approximately constant for

number of latitude lines between a Pole and the Equator).
The main field used from ERAS has—extensive verticat

coverage_neross 37 pressure_tevels—forotrpurposes—we
will-deal-solely-with-surfacefields—The-is skin temperature
no heat capacity and instantaneously responds to changes
in_surface fluxes) that forms the interface between the
soil and the atmosphere. Skin temperature is a theoretical
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-

-0.2 -0.1 0.0 0.1 0.2
Lake cover fraction difference 63912 (~31 km resolution) CLIMATE.(v020-v015)

Figure 1. At ~ 31km resolution (a) V20 fractional lake cover and

(b) difference between V20 and V15 lake covers. Over northern
latitudes inland water increase in V20 compared to V15 is due
to_higher resolution input source and its better satellite image
recognition methodologies as well as thawing permafrost; inland
water reduction in V20 compared to V15 is due to anthropogenic
land use changes (e.g. Aral Sea) or due to use of only permanent
water (e.g. Australia) which was proven to better represent inland

water distribution on annual basis.
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N B e
-100 =50 0 50 100
Lake depth difference [m] 63912 (~31 km resolution) CLIMATE.(v020-v015)

(b

Figure 2. At ~ 31km resolution (a) V15 lake mean depth in meters
and (b) difference between V20 and V15 lake mean depths. In
general lake mean depth has decreased in V20 compared to V15 due
to the use of mean depth indirect estimates based on geological and

temperature_computed by _linearizing the surface energy
balance equation for each surface type separately, and its
feedback on net radiation and ground heat flux is included;
for_more information see IFS_ Documentation (2021).
s ERAS skin temperature verification against MODIS LST
ensemble (i.e. all four MODIS observations were used,
namely Aqua Day and Night, Terra Day and Night) over
2003-2018 period showed good correlation between two
datasets; errors between ERAS and MODIS LST ensemble
o are quite small, i.e. spatially and temporally averaged bias is
1.64 X, root-mean square error (RMSE) is 3.96 K, Pearson
correlation _coefficient is 0.94, and anomaly correlation
coefficient is 0.75 (Mufioz Sabater et al., 2021b). ERAS skin
temperature verification against the Satellite Application
s Facility on Land Surface Analysis (LSA-SAF) product

over Iberian Peninsula showed a general underestimation
of daytime LST and slightly overestimation at night-time,
relating the large daytime cold bias with vegetation cover
differences between ERAS surface physiography fields and
the_European Space Agency’s Climate Change Initiative
(ESA-CCI) Land Cover dataset; use of ESA-CCI low
and high vegetation cover instead of ERAS ones led to

a complete reduction of the large maximum temperature
bias durin summer (Johannsen et al., 2019). ERAS

data is obtained via the Copernicus Climate Data Store

{EDS; Munoz-Sabater; 2049)(CDS; Munoz Sabater, 2019).

2.2.3 Aqua-MODIS

AgquaParkinsen(2003)-

Aqua (Parkinson, 2003) is a NASA satellite mission which
makes up part of the Earth Observing System (EOS). Oper-
ating at an altitude of 766-km700km, with orbital period of
99 minutes, its orbital trajectory passes south to north with
an equatorial-crossing times in general of 4+3:361.30pm. This
post-meridian crossing time has led to it sometimes being
denoted as EOS PM. Launched in 2002 with an initial ex-
pected mission duration of 6 years, Aqua has far exceeded
its initial brief and eentinues—to—transmit-until recently has
been transmitting information from 4 of the 6 observation in-
struments on board. In-this-work-we-will-concern-ourselves

with-only—ene-of-these—instruments—MODIS-Here we use
information only from MODIS instrument. MODIS can take
surface temperature measurements at a spatial resolution of
Tkm (the exact grid size is 0.928km by 0.928km), operat-
ing in the wavelength ranges of between ~-3-7—4-5m-and

~10:9—123pm~3.7-4.5um and ~10.9-12. 3um. In addi-

tion to surface temperature measurements that were used in
this work, MODIS can take observations of cloud proper-
ties, water vapour, ozoneete;-howeverfor-this-work-we-wil

foeus-exclusively-on-the-surface-temperature-measurements:
We—take—, etc. Here MYDI11A1 V006 %&e%al—as—euf

RARRIRARARA

W%Su#aee%meﬁw&% Wan et al. 2015

collection that provides daily LST measurements at a spa-
tial resolution of 1km on a sinusoidal projection grid SR-

ORG:6974 —which—(takes a spherical projection eHipsoid
but a WGS84 datum ellipsoid—Fer—eur—purpeses,—daily
information-over-several-years-is-needed;so-to-) is exercised.
Daily_global LST data is generated by first applying a
split-window LST algorithm (Wan and Dozier, 1996) on all
nominal (i.e. 1km at nadir) resolution swath (scene) with
a nominal coverage of 35 minutes of MODIS scans along
the_track acquired in daytime, and secondly by mapping
results_onto_integerized sinusoidal projection; for more
details see Wan et al. (2015) and Figure 3. Validation of this
product was carried out using temperature-based method
over different land cover types (e.g. grasslands, croplands,
shrublands, woody areas, etc.) in several regions around the
globe _(i.e. United States, Portugal, Namibia, and China)
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To mask oceans:
MODIS Geolocation

To estimate emissivities in bands 31, 32:
MODIS Snow Cover & Land Cover

For surface T & water vapour info:
MODIS Atmospheric Profile

For pixel type info:
Land Cover

Raw info:
MODIS Level 1B Calibrated and
Geolocated Radiances

To mask clouds:
MODIS Cloud Mask

CAUTIONS:
Estimated emissivities
may be very uncertain
(especially in semi-arid
and arid areas)

CONSTRAINTS:
« Pixels have nominal Level 1B radiance data
« Clear-sky conditions at 99% confidence
+ On land or inland water

Y
MYD11_L2

LST product per swath
generated by the generalised
split-window LST algorithm

(Wan and Dozier, 1996)

MYD11_L2

Complete global coverage
LST product by generating
LST product for all swaths
acquired in daytime (nighttime)

on the Earth including the
polar regions

Y

Mapping onto grids in the
MODIS sinusoidal projection
and averaging (beyond 30°)
multiple clear-sky
observations in each grid

Daily
MYD11A1 LST [ S
product

(a)

Figure 3. A brief step-by-step explanation of the LST algorithm for

at different atmospheric and/or surface conditions; the best
accuracy is achieved over United States sites with RMSE
lower than 1.3K (Duan et al., 2019). At large view angles
and in semi-arid regions the data product may have slightly
s higher errors due to rather uncertain classification-based
surface emissivities_and heavy dust aerosols_effects. In
cloud and/or heavy aerosols contaminated grid-cells from the
clear-sky ones (LST errors in such grid-cells can be 4-11K
1o and larger). Validation of this product over five bare ground
sites in north Affica (in total 12 radiosonde-based datasets
validated) showed that mean LST error was within £0.6K
(with exception for one dataset, where mean LST error was
0.8K) and standard deviation of LST errors were less than
1 0.5K (Duan et al., 2019). In this work to reduce the amount
of data-daily data over multiple years to store and manipulate,
this-data—produetis-then-prior use LST data is (i) filtered to
contain only cloud free dataand-, and (ii) averaged to a 4-km
_4km at the Equator resolution on a regular latitude-longitude
20 grid, EPSG4326-Only-:4326 (note that only grid cells which
have 8 or more valid observations at 1km resolution are av-
eraged over, otherwise they are classified as missing data).

Kimpson et al.: VESPER

2.3 Joining the data

For—a—given—hour—in—time—wehave—a seleetion—ofTo_join
selected ERAS data-thateovers-the-entire-globe-ata"low 31+
km}ﬂceselaﬁewg\lgpgkﬁg@on a reduced Gaussian grid and
a-strip-of- MODIS-data-at-~high~(4km)reselution-at ~ 31km

resolution (information in UTC, 24 hourly maps per day)

with Aqua-MODIS global LST data on a regular grid—We

In-erderto-proeeed-tisfirstlatitude-longitude grid at 4km
resolution (information in local solar time, 1 map per day),

both datasets need to be at the same time space. First it is
necessary to determine the absolute time (i.e. UTC) at which

the MODIS observations were taken. Since in general all
Aqua observations are taken at a-1.30pm local solar timeef
13-30;-we-eanrelate-this-straightforwardly-, it can be related
to a UTC via the-longitudeof-observations—as;—observation
longitude, following Eq. 1:.

longitude

UTC = Local solar time — 5 ,

)
where the-longitude is in degrees, and UTC is rounded to
the nearest hour. Naturally—this-This conversion is inexact
since there is an additional correction as a function of the
latitude, but—we—follow—yet recommended by the official
MODIS Products User’s Guide Wan-etal(2015)-which
recommends—converting—between—longitude—and—UTC—in
this-way(Wan et al., 2015); given the short orbital period of
Aqua these additional higher order corrections are expected
to be typically small —We-have-also-confirmed-the-aceuraey
ofthis—and for our purposes can be neglected. Also, the
assumption that all Aqua observations are taken at a-1.30pm
local solar time of13-30(see-Fig—2?was checked (see Figure
4). The annually averaged mean difference-time difference

31km resolution (i.e. daily differences between local

solar time of observations and 1.30pm at lkm resolution
were first aggregated to 31km resolution using averaging,
and then aggregated in time over a year) is 0.16 er—hours or

10 minMAEis—-minutes, with mean absolute error (MAE)
being 0.46 er—hours or 28 min, RMSE-is-minutes_and

RMSE being 0.61 er—hours or 37 minminutes (current

values correspond 70N-70S region year 2019, but confirmed

to be approximately identical for each year of 2016-2019
period). Since the ERAS-data-has-a-temporal resolution of

an-hour-thislevel-ofaceuracy-is—sufficient—The-conversion
generally-ERAS data is hourly, the assumptions inherent to
Eq 1 are sufficiently accurate. Over the poles (i.e. 90-70°N

and 70-90°S) satellite sweeps overlap significantly and in

eneral conversion becomes less accurate as—ene—moves

fe“”ifdf‘ the p8|e£‘; on—a dai 3[ t‘imef‘e'l e d]’f%efeﬁeef‘ at the
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poles—(daily time differences can reach more than +%£ 3.5
hours#eﬁhiﬁeaseiwefesmekewﬁmalyﬁﬁhmﬁgheuﬁh&s
work-to-grid-points-with-161<-70), so these areas were not
included in the analysis.

