

1 **Technical Note: Lessons from and best practices for the**
2 **deployment of the Soil Water Isotope Storage System**

3 Rachel E. Havranek¹, Kathryn Snell¹, Sebastian Kopf¹, Brett Davidheiser-Kroll², Valerie Morris³, Bruce
4 Vaughn³

5 Rachel Havranek, Kathryn Snell, Sebastian Kopf, Brett Davidheiser-Kroll, Valerie Morris, Bruce Vaughn

6 ¹Geological Sciences, University of Colorado Boulder, Boulder, 80303, USA

7 ²Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany

8 ³Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, 80303, USA

9 *Correspondence to:* Rachel Havranek (rachel.havranek@colorado.edu)

10 **Abstract.** Soil water isotope datasets are useful for understanding connections between the
11 hydrosphere, atmosphere, biosphere, and geosphere. However, they have been underproduced
12 because of technical challenges associated with collecting those datasets. Here, we present the
13 full results of testing and automation of the Soil Water Isotope Storage System (SWISS). The
14 unique innovation of the SWISS is that we are able to automatically collect water vapor from the
15 critical zone at a regular time interval and then store that water vapor until it can be measured
16 back in a laboratory setting. Through a series of quality assurance and quality control tests, we
17 rigorously-tested that the SWISS is resistant to both atmospheric intrusion and leaking in both
18 laboratory and field settings. We assessed the accuracy and precision of the SWISS through a
19 series of experiments where water vapor of known composition was introduced into the flasks,
20 stored for 14 days, and then measured. From these experiments, after applying an offset
21 correction to report our values relative to VSMOW, we assess the precision of the SWISS at
22 $\pm 0.9\text{\textperthousand}$ and $\pm 3.7\text{\textperthousand}$ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively. We deployed three SWISS units to three
23 different field sites to demonstrate that the SWISS stores water vapor reliably enough that we are
24 able to differentiate dynamics both between the sites as well within a single soil column. Overall,
25 we demonstrate that the SWISS is able to reliably faithfully retains the stable isotope
26 composition of soil water vapor for long enough to allow researchers to address a wide range of
27 ecohydrologic questions.

28 **1 Introduction**

29 Understanding soil water dynamics across a range of environments and soil properties is
30 critical to food and water security (e.g. Mahindawansha et al., 2018; Quade et al., 2019; Rothfuss
31 et al., 2021); understanding biogeochemical cycles, such as the nitrogen and phosphorus cycles
32 (e.g. Hinckley et al., 2014; Harms and Ludwig, 2016); and understanding connections between
33 the hydrosphere, biosphere, geosphere and atmosphere (e.g. Vereeken et al., 2022). One
34 approach that can be used to understand water use and movement in the critical zone is the stable
35 isotope geochemistry of soil water (e.g. Sprenger et al., 2016; Bowen et al., 2019). Variations in
36 the stable isotope ratios of oxygen and hydrogen of soil water ($\delta^{18}\text{O}$, $\delta^2\text{H}$) track physical
37 processes like infiltration, root water uptake and evaporation. In particular, stable water isotopes
38 are useful for disentangling complex mixtures of water from multiple sources (e.g. Dawson and
39 Ehleringer, 1991; Brooks et al., 2010; Soderberg et al., 2012; Good et al., 2015; Bowen et al.,
40 2018; Gomez-Navarro et al., 2019; Sprenger and Allen 2020). Despite the long-recognized
41 utility of measuring soil water isotopes for understanding a range of processes (e.g. Zimmerman

42 et al., 1966; Peterson & Fry., 1987), soil water isotope datasets have been under-produced as
43 compared to groundwater and meteoric water isotope datasets (Bowen et al., 2019).

44 The primary barrier to producing soil water isotope datasets has been the arduous nature
45 of collecting samples. Historically, there are two primary methods for collecting soil water
46 samples: either by digging a pit and collecting a mass of soil to bring back to the lab for
47 subsequent water extraction or via lysimeter. The former method disrupts the soil profile each
48 time a sample is collected, inhibiting the creation of long-term records of soil water isotopes.
49 Lysimeters on the other hand provide the means to collect multi-year soil water isotope datasets
50 (e.g. Green et al., 2015; Groh et al., 2018; Hinkley et al., 2014; Stumpf et al., 2012, Zhao et al.,
51 2013), but the choice of lysimeter can affect the portion of soil water (i.e. mobile vs. bound) that
52 is sampled (Hinkley et al., 2014; Sprenger et al., 2015) and the soil conditions that are
53 sampleable (i.e. saturation state). Soil water samples collected from both from bulk soil samples
54 and from lysimeters often require manual intervention at the time of sampling.

55 Building off of innovations in laser-based spectroscopy for stable isotope geochemistry,
56 the ecohydrology community developed a variety of in situ soil water sampling methods over the
57 last 15 years that enables the creation of high throughput, high precision analyses of soil water
58 isotopes (e.g. Wassenaar et al., 2008; Gupta et al. 2009; Rothfuss et al., 2013; Volkmann and
59 Weiler, 2014; Gaj et al., 2015; Oerter et al., 2016; Beyer et al., 2020; Kübert et al., 2020). These
60 methods have shed light on provided insights into a range of ecohydrologic questions from
61 evaporation and water use dynamics in managed soils (e.g. Oerter et al., 2017; Quade et al.,
62 2018) to better understanding where plants and trees source their water (e.g. Beyer et al., 2020).
63 These innovations have allowed researchers to ask new questions about ecohydrologic dynamics,
64 but current methods require field deployments of laser-based instruments. Field deployments are
65 technically possible and have been conducted successfully (e.g. Gaj et al., 2016; Volkmann et al.,
66 2016; Oerter et al., 2017; Quade et al., 2019; Künhammer et al., 2021; Seeger and Weiler., 2021;
67 Gessler et al., 2022), but require uninterrupted AC power, adequate shelter, as well as safe and
68 stable operating environments for best results. These prerequisites are not often available at
69 most many field sites, especially in more remote locations and for longer sampling time frames.
70 Given these logistical constraints, these studies have mostly been done near the institutions
71 performing those studies. Traditionally, soil water samples are taken by digging a pit, and
72 collecting a mass of soil to bring back to the lab for subsequent water extraction, disrupting the
73 soil profile each time a sample is collected. To circumvent issues related to this style of
74 sampling, the ecohydrology community has developed a variety of in situ water sampling
75 methods over the last 10 years (e.g. Rothfuss et al., 2013; Volkmann and Weiler, 2014; Gaj et al.,
76 2015; Oerter et al., 2016; Beyer et al., 2020). These methods have helped to shed light on a range
77 of ecohydrologic questions from evaporation and water use dynamics in managed soils (e.g.
78 Oerter et al., 2017; Quade et al., 2019) to better understanding where plants and trees source their
79 water (e.g. Beyer et al., 2020).

80 The expansion in situ sampling methods allows for a greater understanding of
81 ecohydrologic dynamics temporally, but with current methods these studies are often done in
82 close proximity to the institutions performing the studies because of logistical constraints. The
83 spatial constraints limit the questions that researchers can ask about what we can learn about
84 soil hydrology in remote and traditionally understudied landscapes. For example, in the
85 geoscience community there is significant interest in improving the research community's
86 understanding of how and when paleoclimate proxies (e.g. stable isotope records from pedogenic
87 carbonate, branched glycerol dialkyl glycerol tetraethers, etc.) form in soils, because that informs

88 our ability to accurately interpret records from the geologic past. But However, those projects
89 commonly have environmental constraints like soil type or local climate state characteristics that
90 may not be located near institutions performing those studies. To be able to study a broader
91 range of questions about ecohydrology, there is a need for a system that is capable of
92 autonomously collecting soil water vapor for isotopic analysis in remote settings.

93 Beyond the ecohydrology community, the creation of high temporal resolution soil water
94 isotope data sets is useful to a broader set of stakeholders. For example, long-term temporal
95 records of soil water can be used to better understand geologic proxy development (e.g. stable
96 isotope records from pedogenic carbonate, br-GDGs, etc.). These projects, however, commonly
97 have environmental constraints like soil type or local climate state that may not be located near
98 institutions performing those studies, creating the need for a system that is capable of collecting
99 water vapor from remote settings in an automated way.

100 In this contribution, we report on the further development and testing of a field
101 deployable system called first introduced in Havranek et al., (2020) the Soil Water Isotope
102 Storage System (SWISS). The SWISS was built to be paired with ACCURELL PP V8/2HF
103 vapor permeable probes that have been previously tested for soil water isotope applications
104 (Rothfuss et al., 2013; Oerter et al., 2017). Our system uses three basic components to store
105 water vapor produced by the vapor permeable probes: glass flasks, stainless steel tubing and a
106 flask selector valve (Fig. 1, Supplemental Table 1). Previously, we demonstrated through a
107 series of lab experiments that the glass flasks used in the SWISS units can reliably store water
108 vapor for up to 30 days (Havranek et al., 2020). That proof-of-concept study demonstrated that
109 the flasks retain original water isotope values, but the laboratory system was not field deployable
110 or and did not have customizable automation. Here, we present a fully autonomous, field-ready
111 system that has been thoroughly tested under both laboratory conditions and field conditions,
112 including development and testing of a solar-powered, battery backed automation system that
113 enables pre-scheduled water vapor sampling without manual intervention in remote field
114 locations.

115
116 To test the accuracy and precision of the SWISS, we completed quality assurance and
117 quality control (QA/QC) tests. This system is now capable of independently sampling soil water
118 vapor in situ, storing that water vapor for a period of time until the samples can be brought back
119 to a laboratory to be measured. In our case, we used a Picarro L-2130*i* water isotope analyzer
120 (Picarro, Inc. Santa Clara, CA) to measure both water concentration and the oxygen and
121 hydrogen isotope ratios of the soil water vapor. *i* water isotope analyzer (Picarro, Inc. Santa
122 Clara, CA) to measure both water concentration and the oxygen and hydrogen isotope ratios of
123 the soil water vapor. Here, we present the testing and optimization of the Soil Water Isotope
124 Storage System (SWISS). First, we present a quality assurance and quality control (QA/QC)
125 procedure that we strongly recommend any future user to complete prior to deploying this kind
126 of system for either a field or lab experiment. Second Here, we demonstrate the viability of this
127 system under field-conditions through two field suitability experiments. Lastly In addition, we
128 sampled three different field sites to show that the automation schema works on a monthly
129 timescale and that the system preserves soil water vapor isotopes signals with sufficient precision
130 to distinguish between three different field settings and vertical profile differences.

131 **2 BaekgroundField Sites**

132 In recent years, a number of technical innovations have made it easier to sample and measure
133 soil water for stable isotope analysis. Advances in laser-based instrumentation (e.g. cavity ring-
134 down spectroscopy, CRDS) have made high throughput, high precision measurements of both
135 water concentration and water stable isotopes possible. Field deployments with laser-based
136 instruments are technically possible and have been conducted successfully (e.g. Oerter et al.,
137 2017; Quade et al., 2019; Künhammer et al., 2021), but require uninterrupted AC power,
138 adequate shelter as well as safe and stable operating environments for best results. These
139 prerequisites are not often available at most field sites, especially in more remote locations and
140 for longer sampling time frames.

141 Second, the testing and adoption of vapor permeable tubing provides a way to sample soil water
142 vapor with minimal disturbance to the soil profile (e.g. Rothfuss et al., 2013; Quade et al., 2018;
143 Oerter and Bowen, 2019; Beyer et al., 2020; Kubert et al., 2020). This method works by flushing
144 dry nitrogen (or dry air) through the vapor permeable membrane (Accurell PP V8/2HF, 3M,
145 Germany), creating a water vapor gradient from inside the probe to the soil, thus inducing water
146 vapor movement across the membrane. Water vapor is then entrained in the dry nitrogen and
147 flushed to either a CRDS system or into a storage container. The adoption of vapor permeable
148 tubing has been a large step forward for the ecohydrology community, and opened the possibility
149 of creating long term soil water stable isotope records, particularly when paired with
150 measurement in the field by spectroscopic instruments. While this application is a major
151 advancement, it has many practical limitations for remote field sites, therefore, we aimed to
152 develop a system, termed the SWISS, that is capable of independently collecting samples and
153 can then store those samples for a period of time before being returned to the lab for analysis.

154

155 **2.1 Soil Water Isotope Storage System details and previous work**

156 The Soil Water Isotope Storage System (SWISS) uses three basic components for water
157 vapor storage of multiple samples: glass flasks, stainless steel tubing and a flask selector valve
158 (Fig. 1, Supplementary Table 1). The ability of the SWISS to reliably store water vapor for up to
159 30 days was demonstrated previously using a series of lab experiments (Havranek et al., 2020).
160 This proof of concept demonstrated that the flasks retain original water isotope values, but the
161 laboratory system was not field deployable or have customizable automation. Here, we present a
162 fully autonomous, field-ready system that has been thoroughly tested under both laboratory
163 conditions and field conditions, including development and testing of a solar-powered, battery
164 backed automation system that enables pre-scheduled water vapor sampling without manual
165 intervention in remote field locations.

166

167 **2.2 Field Sites:**

168 **2.2.1 Site Set-Up**

169 In figure 1 we show the field setup employed at all of our field sites. At each site we dug
170 two holes; In figure 1 we shows the field-setup employed at all of our field sites. One hole was
171 instrumented with soil moisture and temperature data loggers at 25 cm, 50 cm, 75 cm, and 100
172 cm depths, as well as the water vapor permeable probes at 25 cm, 50 cm and 75 cm depths (Fig
173 1A). We deployed aAll probes were deployed >9 months before the first samples were collected
174 to allow the soil to settle and return to natural conditions as much as possible. This timeframe

175 ~~was longer than other studies (e.g. Kübert et al., 2020) and includeds infiltration of spring and~~
176 ~~early summer precipitation. -During probe deployment we took care to retain the original soil~~
177 ~~horizon sequence and horizon depths as much as possible. In the The second hole, is where we~~
178 ~~stored the SWISS unit, dry nitrogen tank, and associated components to power the SWISS are~~
179 ~~stored (Fig 1B). The water vapor probes, which connected to the SWISS unitts with Bev-A-Line~~
180 ~~impermeable tubing, awere run through a PVC pipe buried at approximately 15 cm depth. We~~
181 ~~choose to run the impermeable tubing underground to limit the effect of diurnal temperature~~
182 ~~variability on the impermeable tubing, so as to limit prevent condensation as water travels from~~
183 ~~the relatively warm soil to the SWISS.~~
184
185

186
187 **Figure 1.** A) The sampling flow path. To sample soil water, dry nitrogen is regulated at a specific rate
188 using a mass flow controller, and then directed to one of the three sampling depths, or the soil bypass loop
189 using a set of solenoid valves. Both the mass flow controller and solenoid valves are housed inside the
190 SWISS. Once directed to the correct sampling depth, dry nitrogen is carried to the vapor permeable
191 probes via gas impermeable tubing that is buried approximately 15 cm depth. After passing through the
192 vapor permeable probe, the entrained soil water vapor is carried back to the SWISS where it is directed to
193 the correct flask using a Valco multiselector valve. B) Photos of a built-out SWISS and the layout of a
194 field site. Each of the system components (solar panel, battery, N₂ tank, SWISS, PVC tube) are
195 labeled, in addition to the location of the instrumented hole in which all of the probes are buried. The hole
196 which houses the SWISS, power, and N₂ tank is approximately 1.5 m wide.

