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Abstract. A purposely built deep learning algorithm for the

Verification of Earth-System ParametERisation (VESPER) is

used to assess recent upgrades of the global physiographic

datasets underpinning the quality of the Integrated Forecast-

ing System (IFS) of the European Centre for Medium-Range5

Weather Forecasts (ECMWF), which is used both in numer-

ical weather prediction and climate reanalyses. A neural net-

work regression model is trained to learn the mapping be-

tween the surface physiographic dataset plus the meteorol-

ogy from ERA5, and the MODIS satellite skin temperature10

observations. Once trained, this tool is applied to rapidly as-

sess the quality of upgrades of the land-surface scheme. Up-

grades which improve the prediction accuracy of the machine

learning tool indicate a reduction of the errors in the surface

fields used as input to the surface parametrisation schemes.15

Conversely, incorrect specifications of the surface fields de-

crease the accuracy with which VESPER can make predic-

tions. We apply VESPER to assess the accuracy of recent

upgrades of the permanent lake and glaciers covers as well

as planned upgrades to represent seasonally varying water20

bodies (i.e. ephemeral lakes). We show that for grid-cells

where the lake fields have been updated, the prediction ac-

curacy in the land surface temperature (i.e mean absolute er-

ror difference between updated and original physiographic

datasets) improves by 0.37 K on average, whilst for the sub-25

set of points where the lakes have been exchanged for bare

ground (or vice versa) the improvement is 0.83 K. We also

show that updates to the glacier cover improve the prediction

accuracy by 0.22 K. We highlight how neural networks such

as VESPER can assist the research and development of sur-30

face parametrizations and their input physiography to better

represent Earth’s surface coupled processes in weather and

climate models.

1 Introduction

Accurate knowledge of the global surface physiography, in- 35

cluding land, water and ice covers, and their characteristics,

strongly determines the quality of surface and near-surface

temperature simulations in weather and climate modelling.

For instance, water bodies exchange mass and energy with

the atmosphere and their thermal inertia strongly influence 40

the lower boundary conditions such as skin temperatures,

and surface fluxes of heat and moisture near the surface.

Globally, there are ∼ 117 million lakes - defined as inland

water bodies without lateral movement of water - making up

around 3.7% of the Earth’s land surface (Verpoorter et al., 45

2014). Their distribution is highly non-uniform, with the

majority of lakes located between 45− 75◦N in the Boreal

and Arctic regions. Lakes are highly important from the

perspective of both numerical weather prediction and climate

modelling as part of the EC-Earth model. For the latter, lakes 50

generally influence the global carbon cycle as both sinks and

sources of greenhouse gases; the majority of lakes are net

heterotrophic (i.e. over saturated with carbon dioxide, CO2),

as a result of in lake respiration and so emit carbon into the

atmosphere (Pace and Prairie, 2005; Tranvik et al., 2009). 55

Total CO2 emission from lakes is estimated at 1.25− 2.30

Pg of CO2-equivalents annually (DelSontro et al., 2018),

nearly 20% of global CO2 fossil fuel emissions, whilst lakes

account for 9-24 % of CH4 emissions, the second largest

natural source after wetlands (Saunois et al., 2020). These 60

rates of greenhouse gas emission are expected to rise further

if the eutrophication (i.e. nutrient concentration increase)

of the Earth’s lentic systems continues. With regards to
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2 Kimpson et al.: VESPER

weather, freezing and melting of the lake surface modifies

the radiative and conductive properties and consequently af-

fects the heat (latent, sensible) exchange and surface energy

balance (Franz et al., 2018; Huang et al., 2019; Lu et al.,

2020). Considering particular examples, over Lake Victoria5

convective activity is suppressed during the day and peaks at

night, leading to intense, hazardous thunderstorms (Thiery

et al., 2015, 2017); Lake Ladoga can generate low level

clouds which can cause variability in the 2m temperature of

up to 10 K (Eerola et al., 2014); the Laurentian Great Lakes10

can cause intense winter snow storms (Notaro et al., 2013;

Vavrus et al., 2013). Moreover, as a result of the increased

temperatures due to climate change, lakes become more

numerous due to the melting of glaciers and permafrost.

Additionally, the higher temperatures mean that previously15

permanent lake bodies become seasonal or intermittent.

There is then evidently a huge potential return in the ability

to accurately model the location, morphology and properties

of lakes in weather and climate models.

20

The Integrated Forecasting System (IFS) at the European

Centre for Medium Range Weather Forecasts (ECMWF)

is used operationally for numerical weather prediction and

climate modelling. Earth-system modelling in the IFS can

be broadly categorised into large-scale and small-scale25

processes. Large-scale processes can be described by nu-

merically solving the relevant set of differential equations, to

determine e.g. the general circulation of atmosphere. Con-

versely, small-scale processes such as clouds or land-surface

processes are represented via parametrisation. Accurate30

parametrisations are essential for the overall accuracy of the

model. For example, the parametrisation of the land surface

determines the sensible and latent heat fluxes, providing the

lower boundary conditions for the equations of enthalpy and

moisture in the atmosphere (Viterbo, 2002).35

Lakes are incorporated in Earth-system models via

parametrisation. At ECMWF the representation of lakes via

parametrisation was first handled by introducing the Fresh

water Lake model FLake (Mironov, 2008) into the IFS.40

FLake treats all resolved inland waterbodies (i.e. lakes, reser-

voirs, rivers which are dominating in a grid-cell) and unre-

solved or sub-grid water (i.e. small inland waterbodies and

sea/ocean coastal waters which are present but not dominat-

ing in a grid-cell). Its main drivers (input fields) are lake lo-45

cation and lake mean depth. The broad impact of the FLake

model (i.e. areas where it is active) and the important role

that waterbodies play in human life can be illustrated by

analysing ECMWF fields of the fractional land sea mask and

the inland waterbody cover alongside the population density50

field (i.e. inhabitants per km2) based on the population count

for 2015 from the Global Human Settlement Layers (GHSL),

Population Grid 1975-2030 (Freire et al., 2016; Schiavina

et al., 2022) at 9 km horizontal resolution.

Globally FLake is active over 11.1% of the grid-cells; 55

considering only land grid-cells, then FLake is active over

32.4% of the points. According to the population data,

64.5% of densely populated areas (at least 300 inhabitants

per km2) are situated within a 9 km radius of a permanent

waterbody (i.e. inland water or sea/ocean coast), with 60

31.2% being in the vicinity of at least 1 km2 waterbody -

emphasising how essential waterbodies are in human life. In

some regions this role may be even more crucial than in the

others. For example in North America 45.7% of the densely

populated areas are close to a 1 km2 waterbody; in Australia 65

where only 0.5 % of the land is populated, two thirds of the

population live within 9 km radius of a permanent waterbody

of at least 1 km2, with the majority of people living on the

ocean coast.

70

It is a continuous enterprise to update the lake parametriza-

tion input fields to better represent small-scale surface pro-

cesses. It is however challenging to do it accurately as the

majority of lakes which are resolved at a 9km grid spacing

have not had their morphology accurately measured, let alone 75

monitored, whilst 28.9% of land and coastal cells are treated

for sub-grid (i.e. covering half or less of a grid cell) water.

When introducing an updated lake representation it is diffi-

cult apriori to determine the additional value gained through

doing so. There are two key factors here: 80

± Are the updated fields closer to reality?

± Do the updated fields increase the accuracy of the model

predictions?

The first point is straightforward; we want our fields to better

represent reality. If the lake depth of some lake is updated 85

from 10m to 100m we want to be sure that 100m is closer

to the true depth of the lake. For the second point, even if

the updated fields are accurate, are they informative in the

sense that they enable us to make more accurate predictions?

For instance, the main target of lake parametrization is to 90

reproduce lake surface water temperatures (and therefore

evaporation rates). If lake parametrisation input fields are

updated to better represent different types of inland water-

bodies, the time variability of inland waterbodies and/or the

lake morphology fields use more in situ measurements, does 95

this additional information allow for more accurate predic-

tions of the lake surface water temperatures? Is it therefore

worthwhile to spend several person-months to update/create

a lake-related field? Since the resulting updated fields are

ultimately used operationally, it is essential to ensure the 100

accuracy of the fields and prevent any potential degradation

or instability of the model. This problem of quickly and

automatically checking the accuracy and information gain of

updated lake-related fields is the aim of this work.

105

Numerical weather prediction and climate modelling are

domains that are inherently linked with large datasets and
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complex, non-linear interactions. It is therefore an area that

is particularly well placed to benefit from the deployment

of machine learning algorithms. At ECMWF, advanced

machine learning techniques have been used for parametri-

sation emulation via neural networks (Chantry et al., 2021),5

4D-Var data assimilation (Hatfield et al., 2021) and the

post-processing of ensemble predictions (Hewson and

Pillosu, 2021). Indeed, the early successes of these machine

learning methods have led to the development of a 10-year

roadmap for machine learning at ECMWF (Düben et al.,10

2021), with machine learning methods looking to be inte-

grated into the operational workflow and machine learning

demands considered in the procurement of HPC facilities.

The ongoing development of novel computer architectures

(e.g. GPU, IPU, FGPA) motivates utilizing algorithms and15

techniques which can efficiently take advantage of these new

chips and gain significant performance returns. In this work

we will demonstrate a new technique for the Verification of

Earth-System ParametERisation (VESPER) based on a deep

learning neural network regression model. This tool enables20

the accuracy of an updated water body-related field to be

rapidly and automatically assessed, and the added value that

such updated fields bring to be quantitatively evaluated.

This paper is organized as follows. In Section 2 we describe25

the construction of the VESPER tool - the raw input data, the

processing steps and the construction of a neural network re-

gressor. In Section 3 we then deploy VESPER to investigate

and evaluate updated lake-related fields. Discussion and con-

cluding remarks are made in Sections 4 and 5 respectively.30

2 Constructing VESPER

In order to rapidly assess the accuracy of new surface

physiography fields and if their use in the model increase the

accuracy with which we can make predictions, a neural net-

work regression model (VESPER, hereafter) that can learn35

the mapping between a set of input features x and targets y

is constructed. In this case the features are the atmospheric

and surface model fields (such as 2 metre temperature

from ERA5 reanalysis) and the surface physiographic fields

(such as orography and vegetation cover used to produce40

ERA5 reanalysis). See Table 1 for the full list of variables

used. The target is the satellite land surface temperature

(LST; skin temperature from MODIS Aqua Day MYD11A1

v006 collection). Once trained, VESPER can then make

predictions about the skin temperature given a set of input45

variables (i.e. atmospheric and surface model fields, and

surface physiographic fields). In turn, these predictions can

then be compared against observations (i.e. satellite skin

temperature) and VESPER’s accuracy evaluated. By varying

the number, type and values of the input features to VESPER50

and observing how the accuracy of its predictions change,

some conclusions on if and how features can increase

predictability of an actual atmospheric model can be drawn.