. . . ?

an—hotr-of-data—and-do—thefoHowing-Once Aqua-MODIS
time of observation is converted to UTC, Aqua-MODIS data
at ~ 4km resolution is matched in time and space to ERAS
information in a following way:

»s 1. Take a single MOBIS-Aqua-MODIS LST observation
at a particular point on the MODIS grid—;

2. Select ERAS lobal  hourl ma matchin
Aqua-MODIS LST observation time in UTC;

3. Find the nearest point on the ERAS grid to that MODIS
3 grid point-—;_

4. Repeat for-every-MODIS-ebservationprevious steps for
every Aqua-MODIS observation;

5. Group matched data pairs by the ERAS grid points, av-
eraging over all the MODIS-Aqua-MODIS observations
3 that are associated with each ERAS point.

The-result-At the end of this process is-thenfor-every-set-of
selected ERAS input f inputfields-at-a-particular-pointin-space-and
&me—,w&have—aﬁempfﬂea%—lrST—ebsefvaﬁeﬂ—whiehﬁs
10 We-take-this-averaged-observation-as-the-ground-truth-fields
are_mapped to a single Aqua-MODIS time of observation
and _Aqua-MODIS LST data is _mapped (i.e. multiple
Aqua-MODIS _observations could be averaged over, see
Figure 5a) to a reduced Gaussian grid at_31km resolution;
s averaged Aqua-MODIS observations _are considered as
ground truth (i.e. targets ythat—we—are—) that VESPER is

trying to predict. To better understand VESPER’s grid-cell
results at 3lkm resolution additional information was
computed from Aqua-MODIS, namely (i) total number
s of valid observations per month and year (see Figure 5a),
and (ii) average LST error based on Aqua-MODIA quality

11

-1.0 -0.5 0.0 0.5 1.0
Local Solar Time - 13.5 [hrs]

Figure 4. The annually averaged mean time difference of
Aqua-MODIS and assumed local solar time of 1.30pm for the year
2019 at 31km resolution. Time differences are generally sub-hour
and grow at greater latitudes, so data over 90-70°N and 70-90°S is

assessment (i.e. quality flag, see Figure 5b). Based on
this additional information it can be concluded that areas

with sparse number of observations in general have more
uncertain LST values; exceptions are Alaska in United
States and Anadyrsky District in Russia (area 307 east and
west from 180°E around 70-60°N). deserts of Australia and
Kalahari desert in Namibia, Botswana and South Africa,
where majority of vast number of observations have only
good or average quality.

For step (3) in ourregression—model—Step—2-in-the join-

ing pipeline—tises—process, we use a GPU-accelerated k-
nearest neighbours algorlthm RAPIDS (v22.04.00), where

"o

“pearness™— ‘nearness”’ on the sphere between two points is
measured via the Haversine metric, i.e. the geodesic distance

on-the-sphere-between-twe-points-H, following Eq. 2:

H = 2arcsin (d) \/sin2 (?) + cosf; cos By sin® (52¢>

2

where-

d= \/sin2 <629) + cos B cos Oy sin? <52¢)

for two points with coordinate latitudes 61 o, longitudes ¢1 2
and 59 92 — 91 and 5¢) (152 — ¢1
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Mean Number of Observations
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Mean LST error [K]

(b)

Figure 5. For 2019 at ~ 31km resolution: (a) Mean daily number of
Aqua-MODIS observations mapped to each ERAS data point. The
swath of the Aqua satellite is clearly visible, with more observations
over 70-60°N and 60-70°S areas as Aqua follows a polar orbit,
orography areas (such as the Himalayas, the Andes and the Rocky
(b) Average error in the Aqua-MODIS LST measurement. The raw
Aqua-MODIS data at _1km resolution provides categorical LST
computed, where the median bin value is used, and SK for the > 3K
bin, This information helps to understand that abundant number of

observation does not automatically mean high quality of LST (e.g.
Australia).

Kimpson et al.: VESPER

2.4 Constructing a regression model

We] : 5 and Latai lated
: Y . . . .
medel—terVESPER is trained to learn the mapping between
%%My i.e. mapping ERAS t

MODIS), a regression problem. For this purpose we-tise-a
seqtienttal-a fully-connected neural network architecture 5
tmp}emaﬁeéeﬂ%ﬂsefﬂmx%}ke%%léﬂw
as a multi-layer_perceptron), implemented in_Tensorflow
(Abadi et al., 2016) was_used. Whilst more advanced ar-
chitectures and—regresston—models—are available, for eur
purposes—the—sequential—model—is—more—than—sufficient

and—it—the purposes of this work the model is sufficient
enough, which exhibits generally fast and dependable

convergence. We-take-as-our-canonical-structure-a—network
where—the_The networks built have differing_number of
nodes in the input layeris—equal—to—, depending on the
number of training—featares;,—a—singlenede—in—the—output
layer-correspondingto-the 1-STand-predictors (see Table
3). For all networks constructed we use 4 hidden layers

kafmng—ﬂfﬁand a la er w1dth is half that of the input
layer width. ADAM (Kingma and Ba, 2014) is used as

an optimisation scheme, learning rate is set to 3 x 10™%,
and default values for the exponential decay rate for the

1st and 2nd moment estimates take—defawlt—values—of
6:96—and—-6:999are_set to 0.900 and 0.999 respectively.
The network is not trained for a fixed number of epochs,
but instead trained until the validation error reaches a

minimum. Techniques for maximising the performance
of a network via hyperparameter optimisation are now

established &sehke%al—@@%l%#u&nd%hr(%@%@%

well

purposes of this work no attempt to_tune hyperparameters
was made, just some reasonable default values which—we
judge—to—be—good-enough”—Some—shallow—were applied

which were assumed to be “good enough”. Some exploration
of different hyperparameter configuration was undertaken,

but for this data the prediction accuracy is mostly inde-
pendent of the hyperparameter configuration, subject to
standard and reasonable hyperparameter choices. Whilst
a more advanced automatic hyperparameter optimization

method may have enabled slightly mere-perfermance-to-be
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squeezed-out-of-the-medethigher performance of VESPER,

our ultimate purpose is not to generate the most absolutely
accurate prediction possible, but instead to have two predic-

tive models which we-can-compare-Additionally;-as-we-will

see;—can be compared. In the result section below it will be
shown that the variation in performance due to medifications

{e+he—mpﬁt—fea&1fe& nput feature modifications is far greater

than the variation due to the hyperparameter choices.

o

example-of the-error-in-the-predicted ST relative to-the true
MODISLEST-s-presented-inFigure-6—The-model-VESPER
was trained on a-year-of selected atmospheric and surface
s model fields from ERAS data—from26+6—andthen—made
predictions-of-the-LST—in-for 2016 (see Table 1), certain
static version of the surface physiographic fields (see Table
2), and Aqua-MODIS LST for 2016. Once VESPER was
fully trained it was used to predict LST over the whole globe
2 for 2019. We-ean-compare-the-error-in-the-medel predictions
wﬁh—fhefﬁe%ﬂfﬁﬁjafedieted—skm{empef&mfefhaﬁs—deﬂveé
Going forward, as a shorthand we will refer to VESPER
trained using the e.g. V15 field set as VESPER VI3 (in
general VM is a field set version and VESPER VM is a
VESPER model trained using the fields from the VM field
set). See Table 3 for an explicit definition of all the VESPER
models. The training and test years were chosen simply
as recent, non-anomalous years so that the updated surface
physiographic fields could be checked. All VESPER versions
ggvtvrg&m ERA5 —I%ﬂ%ewdeﬂ{—ffem—l;}gme%%ha%

2

a

3

S

%M&(mewmlw
fields from VI3 field set. Then depending on the version
some or all additional surface physiographic fields (see Table
s 1) are added. VESPER's predictions can be compared to
the initial ERAS predietions:—skin temperatures and actual
Aqua-MODIS LST for 2019. Figure 6_shows_the mean
absolute errors (MAE) globally in the VESPER V15 LST
predictions, relative to_the Aqua-MODIS LST along with