197
198 **much as possible. The second hole is where the SWISS unit, dry nitrogen tank, and associated**
199 **components to power the SWISS are stored (Fig 1B). The water vapor probes, which connect**
200 **to the SWISS with Bev-A-Line impermeable tubing, are run through a PVC pipe buried at**
201 **approximately 15 cm depth. We chose to run the impermeable tubing to the SWISS**
202 **underground to limit the effect of diurnal temperature variability on the impermeable tubing,**
203 **so as to limit condensation as water travels from the relatively warm soil to the SWISS.**

204
205 **2.2.2 Site description**

206 We deployed the SWISS at three field locations: Oglala National Grassland, Nebraska,
207 USA; Briggsdale, Colorado, USA; and Seibert, Colorado, USA.
208 The Oglala National Grassland site (Lat: 42.9600/Long: -103.5979/elev: 1117 m) is located in
209 northwestern Nebraska, USA in a cold semi-arid climate. The soil at this site is described as an
210 [Aridisol](#) with a silt-loam texture. It is part of the Olney series (Natural Resources Conservation
211 Service, 2022).
212 The Briggsdale site (Lat: 40.5947/Long: -104.3190/elev: 1480 m) is located in northeastern
213 Colorado, USA in a cold semi-arid climate. The soil at this site is described as an [Aalfisol](#) with a
214 loamy sand - sandy loam texture. It is part of the Olnest series (Natural Resources Conservation
215 Service, 2022). [Long term meteorological data from the Briggsdale site is available from the co-](#)
216 [located CoAgMet site \(CoAgMet, Colorado Climate Center\).](#)
217 — The Seibert site (Lat: 39.1187/Long: -102.9250/Elev: 1479 m) is located in eastern
218 Colorado, USA in a cold semi-arid climate. The soil at this site has been described as an [Aalfisol](#),
219 that has a sand loam texture in the top 50 cm of the profile, and a silt loam texture between 50 -
220 100 cm. It is part of the Stoneham series (Natural Resources Conservation Service, 2022). [Long](#)
221 [term meteorological data from the site is available from the co-located CoAgMet site \(CoAgMet,](#)
222 [Colorado Climate Center\).](#)

223 **3 Materials**

224 **3.1 SWISS Hardware components**

225 In each SWISS there are 15 custom made ~650 ml flasks. These flasks are designed
226 similarly to those used for other water vapor applications. For example, a similar flask is
227 currently used in an unmanned aerial vehicle to collect atmospheric water vapor samples for
228 stable isotope analysis (Rozmiarek et al., 2021). The flasks have one long inlet tube that extends
229 into the flask almost to the base, and one shorter outlet tube so that vapor exiting the flask is well
230 mixed and representative of the whole flask (Fig. 1A). The large flask volume is advantageous
231 because there is a low glass surface area to volume ratio, and therefore we are able to reliably
232 measure vapor from the flasks on a CRDS instrument without interacting with vapor bound to
233 the flask walls. The 15 glass flasks are connected to a 16-port, multi-selector Valco valve. We
234 chose to use a Valco valve because these have previously been shown to sufficiently seal off
235 sample volumes for subsequent stable isotope analysis (Theis et al., 2004). The valve and flasks
236 are connected by [1/4-1/8](#) inch stainless steel tubing and stainless steel [1/4-1/4](#) inch to [1/8-1/8](#) inch
237 union Swagelok fittings; we use PTFE ferrules on the glass flasks with the Swagelok fittings.
238 The first port of the [Valco](#) valve is [1/8th](#) inch stainless steel tubing that serves as a flask bypass
239 loop, which enables flushing of either dry air or water vapor through the system without
240 interacting with a flask. All components are contained in a 61 cm x 61 cm x 61 cm Pelican case
241 ([Pelican 0370](#)) with [3-three layers of Pick n' Pluck](#) foam and convoluted foam ([Pelican Products](#)

242 [Inc., Torrance, Ca, USA](#)). This case is [thermally insulated, and insulated and](#) provides enough
243 protection to [allow reliable safely](#) transport of the SWISS by vehicle to field sites.
244

245 **3.2 Soil Probes**

246 There are three components for the collection and [interpretation analysis](#) of soil water
247 vapor: vapor permeable probes, soil temperature loggers, and soil moisture sensors (Fig 1B,
248 [SuppSupplemental](#). Table 1).
249 Here, we use a vapor permeable membrane ([Accurrell PP V8/2HF, 3M, Germany](#)) that
250 was first tested [for soil water isotope applications](#) by Rothfuss et al., (2013). [-This method works](#)
251 [by flushing dry nitrogen \(or dry air\) through the vapor permeable membrane, creating a water](#)
252 [vapor concentration gradient from inside the probe to the soil, thus inducing water vapor](#)
253 [movement across the membrane. Water vapor is then entrained in the dry nitrogen and flushed to](#)
254 [either a CRDS system or into a storage container.](#) We opted to use this tubing because it has been
255 shown to deliver reliable data over time (i.e. Rothfuss et al., 2015; [Oerter et al., 2019; Kübert et](#)
256 [al., 2020; Seeger and Weiler, 2021; Gessler et al., 2021](#)), and [it is easy to use and customize to](#)
257 [individual needs \(Beyer et al., 2020; Kübert et al., 2020\)](#). We previously observed that variability
258 in the length of the vapor permeable tubing can lead to systematic offsets in the stable isotope
259 composition of measured waters [that arise from it variability of vapor permeable tube surface](#)
260 [area \(Havranek et al., 2020\)](#). Therefore, we were careful to construct all probes such that the
261 length of the Accurrell vapor permeable tubing was 10 cm long, and the impermeable Bev-A-
262 Line IV connected on each side of the vapor permeable tubing was 2 m long. [We cut the Bev-A-](#)
263 [Line connections to identical lengths to control for memory effect and to treat all samples](#)
264 [identically.](#) We also constructed the vapor permeable probes to be used in the lab setting for
265 standards in an identical fashion.

266 Soil temperature loggers (Onset HOBO MX2201), used for applying a temperature
267 correction to all soil water vapor data [and to provide key physical parameters of the soils for](#)
268 [other goals beyond this study](#), were buried at the same depths as the vapor permeable probes.
269 Soil moisture sensors (Onset S-SMD-M005) were also buried at the same depths as the vapor
270 permeable probes.
271

272 **3.3 Automation components, code style, and remote setting power**

273 The philosophy behind the automation of the SWISS was to make it as easy to reproduce
274 as possible, and as flexible as possible to meet different users' sampling needs. We therefore use
275 widely available hardware components and electronics parts; for each product there are
276 numerous alternatives which should be equally viable and could be swapped to better meet each
277 user's needs. In an effort to make our system as accessible and customizable as possible for the
278 scientific community, all automation code is completely open source and will continue to be
279 refined for future applications and hardware improvements. We note that all code is provided as-
280 is and should be tested carefully for use in other experiments.

281 The overall sampling scheme used in this paper is described in figure 2 and table 1. Our
282 experimental goal was to create a time series of soil water vapor data from three discrete
283 sampling depths (25 cm, 50 cm, 75 cm). Prior to sampling any soil water vapor, we [bypassed the](#)
284 [soil probes and flushed the lines within the SWISS. flushed away any water vapor present in the](#)
285 [lines within the SWISS prior to flushing the sample loops.](#) Then, at the start of sampling for each
286 depth, we also flushed the water vapor probe [- to remove condensation or 'old' water vapor.](#) The

287 gas from both of those steps was expelled via the flask bypass loop. Each soil depth was then
 288 sampled for 45 minutes by flushing through the next flask designated in the sequence.

289 Supplemental Figure S1-1 shows the components of the automation system. To automate
 290 and program the sampling scheme, we used: (1) a microcontroller to run the automation script;
 291 (2) a coin-cell battery powered real time clock so that the microcontroller was always capable of
 292 keeping track of time through power losses, and therefore maintain the sampling schedule; (3) an
 293 RS-232 to TTL converter for serial communication with the Valco valve; (4) solenoid valves that
 294 were used to control which depth was being sampled and the associated direct current (-VDC)
 295 power relay; (5) a mass flow controller used to control the rate at which dry nitrogen (1 ppm
 296 H_2O) is flushed through the probes; and (6) a power relay used to power the Valco valve and
 297 mass flow controller. All parts are described in detail in Supplemental Table 2.

298
 299

300 Generalized sampling workflow (total time = 3.25 hours) →

301 Generalized sampling workflow (total time = 3.25 hours) →

302 **Figure 2.** Flow chart of the instrument schedule used for sampling during all field experiments.

303 **Table 1. Description of soil water sampling steps**

Code Step	Wake-up	Flush internal lines	Flush depth 1	Sample depth 1	Flush depth 2	Sample depth 2	Flush depth 3	Sample depth 3	Flush internal lines	sleep
-----------	---------	----------------------	---------------	----------------	---------------	----------------	---------------	----------------	----------------------	-------

time (minutes)	1	15	10	45	10	45	10	45	15	1
Valco valve position	flask bypass	flask bypass	flask bypass	2, 5, 8,11, or 14	flask bypass	3, 6, 9, 12, or 15	flask bypass	4, 7, 10, 13, or 16	flask bypass	flask bypass
solenoid valve position	none	soil bypass	25 cm	25 cm	50 cm	50 cm	75 cm	75 cm	soil bypass	none

306 **Table 1. Description of soil-water sampling steps**

307
308 probes; and (6) a power relay used to power the Valeo valve and mass flow controller. All parts
309 are described in detail in Supplemental Table 2.

310 In a remote setting, the SWISS units are powered using the combination of a 12 volt V
311 deep-cycle battery and with a 12VDC, 100 watt W solar panel that is used to charge the battery.
312 The solar panel is mounted to a piece of plywood that covers the hole where the SWISS is
313 deployed (note, the hole is uncovered in Fig. 1B for illustrative purposes). We opted for this
314 setup because the underground storage of all parts of the system creates a discreet field site that
315 attracts minimal attention from other land users, and helps reduce exposure to temperature and
316 precipitation extremes. In the field, we used a 12VDC-120VAC power inverter to provide simple
317 plug and play power for the Valco valve and mass flow controller. This simple combination was
318 suitable for summertime in the Western U.S. where there are a great number of sunny many hours
319 of direct sunlight, and the solar panel was able to easily charge the 12V battery. This setup may
320 need to be adjusted based on location and desired sampling time. Like the automation system,
321 there are many commercial options available for products, and they can be easily adjusted for
322 users' needs; example parts are described in detail in Supplemental Table 2. We also note that in
323 areas where it is possible to plug into a power grid, the deep cycle battery, solar panel and power
324 inverter can be removed.

326

327 **4. Methods**

328 We completed all water vapor isotope analyses in the Stable Isotope Lab at the Institute
329 of Arctic and Alpine Research (INSTAAR SIL) at the University of Colorado Boulder between
330 October 2020 and August 2022. In our case, we used a Picarro L-2130i water isotope analyzer
331 (Picarro, Inc. Santa Clara, CA) to measure both water concentration and the oxygen and
332 hydrogen isotope ratios of the soil-water vapor.

334 **4.1 QA/QC: Testing the SWISS under lab conditions**

335 Our highest order concern for the SWISS is that it remains leak-free, because any
336 leaks would introduce the potential for fractionation or mixing of atmosphere that would alter the
337 stable isotope ratio of the water vapor in the flask. So To mitigate leaks, we developed a three-
338 part quality assurance and quality control (QA/QC) procedure that must be completed for each
339 new SWISS prior to the first deployment. The first step detects any significant large, fast leaks
340 using helium detection methods; the second step detects medium scale leaks using is to perform a
341 dry air test to detect medium scale leaks; and the third step detects slow, small scale leaks using
342 is to perform a water vapor test to detect slow leaks. Below, we quickly summarize each of
343 these QA/QC steps. Full procedural descriptions are available in the supplementary material and
344 the data processing code is available via GitHub.

345 **4.1.1 Step 1: Use helium to detect large, fast scale leaks**

346 After initial assembly of the SWISS units plumbing, we looked for large leaks from the
347 cracking of inlet or outlet tubes on the glass flasks that occasionally occurred while tightening
348 the Swagelok fittings. To do this, we filled the flasks with helium and used a helium leak
349 detector (Leak Detector, Catalog #22655, Restek, Bellefonte, PA, USA) to find large leaks.
350 Typically, the kinds of leaks we were able to detect with this method were due to cracking of the
351 inlet or outlet on the glass flask that occurred while tightening the swagelok fittings. Another easy
352 alternative to a helium leak test is to complete a very short dry air test (methods described
353 below) where the hold-time is on the order of that requires on the order of 12-24 hours.

354 **4.1.2 Step 2: Use dry air to detect medium scale leaks**

355 Once we felt sure that there were no major leaks in our systems, we completed a dry air
356 test. The goal of this test was to catch any second order, medium-scale leaks associated with
357 either Valco valve fittings or Swagelok fittings that were under tightened. Typically, this test
358 found swagelok fittings that had been under tightened. The advantage of this kind of test is that it
359 is easy and quick to complete.

360 **Step 2A: Fill flasks with dry air**

361 To start every experiment, we filled flasks. This test started with a dry air fill. A dry air
362 fill consists of flushing flasks with air that is filtered through Drierite (which has a water vapor
363 mole fraction of less than 500 ppm), at 2 L/min for 5 minutes. With a flask volume of 650 ml,
364 this means the volume of the flask is turned over 15 times.

365 **Step 2B: Hold period**

370 Flasks were then sealed and left to sit for seven days. This time period can be adjusted by
371 other users to fit their climate or needsassembly.

372

373 **Step 2C: Measure water vapor mole fraction using dead-end pull sample introduction**

374 At the end of the seven-day period, we measured each flask using a the dead-end pull
375 sample introduction (note, italicized terms are specific methods, and are explained in greater
376 detail in supplementary material) method on a Picarro L2130 i Isotope and Gas Concentration
377 Analyzer. For this sample introduction method, the inlet to the Valco valve was sealed with a
378 1/4 inch $\frac{1}{4}$ " Swagelok cap and there was no introduction of a carrier gas. As a result, air was
379 removed from the flask based on the flow rate of the Picarro CRDS analyzer (typically 27 - 31
380 ml/min). Flasks were measured for five minutes, which resulted in \sim 150 ml of air being
381 removed from the flasks. All components within the SWISS are capable of being fully
382 evacuated. Water vapor mole fractions determined by Piccaros are not standardized, so it is impossible to know
383 for sure the exact magnitude of water vapor mole fraction change between the input analysis and the final value at
384 the end of the dry air test. However, these instruments are remarkably stable over weeks, and so the relative changes
385 observed (e.g. increase or decrease of mole fraction relative to the initial amount) are likely reliable, particularly for
386 the larger magnitude changes.

387 isotope wereIf a flask had a water vapor mole fraction of less than 500 ppm, it "passed"
388 step 2 of QA/QC.