Moreover, by isolating geographic regions where the pre-

dictions get worse with new/updated surface physiographic 55

fields, areas where these fields might be erroneous or not

informative enough can be identified. Due to the inherent

stochasticity of training a neural network regression model it

is also possible for different models to settle in different local

minimums i.e. the network variance/noise. To understand 60

the significance of this, every VESPER configuration was

trained four times, each time with a different random seed.

In this section we will now describe the data used for the fea-

tures x and targets y in the neural network regression model, 65

how various data types are joined together, and the details of

VESPER’s construction.

2.1 Features and targets

VESPER’s input feature selection (see Table 1) followed

(i) permutation importance results for atmospheric and sur- 70

face model fields - only fields with the highest importance

were chosen; and (ii) expert choice for surface physiographic

fields. As a first attempt it was decided to test the current

methodology for lake related information, therefore fields

that could be most affected by the presence or absence of wa- 75

ter were selected, e.g. if lake had to be removed then some

other surface had to appear (like bare ground, high or low

vegetation, glacier or even ocean) and surface elevation had

to change. Changes to the orographic fields will have im-

portant influences on temperature through e.g. wind, solar 80

heating, etc. Lake depth changes are similarly important, in-

fluencing how a lake freezes, thaws, mixes and its overall dy-

namical range. VESPER’s target selection followed globally

available criteria and the satellite LST is quite well observed

globally and with high temporal pattern (daily or even several 85

times a day depending on the location).

2.2 Data sources

There are three main sources of data. The first is selection

of surface physiographic fields from ERA5 (Hersbach et al.,

2020) and their updated versions (Choulga et al., 2019; Bous- 90

setta et al., 2021; Muñoz Sabater et al., 2021a) used as VES-

PER’s features. As a shorthand we will refer to the original

ERA5 physiographic fields as version ªV15" and the updated

versions as ªV20". The second is a selection of atmospheric

and surface model fields from ERA5, also used as VESPER’s 95

features. The third is day-time LST measurements from the

Moderate Resolution Imaging Spectroradiometer (MODIS)

onboard the Aqua satellite (GSFC), used as VESPER’s tar-

get variable.

2.2.1 Surface physiographic fields 100

Surface physiographic fields have gridded information of

the Earth’s surface properties (e.g. land-use, vegetation type
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Atmospheric and surface model fields (11 fields) Pressure: surface pressure (sp, Pa), mean sea level pressure (msl, Pa),

Wind: 10 metre U wind component (10u, m/s), 10 metre V wind component (10v,

m/s),

Temperature: 2 metre temperature (2t, K), 2 metre dewpoint temperature (2d, K),

skin temperature (skt, K), ice temperature layer 1 (the sea-ice temperature in layer

0-7 cm; istl1, K), ice temperature layer 2 (the sea-ice temperature in layer 7-28 cm;

istl2, K),

Surface albedo: forecast albedo (fal, 0-1),

Snow: snow depth (sd, m of water equivalent)

Main surface physiographic fields (19 fields) Orographic fields: standard deviation of filtered subgrid orography (sdfor, m), stan-

dard deviation of orography (sdor, m), anisotropy of sub-gridscale orography (isir, -),

angle of sub-gridscale orography (anor, radians), slope of sub-gridscale orography

(slor, -), geopotential (the gravitational potential energy of a unit mass, at a particular

location, relative to mean sea level; at the surface of the Earth, this parameter shows

the variation in geopotential (height) of the surface, and is referred to as the orogra-

phy; z, m2
s
−2),

Land fields: land-sea mask (the proportion of land, as opposed to ocean or inland

waters (i.e. lakes, reservoirs, rivers, coastal waters), in a grid-cell; lsm, 0-1), glacier

mask (the proportion of a grid-cell covered by glacier; glm, 0-1),

Water fields: lake cover (the proportion of a grid-cell covered by inland water bod-

ies; cl, 0-1), lake total depth (the mean depth of inland water bodies; dl, m),

Vegetation fields: low vegetation cover (cvl, 0-1), high vegetation cover (cvh, 0-1),

type of low vegetation (tvl, -), type of high vegetation (tvh, -),

Soil fields: soil type (slt, -),

Albedo fields: UV visible albedo for direct radiation (aluvp, 0-1), UV visible albedo

for diffuse radiation (aluvd, 0-1), near IR albedo for direct radiation (alnip, 0-1), near

IR albedo for diffuse radiation (alnid, 0-1)

Additional surface physiographic fields Difference for all main surface physiographic fields between V15 and V20 field sets,

Difference between V20 static lake cover and monthly varying lake cover (12 maps

in total),

Saline lake cover (the proportion of a grid-cell covered by saline inland water bodies;

units: 0-1)

Table 1. Input features used for training the neural network model VESPER; atmospheric model fields (time varying) were kept the same

in all simulations, surface physiographic fields (static) were updated when going from the original data based on GlobeCover2009/GLDBv1

(V15 field set) to GSWE/GLDBv3 (V20 field set); in brackets are variables description (where needed), short name (according to the GRIB

parameter database) and units.

and distribution) and represent surface heterogeneity in

the ECLand of the IFS. They are used to compute surface

turbulent fluxes (of heat, moisture and momentum) and

skin temperature over different surfaces (vegetation, bare

soil, snow, interception and water) and then to calculate5

an area-weighted average for the grid-box to couple with

the atmosphere. To trigger all different parametrization

schemes the ECMWF model uses a sets of physiographic

fields, that do not depend on initial condition or forecast

step. Most fields are constant; surface albedo is specified10

for 12 months to describe the seasonal cycle. Dependent

on the origin, initial data comes at different resolutions

and different projections, and is then first converted to a

regular latitude-longitude grid (EPSG:4326) at ∼ 1km at

Equator resolution, and secondly to a required grid and15

resolution. Surface physiographic fields used in this work

consist of orographic, land, water, vegetation, soil, albedo

fields and their difference between initial V15 and updated

V20 field sets. See Tables 1 and 2 for the full list of surface

physiographic fields and their input sources; for more details 20

see IFS documentation (ECMWF, 2021). As this work is

focused on assessing quality of inland water information,

main surface physiographic fields are lake cover (derived

from land-sea mask) and lake mean depth (see Table 2).

To generate V15 fractional lake cover the GlobCover2009 25

global map (Bontemps et al., 2011; Arino et al., 2012) is

used. This map has a resolution of 300m, corresponds for

the year 2009 and covers latitudes 85°N-60°S; corrections

outside these latitudes for the polar regions are included

separately. In the Arctic no land is assumed, in the Antarctic 30

data from the high-resolution Radarsat Antarctic Mapping

Project digital elevation model version 2 (RAMP2; Liu et

al., 2015) is used. To generate V20 fractional lake cover

more recent higher resolution datasets and updated methods
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Field category V15 (initial) V20 (updated)

Orographic SRTM30 Shuttle Radar Topography Mission over 60°N-

60°S; GLOBE: Global Land One-km Base Elevation

Project data over 90-60°N; RAMP2: high-resolution

Radarsat Antarctic Mapping Project Digital Elevation

Model version 2 data (Liu et al., 2015) over 60-90°S;

BPRC: Byrd Polar Research Center over Greenland; IS

50V: Digital Map Database of Iceland over Iceland

As V15, with corrections of erroneous shift

Land glm: GLCC: Global Land Cover Characteristics version

2.0 over 90°N-90°S except Iceland; Icelandic Meteorolog-

ical Office (IMO) glacier mask 2013 over Iceland

lsm: GlobCover2009 (Bontemps et al., 2011; Arino et al.,

2012) over 85°N-60°S; RAMP2: high-resolution Radarsat

Antarctic Mapping Project Digital Elevation Model ver-

sion 2 data (Liu et al., 2015) over 60-90°S; no land as-

sumed over 90-85°N

glm: Norwegian Institute glacier data over Svalbard; Ice-

landic Meteorological Office (IMO) glacier mask 2017

over Iceland; GIMP: Greenland Ice Mapping Project data

(Howat et al., 2014) over Greenland; CryoSat-2 satellite

glacier data (Slater et al., 2018) over Antarctica (+ manual

gap filling); GLIMS: Global Land Ice Measurements from

Space data (GLIMS and NSIDC, 2005, updated 2018)

over rest of the globe

lsm: GSWE: Global Surface Water Explorer (Pekel et al.,

2016); glm

Water cl: lsm (ocean is separated at actual resolution by seed-

ing and removing all connected grid-cells, includes the

Caspian Sea, the Azov Sea, The American Great Lakes)

dl: The Caspian Sea bathymetry; Global Relief Model

ETOPO1 (Amante and Eakins, 2009) over the Great

Lakes, the Azov Sea; GLDB: Global Lake DataBase ver-

sion 1 (Kourzeneva et al., 2012) over rest of the globe; 25

meters assumed over missing data grid-cells

cl: lsm (ocean is separated at 1km resolution by upgraded

flooding algorithm following Choulga et al. (2019)

dl: GEBCO: General Bathymetric Charts of the Ocean

(Weatherall et al., 2015) over the Caspian Sea and the

Azov Sea; Global Relief Model ETOPO1 (Amante and

Eakins, 2009) over the Great Lakes; GLDB: Global Lake

DataBase version 3 (Choulga et al., 2014) over rest of

the globe; indirect estimates based on geological origin of

lakes (Choulga et al., 2014) over missing data grid-cells

Vegetation GLCC: Global Land Cover Characteristics version 1.2.

Note that vegetation type represent only dominant type

over grid-cell

As V15

Soil DSMW: FAO/UNESCO Digital Soil Map of the world

(FAO, 2003). Note that soil type represent only dominant

type over grid-cell

As V15

Albedo MODIS 5-year climatology (Schaaf et al., 2002);

RossThickLiSparseReciprocal BRDF model. Note that

Albedo values represent snow free surface albedo

As V15

Table 2. List of input datasets for the surface physiographic fields for V15 and V20 field sets. V15X and V20X are identical to V15 and V20

respectively, but with the addition of saline lake cover, and monthly varying lake cover fields.

have been used (Choulga et al., 2019). The main data source

is the Joint Research Centre (JRC) the Global Surface Water

Explorer (GSWE) dataset (Pekel et al., 2016). GSWE is a

30m resolution dataset from Landsat 5,7 and 8, providing

information on the spatial and temporal variability of surface5

water on the Earth since March 1984; here only permanent

water was used for lake cover generation as it provided

a more accurate inland water distribution on the annual

basis (Choulga et al., 2019). Differences between V20 and

V15 lake cover fields (see Figure 1) are consistent with the10

latest global and regional information: (i) increase of lake

fraction in V20 compared to V15 over northern latitudes is

due to permafrost melt leading to a new thermokarst lake

emergence, and due to higher resolution input source and

its better satellite image recognition methodologies; (ii)15

reduction of lake fraction in V20 compared to V15 can be

explained with several reasons, like anthropogenic land use

change (e.g. Aral Sea, which lies across the border between

Uzbekistan and Kazakhstan, has been shrinking at an accel-

erated rate since the 1960s and started to stabilise in 2014 20

with an area of 7660 km2, 9 times smaller than its size in

1960. GlobCover2009 describes the Aral Sea in 1998, when

it was still ªonlyº two times smaller than its 1960 extent,

whereas GSWE provides a more up to date map.), use of

only permanent water (e.g. Australia, where GlobCover2009 25

over-represents inland water, as most of these lakes are

highly ephemeral, e.g. the endorheic Kati Thanda±Lake

Eyre fills only a few times per century. The GSWE updates

to this region therefore include only generally permanent

water, removing all seasonal and rare ephemeral water.), and 30
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change in the ocean and inland water separation algorithm

(e.g. north-east of Russia).