40 the corresponding MAE in the predicted skin temperature

from ERAS. We can see that VESPER V15 was able to
learn corrections to ERAS, especially in the Himalayas and

sub-Saharan Africa as well-as -Australia and the -Amazon

basin—For-this—particalar-example,the-mean—annual-error;
s averaged-over-all-grid-points-was-Africa as well as Australia
and the Amazon basin, leading to_the globally averaged
MAE reduction for predicted LST: the MAE relative to
Aqua-MODIS LST, averaged over all grid points, was 3.9k
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Instead-we-want-torestrictour-analysisto-As the focus of this
study is lake-related fields, and lakes occupy only 1.8% of
the Earth’s surface and are distributed very heterogeneously
(Choulga et al,, 2014), analysis of the results was restricted

to_areas where there have been a-significant changes in
the fields—Mere—quantitively;—we—consider—a—surface lake
physiographic fields. By “significant change" to-be-we mean
a change in any of the surface field when going from V15

to V20 of>-0-1-(and to V15X or V20X) of > 10% (> 0.1
for fractional fieldsef>1+0%for-non-fractionalquantities:
Sefer-exampleif-thefield-for-the lake-coverteh—whieh
eseril hefracti ¢ Lt hich_is_classified

as—a—take—~changes—); for example if lake or vegetation
cover changed from 0.1 in V15 to 0.3 in V20 this-weuld

cheice-of >10%is-a-somewhat-arbitrarytelerancefield set
as a significance cut-off ;-but it batanees-the-was adopted as
it proved to be a good trade off between having a sufficient
number of grid points to inspect and the strength of the ef-
fect of changmg the 1nput field. As the telerance-inereases

sevefely—buHaawfeweﬁpemfs—ggvgfIfjgv@ggMneskess

oints are selected, albeit with more severe changes to their
surface fields, whereas when the tolerance-deereases-we-have

mef&pmﬂ%&b&t—ﬁﬂ%cmcﬂm&sm more points are
selected but it becomes more difficult to disentangle the
change in the prediction accuracy from the—medel-noise
—Alternativetoterances VESPER's training noise (training
noise is discussed below). Alternative cut-off % were briefly
explored, but our-conelusions-are-conclusions of the results
remained broadly unchanged.
Gridpoints-All grid-cells selected for the analysis can be
classified according to how the surface fields are updated
when going from V15 to V20 —We-will examine3-illastrative

eategories—(note that categories represent a systematic and
consistent update across multiple related fields, and do not
include any restrictions on other surface fields apart the ones
mentioned):

— Lake Updates. The change in the lake cover ¢/ and
lake depth dI are significant, but the changes in ocean
and glacier g/m fractions are not. This corresponds to

grid-boxes—where—inland—grid-cells where lakes have
been added or removed. We-will-also-use-Lake-Ground

Updates is_a sub-category Lake-Gfeuﬂd—Updates
where-we-have-the-where additional constraint that the
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15

Model ERAS atmospheric and Main surface physio- Main surface physio- Additional surface physio-
surface fields graphic fields, V15 graphic fields, V20 graphic fields

VESPER_V15 v v - -

VESPER_VI15X Vv v - v

VESPER_V20 v v v -

VESPER_V20X Vv v v v

Table 3. List of input files for different VESPER versions. c.f. Table 1

()
Figure 6. Mean absolute error (MAE, d K) of LST predictions for 2019 at 31km resolution based on differences between (a) ERAS skin

temperature and Aqua-MODIS LST and (b) between VESPER V15 (i.e. VESPER trained with V15 surface physiographic fields) and
Aqua-MODIS LST. It can be seen that VESPER_V 15 managed to learn corrections over regions with complex surface fields such as the

Himalayas (lots of orograph

sub-Saharan Africa (lots of vegetation) and the Amazon Basin (lots of water + vegetation).

change in the high/low vegetation fractions cvh/cvl are
not significant is in place. This then corresponds to the
exchange of lakes for bare ground, or vice versa.

— Vegetation Updates. The change in the high vegetation
5 fraction cyh is significant, but the change in lake cover
cl is not significant. This corresponds to grid—boxes
grid-cells where large features like forests and wood-
lands have been updated, exchanged for bare ground or

low vegetation.

Glacier Updates. The change in the glacier cover
stt0glm is significant. This corresponds to any areas
where the fraction of glacier ice has been updated.

: .
;;“f rain ‘*]‘e m@dl.el.me‘ ff‘e entire glegbe for-the—year
fe‘: !‘, ”. FBF e']eh EHHCj’ iﬁ the tef‘t f‘et we—-can dEEEﬁﬂiHe
feti The training of a neural
network is_inherently stochastic - the same model trained
twice with the same data can settle in different local optima
and so make different predictions. To make our conclusions
robust against this training noise, each VESPER model is
in turn trained 4 times. For each MODIS ground truth we
then_have 4 LST predictions per model. We define the
training noise as the standard deviation, o, in the VESPER
predictions for the same input fields i.e. each VESPER VM
model will have a _corresponding training noise gyy. To
assess the changes of LST predictability due to the use of
the updated surface physiographic fields instead of V15 field
set (default) we compare the mean absolute error (MAE)
between different VESPER models using the simple metric
35908
3)

v = MABvesper v —~ MAEvESPER Vis

where VM represents one of the field set versions V20,
V20X or V15X, and MAE is computed over the whole
rediction period of 2019. In turn, the MAE is the error

30

40



16

between the prediction of a VESPER model and V20-medels

the A ua-MODIS LST ie.

s Opp = M prediction error — V15 prediction error .

N

1
MAEvVESPER VM = N Z |LST; vesper_vM — LST; MoDis|

i=1
“

So les 1 4 ] 1 of the V20 el
relative—to—the—V15—medelfor total number of predictions
10 N, within a given grid-cell classification. A negative évg
therefore—0yy_then indicates that the ¥20-VESPER_VM
LST prediction is more accurate than the VESPER_V15

redlctlon and vice versa. The«res&&&fe%ﬂae%e}eetedgﬂé

53 Results

3.1 Evaluation of updated lake fields

To_understand if there is a way to automatically and
rapidly assess the accuracy of updated and/or new surface
physiography_fields, and if their use in the atmospheric

20 model increase predictability, we can compare the prediction
accuracy of different VESPER_VM_models. Generally
VESPER's training noise is confirmed to be smaller than
differences in LST predictions by different VESPER
configurations, so_ changes in LST predictability can

2 be meaningfully attributed to_the changes in_surface
physiographic fields. Particular situations where the training
noise becomes significant are discussed below.

Category-As_a first attempt lake-related information_is
w assessed, namely lake cover (and land-sea mask and glacier
cover as they are used for lake cover generation) and lake
mean_depth, that were created from scratch using new
up-to-date high-resolution input datasets (see Table 2) for the
V20 (and V20X) field set; other surface physiographic fields
s (see Table 1) were regenerated from the same input sources
as in the initial V15 field set. but taking into account that lake
related fields were changed. In cases when existing in V15
lake cover water was removed in V20, it could be replaced
by any of high or low vegetation, glacier or bare ground. We
« now analyse the results for each of the 4 categories of grid
cell in detail (see Table 4 for the results of each category
aggregated over the whole globe).

3.1.1 Category: Lake Updatesupdates

Kimpson et al.: VESPER
® V15
Lake ooo o o0 o o V20
Lake-ground ° ®e . ) .
Vegetation e o e °
Glacier oo e o

275 300 325 350 375 400 425 450 475
LST MAE [K]

Figure 7. Distribution of prediction errors in the LST, for each
For Lake, Lake-ground and Glacier categories the improvement in
V20 relative to V15 is much greater than the intrinsic model noise,
Vegetation category the predictions of V15 and V20 are much more
noisy and it is difficult to draw any conclusions for the category as

a whole.

The Lake Updates category —These—peints—are—presented
}mpfevemeﬂ%s—g{ebal}y—&he—meaﬂ—mrpfevemeﬂ%—m—fhe
pfedie&eﬂ—aee\mey—wheﬂ—usmg—%h%s\ll(m;g\@gggt
improvements in LST predictability if using V20 fields—was
045K -everfield set instead of V15 — prediction accurac
increased globally (over 1631 grid-points);-most-notably-in
Australia—and—the—-Aral-sea—These—were—two—ofthe—major
regions—that—we—diseussed—earlier—where—in—grid-cells) on
average by 0.37K. For the lakes category, the training noise

generally small gz ~ 0.02 K, with the V15 predictions a
little more noisy with gv15 > 0.07 K, but this noise is much
(e-predictive)with-respeetto-surface-temperatures—as can be
seen in Fig. 7 every V20 iteration significantly outperforms
every V15 iteration. In Fig. 8 we plot the distribution of
the mean LST error (averaged across each of the 4 trained
VESPER iterations) for all lake grid points, for both V15 and
V20. Evidently the V20 field significantly improve the high
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. ovm, K ovm, K
Category  Numberof grideells 5 yysv " "vog  vaox  VISX V20 V20X
Lake 1631 007 002 002 002 020 -037 -037
Lake-Ground 546 015 005 004 006 -056 -0.83 -0.84
Vegetation 58 004 0.0 015 021 -0.00 004 -0.00
Glacier 1057 003 008 002 006 -001 -022 -028

Table 4. Globally averaged differences dyvn between mean absolute error (MAE) of VESPER_VM and VESPER_V15 LST for 2019 at
31km resolution (where M denotes V15X, V20, V20X field sets) per grid-cell category. Negative dyy values indicate an increase of LST

predictability due to the use of the updated surface physiographic fields instead of V15 field set (default), positive dv values indicate a
values, gy, are generally much smaller than the variance between different VESPER configurations, indicating that changes in LST
predictability are mainly due to changes in the surface physiographic fields. The quoted noise is the standard deviation of the prediction

tail behaviour relative to V15, as well as shifting the median
T of the distribution to lower errors. Particular regions where
the V20 physiographic fields notably improved performance
were in Australia and the Aral sea (e.g. Fig. 9). These are
two_major_regions where ephemeral lakes were removed

and inland water distribution made up-to-date, as discussed
in_Section 2.2.1. In addition to the areas where—there—is

with a notable improvement in the prediction accuracy, there
are alse-some noteworthy regions where the predictions get
worse-(got worse (see red points in Fig—Figure 9) suggest-
ing inaccuracies or lack of information in the new-fields—We
ean-take--updated surface physiographic fields. A few of the
most noteworthy peints—(highlighted-by—grid-cells (see red
points highlighted with green circles in Fig-9--in-taraFigure
9 and also Figure 11) are:

— FanzaniaNorthern India, —There-are-two-grid-points
| ] he V50 heti | o
LakeN T e which I ] ,

f Lake Vietoria_C ot ] ]

102.