389 If a flask had a water vapor mole fraction greater than 500 ppm, it "failed" step 2 of
390 QA/QC, and we tightened both the Swagelok connections on the flasks as well as the fittings
391 between the stainless steel tubing and the Valco valve. We found that in a low-humidity
392 environment, we needed a week to really see leaks, but this timescale would likely be shorter in
393 more humid locations. Additionally, this test could be modified based on available equipment
394 (for example, if an instrument is available to measure trace atmospheric gases, that could be used
395 instead). To ensure that SWISS units continue to operate as expected, this test should be done
396 between field deployments on every SWISS unit.

397 We repeated dry air tests on any given SWISS unit until the majority (typically at least
398 13/15) of the flasks had a passed step 2 of QA/QC. water vapor mole fraction value of less than
399 500 ppm at the end of the seven day experiment. Water vapor values from the CRDS have not
400 been independently calibrated, but relative variations are believed to be reliable.

401

402 **4.1.3 Step 3: Water vapor tests detect small scale leaks**

403 The purpose of this experiment was to mimic storage of water vapor at concentrations
404 similar to what we might expect in a soil, and for durations similar to those of our field
405 experiments. These testsexperiments were meant to test demonstrate thatwhether during field
406 experiments, flasks filled early in the sampling sequence during field deployments do not leak by
407 the time samples are returned to the lab for measurement. Additionally, these tests were used to
408 demonstrate that flasks that were filled early in the sampling sequence did not leak by the time
409 the samples were returned to the lab for measurement. For this experiment, we filled flasks were
410 filled with water vapor of known isotopic composition and water vapor mole fractionknown
411 concentration, sealed the flasks for 14 days, and then we measured the water vapor concentration
412 mole fraction and isotope values of each flask. We performed 11 water vapor tests that were
413 done across three analytical sessions using six different SWISS units. Across these three
414 sessions, we measured 164 flasks both at the start of the 14-day experiment, and at the end.

415

416 **Step 3A: Flush flasks with dry air**

417 Prior to putting any water vapor into the flasks (either in the field or in the lab), we
418 completed a dry air fill (as defined-described in QA/QC step 2A^{above}) that served to purge the
419 flasks of any prior water vapor that might exchange with the new sample.

420
421 *Step 3B: Fill flasks with water vapor and measure input isotope values*
422 To supply water vapor to the flasks, we used the vapor permeable tubing-probes that were
423 constructed identically to those deployed in the field. We immersed the probes up to the
424 connection between the vapor permeable and impermeable tubing in water, taking care to not
425 submerge the connection point and inadvertently allowing liquid water to enter the inside of the
426 vapor permeable tubing. We flushed the flasks at a rate of 150 mL/min for 30 minutes, and
427 measured the $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values and mole fraction of water vapor as each flask was filled. To
428 fill 15 flasks sequentially, the probes were submerged in water for approximately 7.5 hours.

429 Across three different measurement-sessions, we used three different waters that are used
430 as-tertiary standards in the INSTAAR SIL lab to complete these experiments: a light water made
431 from melting and filtering Rocky Mountain snow ($\sim -25.5\text{\textperthousand}$ and $-187.5\text{\textperthousand}$ VSMOW, for $\delta^{18}\text{O}$
432 and $\delta^2\text{H}$, respectively), an intermediate water that is deionized (DI) water from the University of
433 Colorado Boulder Campus ($\sim -16.2\text{\textperthousand}$ and $-120.7\text{\textperthousand}$ VSMOW for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively)
434 and a heavy water that is filtered water sourced from Florida, USA ($\sim -0.8\text{\textperthousand}$ and $-2.8\text{\textperthousand}$
435 VSMOW for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively). All secondary-tertiary lab standards are characterized
436 relative to international primary standards obtained from the International Atomic Energy
437 Agency and are reported relative to the V-SMOW/SLAP standard isotope scale. We flushed the
438 flasks at a rate of 150 mL/min for 30 minutes, and measured the $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values and mole
439 fraction of water vapor as each flask was filled. To calculate the input value, we averaged $\delta^{18}\text{O}$
440 and $\delta^2\text{H}$ values over the last three minutes of the filling period.

441 Then, we then stored the water vapor in the flasks for 14 days. At the end of the 14-day
442 storage period, we measured each flask to evaluate if the isotope composition $\delta^{18}\text{O}$ and $\delta^2\text{H}$
443 values had significantly changed over the storage period.

444
445 *Step 3C: Measure the water vapor isotope values*
446 At the end of the 14-day storage period, we measured each flask to evaluate if the isotope
447 composition had significantly changed over the storage period. To mitigate memory effects
448 between flasks, we ran dry air via the flask bypass loop (port one-1 of every Valeo valveSWISS
449 unit) for five5 minutes between each flask measurement. To verify that the impermeable tubing
450 between the SWISS and the Picarro was sufficiently dried, we waited until the water vapor
451 mixing ratio being measured by the Picarro was below 500 ppm for >30 seconds.

452 During this 5 minutefive-minute window, we used a heat gun to manually warm each
453 flask. The purpose of the heating was to help create a longer, more stable window of
454 measurement time. We believe heating the flasks creates a more stable measurement by limiting
455 water vapor bound to the glass walls of the flask and by helping to homogenize the water vapor
456 within the flask. While we did not strictly control or regulate the temperature of the flasks was
457 not strictly controlled or regulated, they were all warm to the touch.

458 Once we warmed the flask was warmed and dried the impermeable tubing dried, water
459 vapor was introduced to the CRDS using one of two methods: 1) the dead-end pull sample
460 introduction method described above, or 2) a dry air carrier gas sample introduction method.
461 During the dry air carrier gas sample introduction method, dry air is continuously flowing
462 through the flask at a rate of 27-31 mL/min for the entire 12-minute measurement period. To

463 reach a water vapor mole fraction of approximately 25,000 ppm (the optimal humidity range for
464 the Picarro L2130-i), we diluted the water vapor with dry air at a rate of 10 ml/min. Without
465 dilution, the concentration out of the flasks is as high as 35,000 - 40,000 ppm, which leads to
466 linearity effects on a Picarro L2130-i that can be challenging to correct for. The dead-end pull
467 method is preferable when the water vapor mole fraction inside the flask is low (<17,000 ppm),
468 because there is no additional introduction of dry air. The introduction of dry air decreases the
469 water vapor mole fraction throughout the measurement, and in fairly dry flasks, using the dry air
470 carrier gas method, can lower the water vapor mole fraction to below 10,000 ppm. Below 10,000
471 ppm, there are large linearity isotope effects associated with the measurement on a Picarro
472 L2130-i, and the isotope values are challenging to correct into a known reference frame, just as
473 with high water vapor mole fractions. But, the major downside of the dead-end pull method is
474 that condensation is more likely to occur forms in the stainless steel tubing that connects the flasks
475 to the Valco valve, as well as the Valco valve itself, far more commonly as compared than
476 to compared to the dry air carrier gas method. During the dry air carrier gas method, dry air is
477 continuously flowing through the flask at a rate of 27-31 ml/min for the entire 12 minute
478 measurement period. Additionally, to reach a water vapor mole fraction of approximately 25,000
479 ppm (the optimal humidity range for the CRDS Picarro L2130-i), we diluted the water vapor
480 with dry air at a rate of 10 ml/min. Without dilution, the concentration out of the flasks is as high
481 as 35,000 - 40,000 ppm, which leads, as happens under low water vapor mole fractions, to the dry
482 air to saturation issues on a Picarro L2130-i. Providing a carrier gas method prevents
483 condensation from forming in the Valco valve and tubing, and prevents fractionation that may
484 occur because of changing pressure within the flask. It is possible that during a dead-end pull on
485 the flask, that heavier isotopes may remain attached to the walls of the flask, coming off later as
486 the pressure drops. For these reasons, the dry air carrier gas sample introduction method is
487 our preferred method for sample introduction in most cases.

488 For each flask, we looked at the stability of the isotope values as well as either a stable
489 water vapor mole fraction if the dead end pull method was being used or a steady, linear decrease
490 in water vapor mole fraction if the dry air carrier gas method was being used. We looked at signal
491 stability individually, and for approximately 90% of the flasks we found that after excluding
492 the first three minutes of measurement of each flask, the subsequent three minutes were the most
493 stable and consistent. For the remaining ~10% of the flasks, using a time window that started
494 either ~30 seconds earlier or ~30 seconds later to create an average isotope value offered a more
495 stable isotope signal with smaller instrumental uncertainties. For some flasks, using either a later
496 portion of the measurement period, or slightly earlier offered a more stable signal. Any flask that
497 would benefit from required specialized individual treatment during the data reduction process
498 was flagged during measurement.

499
500 *Step 3D: Data correction*
501 During these experiments, we monitored instrument performance (e.g. i.e. drift) and
502 stability were monitored in two ways. First, to run standards identically to how samples were
503 collected, we introduced tertiary standards, described above, using vapor probes. The water
504 vapor produced by the vapor permeable probes was flushed through the SWISS unit via the flask
505 bypass loop and diluted with a 10 ml/min dry air flow to reach a water vapor mole fraction of
506 approximately 25,000 ppm before entering the Picarro. Second, we introduced using a suite of
507 four secondary standards that have been calibrated against primary standards, and reported
508 against VSMOW/SLAP four waters of known composition viat that were introduced to the CRDS

509 using a flash evaporator system, described in detail by Rozmiarek and others (2021). This flash
510 evaporator system described by Rozmiarek and others (2021) can be used to adjust the water
511 vapor mole fraction to create linearity corrections at high and low water vapor mole fractions.
512 Additionally, instrument stability was assessed by measuring water vapor of known composition
513 that was produced using the vapor probes, in a fashion that is identical to how the flasks were
514 flushed.

515 After correcting data into a common reference frame, we calculated the difference
516 between the input isotope values and the ending isotope values.

517 The results of these tests were used to carefully document flasks that do not perform well,
518 and any idiosyncrasies of SWISS units. That way, during field deployment suspicious those
519 flasks could be easily identified and investigated.

520 521 **4.2 Field suitability and Field application experiments:**

522 **4.2.1 Field suitability experiment #1: Long term field leak dry air test**

523 As a complement to the QA/QC we did under lab conditions, we also completed long
524 term dry air tests at our field sites. ThWe had three goals associated with these experiments. The
525 first epurpose of these experimentswas to demonstrate thattest whether, even under field
526 conditions, where daily temperature and relative humidity fluctuations are different than in a lab
527 setting, the flasks awre still resistant to atmospheric intrusion. Furthermore, Second, we used
528 these isleak testswas used to demonstrate thatevaluate whether the flasks that were flushed
529 with soil water vapor near the end of a sampling sequence do not taketook on an atmospheric
530 isotope composition prior to sampling. Lastly, we chose these time intervals because they
531 bracket the typical length of a deployment, which helped us determine how quickly flasks should
532 be measured after bringing a SWISS back to the lab.

533 -filled last during the sampling sequence had not taken on an atmospheric isotope
534 composition prior to sampling.

535 Like all field deployments, we started with a dry air fill, and then one SWISS unit was deployed
536 to each of our three field sites. No soil water was collected during these deployments. The
537 duration between filling the flasks with dry air to measuring the flasks was anywhere between 34
538 - 52 days. The 34 and 52 day tests were as done during June 2022 and August 2021, respectively,
539 and therefore tests the SWISS under warm summertime conditions. The 43 day test was done in
540 October 2021, which included nights where air temperatures fell below 0°C. Though the SWISS
541 is not directly exposed to the air in its deployment hole, the only barrier between air and the
542 SWISS in its deployment hole was on a plywood board, and so this deployment tested the
543 suitability of the SWISS to maintain integrity under freezing conditions. The 52 day test was
544 done in August 2021 and also tests the SWISS under warm, summertime conditions

545 546 **4.2.2. Field suitability experiment #2: Mock field tests**

547 To demonstrate thattest whether the automation code and sampling scheme we
548 proposeddeveloped worked as expected on short, observable timescales, we set up an experiment
549 to simulate field deployment of one SWISS unit (Meringue) near the University of Colorado
550 Boulder. This test usedapplied the automation components and remote power setup described in
551 the materials section. During this field-simulation experiment, our goal was to collect three
552 discrete samples each sampling period, to simulate the collection of samples-water vapor from
553 three soil depths. An important goal of this test was to at each field site. Importantly, we wanted

555 to demonstrate thatest whether the sampling scheme does not introduced significantany memory
556 effects between samples. We followed the sampling protocol described in figure 2 and table 1.
557 The day before the experiment began, all flasks were flushed with dry air as described in
558 section 4.1.2. Over the course of 25 hours, all 15 flasks were filled with three different vapors
559 according to a set schedule as would be done in the field. Two of the vapors were created by
560 immersing the water vapor permeable probes in the
561 were water vapors, created from the light water and intermediate water as described above in
562 section 4.1.3 the water vapor test section. The third was water vapor from the ambient
563 atmosphere. All three vapors were sampled using vapor permeable probes constructed identically
564 to those deployed in the field. For this experiment, we filled three flasks per cycle with each one
565 of the waters (e.g. Flask 2 = light, Flask 3 = intermediate, Flask 4 = aAtmosphere). The choice to
566 sample atmosphere alongside two waters reflects our second goal of this test, which was to
567 demonstrate that sampled water vapor isotope values do not drift towards atmospheric values
568 (Magh et al., 2022).

569 Following the sampling schedule, we stored the SWISS unit
570 For seven days, the SWISS unit was stored in a simulated field setting for seven days, while
571 the water vapor remained in the flasks. At the end of the seven days, we measured the flasks. For
572 flasks that had a high water vapor mole fraction (i.e. flasks with a higher water vapor mole
573 fraction (light and intermediate water vapor samples) we used the dry air carrier gas sample
574 introduction method were measured using the carrier gas sample introduction method. For flasks
575 that had a, whereas those with a low water vapor mole fraction (i.e. atmosphere, ~15,000 ppm)
576 we used the were measured using the dead end pull sample introduction method.

577 To create average values for each flask, we followed the same averaging protocol
578 described in section 4.1.3. We used equations 2A and 2B from Rothfuss et al., (2013) to convert
579 from water vapor to liquid values. Then, using secondary and tertiary standards, data were
580 corrected into the VSMOW data frameisotope scale. Finally, the SWISS unit offset correction
581 (detailed below in section 6.1.2) was applied.

582 **4.2.3 Full field deployment experiment Example Field Deployment: One month period**

583 We deployed one SWISS unit each to the three field sites described in summer 2022.
584 Before deployment, all SWISS units were flushed with dry air following the protocol outlined in
585 section 4.1.2. Flasks were flushed with dry air one to three days prior to field deployment.

586 At each site, we sampled at three depths (25 cm, 50 cm, and 75cm) on each sampling
587 day, following the protocol described in figure 2 and table 1. We sampled at each depth every 5
588 dayssoil water from all three depths every five days (protocol length = 25 days total). At Oglala
589 National Grassland, samples were taken every five days from 2022-06-25 to 2022-07-14. At
590 the Briggsdale, CO site samples were taken every five days between 2022-07-17 and 2022-08-
591 06. At the Seibert, CO site, samples were collected every five days between 2022-06-19 and
592 2022-07-04.