To generate V15 lake mean depth (see Figure 2) the Global

Lake DataBase version 1 (GLDBv1; Kourzeneva et al.,5

2012) is used. GLDBv1 has a resolution of 1km and is

based on 13000 lakes with in situ lake depth information;

outside this dataset all missing data grid-cells (i.e. over

ocean and land) have 25 meter value; field aggregation to a

coarser resolution is done by averaging. Overestimation of10

lake depth in summer season can result in strong cold biases

and in winter season ± lack of ice formation. To generate

V20 lake mean depth an updated version GLDBv3 (Choulga

et al., 2014) is used. GLDBv3 has the same resolution of

∼1km, but is based on an increased number (∼1500) of15

lakes with in situ lake depth information (in addition to

bathymetry information over all Finnish navigable lakes),

it introduces distinction between freshwater and saline

lakes (this information is currently not used by FLake), and

suggests the method to assess the depth for lakes without20

in situ observations using geological and climate type

information; field aggregation to a coarser resolution is

done by computing the most occurring value. Verification

of GLDBv1 and GLDBv3 lake depths against 353 Finnish

lake measurements shows that GLDBv3 exhibits a 52 %25

bias reduction in mean lake depth values compared to

GLDBv1 (Choulga et al., 2019). For a further details on

lake distribution and depth, the representation of lakes by

ECMWF in general see Choulga et al. (2019) and Boussetta

et al. (2021).30

To expand V15 and V20 lake description (to V15X and

V20X respectively) their salinity and time variability infor-

mation was generated. Even though static permanent water

fits better to describe inland water distribution on average all35

year round, some areas (in Tropics especially) could bene-

fit from having monthly varying information as they have a

very strong seasonal cycle, when size, shape and depth of a

lake changes over the course of the year, leading to a sig-

nificant change in modelling the lake temperature response.40

Similarly, saline lakes behave very differently to fresh water

lakes since increased salt concentrations affect the density,

specific heat capacity, thermal conductivity, and turbidity, as

well as evaporation rates, ice formation and ultimately the

surface temperature. These two properties of time variability45

and salinity are often related; it is common for saline lakes to

fill and dry out over the course of the season, which naturally

also affects the relative saline concentration of the lake it-

self. To create a monthly varying lake cover first 12 monthly

fractional land-sea masks based on JRC Monthly Water His-50

tory v1.3 maps for 2010-2020 were created. Since the annual

lake maps were created taking into account a lot of additional

sources the extra condition on the monthly maps that the

monthly water is equal or greater than permanent water dis-

tribution from fractional land-sea mask is enforced. To create55

an inland salt lake cover map, the GLDBv3 salt lake list was

used. First, in order to identify separate lakes on ∼ 1km res-

olution lake cover (by ªlake cover" we refer the maximum

lake distribution based on 12 monthly-varying lake covers),

small sub-grid lakes and large lake coasts are masked, i.e. 60

grid-cells that have water fraction less than 0.25. Next, num-

ber of connected grid-cells in each lake (i.e. connected with

sides only) is computed. Then only lakes that have 100 and

more connected grid-cells are vectorised, as at ERA5 resolu-

tion of ∼31km the grid-cells are quite large and can include 65

a mixture of freshwater and saline lakes. Finally, saline lake

vectors are selected by filtering vectors which have no saline

lake point from GLDBv3 located ± in total 147 large salt lake

vectors, which were further used to filter non-saline lakes at

1km resolution lake cover, finally aggregated to 31km reso- 70

lution. In the future it is planned to revisit this field and ex-

tend the list to include additional data. Note that all non-lake

related climate fields such as vegetation cover or orography

were updated in V20 field set compared to V15 only in rela-

tion to the changing lake fields (i.e. if fraction of lake in the 75

grid cell increased then other fractions like vegetation or bare

ground should have increased accordingly).

2.2.2 ERA5

Climate reanalyses combine observations and modelling to

provide calculated values of a range of climactic variables 80

over time. ERA5 is the fifth generation reanalysis from

ECMWF. It is produced via 4D-Var data assimilation of the

IFS cycle 41R2, coupled to a land-surface model (ECLand,

Boussetta et al., 2021), which includes lake parametriza-

tion by FLake (Mironov, 2008) and an ocean wave model 85

(WAM). The resulting data product provides hourly values of

climatic variables across the atmosphere, land and ocean at

a resolution of approximately 31km with 137 vertical sigma

levels, up to a height of 80km. Additionally, ERA5 provides

associated uncertainties of the variables at a reduced 63km 90

resolution via a 10-member Ensemble of Data Assimilations

(EDA). In this work ERA5 hourly surface fields at ∼ 31km

resolution on a reduced Gaussian grid are used. Gaussian

grid’s spacing between latitude lines is not regular, but lines

are symmetrical along the Equator; the number of points 95

along each latitude line defines longitude lines, which start

at longitude 0 and are equally spaced along the latitude line.

In a reduced Gaussian grid, the number of points on each

latitude line is chosen so that the local east-west grid length

remains approximately constant for all latitudes (here Gaus- 100

sian grid is N320, where N is the number of latitude lines

between a Pole and the Equator). The main field used from

ERA5 is skin temperature (i.e. temperature of the uppermost

surface layer, which has no heat capacity and instantaneously

responds to changes in surface fluxes) that forms the interface 105

between the soil and the atmosphere. Skin temperature is a

theoretical temperature computed by linearizing the surface

energy balance equation for each surface type separately,
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(a)

(b)

Figure 1. At ∼ 31km resolution (a) V20 fractional lake cover and

(b) difference between V20 and V15 lake covers. Over northern

latitudes inland water increase in V20 compared to V15 is due to

higher resolution input source and its better satellite image recog-

nition methodologies as well as thawing permafrost; inland water

reduction in V20 compared to V15 is due to anthropogenic land use

changes (e.g. Aral Sea) or due to use of only permanent water (e.g.

Australia) which was proven to better represent inland water distri-

bution on annual basis.

(a)

(b)

Figure 2. At ∼ 31km resolution (a) V15 lake mean depth in meters

and (b) difference between V20 and V15 lake mean depths. In gen-

eral lake mean depth has decreased in V20 compared to V15 due

to the use of mean depth indirect estimates based on geological and

climate information, instead of default 25 meter value over lakes

without any information.

and its feedback on net radiation and ground heat flux is in-

cluded; for more information see IFS Documentation (2021).

ERA5 skin temperature verification against MODIS LST en-

semble (i.e. all four MODIS observations were used, namely

Aqua Day and Night, Terra Day and Night) over 2003-2018 5

period showed good correlation between two datasets; er-

rors between ERA5 and MODIS LST ensemble are quite

small, i.e. spatially and temporally averaged bias is 1.64 K,

root-mean square error (RMSE) is 3.96 K, Pearson correla-

tion coefficient is 0.94, and anomaly correlation coefficient 10

is 0.75 (Muñoz Sabater et al., 2021b). ERA5 skin temper-

ature verification against the Satellite Application Facility

on Land Surface Analysis (LSA-SAF) product over Iberian

Peninsula showed a general underestimation of daytime LST

and slightly overestimation at night-time, relating the large 15
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daytime cold bias with vegetation cover differences between

ERA5 surface physiography fields and the European Space

Agency’s Climate Change Initiative (ESA-CCI) Land Cover

dataset; use of ESA-CCI low and high vegetation cover in-

stead of ERA5 ones led to a complete reduction of the large5

maximum temperature bias during summer (Johannsen et al.,

2019). ERA5 data is obtained via the Copernicus Climate

Data Store (CDS; Munoz Sabater, 2019).

2.2.3 Aqua-MODIS

Aqua (Parkinson, 2003) is a NASA satellite mission which10

makes up part of the Earth Observing System (EOS). Operat-

ing at an altitude of 700km, with orbital period of 99 minutes,

its orbital trajectory passes south to north with an equatorial-

crossing times in general of 1.30pm. This post-meridian

crossing time has led to it sometimes being denoted as EOS15

PM. Launched in 2002 with an initial expected mission du-

ration of 6 years, Aqua has far exceeded its initial brief and

until recently has been transmitting information from 4 of the

6 observation instruments on board. Here we use information

only from MODIS instrument. MODIS can take surface tem-20

perature measurements at a spatial resolution of 1km (the ex-

act grid size is 0.928km by 0.928km), operating in the wave-

length ranges of between ∼3.7-4.5µm and ∼10.9-12.3µm. In

addition to surface temperature measurements that were used

in this work, MODIS can take observations of cloud proper-25

ties, water vapour, ozone, etc. Here MYD11A1 v006 (Wan

et al., 2015) collection that provides daily LST measurements

at a spatial resolution of 1km on a sinusoidal projection grid

SR-ORG:6974 (takes a spherical projection but a WGS84 da-

tum ellipsoid) is exercised. Daily global LST data is gener-30

ated by first applying a split-window LST algorithm (Wan

and Dozier, 1996) on all nominal (i.e. 1km at nadir) reso-

lution swath (scene) with a nominal coverage of 5 minutes

of MODIS scans along the track acquired in daytime, and

secondly by mapping results onto integerized sinusoidal pro-35

jection; for more details see Wan et al. (2015) and Figure 3.

Validation of this product was carried out using temperature-

based method over different land cover types (e.g. grasslands,

croplands, shrublands, woody areas, etc.) in several regions

around the globe (i.e. United States, Portugal, Namibia, and40

China) at different atmospheric and/or surface conditions;

the best accuracy is achieved over United States sites with

RMSE lower than 1.3K (Duan et al., 2019). At large view

angles and in semi-arid regions the data product may have

slightly higher errors due to rather uncertain classification-45

based surface emissivities and heavy dust aerosols effects. In

addition, the MODIS cloud mask struggles to eliminate all

cloud and/or heavy aerosols contaminated grid-cells from the

clear-sky ones (LST errors in such grid-cells can be 4-11K

and larger). Validation of this product over five bare ground50

sites in north Africa (in total 12 radiosonde-based datasets

validated) showed that mean LST error was within ±0.6K

(with exception for one dataset, where mean LST error was

(a)

Figure 3. A brief step-by-step explanation of the LST algorithm for

MYD11A1 v006 collection.