8 10 12 14 16 18 edge—of-the—lake,—and-the—other—is—more—central—For

LSTMAE T the-central-point;-the-This grid-cell lies in the state of
Figure 8. MW%W the V20 QWMWWMM
model-relative-to-the-V+5-modelacross-the globe-LST for all grid Ovon = +4:21, with gy =254 and gyag = 0416
points where-atHin the }ake.ﬁe}ds.have.ehaﬂgeéﬁgﬂﬁ}eaﬂﬂ.y.(ﬁLake The lake fraction was increased from 6-04-0.59 in V15
U—pdaﬁelmcategory jfor VESPER_V15 and VESPER_V20. to 9%9{) 71in V20 ‘HGW@VGF*I:&J%&NM@H%gh}Y
Generally-Each prediction errors is in turn the updated-V20-fields salme}akefhﬂkefte&dﬂes—eﬂ{rwrﬂmghtempeﬁﬁufe&,
enable-average of 4 trained iterations of the VESPER modelto-make high-levels—of-evaporation—and—irregularrainfall—Jt-is
more-acetrate-, The predictions -—for-example-in-the-Aral-seaand a-highly-complex-and variable regime that-is not-well
Austratia-indicating-that-these-updated-fields-of VESPER V20 are deseribed-by—simply-inereasing—thestaticlakefraction
informative-evidently and aceurate—tn—eontrastimprovement over field—and-indeed-these results suggest-that-it-may—in
VESPER_V135, there-are—some-regions—where—the-predietions—get £ l’l Geial fortl 1al e

Wfore*&mp}e%hfghe%mdﬁ—whmw | I hetake_fract ] }

Wé«amﬂgmagmeekwnh greewwelefra%dﬁeussed—m—fhe evifield set, along with the lake depth increase from
delta within the Great Raan of Kutch, a large area
of salt marshes (see Figure 10a), known for having
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highly seasonal rainfall, with frequent flooding during
the monsoon season and a long dry season. The surface
itself also undulates with areas of higher sandy ground
known as medaks, with greater levels of vegetation.

\ lia—Thic_orid—celltiesin-Sout T ’
eeﬂfatﬂs—ljake%kaﬂehe—lﬂ—gemg—fmm—%%ehlt is
evidently a complex and highly time variable area and
additional static fraction of fresh water r0V1ded via

and-results-in-worse-predietionsfield set is not sufficient.

Salt Lake City, North America-—This-gridpeintlies

. This grid-cell lies within the Great Salt Lake Desert,
just to the west of the Great Salt Lake, Utah, within

the-Great-Salttake Desert—At-water-US. Predictions
of VESPER V20 are worse than VESPER V15, with

Ovan = +2.91 (av15 = 0.26 and oz = 0.92). Whilst
the dvaq value, and we can see from Fig 11 that the
VESPER_V20 predictions consistently underperform
the VESPER V15 predictions. The lake fraction was
completely removed when-going-from-from over 0.50
in V15 to 0.00 in V20 el from—=-0-5-te-0)—Thefield
set, meaning that the grid-cell is fully covered with bare

ground in V20 medet-then-treats—thisregion-—simplyas
bare-ground-field set. Whilst this area primarily is bare

ground, satellite imagery also suggests the presence of
a presumably highly saline lake (Fig1Ob)Thisregion
also-see Figure 10b); in addition area has a large de-
gree of orography and high elevation (~1360-m)-which

will-alse-furthereemplieate—~1300m) which probabl
further complicates the surface temperature response.

Again;-a-A more accurate description that accounts for
the seasonality of the surface water and the salinity is
necessary here.

AfghanistanTanzania. This—grid—point—ties—in—the
Fean—T} | & ble_e] . :
There are two grid-cells of interest at the centre

Kimpson et al.: VESPER

and northern edge of Lake Natron, which itself lies
to south-east of Lake Victoria, in Tanzania. For

both_these points VESPER V20 predictions are less
accurate_than VESPER VI15; for the central point
(Ov20 = £2:49,0v15 = 0:12 and gyan = 0.81, see also
Figure 10c) the lake fraction was_increased from
0.04 in V15 to 0.39 in V20 was—the—removal—of
thewater.with-field_set; for_the northern edge_point
Oy20 = +1:570y15 = 013 and gyag = 0.51) the lake
fraction deereasing-from-0-H-to-zerowas also increased
in V20 comparing to V15 field set along with a small
decrease (~0.1) in the low vegetation fraction. How-
ever, this—area—in—faet—-has—an—extensive—network—of

mountain-tributaries-which-feed-an—ephemeral- ake(e-

for parts-of the yearesp eeiatly d““ﬂ% the raifty season
lake that often dries out, with high temperatures, high
levels of evaporation and irregular rainfall. It is a highly
complex and variable regime that is not well described
by simply increasing the fraction of permanent fresh
water, and indeed results suggest that with current lake
parametrization_scheme it may be beneficial to keep
the lake fraction low or introduce extra descriptor, e.g.
NerthernIndiaAlgeria. This grid point lies in the-state
fraction—ef was—inereased—{from—0-59—+to—0-H—and-the
lake-depth-d/ inereasedfrom2-58mto-3-76m—That-is
Algeria, at the northern edge of the Chott Felrhir, an
endorheic salt lake (Oya0 = $:2.20, the-gyys = 0.41 and
gvan = 0.49). Similar to the Great Salt Lake Desert, the

lake fraction was completely removed from 0.33 in V15
to 0.0 in V20ecorrections-suggest-that-there-should-be-a

and—,_However, Chott Felrhir goes through frequent
periods of flooding where the lake is filled by multiple
large wadi, and corresponding dry periods where the
lake becomes a salt pan. As with the Great Salt Lake
Desert it is also a highly variable, complex area that may
require additional consideration of the salinity and the
seasonality.

Lake Chad This grid point contains Lake Chad, a
freshwater endorheic lake in the central part of the Sahel
(Ov20 = +1.74,_ayus = 0.33_and oy = 0.98). Here
the lake fraction was modestly reduced from 0.63 to
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0.47. However, Lake Chad is again a highly time vari-
able area-and-the-additional static-informationprovided
via-the regime with seasonal droughts and wet seasons.
It is a marshy wetland area but the vegetation fractions
in both V15 and V20 fieldsis-either not-aceurate or
large fraction of the surface covered by water and
vegetation (Figure 10¢).

— EgyptAl Fashaga This grid point lies in the—south
i g”] I L hi ',g'lg
disputed region between Sudan and Ethiopia called Al
%@mww&
1ncreased the lake fractlon fee}uemgffem—éééwm%

out;-at this point from 0 to 0.14, The grid cell contains
the Upper Atbara and Setit Dam Complex. However,
the dam was only recently completed in 2018 - dur-
ing the training and-validation—years—aleng—with-the
deead&befer&-«the%ake%—were«me%ﬂydfy%ﬁwhefea%
are-the-majorregions-where-the-period the damn was
still under construction. Consequently whilst the V20
prediction-is-significantly-worse-than-the-field may be
more accurate at the current time, during the period
the model was training the V15 prediction;—there-are

vartability-over-the-course-of-the-year-as-field was more
accurate, since the damn was not yet built.