593 At the end of a 28-day period, the SWISS units were returned to the lab, and measured.
594 SWISS units were measured within five days of returning from the field. The maximum number
595 of days a flask held sample water vapor during these deployments was 32 days. The
596 measurement protocol and data reduction averaging protocol follows the procedures described in
597 the water vapor QA/QC test section above section 4.1.3. The data correction scheme follows as in
598 the section above 4.2.2.

601 **5 Results**

602 **5.1 QA/QC Results**

603 **5.1.1 Dry air test**

604 Figure 3 shows the results of a seven-day dry air test for three SWISS units (marked by
605 the ~~box-unit~~ name) (SI Table 3). For all three SWISS units, at least 13/15 of the flasks
606 maintained a water vapor mole fraction value of less than 500 ppm over the seven-day period. In
607 two of the three SWISS units (Lindt and Raclette), the water vapor mole fraction for flasks was
608 randomly distributed around approximately 350 ppm. In Toblerone there was a systematic
609 decrease in water vapor mole fraction from flask ~~two2~~ through flask 16, matching the order in
610 which the flasks were filled with dry air initially. In ~~both all three Lindt and Toblerone SWISS~~
611 ~~units, flask two2 had the highest water vapor mole fraction of all the flasks. Supplemental figure~~
612 ~~2 shows the results of successive dry air tests on the SWISS unit Toblerone where Swagelok~~
613 ~~fittings were tightened between tests. There was a significant decrease in measured water vapor~~
614 ~~mole fraction for many flasks, but particularly for flasks 10 and 11 as a result of tightening the~~
615 ~~fittings.~~

616 Short Dry Air Test (7 Days)

617 Short Dry Air Test (7 Days)

618
619 Figure 3. Results of a dry air test from three different SWISS units named: Lindt, Raclette and Toblerone. The majority
620 of the flasks maintain a water vapor mixing ratio of less than 500 ppm.

621 **5.1.2. Water vapor test**

622 In panels a and b of figures 4 and 5, we show the results of 11 different water vapor tests
623 performed across three analytical sessions using 6 different SWISS units. This dataset includes
624 water-vapor tests using three different water vapors (light, intermediate and heavy) and uses both
625 the dead-end pull and dry-air carrier gas methods to introduce water vapor to the CRDS. Across
626 these three sessions, we measured 164 flasks while filling them with water vapor and at the end
627 of the two week hold period. After correcting for instrument drift, we calculated the difference
628 between the starting and end values to assess drift in water vapor isotope values due to leaking or
629 other measurement bias.

630 Figure 4 shows the $\delta^{18}\text{O}$ results of 11 water vapor tests performed using six different
631 SWISS units. Ideally, we expect a normal distribution centered about 0 within the uncertainty
632 limits of the water vapor probes (Oerter et al., 2016). For $\delta^{18}\text{O}$, the mean difference between the
633 start and end values for the flasks is 1.1‰ with a standard deviation of 0.72‰ (outliers
634 removed). There is a consistent positive offset, with a few clear outliers (Fig. 4A). We do not
635 observe a consistent difference between water vapor sample introduction methods
636 (Supp. Fig. 32). After removing outliers ($< Q1 - 1.5 \times \text{IQR}$ or $> Q3 + 1.5 \times \text{IQR}$, $n = 15$)
637 from the dataset, we compared the kernel density estimate shape to a normal distribution
638 calculated from the mean and standard deviation of the dataset to assess dataset normality (Fig.
639 4B). A normal distribution slightly overestimates the center of the data, but captures the overall
640 shape fairly well. Therefore, we used the median offset (1.0‰) to correct our water vapor isotope
641 values, and used the interquartile range of the dataset (outliers removed) to estimate uncertainty
642 of the SWISS as $\pm 0.9\text{‰}$. In figure 5C, for simplicity, we just present the results from 45 flasks
643 (three SWISS units), with the 1.0‰ offset correction applied. After correction, data are randomly
644 distributed about 0, and are within the uncertainty range of $\pm 0.9\text{‰}$ (Supp. Table 4).

645 Figure 5 shows the $\delta^2\text{H}$ results of 11 water vapor tests. For $\delta^2\text{H}$, the mean difference
646 between the start and end values is 2.63‰ with a standard deviation of 2.85‰ (outliers
647 removed). Similarly to $\delta^{18}\text{O}$, we ideally expected a normal distribution of differences centered
648 around 0. As with $\delta^{18}\text{O}$, there was a consistent positive offset with some outliers (i.e., $< Q1 - 1.5 \times \text{IQR}$ or $> Q3 + 1.5 \times \text{IQR}$) (Fig. 5A). After removing outliers ($n = 26$) from the dataset, we
649 compared the kernel density estimate to a normal distribution calculated from the mean and
650 standard deviation of the dataset to assess dataset normality (Fig. 5B). As for with $\delta^{18}\text{O}$, the
651 center of the dataset is overestimated by the mean, but the overall peak shape is roughly
652 captured. We therefore use the median value of 2.3‰ as an offset correction, and estimate
653 uncertainty at $\pm 3.7\text{‰}$ for $\delta^2\text{H}$ from the interquartile range. In figure 5C, we present the results
654 from 45 flasks (three SWISS units), with the 2.3‰ offset correction applied. Data are randomly
655 distributed about 0, and are within the uncertainty range of $\pm 3.7\text{‰}$ (Supp. Table 4).

656 When we compared the results in figures 4C and 5C, we found that flasks that performed
657 adequately in oxygen isotope space for $\delta^{18}\text{O}$ did not always perform adequately in hydrogen
658 isotope space for $\delta^2\text{H}$. The results from the SWISS unit Lindt display this trend behavior
659 particularly well. Less commonly, some flasks that were within uncertainty of the system for
660 hydrogen isotope values $\delta^2\text{H}$ were not within uncertainty of the system in oxygen isotope
661 values for $\delta^{18}\text{O}$, like flask 8 in the SWISS unit Toblerone (Figs. 4C, 5C). In a dual isotope

664 plot, there is a strong positive correlation between $\delta^2\text{H}$ and $\delta^{18}\text{O}$ with a slope of 3.14 and an R^2
665 value of 0.62 (Supplemental Fig. 4).

666

667 5.2 Field suitability and field deployment experiment results

668

669 5.2.1. Dry air test

670 Figure 6A shows the result of placing SWISS units that were flushed with dry air out into
671 field conditions over the course of 34–52 days (SI Table 3). We chose these time intervals
672 because they bracket the typical length of a deployment, which helped us determine how quickly
673 flasks should be measured after bringing a SWISS back to the lab. At the timescale of 34–43
674 days, 13 of the 15 flasks typically maintained a water vapor mole fraction of less than 1000 ppm.
675 At the timescale of 52 days, eight of the 15 flasks had a water vapor mole fraction between 1000
676 –2500 ppm, and the remaining seven flasks had a water vapor mole fraction of less than 1000
677 ppm. Given that these tests were completed with different SWISS units, these data also include
678 some of the inter-unit variability.

679
680

681
682

684
685
686
687
688
689
690
691
692
693
694
695
696

Figure 4. $\text{d}18\delta^{18}\text{O}$ Results of the water vapor tests. A) Boxplot of the difference between the starting $\delta^{18}\text{O}$ value and the final $\delta^{18}\text{O}$ value of all 164 flasks. B) After removing the outliers from the dataset, the kernel density estimate (black line) and the normal distribution calculated from the dataset (dashed green) are shown. C) After applying the offset correction of 1.0‰, the difference between the starting $\delta^{18}\text{O}$ value and the final $\delta^{18}\text{O}$ value for three boxes from the August 2022 session are shown. An uncertainty of $\pm 0.9\text{\textperthousand}$ is marked with a dashed line, and data points that fall outside that uncertainty are colored red.

697
698
699
700
701
702
703
704
705

Figure 5. $\delta^2\text{H}$ Pd ^2H results of the water vapor tests A) Boxplot of the difference between the starting $\delta^2\text{H}$ value and the final $\delta^2\text{H}$ value of all 164 flasks. B) After removing the outliers from the dataset, the kernel density estimate (black line) and the normal distribution calculated from the dataset (dashed green) are shown. C) The difference between the starting $\delta^2\text{H}$ value and the final $\delta^2\text{H}$ value for three boxes from the August 2022 session are shown after applying the offset correction of $\pm 2.3\%$. An uncertainty of $\pm 3.7\%$ is marked with a dashed line, and data points that fall outside that uncertainty are colored red.

729 **5.2 Field suitability test and field deployment experiment results**
730

731 **5.2.1 Dry air test**

732 Figure 6A shows the result of placing three different SWISS units, that were flushed with
733 dry air, out into the field-conditions over the course offor 34 - 52 days (SI Table 3). This
734 timescale (4-6 weeks) is similar to most field deployments. We chose these time intervals
735 because they bracket the typical length of a deployment, which helped us determine how quickly
736 flasks should be measured after bringing a SWISS back to the lab. At the timescale of 34 - 43
737 days, 13 of the 15 flasks typically maintained a water vapor mole fraction of less than 1000 ppm.
738 At the timescale of 52 days, eight of the 15 flasks had a water vapor mole fraction between 1000
739 - 2500 ppm, and the remaining seven flasks had a water vapor mole fraction of less than 1000
740 ppm. Given that these tests were completed with different SWISS units, these data also include
741 some of the inter-unit variability. Over the 52 days, seven flasks maintained a water vapor mole
742 fraction less than 1000 ppm and the remaining 8 had a water vapor mole fraction between 1000 -
743 2500 ppm.

744 **5.2.2 Automation test**

745 Figure 6B shows the results of using the automation code to collect and store water vapor
746 of known composition for seven days (Table 2). In both plots, the known values of the water are
747 shown as a long-dash line. Uncertainty on those measurements is estimated at $\pm 0.5\%$ and $\pm 2.4\%$
748 for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively (Oerter et al., 2016), shown as the dotted lines. We estimated the
749 isotope value of the atmosphere at the time of sampling with water vapor mole fraction, $\delta^{18}\text{O}$,
750 and $\delta^2\text{H}$ data from the CRDS in the lab. The isotope value, that was corrected as described in
751 section 4.2.2, of each flask is shown, with uncertainty associated with the SWISS units estimated
752 at $\pm 0.9\%$ and $\pm 3.7\%$ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively.

753 Seven of the nine flasks filled with flash-evaporated water vapor overlap within
754 uncertainty of the known $\delta^{18}\text{O}$ value for those standards (top plot, Fig. 6B), and four of the five
755 flasks filled with atmospheric vapor overlap within uncertainty of our estimated $\delta^{18}\text{O}$ value.
756 Flasks that fall outside of the bounds of uncertainty have lower $\delta^{18}\text{O}$ values than the expected
757 value. For $\delta^2\text{H}$, (bottom plot, Fig. 6B) only three of the nine flasks filled with flash-evaporated
758 water vapor overlap within uncertainty of the known value of those standards, while four of the
759 five flasks filled with atmospheric vapor overlap within uncertainty of the estimated $\delta^2\text{H}$ value.
760 Flasks that fall outside of the bounds of uncertainty have higher $\delta^2\text{H}$ values than the expected
761 value.

763

Table 2. Results of the Automation test

SWISS	Flask	water	$\delta^{18}\text{O}$ (‰)	$\delta^2\text{H}$ (‰)
Meringue	2	DI	-14.4	-122.2
Meringue	3	Atmosphere	-10.1	-105.6
Meringue	4	Light	-24.6	-193.7
Meringue	5	DI	-15.0	-130.8
Meringue	6	Atmosphere	-9.4	-103.4
Meringue	7	Light	-25.1	-201.5
Meringue	8	DI	-17.3	-140.5
Meringue	9	Atmosphere	-9.1	-98.4
Meringue	10	Light	-23.7	-200.7
Meringue	11	DI	-14.1	-122.5
Meringue	12	Atmosphere	-8.7	-94.5
Meringue	13	Light	-22.7	-181.2
Meringue	14	DI	-15.2	-120.5
Meringue	15	Atmosphere	-9.2	-101.1
Meringue	16	Light	-23.3	-192.9

764
765

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

Figure 6. A) Results from three different field-based long dry air tests. B) Results from the automation field suitability tests using the SWISS unit named Meringue. Flasks that sampled atmosphere are shown in blue, flasks that sampled deionized water (DI) are shown in pink, and flasks that sampled the light water are shown in yellow. The top plot shows the $\delta^{18}\text{O}$ results, and the bottom plot shows the $\delta^2\text{H}$ results.

813

814

815

816

817

818

819

820

821

822

5.2.2. Automation test

Figure 6B shows the result of using the automation code to collect and store water vapor of known composition for seven days (Table 2). In both plots, the known values of the water are shown as a long-dash line. Uncertainty on those measurements is estimated at 0.5‰ and 2.4‰ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$ respectively (Oerter et al., 2016), shown as the dotted lines. We estimated the isotope value of the atmosphere at the time of sampling with data from the CRDS in the lab. The corrected isotope value of each flask is shown, with uncertainty associated with the SWISS units estimated at 0.9‰ and 3.7‰ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively.

Seven of the nine flasks filled with water vapor overlap within uncertainty of the known $\delta^{18}\text{O}$ value for those standards (top plot, Fig. 6B), and four of the five flasks filled with atmospheric vapor overlap within uncertainty of our estimated $\delta^{18}\text{O}$ value. Flasks that fall outside of the bounds of uncertainty tend to have lower $\delta^{18}\text{O}$ values than the expected value. For $\delta^2\text{H}$, (bottom plot, Fig. 6B) only three of the nine flasks filled with water vapor overlap within uncertainty of the known value of those standards, while four of the five flasks filled with atmospheric vapor overlap within uncertainty of the estimated $\delta^2\text{H}$ value. Flasks that fall outside of the bounds of uncertainty typically have higher $\delta^2\text{H}$ values than the expected value.

SWISS	Flask	water	$\delta^{18}\text{O}$ (‰)	$\delta^2\text{H}$ (‰)
Meringue	2	DI	-14.4	-122.2
Meringue	3	Atmosphere	-10.1	-105.6
Meringue	4	Light	-24.6	-193.7
Meringue	5	DI	-15.0	-130.8
Meringue	6	Atmosphere	-9.4	-103.4
Meringue	7	Light	-25.1	-201.5
Meringue	8	DI	-17.3	-140.5
Meringue	9	Atmosphere	-9.1	-98.4
Meringue	10	Light	-23.7	-200.7
Meringue	11	DI	-14.1	-122.5
Meringue	12	Atmosphere	-8.7	-94.5
Meringue	13	Light	-22.7	-181.2
Meringue	14	DI	-15.2	-120.5
Meringue	15	Atmosphere	-9.2	-101.1
Meringue	16	Light	-23.3	-192.9

Table 2. Results of the Automation test

841 **5.2.3 Example Field deployment results**

842 Figure 7 shows the results from three field deployments in Oglala National Grassland,
843 Nebraska; Briggsdale, Colorado; and Seibert, Colorado (table 3).

Figure 7. Results from all three field deployments to A) Oglala National Grassland, NE, B) Briggsdale, CO and C) Seibert, CO. Note, the y-axis scale for all three plots is different.