0.8K) and standard deviation of LST errors were less than

0.5K (Duan et al., 2019). In this work to reduce the amount 55

of daily data over multiple years to store and manipulate,

prior use LST data is (i) filtered to contain only cloud free

data, and (ii) averaged to a 4km at the Equator resolution on

a regular latitude-longitude grid, EPSG:4326 (note that only

grid cells which have 8 or more valid observations at 1km 60

resolution are averaged over, otherwise they are classified as

missing data).

2.3 Joining the data

To join selected ERA5 global fields on a reduced Gaussian

grid at ∼ 31km resolution (information in UTC, 24 hourly 65

maps per day) with Aqua-MODIS global LST data on a reg-

ular latitude-longitude grid at 4km resolution (information

in local solar time, 1 map per day), both datasets need to be

at the same time space. First it is necessary to determine the

absolute time (i.e. UTC) at which the MODIS observations 70

were taken. Since in general all Aqua observations are taken

at 1.30pm local solar time, it can be related to a UTC via
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observation longitude, following Eq. 1:

UTC = Local solar time−
longitude

15
, (1)

where longitude is in degrees, and UTC is rounded to

the nearest hour. This conversion is inexact since there is

an additional correction as a function of the latitude, yet5

recommended by the official MODIS Products User’s Guide

(Wan et al., 2015); given the short orbital period of Aqua

these additional higher order corrections are expected to

be typically small and for our purposes can be neglected.

Also, the assumption that all Aqua observations are taken10

at 1.30pm local solar time was checked (see Figure 4). The

annually averaged mean time difference at 31km resolution

(i.e. daily differences between local solar time of observa-

tions and 1.30pm at 1km resolution were first aggregated

to 31km resolution using averaging, and then aggregated in15

time over a year) is 0.16 hours or 10 minutes, with mean

absolute error (MAE) being 0.46 hours or 28 minutes and

RMSE being 0.61 hours or 37 minutes (current values

correspond 70N-70S region year 2019, but confirmed to be

approximately identical for each year of 2016-2019 period).20

Since the temporal resolution of ERA5 data is hourly, the

assumptions inherent to Eq 1 are sufficiently accurate.

Over the poles (i.e. 90-70°N and 70-90°S) satellite sweeps

overlap significantly and in general conversion becomes

less accurate (daily time differences can reach more than25

± 3.5 hours), so these areas were not included in the analysis.

Once Aqua-MODIS time of observation is converted to

UTC, Aqua-MODIS data at ∼ 4km resolution is matched in

time and space to ERA5 information in a following way:30

1. Take a single Aqua-MODIS LST observation at a par-

ticular point on the MODIS grid;

2. Select ERA5 global hourly map matching Aqua-

MODIS LST observation time in UTC;

3. Find the nearest point on the ERA5 grid to that MODIS35

grid point;

4. Repeat previous steps for every Aqua-MODIS observa-

tion;

5. Group matched data pairs by the ERA5 grid points, av-

eraging over all the Aqua-MODIS observations that are40

associated with each ERA5 point.

At the end of this process selected ERA5 fields are mapped

to a single Aqua-MODIS time of observation and Aqua-

MODIS LST data is mapped (i.e. multiple Aqua-MODIS

observations could be averaged over, see Figure 5a) to45

a reduced Gaussian grid at 31km resolution; averaged

Aqua-MODIS observations are considered as ground truth

(i.e. targets y) that VESPER is trying to predict. To better

understand VESPER’s grid-cell results at 31km resolution

Figure 4. The annually averaged mean time difference of Aqua-

MODIS and assumed local solar time of 1.30pm for the year 2019 at

31km resolution. Time differences are generally sub-hour and grow

at greater latitudes, so data over 90-70°N and 70-90°S is excluded.

additional information was computed from Aqua-MODIS, 50

namely (i) total number of valid observations per month

and year (see Figure 5a), and (ii) average LST error based

on Aqua-MODIA quality assessment (i.e. quality flag, see

Figure 5b). Based on this additional information it can be

concluded that areas with sparse number of observations 55

in general have more uncertain LST values; exceptions are

Alaska in United States and Anadyrsky District in Russia

(area 30° east and west from 180°E around 70-60°N), deserts

of Australia and Kalahari desert in Namibia, Botswana and

South Africa, where majority of vast number of observations 60

have only good or average quality.

For step (3) in the joining process, we use a GPU-accelerated

k-nearest neighbours algorithm RAPIDS (v22.04.00), where

ªnearnessº on the sphere between two points is measured via 65

the Haversine metric, i.e. the geodesic distance H , following

Eq. 2:

H = 2arcsin

(
√

sin
2

(

δθ

2

)

+cosθ1 cosθ2 sin
2

(

δφ

2

)

)

(2)

for two points with coordinate latitudes θ1,2, longitudes φ1,2

and δθ = θ2 − θ1 and δφ= φ2 −φ1 . 70

2.4 Constructing a regression model

VESPER is trained to learn the mapping between features x

and targets y (i.e. mapping ERA5 to MODIS), a regression

problem. For this purpose a fully-connected neural network

architecture (also known as a multi-layer perceptron), 75

implemented in Tensorflow (Abadi et al., 2016) was used.

Whilst more advanced architectures are available, for the
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(a)

(b)

Figure 5. For 2019 at ∼ 31km resolution: (a) Mean daily number

of Aqua-MODIS observations mapped to each ERA5 data point.

The swath of the Aqua satellite is clearly visible, with more obser-

vations over 70-60°N and 60-70°S areas as Aqua follows a polar

orbit, south to north, and with less observations over Equator, com-

plex orography areas (such as the Himalayas, the Andes and the

Rocky Mountains), and the Siberian Tundra (due to increased cloud

cover); (b) Average error in the Aqua-MODIS LST measurement.

The raw Aqua-MODIS data at 1km resolution provides categorical

LST errors with bins ≤ 1K, 1-2K, 2-3K and > 3K. When averaging

to the coarser resolution a weighted average over the 1km grid-cells

is computed, where the median bin value is used, and 5K for the >

3K bin. This information helps to understand that abundant num-

ber of observation does not automatically mean high quality of LST

(e.g. Australia).

purposes of this work the model is sufficient enough, which

exhibits generally fast and dependable convergence. The

networks built have differing number of nodes in the input

layer, depending on the number of predictors (see Table 3).

For all networks constructed we use 4 hidden layers and 5

a layer width is half that of the input layer width. ADAM

(Kingma and Ba, 2014) is used as an optimisation scheme,

learning rate is set to 3× 10−4, and default values for the

exponential decay rate for the 1st and 2nd moment estimates

are set to 0.900 and 0.999 respectively. The network is not 10

trained for a fixed number of epochs, but instead trained

until the validation error reaches a minimum. Techniques

for maximising the performance of a network via hyper-

parameter optimisation are now well established (Yu and

Zhu, 2020; Bischl et al., 2021). However, for the purposes 15

of this work no attempt to tune hyperparameters was made,

just some reasonable default values were applied which

were assumed to be ªgood enoughº. Some exploration of

different hyperparameter configuration was undertaken, but

for this data the prediction accuracy is mostly independent 20

of the hyperparameter configuration, subject to standard

and reasonable hyperparameter choices. Whilst a more

advanced automatic hyperparameter optimization method

may have enabled slightly higher performance of VESPER,

our ultimate purpose is not to generate the most absolutely 25

accurate prediction possible, but instead to have two predic-

tive models which can be compared. In the result section

below it will be shown that the variation in performance due

to input feature modifications is far greater than the variation

due to the hyperparameter choices. 30

VESPER was trained on selected atmospheric and surface

model fields from ERA5 for 2016 (see Table 1), certain

static version of the surface physiographic fields (see Table

2), and Aqua-MODIS LST for 2016. Once VESPER was 35

fully trained it was used to predict LST over the whole

globe for 2019. Going forward, as a shorthand we will

refer to VESPER trained using the e.g. V 15 field set as

VESPER_V15 (in general VM is a field set version and

VESPER_VM is a VESPER model trained using the fields 40

from the VM field set). See Table 3 for an explicit definition

of all the VESPER models. The training and test years

were chosen simply as recent, non-anomalous years so that

the updated surface physiographic fields could be checked.

All VESPER versions are trained with ERA5 fields for 45

2016 and with main surface physiographic fields from

V15 field set. Then depending on the version some or all

additional surface physiographic fields (see Table 1) are

added. VESPER’s predictions can be compared to the initial

ERA5 skin temperatures and actual Aqua-MODIS LST 50

for 2019. Figure 6 shows the mean absolute errors (MAE)

globally in the VESPER_V15 LST predictions, relative

to the Aqua-MODIS LST along with the corresponding

MAE in the predicted skin temperature from ERA5. We

can see that VESPER_V15 was able to learn corrections 55
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to ERA5, especially in the Himalayas and sub-Saharan

Africa as well as Australia and the Amazon basin, leading

to the globally averaged MAE reduction for predicted LST;

the MAE relative to Aqua-MODIS LST, averaged over all

grid points, was 3.9K for ERA5 and 3.0K for VESPER_V15.5

As the focus of this study is lake-related fields, and lakes

occupy only 1.8% of the Earth’s surface and are distributed

very heterogeneously (Choulga et al., 2014), analysis of the

results was restricted to areas where there have been signif-10

icant changes in the surface lake physiographic fields. By

ªsignificant change" we mean a change in any of the sur-

face field when going from V15 to V20 (and to V15X or

V20X) of ≥ 10% (≥ 0.1 for fractional fields); for example

if lake or vegetation cover changed from 0.1 in V15 to 0.315

in V20 field set this change is classified as significant. The

choice of ≥ 10 % as a significance cut-off was adopted as

it proved to be a good trade off between having a sufficient

number of grid points to inspect and the strength of the effect

of changing the input field. As the cut-off % increases less20

points are selected, albeit with more severe changes to their

surface fields, whereas when the cut-off % decreases more

points are selected but it becomes more difficult to disentan-

gle the change in the prediction accuracy from VESPER’s

training noise (training noise is discussed below). Alterna-25

tive cut-off % were briefly explored, but conclusions of the

results remained broadly unchanged. All grid-cells selected

for the analysis can be classified according to how the sur-

face fields are updated when going from V15 to V20 (note

that categories represent a systematic and consistent update30

across multiple related fields, and do not include any restric-

tions on other surface fields apart the ones mentioned):

± Lake Updates. The change in the lake cover cl and lake

depth dl are significant, but the changes in ocean and

glacier glm fractions are not. This corresponds to grid-35

cells where lakes have been added or removed. Lake-

Ground Updates is a sub-category where additional con-

straint that the change in the high/low vegetation frac-

tions cvh/cvl are not significant is in place. This then

corresponds to the exchange of lakes for bare ground,40

or vice versa.