— Lake Tuz. This grid cell contains a large fraction of
Lake Tuz as well as the smaller Lake Tersakan, saline
lakes in central Turkey (dva0 = 4:0.85,0v15 = 0,25 and
av20 =0.34). Here the updated physiographic_field
effectively_removed all lake water, with the water
sumimer. Sueh-& time variability 15 not ideally-captured

19

correspondinglylake fraction decreasing from 0.14 to
0.005. Whilst the lake is shallow and does dry out in the
present (e.g. Fig 10d) and it is an over correction to

— Lake Urmia. This grid cell contains Lake Urmia,
oyis =0.12  and =0.73). updated
physiographic_fields decreased the lake fraction at
this point from 0.77 to 0.39. This was in response to
the_shrinking of Lake Urmia due to long-timescale
droughts and the damming of rivers in Iran. However,
water-present-and-the-updated-V20-lake-fields-may-be
ay-be-neeessary-this drought broke in 2019 and Lake
now shows a large fraction of the grid cell covered by
water (Figure 106).

eategory,—The Lake-Ground Updates ;—and—restriet—our

sub-category, which restricts analysis to only points where
there-was-with no significant change in the vegetation—This
then,_ allows us to more clearly see the effect of adding/re-
moving water witheut—the—additionalinfluence—due—to—the
change-in—vegetation—In—this—ease—the-mean—improvement
in—the—predietion—aeceuracy—when—using—the—on/from bare
ground. This sub-category shows even larger improvements
in LST predictability if using V20 fields—is—stronger—than
the-ake-eategory,-with-0vog=—1-12-KHield set instead of
V13 (see Table 4) — prediction accuracy increased globally

oya0.=0.04, see also Figure 7). This indicates that whilst
the updated lake fields are globally accurate and informative,

providing on average over the globe, over a year, more-than
nearly an extra Kelvin of predictive performance, the updates
to the vegetation fields tamper this performance gain—This

suggests-at-a-, indicating potential problem with the vegeta-
tion fields

3.1.2 Category: Vegetation Updates
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Figure 9. Differences in the prediction error MAE, between VESPER_V20 and VESPER V15, (i.e. §

o),for 2019 at 31km resolution

for ‘Lake Updates’ category (i.e. where lake cover changed significantl

. Generally, VESPER_V20 LST predictions are more accurate, for

example in the Aral sea and Australia, indicating that V20 field set is informative and accurate. Particular points where VESPER_V20 LST

rediction gets notably worse compared to VESPER_V 15 are highlighted with green circles and discussed in the text.

apartfrom-one;—the-evh The Vegetation updates category,
restricts analysis to grid points with significant change to
is_substituted with either low vegetation or bare ground,
and vice versa. For this category the prediction accuracy
of V20 _decreased globally (over 58 grid-cells only) on
average by 0.04K. However, this shift is much smaller than
o the_training noise between successive VESPER iterations
(av15. = 004, gy20=0.15) and so it is hard to make
definitive statements about the performance of the updated
vegetation physiographic fields as a whole (see e.g. Fig 13).
The best we can say is that the updated V20 vegetation fields
s offer no global improvement in the LST prediction accuracy.

If we isolate our analysis to individual grid points where
the training noise is small (highlighted by * points in Fig 13)

we can discern that there are multiple locations where the

high vegetation fraction was decreased ;—(often quite dras-
tically to zero;—-e—), specifying that there should just be

bare groundin-these-grid-boxes—Whilst-this-may-be-aceurate

for-some-points;-by-inspeeting-, but thorough inspection of
these areas with satellite imagery it-is-clear—that-there-are

regions-which-are-infaet-areas-ofrevealed that they should
in fact be covered with high vegetation (see e.g. Fig-Figure

12) and that itis-inaceurate-to-simplyremove-all-vegetation

wheﬂ—gemg—ffem—\f—lé—t&yﬂg(vigggg\tg\ V20 afe—a}l—gﬂd—petﬂfs
where—the—vegetation{fraction—is—severely-high vegetation
cover_was_erroneous for these grid-cells. Moreover, for
this subset of less noisy grid points, the strength of the
drop in LST predictability in VESPER_ V20 comparing
to. VESPER V15 is approximately linearly dependent to
the degree of reduction in high vegetation fraction, when
the_vegetation is replaced with bare ground (i.e. dvaq is
maximally positive when the grid-cell that was fully covered

20

25

30

35



Kimpson et al.: VESPER 21

(c) Lake Natron, Tanzania

(e) Lake Chad (f) Lake Urmia

Figure 10. Satelite-A selection of satellite imagery of some of the problematic Lake Updates points highlighted in Fig. 9 where the V20
predictions are worse than the V15 predictions. Generally the updated V20 fields remove water, only considering permanent water. However
these regions have highly time variable waters, which are better captured on average by the V15 fields. The images are centred on the grid

box coordinates.Nete-that-the-lengthseales-are-differentfor-some-images:
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Gujarat Province
Great Salt Lake Desert
Lake Natron centre
Chott Felrhir

Lake Chad

Lake Natron, north

Al Fashaga

Tersakan Lake

Lake Urmia

o vis
° V20 hadd
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Figure 11. As Fig. 7 for selected locations in the lakes grid point
category where the added V20 data results in worse predictions
when compared to V15.

with forest becomes fully covered with bare ground — high
vegetation cover is reduced to zero—This—suggests—that

5

These erroneous r1d cells in
V20 Vegetatlon fields are 11ke1y inherited-from-initial-datasets

ﬁsed—teﬂpda{e—vege{a&elm%&mdurmg the interpo-
lation. The errors in these regions will in turn corrupt the
LST predictions and mitigate the gain from a more accurate
10 representation of the lake water. The majority of grid cells

in this category (57/58) are modified in this way where the
high vegetation fraction is severely reduced, however due to
the large degree of training noise and the small number of
points, it is difficult to draw any definitive conclusions for

3.1.3 Category: Glacier Updates

The— The Glacier Updates category in general shows
improvement in LST predictability in VESPER V20 updates
Fcior fract | Hoi | etions.

20 with-a-meandvog—=—0-+4K-comparing to VESPER_V15

see Table 4) — prediction accuracy increases globall

(over

1057 grid—points—TFhese—improvements—are—coneentrated

rid-cells) on average by 0.22K (oy15 = 0.03, oy99 = 0.02),
most notably around the Himalayas, the land either side of

25 the Davis strait, as well as British Columbia and the Alaskan
Gulf. Analogous to the Lakes Updates category whilst the in-

troduction of the V20 fields—generally-improves-the-model;
there—are—some—selected—regions—glacier cover generally

improves LST predictions, there is a small selection of grid
%0 points where the prediction gets worse. These are heav-

ily concentrated in the southern hemisphere, in particular

Gooéle Earth

(b)

Kimpson et al.: VESPER

Figure 12. Satellite imagery of grid—bexes—grid-cells in (&) (a)
Siberut Island, Indonesia and (%} (b) South Island, New Zealand.

For both peints—it—is—expeeted—grid-cells according to the up-
dated V20 fields—thatfield set there is—should be no vegetation,
just bare ground. VESPER ean-identify-identified these erroneous
erroneously updated fieldsareas.

on the seuth—western—south-western edge of South Amer-
ica and the South Shetland Islands —(which lie closer to
Antarctica—as—wel-as-), and some parts of the Himalayas.
This defieit-deterioration in performance in these areas is
not due to erroneous updated—update of V20 fields;—but

net—model—glacier cover, but related to the Aqua-MODIS
data (i.e. sparse availability due to clouds, and less certain

due to orography, see Figure 5a). Consequently, VESPER
finds it difficult to make accurate predictions in this re-

gion ;—and-this—iteration—ofthe—model-has—settled—into—a
local-minimum-for-V20-which-is—werse-than-and for these

35

40

45



Kimpson et al.: VESPER

LST MAE [K]

Figure 13. Distribution of prediction errors in the LST, for
VESPER V15 and VESPER_V20, for all 58 grid points in the
with predictions from both generations of VESPER model highly
overlapping. Points with reduced training noise are highlighted with

a x,

A

points there is often a large degree of training noise, with
considerable overlap between VESPER V15 in-these-areas:
of-observations—we-take-and VESPER_V20. If grid- cells
s with scarce amount of Aqua-MODIS observations (i.e. mean
number of MODIS-observations—per-ERA-data-point—-50)
Aqua-MODIS observations per day over the year per ERAS
grid-cell is >50) are removed from the analysis then the
worst perfornnng grid—points—are—excladed—In—this—ease
10 grid-cells become excluded, yet a few ar-
eas where the—"VESPER_V20 modelunderperforms—with
WW%V]S remain. For ex-
ample, there is a gﬂd—pem{—m—theﬁédﬂsk&ﬂ—gﬂ}f—eﬂ—%he
Bering-Glacterwith-6vop=—12-16-KFhis-peintgrid-cell in
is Chilean Patagonia that contains the Calluqueo Glacier, close
to_Monte San Lorenzo where dyao = 2:49 (gvi5 =0.38,

oyao = 0.62). This grid-cell has been updated in V20 to

23

that-the-V20-updates field set comparing to V15 by strongly
increasing glacier cover from 0.0 to 0.44), decreasing low
vegetation cover (from 0.22 to 0.12) and high vegetation
cover (from 0.16 t0 0.09) as well as modestly decreasing lake
cover (from 0.02 to 0.007). According to satellite imagery
(see Figure 14a) the glacier only occupies a small fraction of
the overall grid-cell, and the updated glacier cover may have
been an over correctlon CPhe—Befmgg}ac—}eH%a}se%eﬂem%

&&wefeeﬁee&eﬂ%ﬁefheﬁeab}egﬂémm
complex orographic area with snowy mountain peaks at high
altitude and deep valleys, therefore the temperature response
due to the glacier feature could be atypical compared to
e.g. the Alaskan Gulf or the Davis straight. There is also
substantial vegetation cover in the valleys that may not be

being properly described. A similar point is in the Chilean
Andes (see Figure 14b), by the Juncal Glacier —Here—the

ieefraction was inereased-in with ya0 = 1.26 (gv15 = 0.68,
gv20=0.29). Here V20 glacier cover was increased to 0.25
from—zere—compared to 0.00 in VI15:-an-attempt—to—better
represent-the—glacial-iee- However,dvop=—12-6FKIntfaet;
the—glacieritself-only-oeccupies—._Again, this is_may have
been an_over correction, as the glacier constitutes only a
small fraction of the everall-grid-boxand-theupdated-field
may-have-been—an—over—correction—Moreover—this—is—grid
cell. As with the Callugueo Glacier this is also an area with
lots of orography —with-snewy—mountains—at-highaltitude

whfh—afeﬁﬁufﬁemﬁ}yﬂeeufafeﬂﬁﬂfefm%wg
have an_ atypical temperature response. For both of these
points VESPER managed to identify potential inaccuracies
in_updated glacier cover, and once again proved itself as a
useful tool for quality control of surface physiographic fields.

sation fields.