There are 15 samples from Oglala National Grassland (Fig. 7A, Table 3); five from 25 cm depth, five from 50 cm depth and five from 75 cm depth. Samples were taken approximately every five days from 2022-06-25 to 2022-07-14. Four of the five samples from 25 cm overlap within uncertainty in $\delta^{18}\text{O}$ value, and all five samples overlap with uncertainty in $\delta^2\text{H}$ value. There is a significant decrease in the $\delta^{18}\text{O}$ value at 25 cm between 2022-06-25 and 2022-06-29. There is no similar shift in $\delta^2\text{H}$ value over the same time period. The first three samples from 50 cm overlap in both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values, then the final two samples driftshift to higher isotope values. All five samples from 75 cm overlap in $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values. Similar to the samples from 50 cm, there is a trend towards higher $\delta^2\text{H}$ values for the last three samples. All five samples from 75 cm overlap in $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values. On a dual isotope plot, data from 50 cm and 75 cm cluster together at lower values, and while the Overall, $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values from 25 cm are significantly higher (Figs. 7A, 8A) than the values from 50 and 75 cm depth. All of the data overlap within uncertainty with the global meteoric water line, except for the 25 cm depth sample from 2022-06-25 (Fig. 8A). The calculated D-excess values all overlap all within uncertainty of, and with 10% and each other between 2022-06-29 and 2022-07-14 (Fig. 8B), except for t. The 25 cm depth sample from 2022-06-25, which has a D-excess value of -6.6‰, consistent with evaporative enrichment of soil water at that depth and time. Generally, samples from 50 cm depth have lower $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values than samples from 75 cm depth.

Figure 8. Results from the Oglala National Grassland, NE field site. A) $\delta^2\text{H}$ vs. $\delta^{18}\text{O}$, where the dashed line is the global meteoric water line. The shapes for the different depths sampled matches figure 7, and the color of the points is the date on which the soil water was sampled B) A plot of d-excess. Note, both the color and shape match figure 7.

875 There are 10 samples from Briggsdale, CO (Fig. 7B, Table 3); five samples each are
876 from avapor probes buried at 50 cm depth and five samples are from a vapor probe buried at and
877 75 cm depth. Data from 25 cm at Briggsdale, CO were excluded because the water vapor mole
878 fractions from all of the flasks with samples at this depth had were extremely low water vapor
879 mole fractions (<13,000 ppm). We excluded these data because these samples are associated
880 with a very dry soil (VWC < 0.05), and so it is not clear how much sampling gas (N₂) is
881 injected into the soil using the vapor permeable tubing under very dry conditions (Quade et al.,
882 2019), and therefore how representative these isotope data are of soil water. Moreover, below
883 13,000 ppm there are large linearity effects on a Picarro L2130-i, and it is very challenging to
884 correct those data if they were measured using the dry-air carrier sample introduction method.
885 those data may either represent atmosphere or soil gas from an extremely dry soil. Samples were
886 taken every five days between 2022-07-17 and 2022-08-06. While all samples overlap within
887 uncertainty in for both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values, however the absolute values of samples from 50 cm
888 are clearly consistently offset to higher values for both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ as compared to samples
889 from 75 cm.

890 There are 128 samples from Seibert, CO (Fig. 7C, Table 3); four samples are from a
891 vapor probe buried at 25 cm depth and four samples are from a vapor probe buried at 50 cm
892 depth from each sampling depth (25, 50 and 75 cm). Samples collected from 75 cm depth at
893 Seibert, CO were discarded because there were significant problems with condensation while
894 measuring these flasks, and so all data were considered spurious. Samples were collected every
895 five days between 2022-06-19 and 2022-07-04. At 25 cm depth, $\delta^{18}\text{O}$ values of three of the four
896 samples overlap within uncertainty, while the 25 cm sample from 2022-06-29 that does not
897 overlap has a higher $\delta^{18}\text{O}$ value than the other three samples. At 25 cm depth, $\delta^2\text{H}$ values
898 overlap within uncertainty for all four samples. At 50 cm depth, there is a steady decrease in
899 $\delta^{18}\text{O}$ value over the sampling period, while $\delta^2\text{H}$ values for all four samples remain steady. All
900 samples from 50 cm depth and overlap within uncertainty. At 75 cm depth, samples have a very
901 large range of $\delta^{18}\text{O}$ values between -8.5‰ and 7.4‰, and $\delta^2\text{H}$ values range between -55.7‰ and
902 15.1‰. Almost all of the samples from 75 cm depth were associated with condensation in the
903 sample introduction lines during measurement.

Table 3. Results from the three field deployments of SWISS.

Site	Date	Sample Depth (cm)	Flask	T (°C)	$\delta^{18}\text{O}$ (‰)	$\delta^{18}\text{O}$ (‰) Analytical Error	$\delta^2\text{H}$ (‰)	$\delta^2\text{H}$ (‰) Analytical Error
Briggsdale	2022-07-17	50	3	25.1	-10.8	0.2	-65.6	0.6
Briggsdale	2022-07-17	75	4	23	-12.1	0.2	-69	0.7
Briggsdale	2022-07-22	50	6	25.9	-10.7	0.3	-67.1	0.7
Briggsdale	2022-07-22	75	7	23.6	-11.9	0.2	-69	0.6
Briggsdale	2022-07-27	50	9	24.3	-10.4	0.3	-65.6	0.6
Briggsdale	2022-07-27	75	10	23	-11.5	0.2	-67.6	0.7
Briggsdale	2022-08-01	50	12	23.4	-10.7	0.2	-67	0.7
Briggsdale	2022-08-01	75	13	22.4	-12.0	0.2	-69.1	0.7
Briggsdale	2022-08-06	50	15	24	-10.5	0.2	-65	0.6
Briggsdale	2022-08-06	75	16	22.9	-12.1	0.2	-68.8	0.7
Seibert	2022-06-19	25	2	24.2	-8.3	0.2	-59.8	0.6
Seibert	2022-06-19	50	3	22	-7.8	0.2	-57.8	0.6
Seibert	2022-06-19	75	4	19.4	7.4	0.2	-7.6	0.7
Seibert	2022-06-24	25	5	24	-8.7	0.2	-58.7	0.7
Seibert	2022-06-24	50	6	22.2	-7.9	0.2	-56.7	0.7
Seibert	2022-06-24	75	7	20.5	4.9	0.2	15.1	0.6
Seibert	2022-06-29	25	8	23.2	-7.4	0.2	-56.9	0.6
Seibert	2022-06-29	50	9	21.8	-9.1	0.2	-56.7	0.7
Seibert	2022-06-29	75	10	21	-5.6	0.2	-42.1	0.6
Seibert	2022-07-04	25	11	25	-8.7	0.2	-60.6	0.7
Seibert	2022-07-04	50	12	23.3	-9.9	0.2	-58.8	0.6
Seibert	2022-07-04	75	13	21.5	-8.5	0.2	-55.7	0.7
Oglala Ntl. Grassland	2022-06-25	25	2	23.0	-11.8	0.2	-101	0.7
Oglala Ntl. Grassland	2022-06-25	50	3	22.8	-16.7	0.2	-119.3	0.7
Oglala Ntl. Grassland	2022-06-25	75	4	21.5	-15.3	0.2	-115.5	0.8
Oglala Ntl. Grassland	2022-06-29	25	5	25.0	-14	0.2	-106.2	0.7
Oglala Ntl. Grassland	2022-06-29	50	6	22.8	-16.7	0.2	-120.6	0.7
Oglala Ntl. Grassland	2022-06-29	75	7	21.3	-15.8	0.2	-115.2	0.7
Oglala Ntl. Grassland	2022-07-04	25	8	25.0	-14	0.2	-102.2	0.7
Oglala Ntl. Grassland	2022-07-04	50	9	23.0	-16.8	0.2	-118.3	0.6
Oglala Ntl. Grassland	2022-07-04	75	10	22.0	-15.5	0.2	-114.7	0.6
Oglala Ntl. Grassland	2022-07-09	25	11	23.0	-14.1	0.2	-102.6	0.6
Oglala Ntl. Grassland	2022-07-09	50	12	22.8	-15.7	0.2	-116.4	0.7
Oglala Ntl. Grassland	2022-07-09	75	13	22.0	-15.7	0.2	-113.2	0.6
Oglala Ntl. Grassland	2022-07-14	25	14	23.0	-13.1	0.2	-99	0.6
Oglala Ntl. Grassland	2022-07-14	50	15	22.8	-14.9	0.3	-112.8	0.7
Oglala Ntl. Grassland	2022-07-14	75	16	22.0	-15.3	0.2	-111.2	0.7

908

909

6. Discussion

910

6.1 QA/QC and field suitability tests

911

6.1.1 Dry Air tests

912 In Colorado, where these tests were completed, the ambient atmosphere during the
 913 summertime typically sits at a water vapor mole fraction between 10,000 - 20,000 ppm, and in
 914 winter the water vapor mole fraction can drop as low as 4000 ppm. If the flasks had been slowly
 915 equilibrating with the atmosphere, the flasks would have drifted to much higher water vapor
 916 molar fractions. If the flasks did not drift towards higher water vapor mole fractions, we felt
 917 confident that the flasks are resistant to atmospheric intrusion after they have been flushed with
 918 dry air. We chose a timescale of seven days for the dry air tests because we found that in a low-
 919 humidity environment, seven days was enough time to meaningfully observe leaks, while being a
 920 short enough timescale to be able to continue to work through the QA/QC process efficiently.
 921 For example, in supplemental figure 4, we show the results of two sequential dry air tests on the
 922 SWISS unit Toblerone (supplemental figure 24). We show that it is possible to
 923 drastically reduce leaks that allow ambient water vapor in the air from intruding into the flasks
 924 by tightening and/or replacing problematic fittings (both those attached to the glass flasks and
 925 those on the Valco valve) and in some cases the glass flask itself. During the final seven-day
 926 dry air tests, the most flasks were able to maintained a water vapor mole fraction typically less
 927 than 400 ppm, and all flasks maintained a water vapor mole fraction of less than 700 ppm (Fig.
 928 34). In Colorado, the ambient atmosphere during the summertime typically sits at a water vapor
 929 mole fraction between 10,000 - 20,000 ppm, and in winter the water vapor mole fraction can
 930 drop as low as 4000 ppm.

931 Across all of the SWISS units, there is a bias towards a higher water vapor mole fraction
 932 for the first flask that is measured (port one on every valve is the flask bypass loop, so the first
 933 flask is flask two), which suggests a methodological source of higher water vapor concentration
 934 rather than an issue with Swagelok fitting tightness problems. There are two potential sources of
 935 for this issue. First, it is possible that not all of the atmospheric water vapor was flushed from the
 936 line that connects to the CRDS prior to the start of the measurements, but by the time the second
 937 flask is measured, the lines between the SWISS and CRDS have been sufficiently flushed, and so
 938 there is creating bias in the first flask measured. But, by the second flask, the lines between the
 939 SWISS and CRDS have been sufficiently flushed. This hypothesis could be tested by taking care
 940 to flushing all of the gas lines with dry air until the water vapor mixing ratio is below 200
 941 ppm to progressively lower water vapor mixing ratios prior to measuring any flasks, to see what
 942 minimum ratio is required to eliminate this bias. Lab protocols can then be adjusted to flush all
 943 gas lines to this level. Similarly, it is possible that during the filling phase, not all of the
 944 atmospheric vapor has been flushed out of the Drierite system before starting the fill process.
 945 This hypothesis is supported by the systematic decrease in water vapor mole fraction across
 946 flasks in the Toblerone unit (Fig. 3, right panel). As a result of these biases, we now flush the
 947 Drierite for at minimum 30 minutes prior to the start of the experiment.

948 This shows we can reduce the leakiness of the flasks. In addition to testing the overall
 949 leakiness, the dry air test is also provided an easy useful baseline test that from which allowed us
 950 to test building materials. For example, in supplemental figure 5, we show the results of
 951 sequential seven day and 27-day dry air tests where we replaced stainless steel tubing and fittings

Commented [KS1]: this seems useful to put earlier in the paragraph, as an expectation statement of what we are trying to prevent happening.

Commented [REH2R1]: Help

952 with PTFE Swagelok fittings with 1/8 inch PTFE tubing. We thought that PTFE fittings would
953 be advantageous because they are much easier to install and are significantly lighter, and would
954 therefore be helpful when there are weight constraints. However, based on the very limited
955 testing we did, PTFE fittings and tubing *may be* sufficient to store water for up to a single week,
956 but on longer timescales (e.g. 27 days) we observed greater exchange and leaking than with the
957 stainless steel fittings. We encourage any future user using this modification to rigorously test
958 these fittings on a timescale appropriate for their application.

959 We found that in a low-humidity environment, we needed a week to really see leaks, but
960 this timescale would likely be shorter in more humid locations. If the flasks allowed in a
961 significant amount of atmosphere, the flasks would have had much higher water vapor molar
962 fractions. This suggests that the system is resistant to atmospheric intrusion.

963 There seems to be a systemic bias towards a high water vapor mole fraction for the first
964 flask that is measured (flask 2). There are two potential analytical sources of this. First, its
965 possible that during the filling phase, not all of the atmospheric vapor has been flushed out of the
966 system before starting the fill process. Similarly, it is possible that not all of the atmospheric
967 water vapor was flushed from the line that connects to the CRDS prior to the start of the
968 measurements.

969 6.1.2 Water vapor tests

970 Our initial goal with the water vapor tests was to show that the measured
971 water vapor isotope values at the end of the two-week holding period were normally distributed
972 about 0 within the uncertainty limits of the water vapor probes (Oerter et al., 2016). This was a
973 reasonable goal given the similarities in probe set-up and the plumbing design between the
974 SWISS and the IsoWagon system. But, the most salient result of the water vapor tests is that
975 there is a consistent positive offset between the input isotope values and the isotope values
976 measured at the end of the two-week experiments (Figs 4B, 5B). The positive offset in both $\delta^{18}\text{O}$
977 and $\delta^2\text{H}$ values is consistent across 11 different tests, using six different SWISS and three
978 different input water isotope values.

979 The in-lab water vapor tests served three functions: 1) they allowed us to test the best method for
980 measuring soil water vapor at fairly high water vapor mole fractions that might be representative
981 of field conditions (i.e. > 25,000 ppm), 2) to test if there is any systemic bias introduced through
982 the building materials or measurement schema, and, 3) test whether soil water vapor samples can
983 yield reliable stable isotope values.

984 We completed 11 water vapor tests using 6 SWISS units and three analytical sessions, resulting
985 in 164 measurements of water vapor. Across the three analytical sessions, three waters with
986 different isotopic compositions were used to produce water vapor (1 heavy, 1 intermediate, and 1
987 light). If there was alteration of original values due to leaky flasks, we might expect the $\delta^{18}\text{O}$ and
988 $\delta^2\text{H}$ values to converge on the $\delta^{18}\text{O}$ and $\delta^2\text{H}$ value of the atmosphere. For example, we might
989 expect water vapor from the light water test to have the most significant change in isotope value,
990 towards that of the ambient atmosphere. *Instead, the*
991 *Figures 4 and 5 demonstrate that there is a consistent offset in both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ of the water*
992 *vapor from the start of storage to the end for all three analytical sessions. After removing outliers*
993 *from the dataset, there remains a consistent bias across all SWISS boxes and analytical sessions*
994 *(Figs 5B, 6B). The consistency across >135 flasks, different starting water vapor isotope values,*
995 *sample introduction methods, and multiple analytical sessions suggests that this difference is a*
996 *function of the storage and measurement process. Additionally, in particular, the normality of the*

998 distribution suggests whatever the origin of the offset is, that there is a systematic bias that we
999 can reliably correct for.