± Vegetation Updates. The change in the high vegetation

fraction cvh is significant, but the change in lake cover cl

is not significant. This corresponds to grid-cells where

large features like forests and woodlands have been up-45

dated, exchanged for bare ground or low vegetation.

± Glacier Updates. The change in the glacier cover glm

is significant. This corresponds to any areas where the

fraction of glacier ice has been updated.

The training of a neural network is inherently stochastic -50

the same model trained twice with the same data can settle

in different local optima and so make different predictions.

To make our conclusions robust against this training noise,

each VESPER model is in turn trained 4 times. For each

MODIS ground truth we then have 4 LST predictions per 55

model. We define the training noise as the standard deviation,

σ, in the VESPER predictions for the same input fields i.e.

each VESPER_VM model will have a corresponding train-

ing noise σVM. To assess the changes of LST predictability

due to the use of the updated surface physiographic fields 60

instead of V15 field set (default) we compare the mean abso-

lute error (MAE) between different VESPER models using

the simple metric δVM:

δVM = MAEVESPER_VM −MAEVESPER_V15 (3)

where VM represents one of the field set versions V20, V20X 65

or V15X, and MAE is computed over the whole prediction

period of 2019. In turn, the MAE is the error between the

prediction of a VESPER model and the Aqua-MODIS LST,

i.e.

MAEVESPER_VM =
1

N

N
∑

i=1

|LSTi,VESPER_VM−LSTi,MODIS|

(4) 70

for total number of predictions N , within a given grid-cell

classification. A negative δVM then indicates that the VES-

PER_VM LST prediction is more accurate than the VES-

PER_V15 prediction, and vice versa.

3 Results 75

3.1 Evaluation of updated lake fields

To understand if there is a way to automatically and rapidly

assess the accuracy of updated and/or new surface physiogra-

phy fields, and if their use in the atmospheric model increase

predictability, we can compare the prediction accuracy 80

of different VESPER_VM models. Generally VESPER’s

training noise is confirmed to be smaller than differences

in LST predictions by different VESPER configurations, so

changes in LST predictability can be meaningfully attributed

to the changes in surface physiographic fields. Particular 85

situations where the training noise becomes significant are

discussed below.

As a first attempt lake-related information is assessed,

namely lake cover (and land-sea mask and glacier cover 90

as they are used for lake cover generation) and lake mean

depth, that were created from scratch using new up-to-date

high-resolution input datasets (see Table 2) for the V20 (and

V20X) field set; other surface physiographic fields (see Ta-

ble 1) were regenerated from the same input sources as in 95

the initial V15 field set, but taking into account that lake re-

lated fields were changed. In cases when existing in V15 lake

cover water was removed in V20, it could be replaced by any
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Model ERA5 atmospheric and

surface fields

Main surface physio-

graphic fields, V15

Main surface physio-

graphic fields, V20

Additional surface physio-

graphic fields

VESPER_V15 ✓ ✓ - -

VESPER_V15X ✓ ✓ - ✓

VESPER_V20 ✓ ✓ ✓ -

VESPER_V20X ✓ ✓ ✓ ✓

Table 3. List of input files for different VESPER versions. c.f. Table 1

(a) (b)

Figure 6. Mean absolute error (MAE, δK) of LST predictions for 2019 at 31km resolution based on differences between (a) ERA5 skin

temperature and Aqua-MODIS LST and (b) between VESPER_V15 (i.e. VESPER trained with V15 surface physiographic fields) and Aqua-

MODIS LST. It can be seen that VESPER_V15 managed to learn corrections over regions with complex surface fields such as the Himalayas

(lots of orography) sub-Saharan Africa (lots of vegetation) and the Amazon Basin (lots of water + vegetation).

of high or low vegetation, glacier or bare ground. We now

analyse the results for each of the 4 categories of grid cell in

detail (see Table 4 for the results of each category aggregated

over the whole globe).

3.1.1 Category: Lake updates5

The Lake Updates category shows significant improvements

in LST predictability if using V20 field set instead of V15 ±

prediction accuracy increased globally (over 1631 grid-cells)

on average by 0.37K. For the lakes category, the training

noise in V20 was generally small σV20 ∼ 0.02 K, with the10

V15 predictions a little more noisy with σV15 ∼ 0.07 K, but

this noise is much less than the improvement - as can be seen

in Fig. 7 every V20 iteration significantly outperforms every

V15 iteration. In Fig. 8 we plot the distribution of the mean

LST error (averaged across each of the 4 trained VESPER15

iterations) for all lake grid points, for both V15 and V20. Ev-

idently the V20 field significantly improve the high tail be-

haviour relative to V15, as well as shifting the median of the

distribution to lower errors. Particular regions where the V20

physiographic fields notably improved performance were in20

Australia and the Aral sea (e.g. Fig. 9). These are two ma-

jor regions where ephemeral lakes were removed and inland

water distribution made up-to-date, as discussed in Section

2.2.1. In addition to the areas with a notable improvement in

the prediction accuracy, there are some noteworthy regions 25

where the predictions got worse (see red points in Figure 9)

suggesting inaccuracies or lack of information in the updated

surface physiographic fields. A few of the most noteworthy

grid-cells (see red points highlighted with green circles in

Figure 9 and also Figure 11) are: 30

± Northern India. This grid-cell lies in the state of Gu-

jarat, India, close to the border with Pakistan. Here

δV20 =+4.21, with σV15 = 2.54 and σV20 = 0.416.

The lake fraction was increased from 0.59 in V15 to

0.71 in V20 field set, along with the lake depth increase 35

from 2.58m to 3.76m. However, this point lies on a river

delta within the Great Raan of Kutch, a large area of salt

marshes (see Figure 10a), known for having highly sea-

sonal rainfall, with frequent flooding during the mon-

soon season and a long dry season. The surface itself 40

also undulates with areas of higher sandy ground known

as medaks, with greater levels of vegetation. It is evi-

dently a complex and highly time variable area and ad-

ditional static fraction of fresh water provided via V20

field set is not sufficient. 45
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Category Number of grid cells
σVM, K δVM, K

V15 V15X V20 V20X V15X V20 V20X

Lake 1631 0.07 0.02 0.02 0.02 -0.20 -0.37 -0.37

Lake-Ground 546 0.15 0.05 0.04 0.06 -0.56 -0.83 -0.84

Vegetation 58 0.04 0.10 0.15 0.21 -0.00 0.04 -0.00

Glacier 1057 0.03 0.08 0.02 0.06 -0.01 -0.22 -0.28

Table 4. Globally averaged differences δVM between mean absolute error (MAE) of VESPER_VM and VESPER_V15 LST for 2019 at

31km resolution (where M denotes V15X, V20, V20X field sets) per grid-cell category. Negative δVM values indicate an increase of LST

predictability due to the use of the updated surface physiographic fields instead of V15 field set (default), positive δVM values indicate a

decrease in the LST predictability and suggests the presence of erroneous information in the surface physiographic fields. Training noise

values, σVM, are generally much smaller than the variance between different VESPER configurations, indicating that changes in LST pre-

dictability are mainly due to changes in the surface physiographic fields. The quoted noise is the standard deviation of the prediction errors

of Fig. 7.

Figure 7. Distribution of prediction errors in the LST, for each of

the 4 grid point categories, for each iteration of V15 and V20. For

Lake, Lake-ground and Glacier categories the improvement in V20

relative to V15 is much greater than the intrinsic model noise, with

all V20 predictions outperforming all V15 predictions. For the Veg-

etation category the predictions of V15 and V20 are much more

noisy and it is difficult to draw any conclusions for the category as

a whole.

± Salt Lake City, North America. This grid-cell lies

within the Great Salt Lake Desert, just to the west of

the Great Salt Lake, Utah, US. Predictions of VES-

PER_V20 are worse than VESPER_V15, with δV20 =

+2.91 (σV15 = 0.26 and σV20 = 0.92). Whilst the train-5

ing noise is significant here, it is less than the δV20

value, and we can see from Fig 11 that the VES-

PER_V20 predictions consistently underperform the

VESPER_V15 predictions. The lake fraction was com-

pletely removed from over 0.50 in V15 to 0.00 in V2010

field set, meaning that the grid-cell is fully covered with

Figure 8. Distribution of prediction errors in the LST for all grid

points in the Lake Updates category for VESPER_V15 and VES-

PER_V20. Each prediction errors is in turn the average of 4 trained

iterations of the VESPER model. The predictions of VESPER_V20

are evidently and improvement over VESPER_V15, especially for

grid points with large LST errors.

bare ground in V20 field set. Whilst this area primar-

ily is bare ground, satellite imagery also suggests the

presence of a presumably highly saline lake (see Figure

10b); in addition area has a large degree of orography 15

and high elevation (∼1300m) which probably further

complicates the surface temperature response. A more

accurate description that accounts for the seasonality of

the surface water and the salinity is necessary here.

± Tanzania. There are two grid-cells of interest at the cen- 20

tre and northern edge of Lake Natron, which itself lies
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to south-east of Lake Victoria, in Tanzania. For both

these points VESPER_V20 predictions are less accu-

rate than VESPER_V15; for the central point (δV20 =

+2.45,σV15 = 0.12 and σV20 = 0.81, see also Figure

10c) the lake fraction was increased from 0.04 in V155

to 0.39 in V20 field set; for the northern edge point

(δV20 =+1.57,σV15 = 0.13 and σV20 = 0.51) the lake

fraction was also increased in V20 comparing to V15

field set along with a small decrease (∼0.1) in the low

vegetation fraction. However, Lake Natron is a highly10

saline lake that often dries out, with high temperatures,

high levels of evaporation and irregular rainfall. It is a

highly complex and variable regime that is not well de-

scribed by simply increasing the fraction of permanent

fresh water, and indeed results suggest that with cur-15

rent lake parametrization scheme it may be beneficial to

keep the lake fraction low or introduce extra descriptor,

e.g. salinity.

± Algeria. This grid point lies in Algeria, at the north-

ern edge of the Chott Felrhir, an endorheic salt lake20

(δV20 =+2.20, σV15 = 0.41 and σV20 = 0.49). Simi-

lar to the Great Salt Lake Desert, the lake fraction was

completely removed from 0.33 in V15 to 0.0 in V20.

However, Chott Felrhir goes through frequent periods of

flooding where the lake is filled by multiple large wadi,25

and corresponding dry periods where the lake becomes

a salt pan. As with the Great Salt Lake Desert it is also

a highly variable, complex area that may require addi-

tional consideration of the salinity and the seasonality.