3.2 Evaluation of new lake fields: Monthly water & salt
lakes

From the examples above it is evident that VESPER
enables the user to quickly identify regions where the

new—parametrisation—works—effeetively—update to surface
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Figure 14. Satellite imagery of {&) Bering—(a) Calluqueo Glacier,
Aldaskan-GukfPatagonia, and {44 (b) Juncal Glacier, Chile. Forfe)

it-is-expeeted—that—there—is—no—vegetation—and-In_the grid-box—te
be primarily- (2> 90%) dominated by-ice For (b} the updated V20
fields-speeify-a—=-25%glacierfraction—Evidentlyfield set, the ¥20
fields-assumption for region (a) is almost half ice cover with little

vegetation, for region (b) is quarter covered with glacier; these gri¢
boxes-are-assumptions seem to be insufficiently accurate or infor-

mative, as identified by VESPER.

hysiographic fields was beneficial (e.g. Aral Sea) as—well
as-—spotting-—regions—where—it-isless—performant-and where

it was not (e.g. Lake Natron;-high—vegetation—updates). In
turn, those-areas—where-the-areas where LST predictions do

s not improve as expected can be inspected and erroneous or
sub-optimal representations of the surface physiographic
fields identified. This then provides key information on how
to-introdueefurther-and where to introduce additional cor-
rections to better represent these more diffieutt-challenging

10 or complex regions. We—will-now—further—explore—seme
Some of these problematic areas and—demenstrate—how

VESPER de_the_devel L Lt ‘
additional-surface—fields—are now explored in more details

and additional surface physiographic fields introduced with

Kimpson et al.: VESPER

help of VESPER.

3.3 V20X:-Monthly-water-&saltlakes

Particular regions where it—was—diffieultfor—the-medelto
make predietions—VESPER was struggling to make accurate
LST predictions — especially with the updated V20 fietds
field set which only include permanent water — were either
areas with a large degree of temporal variability (e.g. lakes
which flood and dry out periodically;-erfreeze-and-melt) or
else lakes-which-are-salt-waterrather-than-fresh-water-areas
with saline rather than freshwater lakes. Clearly if the size. size,
shape and depth of a lake are changing over the course of
the year, these are going to be hugely significant factors in
modelling the lake temperature response. Similarly, saline
lakes behave very differently to fresh—water—freshwater
lakes since increased salt concentrations affect the density,
specific heat capacity, thermal conductivity, and turbidity, as
well as evaporation rates, ice formation and ultimately the
surface temperature. These two properties of time variability
and salinity are often related; it is common for saline lakes
to flood and dry out over the course of the season, which
naturally also affects the relative saline concentration of the
lake itself.

Currently, neither the-VESPER_V15 or VESPER V20
medels-have any information regarding the salinity of the
lakes or their time variability. Indeed, FLake is specifically a
fresh water lake model! We-ean-introduce-this-informationby
atse This information can be introduced by including a global
salt-lake-map-and-moenthly-intand-waterJake-map-as-saline
lake cover and monthly varying lake cover as additional
VESPER'’s 1nput features, and ﬂ%e—\LESPER—Eeﬂm*e%Hga%e&e
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‘f"t”fe we p ah te fe‘lif‘it fhe ﬂ:“ip ef Sa t akes aﬂd E?iteﬂd {he
i’ nehide_additional-data
We—ereate—a—new—modeliteration—then using VESPER

to_rapidly assess the accuracy of these new surface
physiography fields and evaluate if their use in the model
increase LST predictability. We define an additional models
(see Table 3 for a summary of all VESPER models used

in_this work); VESPER_V20X “—which—is—analogous—to
the—uses the same field set is the same as VESPER_V20

o

25

but_with additional saline lake cover and monthly-varying

s lake cover. The results of this model in comparison with
VESPER_VI5 and VESPER V20 resuits—in—Table22—1is
summarised in Tables 4, 5 . We will now explore the
influence of the additional saline maps and monthly lake
maps in more detail,

2 3.2.1 Category: Lake Updatesupdates

We-ean-—see-that-for-the- The Lake Updates category ;—the

- e
unchanged from-the shows no significant difference in LST
predictability globally when using the V20X field set instead

2 of V20model, with dvaox = dyzo = <0.37 _(comparable
training noise). For the Lake-Ground-Updates-eategory;-the
aceuracy—has—deereased—shghtly—from—ovop=—+12K+to

w averaged-V20Xand Lake-ground category, there is a modest

increase, with dyaox = —0.84 compared to dyag = =0.83

but this is within the training noise.

For Lake Blanche; V20X-—reduces-theprediction-error-by
2:43K-eomparedtosome of the problematic lake grid-cells
highlighted in Table 5. the addition of saline maps and
monthly lake maps does improve the LST predictability
relative to VESPER VZO%HHHpﬁ&ef—%he—taet—%ha{

3!

a

« theadditionalin on £ ] e .

MME
respectively. The difference in dyoox and dvag for these
points is_greater than the training noise. If we take as
a case_example the grid point at-in the Great Salt Lake
Desert, the improvement is—2-06—K—again—with—in using
At this point there is a strong correction from the monthly
lake maps (mean value 0.16) and the salt maps (mean value
0.56). This improvement is to be expected given the known
strong salinity and time variability in the region, and so it
is a nice confirmation to have these updated fields verified
by VESPER. It is also notable that the variation in the
monthly lake maps at this point is very large, with a standard
deviation in the lake fraction over 12 months of 0.18. At the
start of the year the corrections from the monthly maps are
very large, then as the year progresses the magnitude of the
corrections generally decreases as the lake dries out. Such a
large variation is again difficult to ever capture with a static
field.

o ; : I I oned o]
he Northwest_Territor] | the N .
in—Northern—Canada—where—the-It _is however notable that

for all of the problematic lake points that we have

discussed dv is positive and b) there are multiple points
e.g. Gujarat province) where VESPER_ 20X exhibits no
improvement over VESPER V20 medel—underperformed
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. . ovm, K ovm, K
Category  Grid-cells/location VI5 VISX V20 V20X VISX V20 V20X

Gujarat Province, India 2.54 1.12 042 1.04 -1.26  4.21 5.24

Great Salt Lake Desert, Utah 0.26 041 0.92 0.62 -0.18 292 0.25

Lake Natron centre, Tanzania 0.12 1.48 0.81 0.53 1.35 2.45 2.61

Lake Natron north, Tanzania 0.13 0.37 0.51 0.18 0.72 1.57 1.24

Lake Chott Felrhir 0.41 057 049 0.58 034 220 0.73
Lake Chad 0.33 1.21 0.98 0.96 0.29 1.74  0.03

Al Fashaga 0.14 008 029 042 -0.24 094 1.06

Tersakan Lake 025 020 034 038 -0.00 085 0.99

Lake Urmia 0.12 054 073 032 0.54 082 0.22

Glacier Calluqueo Glacier, Patagonia ~ 0.38  0.62 1.60 0.73 0.08 249 032
Juncal Glacier, Chilean Andes  0.68 0.29 1.06 0.36 0.11 1.26 1.20

Table 5. As Table 4 for specific grid points discussed in the text where the VESPER_V20 predictions are worse than VESPER_V 15 (i.e.

dy20 1S positive).

Natron—and-NorthernIndiawithin_training noise. Given all

the extra information provided to the more advanced medels

VESPER_20X model this is unusual—uﬁ}es#)vyvvsggggw

bﬁlﬂmthe additional information is er-
= roneous in these regionser—else—, or else ii) the temper-
ature response is eempletely—atypical to the rest of the
globeand-, For point ii), this means that the additional in-
formation is not predictive in these regions. To-explore-this
hypetheses-we-Including this additional information in our
neural network increases the complexity of the model which
reason behind point b) - the updated fields are not sufficiently
informative but do increase the training noise and so we see
no improvement from using VESPER_V20X. For example,
w for_Gujarat province gyszo = 0.416, but gvapx = 1.04. In
order to explore the hypothesis of point i) we train one fur-
ther model, VESPER_V15X —Fhis-(again, see Table 3 for a
summary of all VESPER models used in this work). This
VESPER iteration is analogous to VESPER_V20X, being
simply the VESPER_V 15 model with the additional monthly
maps and salt lake fields included. Importantly it does not
have the updated physiographic correction fields from V20.

2

]

3!