1000 1001 *6.1.2.1 Offset correction*

1002 To correct our data create anfor this offset-correction, wWe chose to use the median value
1003 as an offset correction overrather than the mean of the normal distribution, because the median is
1004 not biased by major outlier isotope values that reflect abnormal values that go beyond analytical
1005 noise, such as a slow but major leak that changes the values far beyond the basic offset seen in
1006 the dataset. The calculated average offset is 1.0‰ and 2.6‰ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively.
1007 After applying these values as an offset correction to the data, the most flasks also fall within the
1008 uncertainty of the water vapor permeable probes ($\delta^{18}\text{O} = \pm 0.5\text{‰}$ and $\delta^2\text{H} = \pm 2.4\text{‰}$, Oerter et al.,
1009 2016), and the values are distributed about 0 (Figs. 4C, 5C).

1010 However, the uncertainty of the SWISS system-overall is higher than that of the probes
1011 alone. Based on the results of the water vapor tests, we estimate the uncertainty of the SWISS at
1012 $\pm 0.9\text{‰}$ and $\pm 3.7\text{‰}$ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively using the interquartile range (IQR) of the
1013 water vapor test results after removing outliers from the dataset. We prefer the IQR over the
1014 calculated standard deviation of the normal distribution, because IQR is not biased by outlier
1015 values. This level of uncertainty is large relative to other methods, but is sufficient for many
1016 critical zone applications, given the magnitude of seasonal variability in the top ~50 cm of a soil
1017 profile that can be observed in natural systems (e.g. Oerter et al., 2017; Quade et al., 2019). We
1018 also expect that uncertainties will decreaseIn the future, this uncertainty estimate can be
1019 improved both by with furtherfuture lab-based or near research facility testing and by comparing
1020 the SWISS against other soil water extraction methods.

1021 The relationship between $\delta^2\text{H}$ values and $\delta^{18}\text{O}$ values in a dual-isotope plot gives us
1022 someprovides insight into the mechanism driving the offset-correction. Without an offset
1023 correction applied, the slope of the relationship between $\delta^2\text{H}$ and $\delta^{18}\text{O}$ is 3.14 ($R^2 = 0.62$)
1024 (Supplemental Fig. 4). This slope is only slightly higher than evaporation under pure diffusion
1025 (Gonfiantini et al., 2018). This suggests that the offset correction is likely driven by diffusion and
1026 will likely vary according to climate of the lab. For example, in a dry climate like Colorado, the
1027 water vapor concentration in the flask is significantly higher than the atmosphere, creating a
1028 larger diffusive gradient potential than for a lab in a more humid climate. We therefore, strongly
1029 encourage future users to test their SWISS under climate conditions appropriate similar for their
1030 applications. Further, we encourage users who might use the SWISS as part of a tracer study that
1031 uses labeled heavy water to test the SWISS with labeled waters prior to their field experiments to
1032 verify reliability.

1033
1034 *In figures 5C and 6C, we show the results of 3 water vapor tests from the August 2022 analytical
1035 session, with an offset correction applied. 43 of the 45 measured flasks faithfully retained the
1036 starting $\delta^{18}\text{O}$ value of the water vapor, and 37 of the 45 measured flasks faithfully retained the
1037 starting $\delta^2\text{H}$ value of the water vapor. Additionally, after the offset correction was applied, most
1038 flasks also fall within the uncertainty of the water vapor permeable probes ($\delta^{18}\text{O} = 0.5\text{‰}$ and
1039 $\delta^2\text{H} = 6.1.2.2$ Comparing sample introduction methods 2.4‰).*

1040 Supplemental figure 6 shows a kernel density estimate plot of the results from two water
1041 vapor test sessions, with the offset correction applied. During the March 2022 session, flasks
1042 were measured using the dead-end pull sample introduction method and during the August 2022
1043 session, flasks were measured using the dry air carrier gas sample introduction method. There is

1044 no significant difference in the measured difference between the two sample introduction
1045 methods. WThat said, we prefer the dry air carrier gas method, because it is far simpler to control
1046 the water vapor mixing ratio, and optimize the concentration to be around 25,000 ppm, which is
1047 the concentration at which the Picarro L2130-*i* is most reliable. The dry air carrier gas method
1048 also makes it ~~far~~ easier to control for and monitor for condensation in the stainless-steel tubing
1049 and vapor impermeable tubing, which can bias a measurement.
1050
1051

Site	Date	Sample Depth (cm)	Flask	T	$\delta^{18}\text{O}$ (‰)	$\delta^{18}\text{O}$ (‰) Analytical Error	$\delta^2\text{H}$ (‰)	$\delta^2\text{H}$ (‰) Analytical Error	
Briggsdale	7/17/22	2	50	3	23	-10.6	0.2	-63.4	0.6
Briggsdale	7/17/22	2	75	4	23	-12.1	0.2	-69	0.7
Briggsdale	7/22/22	2	50	6	23	-10.5	0.3	-64	0.7
Briggsdale	7/22/22	2	75	7	23	-11.8	0.2	-68.3	0.6
Briggsdale	7/27/22	2	50	9	23	-10.3	0.3	-64.3	0.6
Briggsdale	7/27/22	2	75	10	23	-11.5	0.2	-67.6	0.7
Briggsdale	8/1/22	50	12	23	-10.7	0.2	-66.6	0.7	
Briggsdale	8/1/22	75	13	23	-12	0.2	-69.7	0.7	
Briggsdale	8/6/22	50	15	23	-10.4	0.2	-63.9	0.6	
Briggsdale	8/6/22	75	16	23	-12.1	0.2	-68.9	0.7	
Seibert	6/19/22	2	25	2	23	-8.2	0.2	-58.6	0.6
Seibert	6/19/22	2	50	3	23	-7.9	0.2	-58.8	0.6
Seibert	6/24/22	2	25	5	23	-8.6	0.2	-57.6	0.7
Seibert	6/24/22	2	50	6	23	-8	0.2	-57.5	0.7
Seibert	6/29/22	2	25	8	23	-7.4	0.2	-56.7	0.6
Seibert	6/29/22	2	50	9	23	-9.2	0.2	-58	0.7
Seibert	7/4/22	25	11	23	-8.6	0.2	-58.6	0.7	
Seibert	7/4/22	50	12	23	-9.9	0.2	-58.5	0.6	
Oglala Ntl. Grassland	6/25/22	2	25	2	23	-11.8	0.2	-101.0	0.7
Oglala Ntl. Grassland	6/25/22	2	50	3	8	-16.7	0.2	-119.3	0.7
Oglala Ntl. Grassland	6/25/22	2	75	4	5	-15.3	0.2	-115.5	0.8
Oglala Ntl. Grassland	6/29/22	2	25	5	25	-14.0	0.2	-106.2	0.7
Oglala Ntl. Grassland	6/29/22	2	50	6	22	-16.7	0.2	-120.6	0.7

Oglala Ntl. Grassland	6/29/22 2	75	7	21. 3	-15.8	0.2	-115.2	0.7
Oglala Ntl. Grassland	7/4/22 25	8	25	-14.0	0.2	-102.2	0.7	
Oglala Ntl. Grassland	7/4/22 50	9	23	-16.8	0.2	-118.3	0.6	
Oglala Ntl. Grassland	7/4/22 75	10	22	-15.5	0.2	-114.7	0.6	
Oglala Ntl. Grassland	7/9/22 25	11	23	-14.1	0.2	-102.6	0.6	
Oglala Ntl. Grassland	7/9/22 50	12	22	-15.7	0.2	-116.4	0.7	
Oglala Ntl. Grassland	7/9/22 75	13	22	-15.7	0.2	-113.2	0.6	
Oglala Ntl. Grassland	7/14/22 2	25	14	23	-13.1	0.2	-99.0	0.6
Oglala Ntl. Grassland	7/14/22 2	50	15	22	-14.9	0.3	-112.8	0.7
Oglala Ntl. Grassland	7/14/22 2	75	16	22	-15.3	0.2	-111.2	0.7

Table 3. Results from the three field deployments of SWISS.

1052
1053

1054 suggests that there is a systematic bias that we can reliably correct for. We chose to use the
1055 median value as an offset correction over the mean of the normal distribution, because the
1056 median is not biased by higher isotope difference values that are a complex combination of
1057 systematic bias and slow leaking. The calculated average offset is 1.0‰ and 2.6‰ for $\delta^{18}\text{O}$ and
1058 $\delta^2\text{H}$, respectively.

1059 Based on the results of the water vapor tests, we estimate the uncertainty of the SWISS at
1060 0.9‰ and 3.7‰ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively using the interquartile range (IQR) of the water
1061 vapor test results after removing outliers from the dataset. We prefer the IQR over the calculated
1062 standard deviation of the normal distribution, because IQR is not biased by outlier values. In
1063 figures 5C and 6C, we show the results of 3 water vapor tests from the August 2022 analytical
1064 session, with an offset correction applied. 43 of the 45 measured flasks faithfully retained the
1065 starting $\delta^{18}\text{O}$ value of the water vapor, and 37 of the 45 measured flasks faithfully retained the
1066 starting $\delta^2\text{H}$ value of the water vapor. Additionally, after the offset correction was applied, most
1067 flasks also fall within the uncertainty of the water vapor permeable probes ($\delta^{18}\text{O} = 0.5\text{‰}$ and $\delta^2\text{H} = 2.4\text{‰}$).
1068

1069 Supplemental figure 3 shows a kernel density estimate plot of the results from two water
1070 vapor test sessions, with the offset correction applied. During the March 2022 session, flasks
1071 were measured using the dead-end pull sample introduction method and during the August 2022
1072 session, flasks were measured using the dry air carrier gas sample introduction method. There is
1073 no significant difference in the measured difference between the two sample introduction
1074 methods. We prefer the dry air carrier gas method, because it is far simpler to control the water
1075 vapor mixing ratio, and optimize the concentration to be around 25,000 ppm, which is the
1076 concentration at which the Picarro L2130 i is most reliable. The dry air carrier gas method also
1077 makes it far easier to control for and monitor for condensation in the stainless steel tubing and
1078 vapor impermeable tubing, which can bias a measurement.
1079

1080 **6.1.3 Field suitability tests**

1081 The long dry air tests in the field are a useful complement to the shorter in-lab tests
1082 because they test the reliability of the system at field-deployment timescales. It is clear from the
1083 34 and 43 day tests that the flasks are reasonably resistant to leaks on the timescale of a normal 4
1084 – 6 week deployment to be able maintain the composition of vapor in the flasks (Fig. 6A). These
1085 tests also give us confidence that flasks filled later in the sampling sequence do not take on an
1086 atmospheric signal prior to sampling. There are a few possibilities to explain the poorer
1087 performance of the Toblerone SWISS unit during the 52-day test. (Fig. 6A). The first is that
1088 there is a real threshold past which the SWISS are no longer able to retain samples. However,
1089 this explanation would suggest that there should be a gradual decrease in performance across the
1090 three tests, which we do not observe. The alternative explanation is that the poor performance is
1091 a result of inter-unit variability. The 52-day test was the first long-term test and was performed in
1092 August 2021. In August 2021, we were continuing to build new SWISS units and continuing to
1093 learn from each successive round of QA/QC, so it seems plausible that there were unidentified
1094 problems with the SWISS unit Toblerone that were solved before the water vapor tests in August
1095 2022.

1096 In Figure 7A, we observe that the flasks typically maintained a low water vapor mole fraction (<
1097 1000 ppm) under field conditions, and at timescales relevant to 4–6 week field deployments (34–
1098 43 days). The 34 day test was done during June 2022, and therefore tests the SWISS under warm
1099

100 summertime conditions. The 43 day test was done in October 2021, which included nights where
101 temperatures fell below 0°C, and therefore tests the suitability of the SWISS to maintain integrity
102 under freezing conditions. We observe that the SWISS did considerably worse at maintaining a
103 low water vapor mole fraction over a 52 day time period during similar summertime conditions
104 as compared to the 34–43 day time period. Over the 52 days, seven flasks maintained a water
105 vapor mole fraction less than 1000 ppm and the remaining 8 had a water vapor mole fraction
106 between 1000–2500 ppm. Though the SWISS performed considerably worse after 52 days than
107 it did from 34–43 days, it is important to note that the atmospheric water vapor mole fraction
108 during the storage time period was likely 15,000–20,000 ppm, and so the measured values
109 demonstrate that the SWISS are still quite resistant to atmospheric intrusion at that timescale.
110 In figure 67B, the data show that the flasks faithfully preserved the $\delta^{18}\text{O}$ value of both flash-
111 evaporated and atmospheric water vapor produced using the vapor permeable probe and the
112 atmosphere over a seven–day period. One flask was removed from the dataset (flask eight),
113 because there was noticeable visible condensation in the clear impermeable tubing during the
114 measurement phase, with an increase of > 5‰ for $\delta^{18}\text{O}$ during the measurement period. The
115 condensation appeared as small (<1 mm) bubbles of water all along the impermeable tubing, but
116 the bubbles were concentrated near the connection between the SWISS and the impermeable
117 tubing. Notably, the two flasks whose $\delta^{18}\text{O}$ oxygen isotope values do not overlap within
118 uncertainty are more negative than expected, rather than drifting towards atmospheric values or
119 values expected with from kinetic diffusive fractionation. It is possible that those samples were
120 also affected by condensation at the start of the experiment; during condensation, we expect that
121 ^{18}O will preferentially go into the liquid phase, and that the water vapor that enters the flask will
122 have a lower than expected $\delta^{18}\text{O}$ value.
123 In contrast to the oxygen isotope $\delta^{18}\text{O}$ value results, Surprisingly, only 3 flasks filled with either
124 flash evaporated DI or light water vapor overlap within uncertainty of the known $\delta^2\text{H}$ values,
125 while four of the five flasks overlap within uncertainty of the estimated atmosphere isotope
126 value. The flasks tend to drift towards the value of the atmosphere, but retain the overall data
127 pattern from the oxygen isotope values.
128 The relatively high failure rate of this ‘mock’ field test was somewhat surprising given
129 the results of the water vapor tests done in the laboratory. Going into the test, we suspected that
130 flasks six and eight were slightly leaky based on previous water vapor tests; these were flasks
131 that previously performed poorly, but did not ‘fail’ during the water vapor test. Once we
132 collected the data, we compared evaluated the data for flasks six and eight relative to other flasks
133 in the sequence. During the measurement of flask eight, we observed condensation in the sample
134 introduction lines, and because the isotope values were so different relative to other flasks, we
135 felt confident in our exclusion of flask eight. Flask six, had oxygen $\delta^{18}\text{O}$ and hydrogen isotope
136 $\delta^2\text{H}$ values similar to others from the same sampling source, and seemed to fall within the pattern
137 as expected. Therefore, we chose to keep this data point in the dataset.
138 We hypothesize that one major problem with the mock field test dataset was the creation
139 of condensation in the sampling lines, as others have experienced in their setups (e.g. Quade et
140 al., 2019; Kühnhammer et al., 2019). Of particular interest are the flasks that had a lower than
141 expected oxygen isotope $\delta^{18}\text{O}$ value (flasks four and nine).
142 It is possible that those samples were also affected by condensation, but in contrast to flask eight,
143 which was excluded because of condensation during measurement, we think that these samples
144 may have been altered because of condensation at the sampling stage. During condensation, we
145 expect that ^{18}O will preferentially enter the liquid phase, and that the water vapor that enters the

1|146 flask will have a lower than expected $\delta^{18}\text{O}$ value. The unique advantage of the SWISS is that it
1|147 can operate independently, but with that comes the trade-off that it may we cannot currently be
1|148 possible to identify observe condensation in the lines as it is happening during sample collection.
1|149 To prevent condensation from forming, other users have warmed the impermeable tubing
1|150 between the probes and the Picarro. The 'mock' field test data suggest that in many situations it
1|151 may be worthwhile to warm the transfer tubing, but this should be done in a way that does not
1|152 alter the thermal structure of the soil, and in remote settings, can operate safely independently.
1|153

1|154 **6.1.4 Lessons learned and recommendations from the QA/QC and field suitability tests:**

1|155 Our QA/QC process was a relatively efficient way to test the soundness of the SWISS
1|156 units. Through the QA/QC process we were able to identify problems with units, and
1|157 appropriately address them before deploying units to the field. We strongly recommend that any
1|158 user deploying SWISS to the field to undertake the same, or similar, QA/QC process.