± Lake Chad This grid point contains Lake Chad, a fresh-30

water endorheic lake in the central part of the Sahel

(δV20 =+1.74, σV15 = 0.33 and σV20 = 0.98). Here

the lake fraction was modestly reduced from 0.63 to

0.47. However, Lake Chad is again a highly time vari-

able regime with seasonal droughts and wet seasons. It35

is a marshy wetland area but the vegetation fractions in

both V15 and V20 here are zero. Satellite imagery also

shows a large fraction of the surface covered by water

and vegetation (Figure 10e).

± Al Fashaga This grid point lies in a disputed region40

between Sudan and Ethiopia called Al Fashaga, close

to a tributary of the Nile (δV20 =+0.94, σV15 = 0.14

and σV20 = 0.29). The updated V20 fields increased

the lake fraction at this point from 0 to 0.14. The grid

cell contains the Upper Atbara and Setit Dam Complex.45

However, the dam was only recently completed in 2018

- during the training period the damn was still under

construction. Consequently whilst the V20 field may be

more accurate at the current time, during the period the

model was training the V15 field was more accurate,50

since the damn was not yet built.

± Lake Tuz. This grid cell contains a large fraction of

Lake Tuz as well as the smaller Lake Tersakan, saline

lakes in central Turkey (δV20 =+0.85,σV15 = 0.25 and

σV20 = 0.34). Here the updated physiographic field ef- 55

fectively removed all lake water, with the lake fraction

decreasing from 0.14 to 0.005. Whilst the lake is shal-

low and does dry out in the summer, there is also a large

fraction of surface water present (e.g. Fig 10d) and it is

an over correction to completely remove all lake water 60

at this point.

± Lake Urmia. This grid cell contains Lake Urmia,

which is another saline lake in Iran (δV20 =+0.81,

σV15 = 0.12 and σV20 = 0.73). The updated physio-

graphic fields decreased the lake fraction at this point 65

from 0.77 to 0.39. This was in response to the shrinking

of Lake Urmia due to long-timescale droughts and the

damming of rivers in Iran. However, this drought broke

in 2019 and Lake Urmia is now increasing in size again

- satellite imagery now shows a large fraction of the grid 70

cell covered by water (Figure 10f).

The Lake-Ground Updates sub-category, which restricts

analysis to only points with no significant change in the veg-

etation, allows us to more clearly see the effect of adding/re-

moving water on/from bare ground. This sub-category shows 75

even larger improvements in LST predictability if using V20

field set instead of V15 (see Table 4) ± prediction accuracy

increased globally (over 546 grid-cells) on average by 0.83K

(σV15 = 0.15 and σV20 = 0.04, see also Figure 7). This indi-

cates that whilst the updated lake fields are globally accurate 80

and informative, providing on average over the globe, over

a year, nearly an extra Kelvin of predictive performance, the

updates to the vegetation fields tamper this performance gain,

indicating potential problem with the vegetation fields

3.1.2 Category: Vegetation Updates 85

The Vegetation updates category, restricts analysis to grid

points with significant change to high vegetation cover,

where the high vegetation cover is substituted with either

low vegetation or bare ground, and vice versa. For this

category the prediction accuracy of V20 decreased globally 90

(over 58 grid-cells only) on average by 0.04K. However,

this shift is much smaller than the training noise between

successive VESPER iterations (σV15 = 0.04, σV20 = 0.15)

and so it is hard to make definitive statements about the

performance of the updated vegetation physiographic fields 95

as a whole (see e.g. Fig 13). The best we can say is that the

updated V20 vegetation fields offer no global improvement

in the LST prediction accuracy.

If we isolate our analysis to individual grid points where 100

the training noise is small (highlighted by ∗ points in Fig

13) we can discern that there are multiple locations where

the high vegetation fraction was decreased (often quite dras-

tically to zero), specifying that there should just be bare

ground, but thorough inspection of these areas with satel- 105
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Figure 9. Differences in the prediction error MAE, between VESPER_V20 and VESPER_V15, (i.e. δV20),for 2019 at 31km resolution

for ‘Lake Updates’ category (i.e. where lake cover changed significantly). Generally, VESPER_V20 LST predictions are more accurate, for

example in the Aral sea and Australia, indicating that V20 field set is informative and accurate. Particular points where VESPER_V20 LST

prediction gets notably worse compared to VESPER_V15 are highlighted with green circles and discussed in the text.

lite imagery revealed that they should in fact be covered

with high vegetation (see e.g. Figure 12) and that updating

the V20 high vegetation cover was erroneous for these grid-

cells. Moreover, for this subset of less noisy grid points, the

strength of the drop in LST predictability in VESPER_V205

comparing to VESPER_V15 is approximately linearly de-

pendent to the degree of reduction in high vegetation frac-

tion, when the vegetation is replaced with bare ground (i.e.

δV20 is maximally positive when the grid-cell that was fully

covered with forest becomes fully covered with bare ground10

± high vegetation cover is reduced to zero). These erroneous

grid-cells in V20 vegetation fields are likely to appear during

the interpolation. The errors in these regions will in turn cor-

rupt the LST predictions and mitigate the gain from a more

accurate representation of the lake water. The majority of15

grid cells in this category (57/58) are modified in this way

where the high vegetation fraction is severely reduced, how-

ever due to the large degree of training noise and the small

number of points, it is difficult to draw any definitive conclu-

sions for the category as a whole. 20

3.1.3 Category: Glacier Updates

The Glacier Updates category in general shows improve-

ment in LST predictability in VESPER_V20 comparing to

VESPER_V15 (see Table 4) ± prediction accuracy increases

globally (over 1057 grid-cells) on average by 0.22K (σV15 = 25

0.03, σV20 = 0.02), most notably around the Himalayas,

the land either side of the Davis strait, as well as British

Columbia and the Alaskan Gulf. Analogous to the Lakes

Updates category whilst the introduction of the V20 glacier

cover generally improves LST predictions, there is a small 30

selection of grid points where the prediction gets worse.

These are heavily concentrated in the southern hemisphere,

in particular on the south-western edge of South America

and the South Shetland Islands (which lie closer to Antarc-

tica), and some parts of the Himalayas. This deterioration 35
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(a) Gujarat Province, India (b) Great Salt Lake Desert, Utah

(c) Lake Natron, Tanzania (d) Lake Tersakan/Lake Tuz

(e) Lake Chad (f) Lake Urmia

Figure 10. A selection of satellite imagery of some of the problematic Lake Updates points highlighted in Fig. 9 where the V20 predictions

are worse than the V15 predictions. Generally the updated V20 fields remove water, only considering permanent water. However these

regions have highly time variable waters, which are better captured on average by the V15 fields. The images are centred on the grid box

coordinates.
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Figure 11. As Fig. 7 for selected locations in the lakes grid point

category where the added V20 data results in worse predictions

when compared to V15.

in performance in these areas is not due to erroneous up-

date of V20 glacier cover, but related to the Aqua-MODIS

data (i.e. sparse availability due to clouds, and less certain

due to orography, see Figure 5a). Consequently, VESPER

finds it difficult to make accurate predictions in this region5

and for these points there is often a large degree of training

noise, with considerable overlap between VESPER_V15 and

VESPER_V20. If grid- cells with scarce amount of Aqua-

MODIS observations (i.e. mean number of Aqua-MODIS

observations per day over the year per ERA5 grid-cell is10

>50) are removed from the analysis then the worst perform-

ing grid-cells become excluded, yet a few areas where VES-

PER_V20 underperforms VESPER_V15 remain. For exam-

ple, there is a grid-cell in Chilean Patagonia that contains

the Calluqueo Glacier, close to Monte San Lorenzo where15

δV20 = 2.49 (σV15 = 0.38, σV20 = 0.62). This grid-cell has

been updated in V20 field set comparing to V15 by strongly

increasing glacier cover from 0.0 to 0.44), decreasing low

vegetation cover (from 0.22 to 0.12) and high vegetation

cover (from 0.16 to 0.09) as well as modestly decreasing lake20

cover (from 0.02 to 0.007). According to satellite imagery

(see Figure 14a) the glacier only occupies a small fraction

of the overall grid-cell, and the updated glacier cover may

have been an over correction. Moreover, this is an complex

orographic area with snowy mountain peaks at high altitude25

and deep valleys, therefore the temperature response due to

the glacier feature could be atypical compared to e.g. the

Alaskan Gulf or the Davis straight. There is also substantial

vegetation cover in the valleys that may not be being properly

described. A similar point is in the Chilean Andes (see Figure30

14b), by the Juncal Glacier with δV20 = 1.26 (σV15 = 0.68,

σV20 = 0.29). Here V20 glacier cover was increased to 0.25

compared to 0.00 in V15. Again, this is may have been an

(a)

(b)

Figure 12. Satellite imagery of grid-cells in (a) Siberut Island, In-

donesia and (b) South Island, New Zealand. For both grid-cells ac-

cording to the updated V20 field set there should be no vegetation,

just bare ground. VESPER identified these erroneously updated ar-

eas.

over correction, as the glacier constitutes only a small frac-

tion of the grid cell. As with the Calluqueo Glacier this is also 35

an area with lots of orography and so could have an atypi-

cal temperature response. For both of these points VESPER

managed to identify potential inaccuracies in updated glacier

cover, and once again proved itself as a useful tool for quality

control of surface physiographic fields. 40

3.2 Evaluation of new lake fields: Monthly water & salt

lakes

From the examples above it is evident that VESPER enables

the user to quickly identify regions where the update to

surface physiographic fields was beneficial (e.g. Aral Sea) 45

and where it was not (e.g. Lake Natron). In turn, areas

where LST predictions do not improve as expected can

be inspected and erroneous or sub-optimal representations
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Figure 13. Distribution of prediction errors in the LST, for VES-

PER_V15 and VESPER_V20, for all 58 grid points in the vegeta-

tion category. There is evidently a large degree of noise, with predic-

tions from both generations of VESPER model highly overlapping.

Points with reduced training noise are highlighted with a ∗.

of the surface physiographic fields identified. This then

provides key information on how and where to introduce

additional corrections to better represent these more chal-

lenging or complex regions. Some of these problematic areas

are now explored in more details and additional surface5

physiographic fields introduced with help of VESPER.

Particular regions where VESPER was struggling to make

accurate LST predictions ± especially with the updated V20

field set which only include permanent water ± were either10

areas with a large degree of temporal variability (e.g. lakes

which flood and dry out periodically) or else areas with

saline rather than freshwater lakes. Clearly if the size, shape

and depth of a lake are changing over the course of the year,

these are going to be hugely significant factors in modelling15

the lake temperature response. Similarly, saline lakes behave

very differently to freshwater lakes since increased salt

concentrations affect the density, specific heat capacity,

thermal conductivity, and turbidity, as well as evaporation

rates, ice formation and ultimately the surface temperature.20

These two properties of time variability and salinity are

often related; it is common for saline lakes to flood and

dry out over the course of the season, which naturally also

affects the relative saline concentration of the lake itself.