&

Globally, this model performs worse that the V20 models,
as we might expect - for example in the Lake Updates cate-
gory Svsx——0-25K-—eompared-to-oopx—=—045-0y 155 _=

-0.20 (oy;5% = 0.02) compared to dyao= -0.37 K. However,
VESPER_V15X does perform well at these-problematie-a
number of the these problematic lake points (see Table 225).
For befl%&t&]:ake—Naffeﬂgﬂd»pemt%eufpeffefm%7 out
VESPER_ VZOX—Suggesfmg—fha%—a{—fhts—}eeaﬁefh For
example_in_Gujarat_province the_improvement in_using

V15X over V20X is 6.5K +1.53. This suggests that our
hypothesis for point i) is correct and that for some grid

points the V20 fields are generally—less accurate than the
V15 fields. For a subset of points VESPER V15X hewever

underperforms—relative—te—also outperforms VESPER V15

are—not(e.g. for Gujarat province Jy —1.26) but the

difference is typically within or close to the training noise

e.g. for Gujarat o = 1.12) and so it is hard to draw
any strong conclusions. These examples illustrates again how

VESPER can identify particular regions where the fields are
inaccurate, as well as emphasising the need more generally
for accurate descriptions of seasonally varying inland water
and saline lake maps in Earth system modelling.
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3.2.2 Category: Vegetation Updates

Whilst the Vegetation Updates category explicitly deals with
areas where the lake fraction does not change when go-
ing from V15 to V20, many of the grid points in this
category do contain some kind of waterbody, often ly-
ing close to the coast or else containing lakes or large
rivers. Information on the salinity and temporal variabil-
ity of these water bodies ean—could then influence the pre-
diction accuracy. By prov1d1ng the additional information

3

have—been—erronecously—updated—for—a—small—selection—of
grid—points—in—V20.—VESPER 20X, the error relative to
VESPER_V15 is reduced modestly to —3 x 10~* although
25 as we saw before with the vegetation category the noise
is large o =0.21 and so it is difficult to draw an

further definitive conclusions. Similar arguments apply to
VESPER_I5X._

3.2.3 Category: Glacier Updates

s We would expect the additional information provided by
the V20X fields to be particularly effective for glacial
grid points. Glacier ice is naturally found next to wa-
terbodies which freeze and thaw over the year, and the
salinity of water will also influence this freezing. There-

ss fore accurate additional information from the monthly
lake maps and the saline maps should prove useful in
these more time variable reglons %H%—mdeed—wha%ﬂrve

40 Ehat Wwe dlSGHSSGd pleH()HSly, H Elle Alaska” (;ﬂ“ the

Glaeier-We do observe a small improvement globally, with
difference is comparable to the predietion-aceuracy has-atso
improved V'”"h év?"”f decreasing {0 18.8? Despite this
training noise gyzox = 0.06. This training noise could be
= slightly deceptive; 3 out of our 4 VESPER_V20X iterations

W@M@&EE&WO ﬁdd%bem%mwfﬁamﬂy

4

o
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Updates_category. The 4th VESPER V20X iteration is
somewhat anomalous - the increased network complexity
could mean that the model did not converge well for that
particular iteration, for the menthlylakefractions—and-so
are-also—not-improved-by—a-glacier grid points. Since the
updated V20 glacier fields are generally accurate globally,
we saw no particular improvement in using VESPER_V15X
the_additional monthly lake maps are only useful if the
underlying_representation of static water is_sufficiently
accurate. Considering the particular glacier grid points we
discussed previously in Section 3.1.3, the additional monthly
with dvagx = 0.32 compared to dygg = 2:49 (gvae = 1.99,

3.2.4 Timeseries

Thus far we have been focusing mainly on the dx—dyu
metric averaged over the entire year of the test set. It is also
of interest to explore how the prediction error for each of the
3 models varies with time. This is demonstrated in Fig 15
for each of the 4 updated categories that we have discussed.

For the Lake Updates and Lake-Ground Updates categories
we can see that all the model predictions track the same
general profile, with the error peaking in the northern
hemisphere summer months. This is a result of FLake
modelling being least accurate during the summer as the
lake is not fully mixed and so the mixed layer depth for lakes
is too shallow, resulting in skin temperatures with larger
errors. Conversely, in the autumn and spring the lake is fully
mixed and predictions have the smallest errors compared
with observations. A clear hierarchy of models is evident;
the VESPER V15 and VESPER_V20 /V20X—models
consistently outperform the-VESPER V15 medel-across
the year. This again is selid-strong evidence, highlighted
by VESPER, of the value of the updated fields both static
and seasonally varying. We mentioned-discussed previously
how the annually and globally averaged &yr—dyy values
for the Lake Updates category were highly comparable
for VESPER V20 and VESPER_V20X;—despite—V20X
ﬂgmﬁc—&n&yﬂmpfevmgfhe—weﬂt—behavmgpem We can
see from the top panel in Figure 15 that the-this equivalence
is_not consistent over the year. Instead, during the winter
months of the northern hemisphere VESPER V20 and
VESPER_V20X medel—is—a—systematicimprovement—on
are_fairly_equivalent; VESPER V20 from-—around—April
onwards;-but-at-earlier-times—in-the-year—V20-outperforms
tends to outperform VESPER_V20X, but the difference
is_within the model training noise. However in the central
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more accurate. This is likely for two reasons. Firstly, the
monthly lake maps are in fact a climatology and therefore
insufficiently precise to detect the exact ice on/off dates
during the winter months, where we have a large number of
grid points at high latitudes which will be subject to freezing,
nullifying any time variability. Seeendly;-The second reason
is due to the accuracy of the lake mean depth which strongly
drives the ice on-dates due to its influence on the heat
capacity of the lake. During the warmer months lakes thaw,
10 the monthly maps are more accurate, as the thawing of lake
ice is mainly connected to the atmospheric conditions, not
the lake depth, and so the information contained in them can
be used to make more accurate predictions.

o

15 The Lake-Ground Updates timeseries broadly follows the
same general profile as Lake Updates, but the errors are
larger - those grid points where the lakes have been replaced
with bare ground were particularly poorly described in V15.
Additionally, for Lake Updates we see two sharp decreases in
the prediction error during ~~ April and September, which
are not as strongly reflected in Lake-Ground. This is due to
the geographic location of the grid points in each of the two
categories; for the Lake Updates category the grid points are
located primarily in the boreal zones and so are subject to
freezing and thawing over the course of the year leading to
a strong seasonality due to the lake mixing that we have dis-
cussed. The sharp drop in April corresponds to a time where
the lakes are unfrozen and fully mixed. However the lakes
in the Lake-Ground sub-category are less concentrated and
s much more evenly distributed over the globe and so do not
exhibit such a strong seasonality.

2

S

2

a

40 f&due—te%e—ﬁaet—fhat—%he—majeﬁfyLGFConsmtent w1th our
previous discussion, the peints—in—the—VegetationUpdates
category-are-in-climate-zones-which-have-pronounced-rainy
training noise makes it difficult to separate the predictions
of the VESPER model for the vegetation category across
the_yearduring—,_ All generations of VESPER VM follow
the same general trend, with errors maximal at the start
and end of the wetseason-there-islots-of-precipitation-and

4

o
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For—Glacier—updates—we—ean—For the Glacier updates
category, in order to deal with the separate warming and
cooling seasonal cycles over the year, we separate grid
points into the northern and southern hemispheres. We-again
consider—just—those—points—where—the—number—-of-MODIS
is-greater-than-50-For the northern hemisphere the familiar
hi | : els i I with-the V20X e}

" formine— V20— which—i H
outperforms—V15—The—errors peak for all models in the
summer, again due to the lakes not being fully mixed. There
is also an uptick in the prediction error for all models during
the winter when the freezing is greatest - this indicates how

ice cover can strongly influence the tand-surface-temperature
response- LST response. The familiar hierarchy of models
is recovered; VESPER V1S5 is generally outperformed by
the_more updated models. In turn VESPER V20X is a
general improvement over VESPER_V20_ throughout the
year, especially during the winter months where the training
greatest, this suggests that the additional monthly maps and

salt lake maps are particularly useful during this time. For
the southern hemisphere the story is different. The errors

are smallest during the middle of the year when we expect
the freezing to be greatest. During the spring and autumn
the errors are largest - this is correlated with a decrease in
the number of observations suggesting that this is due to
poorer data quality due to cloud cover. In the summer when
the weather is clearer the errors start to decrease again.
Given this variation in the data quality due to cloud cover
it is difficult to draw any strong conclusions, and again for
stronger performance cloud independent data should be
used. What is obvious for the southern hemisphere glacier
grid points is that the VESPER_V20 and VESPER_V20X
models struggle to improve on VESPER_V15, unlike in the
northern hemisphere. This suggests that the updated V20
fields are still insufficiently accurate for southern latitudes.
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We have also discussed previously particular grid points

where-there-isexpeeted-to-be-that will likely show a large de-
gree of temporal variability, or the lakes are saline, and as a
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consequence the static physiographic V15/V20 fields strug-
gle to make accurate predictions (e.g. Table 2?5). In Fig-
ure 16 we present timeseries for two of these points: Eake