1|159 The dry air test is a time-efficient and low-cost method for identifying flasks that are
1|160 leaky and will not preserve the sampled water vapor isotope values. It is useful during the
1|161 building stage to identify fittings that need to be tightened or flasks that need to be replaced, and
1|162 therefore we recommend these tests as a required step prior to field-pre-deployment step for
1|163 future SWISS units. We found that it was most time and energy efficient to move onto the next
1|164 level of QA/QC once 13 out of 15 flasks of a SWISS unit had passed the dry-air test, because
1|165 frequently the remaining two flasks still had relatively low water vapor mole fractions (i.e. 500 –
1|166 700 ppm), and we could sufficiently tighten the fittings prior to the start of the water vapor tests
1|167 for them to be successful. The dry air test is a low time and expense burden that it can also be
1|168 used to monitor SWISS units for normal wear-and-tear (e.g. a flask that cracked during transport)
1|169 during deployment periods. Therefore, to ensure that SWISS units continue to operate as
1|170 expected, we also recommend that dry air tests be done between field deployments on every
1|171 SWISS unit. Lastly, we note that therefore we recommend these tests as a required step prior to
1|172 field deployment of future SWISS units. For example, supplemental figure 4 shows that it is
1|173 possible to drastically reduce the water vapor mole fraction in a flask filled with dry air between
1|174 tests by tightening and/or replacing problematic fittings (both those attached to the glass flasks
1|175 and those on the valve valve) and in some cases the glass flask itself. This shows we can reduce
1|176 the leakiness of the flasks. The dry air test is also an easy baseline test that also allowed us to test
1|177 building materials. For example, in supplemental figure 5, we tested using PTFE swagelok
1|178 fittings with $\frac{1}{8}$ " PTFE tubing rather than stainless steel. These materials would be advantageous
1|179 because they are much easier to install and are significantly lighter. We found that these fittings
1|180 and tubing may be sufficient to store water for up to a single week, but on longer timescales (e.g.
1|181 27 days) we observed greater exchange and leaking than the stainless steel. We encourage any
1|182 future user using this modification to rigorously test these fittings on a timescale appropriate for
1|183 their application. The dry air test could be modified based on available equipment (for example, if
1|184 an instrument is available to measure trace atmospheric gases, that could be used instead).

1|185 Based on the results of the long, field dry air test, we recommend that the water vapor
1|186 storage time doesn't exceed 40 days for reliable results, or that the user undertake multiple dry
1|187 air tests with either lower concentration benchmarks or longer duration if deployments may
1|188 exceed 40 days.

191 From the water vapor tests, we get a sense of the accuracy and precision of the SWISS.
192 The calculated uncertainty of the flasks (0.9‰ and 3.7‰ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively) is
193 somewhat larger than the uncertainty associated just with the use of the water vapor probes
194 (0.5‰ and 2.4‰ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively, Oerter et al., 2016), but is sufficient for many
195 critical zone applications, given the magnitude of seasonal variability that can be observed in
196 natural systems (e.g. Oerter et al., 2017; Quade et al., 2019).

197 We opted to use a large flask volume because it allows us to measure a sample for long
198 enough on a CRDS that we get reliable data, without interacting with vapor bound to the flask
199 walls. The drawback of this, however, is that we must sample soil water vapor for a relatively
200 long period of time (45 minutes). In supplemental figure 6, we show that the sampling regime,
201 and particularly the length of time we pump dry air through the tubing, does not significantly
202 alter the soil moisture content of the soil. Additionally, we demonstrate that the sampling regime
203 we use does not introduce significant memory effects.

204 Based on the results of the long, field dry air test, we recommend that the water vapor
205 storage time doesn't exceed 40 days for reliable results, or that the user undertake multiple dry
206 air tests with lower concentration benchmarks if deployments may exceed 40 days.

207 Overall, the quality control and quality assurance as well as the field suitability tests the
208 field suitability tests demonstrate that the SWISS units are able to faithfully can retain the isotope
209 values of water vapor collected using water vapor permeable probes. Like many other systems
210 that measure dual isotopes, each system (i.e. $\delta^{18}\text{O}$ and $\delta^2\text{H}$) must be evaluated separately. In
211 general, we interpret oxygen isotope data with a higher degree of confidence than the hydrogen
212 isotope data. As the automation test revealed however, even when the absolute $\delta^2\text{H}$ value is not
213 correct, the general pattern can reveal information about soil water dynamics.

214 Finally, We opted to use a large flask volume because it allows us to measure a sample
215 for long enough on a CRDS that we get reliable data, without interacting with vapor bound to the
216 flask walls. The drawback of this, however, is that we must sample soil water vapor for a
217 relatively long period of time (45 minutes). In supplemental figure 7, we show that the sampling
218 regime, and particularly the length of time we pump dry air through the tubing, does not
219 significantly alter the soil moisture content of the soil. Additionally, we demonstrate that the
220 sampling regime we use does not introduce significant memory effects.

221 One particular challenge with the vapor permeable probes, that others have noted, is
222 condensation in any portion of the system (e.g. Quade et al., 2019; Kühnhammer et al., 2019).
223 As much as possible, it is helpful to have the impermeable tubing at warmer temperatures than
224 the soil or water it is sampling. In many situations it may be worthwhile to warm the transfer
225 tubing, but this should be done in a way that does not alter the thermal structure of the soil, and
226 in remote settings, can operate safely independently. Additionally, taking care to ensure that the
227 SWISS is evenly and lightly warmed in the lab setting helps to prevent condensation from
228 forming in the stainless steel tubing and Valeo valve.

229 6.2 Field Deployments

230 In Figure 7 we show the results of three field deployments completed during summer
231 2022 (Table 3). At the Oglala National Grassland site, we used the SWISS unit named Lindt to
232 collect samples. During the August 2022 water vapor test on Lindt, all of all the oxygen isotope
233 $\delta^{18}\text{O}$ values fall within uncertainty of the system, and nine of the fifteen flasks hydrogen isotope
234 $\delta^2\text{H}$ values fall within uncertainty of the system. Therefore, we interpret the $\delta^{18}\text{O}$ values with a
235 higher greater amount of confidence and the $\delta^2\text{H}$ values with a lower amount of confidence (Figs.

4C and 5C). We note that most of the $\delta^{18\text{O}}$ and $\delta^{2\text{H}}$ values broadly follow the same trends, and fall on the global meteoric water line (Figs. 7 and 8A). In general, soil water from 25 cm had higher $\delta^{18\text{O}}$ and $\delta^{2\text{H}}$ values than soil water from both 50 and 75 cm (Fig. 8A). Given that 4 of the 5 samples from 25 cm overlap with the GMWL and have a d-excess that overlaps with an error of $10 \pm 2.6\text{‰}$, the soil water from that depth may reflect summer precipitation with higher $\delta^{18\text{O}}$ and $\delta^{2\text{H}}$ values. Soil water from 75 cm had intermediate $\delta^{18\text{O}}$ and $\delta^{2\text{H}}$ values for most of the study period, and soil water from 50 cm depth had the lowest $\delta^{18\text{O}}$ and $\delta^{2\text{H}}$ values for most of the study period, which may reflect a more mean-annual or winter precipitation biased value. The d-excess value of soil water collected from 75 cm is centered around a global meteoric water line value of 10‰ (Fig. 8B). Based on data available from the National Weather Service (Chadron, NE), there were likely significant precipitation events on 2022-06-25 and 2022-07-08 at the field site. There is a significant shift to lower $\delta^{18\text{O}}$ values at a sampling depth of 25 cm between 2022-06-25 and 2022-06-29, as well as a marked increase in the d-excess value (Fig. 8A). We interpret

1265 this shift as infiltration of precipitation with lower $\delta^{18\text{O}}$ values, and which is supported by a
 1266 return of d-excess values to $\sim 10\text{‰}$ (Fig. 8A). The National Weather Service reported 21.33 mm
 1267 (0.84 inches) 0.84 inches of rain at Chadron Municipal Airport, approximately 50 km from the
 1268 study site on 2022-07-08, which likely was associated with at least some precipitation at our field
 1269 site. Following the significant rain event on 2022-07-08, we observe a marked increase in the
 1270 stable isotope value of water vapor from a sampling depth of 50 cm, towards values that are
 1271 much closer to those at 25 cm depth. These data suggests that soil water isotopes at 50 cm in this
 1272 silt-loam Aridisol may be fairly sensitive to large individual precipitation events, while at 75 cm
 1273 soil water isotopes remain comparatively uniform. Future work should address how drought
 1274 conditions, storm size, pore size distribution, and soil clay mineralogy influence the variability of
 1275 soil water isotopes with depth. This indicates that after a large precipitation event, there is
 1276 mixing and the creation of a far more uniform soil water isotope profile to a depth of 50 cm, but
 1277 at the depth of 75 cm, the oxygen isotope data remain fairly uniform across the sampling period.

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

Figure 8. Results from the Oglala National Grassland, NE field site. A) $\delta^2\text{H}$ vs. $\delta^{18}\text{O}$, where the dashed line is the global meteoric water line. The shape of the depth sampled matches figure 7, and the color of the points is the date on which the soil water was sampled B) A plot of d-excess. Note, both the color and shape match figure 7.

At Briggsdale, CO we used the SWISS named Raclette to collect soil water vapor samples. Data from 25 cm depth at Briggsdale, CO were discarded because the water vapor mole fraction was much lower than would be expected given the soil temperature (i.e. < 15,000 ppm). The gravimetric water concentration at that soil depth at the time of sampling was approximately 4% through the sampling period. Given the low water concentration, it is possible that there was simply not enough water vapor to sufficiently sample. Data from 25 cm depth at Briggsdale, CO were discarded because the water vapor mole fraction was much lower than would be expected given the soil temperature (i.e. < 15,000 ppm). The gravimetric water concentration (GWC) at that soil depth at the time of sampling was approximately 4% through the sampling period. Future work should include a multiple-method (e.g. cryogenic extraction, centrifugation, etc.) comparison of soil water isotopes at low water contents to better understand what these samples might represent, and if they are actually representative of soil conditions.

Based on the results of the August 2022 water vapor test done on Raclette where all flasks fell within uncertainty of the SWISS system for both $\delta^{18}\text{O}$ and $\delta^2\text{H}$, except for flask 11 (Figs. 4C and 5C), which corresponds to the 25 cm depth sample from 2022-07-27, we interpret all of the data with a higher level of greater confidence. This sampleFlask 11 corresponds to the 25 cm depth sample from 2022-07-27, and was already removeddeculled from the dataset because of low water vapor mole fraction associated with the very dry soil. The soil water $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values from a sampling depth of 50 cm and 75 cm overlap within uncertainty, but the soil water $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values from 50 cm have a higher isotopic valueare higher than the samplesisotope values from 75 cm. All of the data from within each sampling depth group (i.e. 50 cm and 75 cm) overlap within uncertainty, conforming to the expectation that soil water from these sampling depths should be fairly invariant (e.g. Oerter et al., 2019⁷). There were precipitation events at the study site on 2022-07-24, 2022-07-28 and 2022-07-31. It is possible that the slight negative shift in both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ on 2022-08-01 reflects infiltration of precipitation to those depths, but this is not certain given that all of the measurements from within a sampling depth overlap within uncertainty.

1329 At Seibert, CO we used the SWISS named Toblerone to collect soil water vapor samples.
1330 The soil water isotope data from 75 cm depth at this site offer a few useful lessons for future
1331 users. The two first most basic key observations of the data from 75 cm depth are that is that for
1332 the first two samples, the isotope values are unreasonably high (i.e. have $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values are
1333 much higher than the other two sampling depths d oxygen isotope values), and that the hydrogen
1334 $\delta^2\text{H}$ and oxygen isotope $\delta^{18}\text{O}$ values do not move in parallel with each other. While measuring
1335 these samples we observed condensation in the impermeable tubing at the point where the
1336 SWISS connects to the impermeable tubing. Additionally, when we heated the stainless steel
1337 tubing that connects the tubing flask and Valco valve we observed a rapid increase in water
1338 vapor mole fraction (1000's of ppm over <30 seconds) that was accompanied by a rise in stable
1339 isotope value. During these measurements, we were rarely able to get a stable isotope value
1340 measurement window, and instead the stable isotope value of the vapor increased continually
1341 through the measurement. It is for these reasons that we feel confident in discarding the stable
1342 isotope data from 2022-06-19 – 2022-06-29. The final measurement from 75 cm depth on 2022-
1343 07-04 approaches a reasonable isotope value when compared to isotope values from the other
1344 two depths, and that sample had far fewer condensation problems during measurement.
1345 However, but because we have no sequential context for what a reasonable value for this depth
1346 is, we have chosen to discarded discard that value as well. For that final 75 cm sample, we were
1347 more successful because we warmed the entire length the vapor impermeable tubing, as well as
1348 the stainless-steel tubing, flask, and Valco valve evenly so that there were no temperature
1349 gradients across the vapor path. If the condensation had only been in the impermeable tubing it
1350 would have been much easier to ‘rescue’ successfully analyze these samples by just closing off
1351 the flask and running dry air through the tubing to remove condensation, but because
1352 condensation was also occurring in the stainless steel tubing between the flask and Valco valve,
1353 it became much more challenging to ‘rescue’ samples this was not possible. It remains unclear
1354 why condensation was such a significant problem for samples from that depth as opposed to
1355 samples from different depths in the same SWISS. Future work should include further testing of
1356 the SWISS across different water contents and temperatures to better understand why the
1357 phenomenon may have occurred.