25

(a)

(b)

Figure 14. Satellite imagery of (a) Calluqueo Glacier, Patagonia,

and (b) Juncal Glacier, Chile. In the updated V20 field set, the as-

sumption for region (a) is almost half ice cover with little vegeta-

tion, for region (b) is quarter covered with glacier; these assump-

tions seem to be insufficiently accurate or informative, as identified

by VESPER.

Currently, neither VESPER_V15 or VESPER_V20 have

any information regarding the salinity of the lakes or their

time variability. Indeed, FLake is specifically a fresh wa-

ter lake model! This information can be introduced by in-

cluding a global saline lake cover and monthly varying lake 30

cover as additional VESPER’s input features, and then using

VESPER to rapidly assess the accuracy of these new surface

physiography fields and evaluate if their use in the model

increase LST predictability. We define an additional mod-

els (see Table 3 for a summary of all VESPER models used 35

in this work); VESPER_V20X uses the same field set is the

same as VESPER_V20 but with additional saline lake cover

and monthly-varying lake cover. The results of this model in

comparison with VESPER_V15 and VESPER_V20 is sum-

marised in Tables 4, 5 . We will now explore the influence 40

of the additional saline maps and monthly lake maps in more

detail.
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3.2.1 Category: Lake updates

The Lake Updates category shows no significant difference

in LST predictability globally when using the V20X field

set instead of V20, with δV20X = δV20 =−0.37 (compa-

rable training noise). For the Lake-ground category, there5

is a modest increase, with δV20X =−0.84 compared to

δV20 =−0.83 but this is within the training noise. For some

of the problematic lake grid-cells highlighted in Table 5,

the addition of saline maps and monthly lake maps does

improve the LST predictability relative to VESPER_V20.10

For the Great Salt Lake Desert, Chott Fehlrir, Lake Chad

and Lake Urmia, VESPER_V20X is a notable improvement

over VESPER_V20, with δV20X = 0.248,0.726,0.029,0.22

respectively. The difference in δV20X and δV20 for these

points is greater than the training noise. If we take as a case15

example the grid point in the Great Salt Lake Desert, the

improvement in using VESPER_V20X over VESPER_V20

is 2.667K ±1.10 K. At this point there is a strong correction

from the monthly lake maps (mean value 0.16) and the

salt maps (mean value 0.56). This improvement is to be20

expected given the known strong salinity and time variability

in the region, and so it is a nice confirmation to have these

updated fields verified by VESPER. It is also notable that

the variation in the monthly lake maps at this point is very

large, with a standard deviation in the lake fraction over 1225

months of 0.18. At the start of the year the corrections from

the monthly maps are very large, then as the year progresses

the magnitude of the corrections generally decreases as the

lake dries out. Such a large variation is again difficult to ever

capture with a static field.30

It is however notable that a) for all of the problematic

lake points that we have discussed δV20X is positive and

b) there are multiple points (e.g. Gujarat province) where

VESPER_20X exhibits no improvement over VESPER_V2035

within training noise. Given all the extra information pro-

vided to the more advanced VESPER_20X model this is un-

usual; it suggests that either i) some of the additional infor-

mation is erroneous in these regions, or else ii) the tempera-

ture response is atypical to the rest of the globe. For point ii),40

this means that the additional information is not predictive

in these regions. Including this additional information in our

neural network increases the complexity of the model which

may in turn increase its training noise. This is likely the rea-

son behind point b) - the updated fields are not sufficiently45

informative but do increase the training noise and so we see

no improvement from using VESPER_V20X. For example,

for Gujarat province σV20 = 0.416, but σV20X = 1.04. In or-

der to explore the hypothesis of point i) we train one fur-

ther model, VESPER_V15X (again, see Table 3 for a sum-50

mary of all VESPER models used in this work). This VES-

PER iteration is analogous to VESPER_V20X, being sim-

ply the VESPER_V15 model with the additional monthly

maps and salt lake fields included. Importantly it does not

have the updated physiographic correction fields from V20. 55

Globally, this model performs worse that the V20 models,

as we might expect - for example in the Lake Updates cat-

egory δV15X = -0.20 (σV15X = 0.02) compared to δV20= -

0.37 K. However, VESPER_V15X does perform well at a

number of the these problematic lake points (see Table 5). 60

For 7 out of the 9 selected lake points, VESPER_V15X out-

performs VESPER_V20X. For example in Gujarat province

the improvement in using V15X over V20X is 6.5K ± 1.53.

This suggests that our hypothesis for point i) is correct and

that for some grid points the V20 fields are less accurate 65

than the V15 fields. For a subset of points VESPER_V15X

also outperforms VESPER_V15 (e.g. for Gujarat province

δV15X =−1.26) but the difference is typically within or

close to the training noise (e.g. for Gujarat σV15X = 1.12)

and so it is hard to draw any strong conclusions. These ex- 70

amples illustrates again how VESPER can identify particular

regions where the fields are inaccurate, as well as emphasis-

ing the need more generally for accurate descriptions of sea-

sonally varying inland water and saline lake maps in Earth

system modelling. 75

3.2.2 Category: Vegetation Updates

Whilst the Vegetation Updates category explicitly deals with

areas where the lake fraction does not change when going

from V15 to V20, many of the grid points in this category do

contain some kind of waterbody, often lying close to the coast 80

or else containing lakes or large rivers. Information on the

salinity and temporal variability of these water bodies could

then influence the prediction accuracy. By providing the ad-

ditional information in VESPER_20X, the error relative to

VESPER_V15 is reduced modestly to −3×10−4 although as 85

we saw before with the vegetation category the noise is large

σV20X = 0.21 and so it is difficult to draw any further defini-

tive conclusions. Similar arguments apply to VESPER_15X.

3.2.3 Category: Glacier Updates

We would expect the additional information provided by 90

the V20X fields to be particularly effective for glacial grid

points. Glacier ice is naturally found next to waterbodies

which freeze and thaw over the year, and the salinity of wa-

ter will also influence this freezing. Therefore accurate ad-

ditional information from the monthly lake maps and the 95

saline maps should prove useful in these more time vari-

able regions. We do observe a small improvement globally,

with δV20X =−0.28 compared to δV20 =−0.22, however

this difference is comparable to the training noise σV20X =

0.06. This training noise could be slightly deceptive; 3 out 100

of our 4 VESPER_V20X iterations outperform every VES-

PER_V20 iteration in the Glacier Updates category. The 4th

VESPER_V20X iteration is somewhat anomalous - the in-

creased network complexity could mean that the model did

not converge well for that particular iteration, for the glacier 105
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Category Grid-cells/location
σVM, K δVM, K

V15 V15X V20 V20X V15X V20 V20X

Lake

Gujarat Province, India 2.54 1.12 0.42 1.04 -1.26 4.21 5.24

Great Salt Lake Desert, Utah 0.26 0.41 0.92 0.62 -0.18 2.92 0.25

Lake Natron centre, Tanzania 0.12 1.48 0.81 0.53 1.35 2.45 2.61

Lake Natron north, Tanzania 0.13 0.37 0.51 0.18 0.72 1.57 1.24

Chott Felrhir 0.41 0.57 0.49 0.58 0.34 2.20 0.73

Lake Chad 0.33 1.21 0.98 0.96 0.29 1.74 0.03

Al Fashaga 0.14 0.08 0.29 0.42 -0.24 0.94 1.06

Tersakan Lake 0.25 0.20 0.34 0.38 -0.00 0.85 0.99

Lake Urmia 0.12 0.54 0.73 0.32 0.54 0.82 0.22

Glacier
Calluqueo Glacier, Patagonia 0.38 0.62 1.60 0.73 0.08 2.49 0.32

Juncal Glacier, Chilean Andes 0.68 0.29 1.06 0.36 0.11 1.26 1.20

Table 5. As Table 4 for specific grid points discussed in the text where the VESPER_V20 predictions are worse than VESPER_V15 (i.e.

δV20 is positive).

grid points. Since the updated V20 glacier fields are gener-

ally accurate globally, we saw no particular improvement in

using VESPER_V15X to within the training noise. This sug-

gests that the additional monthly lake maps are only useful

if the underlying representation of static water is sufficiently5

accurate. Considering the particular glacier grid points we

discussed previously in Section 3.1.3, the additional monthly

lake maps were particularly useful for the Calluqueo glacier,

with δV20X = 0.32 compared to δV20 = 2.49 (σV20 = 1.59,

σV20X = 0.73). However we saw no improvement to within10

the training noise for the Juncal glacier

3.2.4 Timeseries

Thus far we have been focusing mainly on the δVM metric

averaged over the entire year of the test set. It is also of

interest to explore how the prediction error for each of the 315

models varies with time. This is demonstrated in Fig 15 for

each of the 4 updated categories that we have discussed.

For the Lake Updates and Lake-Ground Updates categories

we can see that all the model predictions track the same20

general profile, with the error peaking in the northern

hemisphere summer months. This is a result of FLake

modelling being least accurate during the summer as the

lake is not fully mixed and so the mixed layer depth for lakes

is too shallow, resulting in skin temperatures with larger25

errors. Conversely, in the autumn and spring the lake is fully

mixed and predictions have the smallest errors compared

with observations. A clear hierarchy of models is evident;

the VESPER_V15 and VESPER_V20 models consistently

outperform VESPER_V15 across the year. This again is30

strong evidence, highlighted by VESPER, of the value of

the updated fields both static and seasonally varying. We

discussed previously how the annually and globally aver-

aged δVM values for the Lake Updates category were highly

comparable for VESPER_V20 and VESPER_V20X. We35

can see from the top panel in Figure 15 that this equivalence

is not consistent over the year. Instead, during the winter

months of the northern hemisphere VESPER_V20 and

VESPER_V20X are fairly equivalent; VESPER_V20 tends

to outperform VESPER_V20X, but the difference is within 40

the model training noise. However in the central months of

the year VESPER_V20X starts to be slightly more accurate.