N&Efeﬂﬂﬂ—?&ﬂzamﬂ—&ﬂd—@ﬁj&rﬂ%?f@ﬁﬂee—}ﬁdiﬂwt

Lake Desert, Utah and Chott Felrhir, Algeria. Both these
points were discussed in Sections ??-and-223.1.1, 3.2.1. We

can see that for these two selected points the hierarchy of
models no longer holds. Whilst there is a large degree of
variability, and there is no clear separation between mod-

els that-we-get-when-averaging-over-all-grid-points-as-inFig
+5for some parts of the year, generally it can be seen that
VESPER_V20 performs worse than VESPER _V15. For the
Great Salt Lake the inaccuracy when using the V20 model
performs-the-worst-indicating-that-the-updated-fields-are-not
aecurate in-these regions-For kake Natron-the physiographic
fields is most pronounced during the summer months. April,
May and June are some of the wettest months in this region.
But the updated V20 A20X-medels-are-significantly-worse
throughout—almest—the—entire—year—The—updated—medels—
whieh-fields specify a much targer-smaller lake fraction than
in V15 -peffefm—we1}—&t—ﬂﬁbegﬂmmg—aﬂd—se&ﬁ—ef—%he
grow—signifieantly(~ 0.5 compared to 0.0). Consequentl

during this time the V20 fields are maximally inaccurate

and the prediction error of the VESPER V20 model grows
accordingly. This indicates again that the updated V20 fields

are in fact over-corrections for this area. Similarky—whilst
the-VI5X-medelis-a-significantimprovement-over-V20/The
inclusion _of monthly lake maps and salt lake maps in
VESPER_V20X —sinee-it-does—not-have-these—inaceurate
fields—it-is-—stil-Hess—performant-than—the-baste-V15-again
hindi hatd L] 5 -

Natron-during 2019

different—New —the —notably _reduces the error during
these _summer _months, For Algeria, we can we can see
that VESPER_V20 medel—is—systematically—worse—than
underperforms VESPER_V15 ever—throughout the entire
years-indieating-that-thestatie-, For this grid point the lake

was completely removed when updating the V20 fieldsare
less—aceurate—than—the V15 fields—The—, with the lake

AAANAAAAARRANTN

fraction reducing from ~0.35 to 0.0. This also appears
to_have been an over-correction. The separation between
the models is most pronounced in the early months of the
year; in_the winter months both the prediction error and
the variance increase - this_period is the wet season in

Algeria where the wadi which feed Chott Felrhir fill up.

Similar to_the Great Salt Lake Desert, the inclusion of

the monthly lake maps in VESPER_ V20X medel-shows

29

from-V15/improves the prediction accuracy, most notably in
the early months of the year. Again, later in the year the
training noise is much greater and so it is harder to separate
the predictions of the model. but on average VESPER_V20X
M V20 —buf—may—be—evefes&mafes

water-tnformationover the entire year, highlighting the value
of these additional physiographic fields. monthly fields.

4 Discussion

We have seen how VESPER can quantitatively evaluate the
value of updates to the lake surface parametrisation as well
as identifying areas where the updates are insufficiently
aceurateinaccurate. For the former VESPER was able
to show that the major regions where the lake surface
parametrisation fields were updated - such as the Aral sea -
enjoyed more accurate predictions, which verifies both the
accuracy of the fields and their information content with
respect to predicting skin temperatures. For the latter VES-
PER was able to identify grid points where the predictions
became worse with the updated fields, indicating that the
updated fields were in fact less accurate. More generally
we have also seen how detailed knowledge of surface water
fields (e.g. up to date permanent water distribution, seasonal
water distribution, salt lake distribution, etc.) can notably
improve the accuracy with which the skin temperature can
be modelled, e.g. grid points with significant updates (i.e.
where the field has changed by =2> 10 %) to the lake fields
show a mean absolute error reduction of skin temperature
globally of 6:450.37K (Table 2?)-4). Given the performance
of VESPER it may be possible in the future to update or
correct the input fields at a high cadence, e.g. yearly or even
more frequently.

There are multiple possible further extensions of this
work. We have not currently included the errors on the
MODIS observations into the VESPER model. During the
““matching-in-space" step relating the ERA and MODIS
data (Section 2:32.2), it could be a worthwhile extension to
weight the averaged MODIS points by their corresponding
errors (e.g. Fig. 2?5b) when deriving a single MODIS
observation for a given ERA grid point. This would then
provide a more accurate and confident representation of the
true surface temperature at a particular space-time point.
Due to the inherent stochasticity of training a model itis
mintmasi-e-the network-varianee—Jt-we have seen that some
grid points have a particularly large training noise. To better
quantify_this effect and try to draw_stronger conclusions
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Figure 15. Variation-in-the-Mean prediction error for-in the surface
temperature Delta kS, averaged over all grid pointsat-, for each

of the 3 models over the course of the test year for (fop panel)

Lake Natfeﬂgggl/z\ltAeN %ﬁﬂﬂ&(&pﬁaﬂe}wwgl) aﬁd—Gujafat
Thefeﬁs—a—%afge%degfe&e%vaﬂabﬂﬁy\@\ggm buHef
(fourth panel) Glacier Updates, northern hemisphere and (bottom
panel) Glacier Updates, southern hemisphere. The shaded regions
show the lg training noises. For the Lake Natroncategories, all
models follow the same general profile, with the VESPER_V20
and VESPER _V20X models are-generally less—performant—than
%@MVIS and—VA5X—indicating—that-model
over the uﬁdﬂfed—%@—ffe}ds—afe—}e%s—aeeurafe—%iefeygg{%e
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Figure 16. Variation in the prediction error for the grid points

at Great Salt Lake, Utah (top panel) and Chott Felrhir, Algeria
(bottom _panel). There is a large degree of variability, but for
both grid points VESPER, V20 model is generally less performant
than VESPER V15 . indicating that the updated V20 fields are
VESPER, V20X model with saline and monthly lake maps
these regions. The shaded regions show the 1o training noises.
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for this subset of points it would also be desirable to
train an ensemble of models (““‘ensemble learning") and

combine the predictions from multiple models to reduce

this variance. Additionally, our examination of the value of
the monthly lake maps is only a preliminary study. It would
be of interest to follow seasonal lakes over a longer time
period (e.g. decadal) beyond the 12 month maps that we
use, in order to better quantify their time variability, as well
as the differences between years (e.g. if the lake fraction
1o was particularly high in the January of one year, but low
in_the subsequent year). It would also be of interest to try
to_quantify if VESPER and ECLand respond to changes
key to be able to then apply the VESPER results to the
s full_earth system model development. Since VESPER is
trained on ERAS, if we want to model the outputs of the
IES we must assume that the statistical behaviour of the
input fields does not change from ERA to IFS. This is a
fair_assumption, but it would be interesting to investigate

20 this quantitively in greater detail. We have focused here
primarily on hydrological applications, our primary concern

being the ability to evaluate the parametrised water body

representation, however the method—would—werk—generally

eneral application of the method for any updated fields
25 that we want to assess could also be explored. Extension

to non-lake hydrological fields like wetland extant-extent
or river bathymetry model parameters, or even non hydro-
logical fields such as orography would be an interesting
further development. The development of a more mature,
integrated pipeline for automatically evaluating updated
parametrisations could also be a worthwhile pursuit. Another
natural-

o

3

S

Another natural and interesting extension of this work
would be to use VESPER to perform a feature importance or
sensitivity analysis for the various input fields of the neural

network. Additionally, an approach which may prove fruitful
in the enterprise for improved parametrised representation of

water bodies is to invert the problem and treat VESPER as a
function to optimise. That is to say, VESPER can be thought
of as a function which takes some inputs - in this case a lake
parametrisation - and returns a loss metric i.e. how accurate
the predictions are compared to the test set. Given this loss
metric it may then be possible to vary the inputs and use stan-
dard optimisation techniques to learn the optimal parametri-
sation. Whilst this may be an expensive technique as there are
effectively two nested models over which to optimise (for ev-
ery optimisation step in the higher model, one must train the
VESPER network from scratch) it could be possible given
appropriate hardware or with reduced data focusing just on
targeted locations (e.g. “What-is—the—-bestway—to—represent
the-takes-in-this-area>""What is the best way to represent
the lakes in this area?"). The loss gradient information can
also be used to tune individual features, informing whether
ss an input variable should be larger or smaller.
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5 Conclusion

Weather and climate modelling rely-relies on accurate, up-to-
date descriptions of surface fields, such as inland water, so as
to provide appropriate boundary conditions for the numeri-
cal evolution. Lakes can significantly influence both weather
and climate, but sufficiently accurate representation of lakes
is challenging and the natural changes in water bodies mean
that these representations need to be frequently updated. A
new method based on a neural network regressor for au-
tomatically and quickly verifying the updated lake fields -
VESPER - has been presented in this work. This tool has
been deployed to verify the recent updates to the FLake
parametrisation, which include additional datasets such as
the GSWE and updated methods for determining the lake
depth from GLDBv3. The updated parametrisation fields
were shown globally to be an improvement over the origi-
nal fields; for a subset of grid points which have had signifi-
cant updates to the lake fields, the prediction error in the skin
temperature decreased by 6-45a MAE of 0.37K. Conversely,
VESPER also identified individual grid points where the up-
dated lake fields were less accurate, enabling these points to
subsequently be corrected, such as incorrect removal of lake
water and losing forests to bare ground}eadmg%efffef%ef
11K Multiple further extensions of this work, including ex-
tension to non lake fields and the development of a more ma-
ture integrated pipeline have been discussed.

6 Code

T o used—i ] ineVESPER.includi
methedf\ #‘GF ]’ﬁl’ﬂiﬂg the EI% A aﬁd s[]‘ ’I )IS dataf‘etsﬁ aﬁd
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Code availability. The code used in constructing VESPER, includ-

ing the methods for joining the ERA and MODIS datasets and

the construction of the neural network regression model is open-
10 sourced at https://github.com/tomkimpson/ML4L
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