This is likely for two reasons. Firstly, the monthly lake

maps are in fact a climatology and therefore insufficiently

precise to detect the exact ice on/off dates during the winter 45

months, where we have a large number of grid points at high

latitudes which will be subject to freezing, nullifying any

time variability. The second reason is due to the accuracy of

the lake mean depth which strongly drives the ice on-dates

due to its influence on the heat capacity of the lake. During 50

the warmer months lakes thaw, the monthly maps are more

accurate, as the thawing of lake ice is mainly connected to

the atmospheric conditions, not the lake depth, and so the

information contained in them can be used to make more

accurate predictions. 55

The Lake-Ground Updates timeseries broadly follows

the same general profile as Lake Updates, but the errors are

larger - those grid points where the lakes have been replaced

with bare ground were particularly poorly described in V15. 60

Additionally, for Lake Updates we see two sharp decreases

in the prediction error during ∼ April and September, which

are not as strongly reflected in Lake-Ground. This is due to

the geographic location of the grid points in each of the two

categories; for the Lake Updates category the grid points 65

are located primarily in the boreal zones and so are subject

to freezing and thawing over the course of the year leading

to a strong seasonality due to the lake mixing that we have

discussed. The sharp drop in April corresponds to a time

where the lakes are unfrozen and fully mixed. However the 70

lakes in the Lake-Ground sub-category are less concentrated

and much more evenly distributed over the globe and so

do not exhibit such a strong seasonality. Consistent with
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our previous discussion, the training noise makes it difficult

to separate the predictions of the VESPER model for the

vegetation category across the year. All generations of

VESPER_VM follow the same general trend, with errors

maximal at the start and end of the year, and minimal during5

the spring and autumn months.

For the Glacier updates category, in order to deal with

the separate warming and cooling seasonal cycles over the

year, we separate grid points into the northern and southern10

hemispheres. For the northern hemisphere the errors peak

for all models in the summer, again due to the lakes not

being fully mixed. There is also an uptick in the prediction

error for all models during the winter when the freezing is

greatest - this indicates how ice cover can strongly influence15

the LST response. The familiar hierarchy of models is

recovered; VESPER_V15 is generally outperformed by

the more updated models. In turn VESPER_V20X is a

general improvement over VESPER_V20 throughout the

year, especially during the winter months where the training20

noise is minimal. Since this is the time when freezing is

greatest, this suggests that the additional monthly maps and

salt lake maps are particularly useful during this time. For

the southern hemisphere the story is different. The errors

are smallest during the middle of the year when we expect25

the freezing to be greatest. During the spring and autumn

the errors are largest - this is correlated with a decrease in

the number of observations suggesting that this is due to

poorer data quality due to cloud cover. In the summer when

the weather is clearer the errors start to decrease again.30

Given this variation in the data quality due to cloud cover

it is difficult to draw any strong conclusions, and again for

stronger performance cloud independent data should be

used. What is obvious for the southern hemisphere glacier

grid points is that the VESPER_V20 and VESPER_V20X35

models struggle to improve on VESPER_V15, unlike in the

northern hemisphere. This suggests that the updated V20

fields are still insufficiently accurate for southern latitudes.

We have also discussed previously particular grid points40

that will likely show a large degree of temporal variability,

or the lakes are saline, and as a consequence the static phys-

iographic V15/V20 fields struggle to make accurate predic-

tions (e.g. Table 5). In Figure 16 we present timeseries for

two of these points: the Great Salt Lake Desert, Utah and45

Chott Felrhir, Algeria. Both these points were discussed in

Sections 3.1.1, 3.2.1. We can see that for these two selected

points the hierarchy of models no longer holds. Whilst there

is a large degree of variability, and there is no clear separa-

tion between models for some parts of the year, generally it50

can be seen that VESPER_V20 performs worse than VES-

PER_V15. For the Great Salt Lake the inaccuracy when us-

ing the V20 physiographic fields is most pronounced during

the summer months. April, May and June are some of the

wettest months in this region. But the updated V20 fields55

specify a much smaller lake fraction than in V15 (∼ 0.5

compared to 0.0). Consequently during this time the V20

fields are maximally inaccurate and the prediction error of

the VESPER_V20 model grows accordingly.This indicates

again that the updated V20 fields are in fact over-corrections 60

for this area. The inclusion of monthly lake maps and salt

lake maps in VESPER_V20X notably reduces the error dur-

ing these summer months. For Algeria, we can we can see

that VESPER_V20 underperforms VESPER_V15 through-

out the entire year. For this grid point the lake was completely 65

removed when updating the V20 fields, with the lake fraction

reducing from ∼ 0.35 to 0.0. This also appears to have been

an over-correction. The separation between the models is

most pronounced in the early months of the year; in the win-

ter months both the prediction error and the variance increase 70

- this period is the wet season in Algeria where the wadi

which feed Chott Felrhir fill up. Similar to the Great Salt

Lake Desert, the inclusion of the monthly lake maps in VES-

PER_V20X improves the prediction accuracy, most notably

in the early months of the year. Again, later in the year the 75

training noise is much greater and so it is harder to separate

the predictions of the model, but on average VESPER_V20X

outperforms VESPER_V20 over the entire year, highlighting

the value of these additional physiographic fields. monthly

fields. 80

4 Discussion

We have seen how VESPER can quantitatively evaluate

the value of updates to the lake surface parametrisation as

well as identifying areas where the updates are inaccurate.

For the former VESPER was able to show that the major 85

regions where the lake surface parametrisation fields were

updated - such as the Aral sea - enjoyed more accurate

predictions, which verifies both the accuracy of the fields

and their information content with respect to predicting skin

temperatures. For the latter VESPER was able to identify 90

grid points where the predictions became worse with the

updated fields, indicating that the updated fields were in

fact less accurate. More generally we have also seen how

detailed knowledge of surface water fields (e.g. up to date

permanent water distribution, seasonal water distribution, 95

salt lake distribution, etc.) can notably improve the accuracy

with which the skin temperature can be modelled, e.g. grid

points with significant updates (i.e. where the field has

changed by ≥ 10 %) to the lake fields show a mean absolute

error reduction of skin temperature globally of 0.37K (Table 100

4). Given the performance of VESPER it may be possible

in the future to update or correct the input fields at a high

cadence, e.g. yearly or even more frequently.

There are multiple possible further extensions of this 105

work. We have not currently included the errors on the

MODIS observations into the VESPER model. During the
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Figure 15. Mean prediction error in the surface temperature

DeltaK, averaged over all grid points, for each of the 3 mod-

els over the course of the test year for (top panel) Lake Updates,

(second panel) Lake-Ground Updates, (third panel) Vegetation Up-

dates, (fourth panel) Glacier Updates, northern hemisphere and

(bottom panel) Glacier Updates, southern hemisphere. The shaded

regions show the 1σ training noises. For the Lake categories, all

models follow the same general profile, with the VESPER_V20 and

VESPER_V20X models generally outperforming VESPER_V15

model over the year.

Figure 16. Variation in the prediction error for the grid points at

Great Salt Lake, Utah (top panel) and Chott Felrhir, Algeria (bot-

tom panel). There is a large degree of variability, but for both grid

points VESPER_V20 model is generally less performant than VES-

PER_V15 , indicating that the updated V20 fields are less accurate

here. Corrections introduced by the augmented VESPER_V20X

model with saline and monthly lake maps outperform those with-

out, indicating the value of these fields in these regions.The shaded

regions show the 1σ training noises.
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ªmatching-in-space" step relating the ERA and MODIS data

(Section 2.2), it could be a worthwhile extension to weight

the averaged MODIS points by their corresponding errors

(e.g. Fig. 5b) when deriving a single MODIS observation

for a given ERA grid point. This would then provide a more5

accurate and confident representation of the true surface

temperature at a particular space-time point. Due to the

inherent stochasticity of training a model we have seen that

some grid points have a particularly large training noise.

To better quantify this effect and try to draw stronger con-10

clusions for this subset of points it would also be desirable

to train an ensemble of models (ªensemble learning") and

combine the predictions from multiple models to reduce

this variance. Additionally, our examination of the value of

the monthly lake maps is only a preliminary study. It would15

be of interest to follow seasonal lakes over a longer time

period (e.g. decadal) beyond the 12 month maps that we

use, in order to better quantify their time variability, as well

as the differences between years (e.g. if the lake fraction

was particularly high in the January of one year, but low20

in the subsequent year). It would also be of interest to try

to quantify if VESPER and ECLand respond to changes

in the input parametrisations in the same way, which is

key to be able to then apply the VESPER results to the

full earth system model development. Since VESPER is25

trained on ERA5, if we want to model the outputs of the

IFS we must assume that the statistical behaviour of the

input fields does not change from ERA to IFS. This is a

fair assumption, but it would be interesting to investigate

this quantitively in greater detail. We have focused here30

primarily on hydrological applications, our primary concern

being the ability to evaluate the parametrised water body

representation, however the general application of the

method for any updated fields that we want to assess could

also be explored. Extension to non-lake hydrological fields35

like wetland extent or river bathymetry model parameters, or

even non hydrological fields such as orography would be an

interesting further development. The development of a more

mature, integrated pipeline for automatically evaluating

updated parametrisations could also be a worthwhile pursuit.40

Another natural and interesting extension of this work

would be to use VESPER to perform a feature importance or

sensitivity analysis for the various input fields of the neural

network. Additionally, an approach which may prove fruitful45

in the enterprise for improved parametrised representation of

water bodies is to invert the problem and treat VESPER as a

function to optimise. That is to say, VESPER can be thought

of as a function which takes some inputs - in this case a lake

parametrisation - and returns a loss metric i.e. how accurate50

the predictions are compared to the test set. Given this loss

metric it may then be possible to vary the inputs and use stan-

dard optimisation techniques to learn the optimal parametri-

sation. Whilst this may be an expensive technique as there are

effectively two nested models over which to optimise (for ev-55

ery optimisation step in the higher model, one must train the

VESPER network from scratch) it could be possible given

appropriate hardware or with reduced data focusing just on

targeted locations (e.g. ªWhat is the best way to represent

the lakes in this area?"). The loss gradient information can 60

also be used to tune individual features, informing whether

an input variable should be larger or smaller.

5 Conclusion

Weather and climate modelling relies on accurate, up-to-date

descriptions of surface fields, such as inland water, so as to 65

provide appropriate boundary conditions for the numerical

evolution. Lakes can significantly influence both weather and

climate, but sufficiently accurate representation of lakes is

challenging and the natural changes in water bodies mean

that these representations need to be frequently updated. A 70

new method based on a neural network regressor for au-

tomatically and quickly verifying the updated lake fields -

VESPER - has been presented in this work. This tool has

been deployed to verify the recent updates to the FLake

parametrisation, which include additional datasets such as 75

the GSWE and updated methods for determining the lake

depth from GLDBv3. The updated parametrisation fields

were shown globally to be an improvement over the origi-

nal fields; for a subset of grid points which have had sig-

nificant updates to the lake fields, the prediction error in the 80

skin temperature decreased by a MAE of 0.37K. Conversely,

VESPER also identified individual grid points where the up-

dated lake fields were less accurate, enabling these points to

subsequently be corrected, such as incorrect removal of lake

water and losing forests to bare ground. Multiple further ex- 85

tensions of this work, including extension to non lake fields

and the development of a more mature integrated pipeline

have been discussed.
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