1358 Data from 75 cm depth at Seibert, CO were discarded because of evidence of
1359 condensation during the measurement of the flasks associated with that sampling depth. Based
1360 on the results of the August 2022 water vapor test done on Toblerone, we interpret all of the data
1361 from 50 cm and 25 cm depth with a high degree of high confidence, except for Flask 3, which is
1362 the 50 cm sample from 2022-06-19 (Figs. 4C and 5C). Unlike data from the other two field sites,
1363 soil water from 25 cm and 50 cm overlap within uncertainty. There were two precipitation events
1364 at the field site during the sampling period on 2022-06-25 and 2022-07-01, but both events were
1365 quite small (<0.50-0.02 inches/mm, CoAgMet). There is no significant influence of the
1366 precipitation events on the $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values. The >1.0‰ increase in $\delta^{18}\text{O}$ values on 2022-06-
1367 29 is surprising given that there is not a comparable magnitude increase in $\delta^2\text{H}$ value, and that
1368 the values measured from 2022-07-04 more closely match the $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values from the two
1369 earlier sampling days. There are two potential explanations for this data. First, that this shift is a
1370 real signal from an evaporation driven increase in the $\delta^{18}\text{O}$ value, and the reset shift back to a
1371 lighter lower $\delta^{18}\text{O}$ value on 2022-07-04 is due to the infiltration of precipitation. A different way
1372 to see this is through the This explanation is corroborated by a, which could also explain the low
1373 d-excess value associated with this measurement (Supplemental Fig. S1 8_9). The second
1374 possible explanation is that the 25 cm sample from 2022-06-29 is influenced by condensation at

1375 the time of sampling. Dew point at the field site on 2022-06-29 significantly decreased as
1376 compared to the other sampling days to a monthly minimum of 20.6°C ([CoAgMet](#)). It is possible
1377 that environmental conditions encouraged the formation of condensation in the impermeable
1378 tubing at the time of sampling. There were no obvious signs of condensation during the time of
1379 measurement in the lab. These results highlight the utility of having broad contextual
1380 environmental data to aid in the interpretation of soil water isotope data.

1381 All together, these three soil water isotope datasets demonstrate two main findings. First,
1382 data from these samples show that the differences between field sites [isare](#) easily resolvable
1383 using the SWISS. For example, at 50 cm depth the oxygen isotopes range between -14.4 to -
1384 16.3‰, -9.9 to -10.3‰, and -7.4 to -9.3‰ for the Oglala, Briggsdale and Seibert sites,
1385 respectively. These differences likely reflect differences in the stable isotope composition of
1386 precipitation and [infiltration and](#) evaporation dynamics. Second, the sample data retrieved from a
1387 SWISS are sufficiently precise to be able to meaningfully resolve vertical profile soil water
1388 isotope data. For example, at the Oglala National Grassland field site, soil water from 25 cm
1389 clearly has higher $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values as compared to soil water from a depth of 50 and 75 cm.
1390

1391 6. 3 Future improvements [and future work](#)

1392 One significant SWISS unit hardware improvement that could be made would be to
1393 install a heating implement to the flasks. One source of uncertainty on the current system is the
1394 potential effect of uneven heating of the flasks prior to measurement [which may create](#)
1395 [temperature gradients that are large enough to allow for condensation when warm vapor meets a](#)
1396 [slightly colder spot](#). This could be improved in subsequent iterations of the SWISS with the
1397 addition of heat tape or blankets that can deliver controlled [heat](#) and [create](#) consistent [amounts of](#)
1398 [heattemperatures](#). This improvement [ewould](#) also help limit the amount of manual intervention
1399 needed during measurement, and could improve automation of flask measurement. [Additionally,](#)
1400 [finding a way to safely and automatically heat the impermeable tubing that connects the water](#)
1401 [vapor probes and the SWISS in a way that doesn't change the inherent thermal structure of the](#)
1402 [soil, and is safe for unmonitored use, would help to prevent the formation of condensation in the](#)
1403 [field and reducelimit the number of uncertaintiesy onrelated to measurementssampling.](#)

1404 [In addition,](#)

1405 [-W](#)we have made a few improvements to the automation system that were not
1406 implemented for the data presented in this contribution, but will be part of future deployments.
1407 First, we will track conditions inside the SWISS with a temperature and relative humidity sensor
1408 inside the case. Second, we plan to eliminate the power inverter by powering both the Valco
1409 valve and mass flow controller with VDC using a power step up controller. Lastly, we will add
1410 an IoT cellular router to be able to remotely monitor and control the SWISS units. [This would be](#)
1411 [particularly helpful if there is a sampling day that is unexpectedly cold or when the dew point at](#)
1412 [the field site is unexpectedly low and we expect condensation to form more readily form in the](#)
1413 [field, or if there is a precipitation event that we are really interested in capturing, because with](#)
1414 [the IoT cellular router we could remotely alter the sampling plan.](#)

1415 [While the improvements and additional testing we have done to the SWISS in this](#)
1416 [contribution represent a significant step forward, additional work should be done to make the](#)
1417 [system more useable by the ecohydrology community. We have rigorously tested the SWISS in](#)
1418 [the lab, and demonstrated a few ways in which the SWISS can fail in field settings. A full](#)
1419 [comparison of how soil water isotope data collected using a SWISS as compared to other in situ](#)

1421 (both vapor probes and lysimeter) and destructive sampling methods would shed light on the
1422 accuracy and precision of our system, and the applicability of our lab-based experiments to the
1423 field. These experiments should be carefully designed to take with considerations of soil grain
1424 size, soil water content, expected isotope values, and climate. Finally, there are two future
1425 considerations for field deployments. The first is finding a way to safely and automatically heat
1426 the impermeable tubing that connects the water vapor probes and the SWISS in a way that
1427 doesn't change the inherent thermal structure of the soil, and is safe for unmonitored use.

1428 Additionally, we plan to test SWISS unit resilience during air travel so that these units can be
1429 used at field sites that are not within driving distance of a research facility.

1430 **Conclusions**

1431 We presented the evolution of the soil water isotope storage system (SWISS) from a
1432 prototype to a fully built out and tested system. We also presented a quality control and quality
1433 assurance procedure that ~~we strongly recommend future users undertake can be used~~ to ensure
1434 the reliable storage of soil water vapor over long time periods (up to 40 days). In addition, these
1435 quality control and quality assurance tests shed light on the accuracy and precision of the
1436 SWISS. After applying an offset correction, we determine the ~~overall~~ precision of the SWISS to
1437 be $\pm 0.9\text{\textperthousand}$ and $3\pm 3.7\text{\textperthousand}$ for $\delta^{18}\text{O}$ and $\delta^2\text{H}$, respectively. In a field setting, flasks reliably resist
1438 atmospheric intrusion. Additionally, the proposed sampling schema does not introduce
1439 significant memory effects. Lastly, we demonstrate that the ~~current~~ precision of the SWISS still
1440 allows us to distinguish between field sites and between soil water dynamics within a single soil
1441 column. Taken as a whole, these data show that the SWISS can be used as a tool to answer many
1442 emerging ecohydrological questions, and will enhance researchers' ability to collect soil water
1443 isotope datasets from more remote and traditionally understudied field sites.

1444 **Acknowledgements**

1445 We thank the numerous field assistants who helped to make the field work presented in
1446 this paper possible, including Spencer Burns, Anne Fetrow, Sarah Brookins, Juliana Olsen-
1447 Valdez, and Haley Brumberger. We acknowledge that both field work and laboratory work for
1448 this study ~~was~~ere done on the traditional territories and ancestral homelands of the Arapahoe,
1449 Ute and Cheyenne peoples. This work was supported by startup funding from CU Boulder and
1450 NSF funding from grant EAR-2023385 awarded to K. Snell. Additionally, this work was
1451 supported by the University of Colorado Boulder Beverly Sears Research Grant and the Clay
1452 Minerals Society Graduate Student Research Grant both awarded to R. Havranek. CUBES-SIL
1453 is a CU Boulder Core Facility associated with RRID: SCR_019300.
1454

1455

1456 **Author contribution**

1457 Rachel E. Havranek: original draft, econceptualization, methodology, investigation, formal
1458 analysis, funding acquisition, writing – wrote original draft, review and editing. Kathryn E.
1459 Snell: gConceptualization, mMethodology, wWriting – review & editing, funding acquisition.
1460 Sebastian H. Kopf: gConceptualization, mMethodology, wWriting – review & editing. Brett
1461 Davidheiser-Kroll: gConceptualization, cMethodology, wWriting – review & editing. Valerie
1462 Morris: mMethodology, wWriting – review & editing. Bruce Vaugh: mMethodology, wWriting
1463 – review & editing.

1464

1465 **Competing interests**

1466 The authors declare no competing interests.

1467 **Works Cited**

1468 Barnes, C. J., & Allison, G. B. (1983). The distribution of deuterium and ^{18}O in dry soils. I.
1469 *Theory. Journal of Hydrology*, 60, 141–156.

1470 Beyer, M., Kühnhammer, K., & Dubbert, M. (2020). In situ measurements of soil and plant
1471 water isotopes : a review of approaches , practical considerations and a vision for the future.
1472 *Hydrology and Earth System Sciences*, 24, 4413–4440.
1473 <https://doi.org/https://doi.org/10.5194/hess-24-4413-2020>

1474 Bowen, G. J., Cai, Z., Fiorella, R. P., & Putman, A. L. (2019). Isotopes in the Water Cycle:
1475 Regional- to Global-Scale Patterns and Applications. *Annual Review of Earth and Planetary
1476 Sciences*, 47(1), 453–479. <https://doi.org/10.1146/annurev-earth-053018-060220>

1477 Bowen, G. J., Putman, A., Brooks, J. R., Bowling, D. R., Oerter, E. J., & Good, S. P. (2018).
1478 Inferring the source of evaporated waters using stable H and O isotopes. *Oecologia*, 187(4),
1479 1025–1039. <https://doi.org/10.1007/s00442-018-4192-5>

1480 Brooks, J. R., Barnard, H. R., Coulombe, R., & McDonnell, J. J. (2010). Ecohydrologic
1481 separation of water between trees and streams in a Mediterranean climate. *Nature
1482 Geoscience*, 3(2), 100–104. <https://doi.org/10.1038/ngeo722>

1483 CoAgMet, Colorado Climate Center, Colorado State University, Fort Collins, CO, USA.
1484 <https://coagmet.colostate.edu/>

1485 Dawson, T. E., & Ehleringer, J. R. (1991). Streamside trees that do not use stream-water:
1486 evidence from hydrogen isotopes ratios. *Nature*, 350(March), 335–337.

1487 Gaj, M., Beyer, M., Koeniger, P., Wanke, H., Hamutoko, J., & Himmelsbach, T. (2015). In-situ
1488 unsaturated zone stable water isotope (^2H and ^{18}O) measurements in semi-arid
1489 environments using tunable off-axis integrated cavity output spectroscopy. *Hydrology and
1490 Earth System Sciences Discussions*, 12(6), 6115–6149. <https://doi.org/10.5194/hessd-12-6115-2015>

1491 Gaj, M., Beyer, M., Koeniger, P., Wanke, H., Hamutoko, J., & Himmelsbach, T. (2016). In situ
1492 unsaturated zone water stable isotope (^2H and ^{18}O) measurements in semi-arid
1493 environments: A soil water balance. *Hydrology and Earth System Sciences*, 20(2), 715–731.
1494 <https://doi.org/10.5194/hess-20-715-2016>

1495 Gessler, A., Bächli, L., Rouholahnejad Freund, E., Treydte, K., Schaub, M., Haeni, M., Weiler,
1496 M., Seeger, S., Marshall, J., Hug, C., Zweifel, R., Hagedorn, F., Rigling, A., Saurer, M., &
1497 Meusburger, K. (2022). Drought reduces water uptake in beech from the drying topsoil, but
1498 no compensatory uptake occurs from deeper soil layers. *New Phytologist*, 233(1), 194–206.
1499 <https://doi.org/10.1111/nph.17767>

1500 Gómez-Navarro, C., Pataki, D. E., Bowen, G. J., & Oerter, E. J. (2019). Spatiotemporal
1501 variability in water sources of urban soils and trees in the semiarid, irrigated Salt Lake
1502 Valley. *Ecohydrology*, 12(8). <https://doi.org/10.1002/eco.2154>

1503 Gonfiantini, R., Wassenaar, L. I., Araguas-Araguas, L., & Aggarwal, P. K. (2018). A unified
1504 Craig-Gordon isotope model of stable hydrogen and oxygen isotope fractionation during
1505 fresh or saltwater evaporation. *Geochimica et Cosmochimica Acta*, 235, 224–236.
1506 <https://doi.org/10.1016/j.gca.2018.05.020>

1508 Good, S. P., Noone, D., & Bowen, G. J. (2015). Hydrologic connectivity constrains partitioning
1509 of global terrestrial water fluxes. *Science*, 349(6244), 175–177.
1510 <https://doi.org/10.1126/science.aaa5931>

1511 Green, M. B., Laursen, B. K., Campbell, J. L., McGuire, K. J., & Kelsey, E. P. (2015). Stable
1512 water isotopes suggest sub-canopy water recycling in a northern forested catchment.
1513 Hydrological Processes, 29(25), 5193–5202. <https://doi.org/10.1002/hyp.10706>

1514 Groh, J., Stumpp, C., Lücke, A., Pütz, T., Vanderborght, J. and Vereecken, H., (2018), Inverse
1515 estimation of soil hydraulic and transport parameters of layered soils from water stable
1516 isotope and lysimeter data. Vadose Zone Journal, 17(1), pp.1-19.

1517 Gupta, P., Noone, D., Galewsky, J., Sweeney, C., and Vaughn, B.H. (2009): Demonstration of
1518 high-precision continuous measurements of water vapor isotopologues in laboratory and
1519 remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-
1520 CRDS) technology. *Rapid Com. in Mass Spectrometry Volume 23, Issue 16, Date: 30*
1521 *August 2009, Pages: 2534-2542*

1522 Harms Sarah M., & Ludwig, T. K. (2016). Retention and removal of nitrogen and phosphorus in
1523 saturated soils of arctic hillslopes. Biogeochemistry, 127, 291–304.
1524 <https://doi.org/10.1007/s10533-016-0181-0>

1525 Havranek, R. E., Snell, K. E., Davidheiser-Kroll, B., Bowen, G. J., & Vaughn, B. (2020). The
1526 Soil Water Isotope Storage System (SWISS): An integrated soil water vapor sampling and
1527 multiport storage system for stable isotope geochemistry. *Rapid Communications in Mass*
1528 *Spectrometry*, 34(12), 1–11. <https://doi.org/10.1002/rcm.8783>

1529 Hinckley, E.-L. S., Barnes, R. T., Anderson, S. P., Williams, M. W., & Bernasconi, S. M. (2014).
1530 Nitrogen retention and transport differ by hillslope aspect at the rain-snow transition of the
1531 Colorado Front Range. *Journal of Geophysical Research: Biogeosciences*, 119, 12811896.
1532 <https://doi.org/10.1002/2013JG002588>

1533 Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlowski, N., & Dubbertm
1534 Maren. (2020). Water Stable Isotopes in Ecohydrological Field Research : Comparison
1535 Between In Situ and Destructive Monitoring Methods to Determine Soil Water Isotopic
1536 Signatures. *Frontiers in Plant Science*, 11(April), 1–13.
1537 <https://doi.org/10.3389/fpls.2020.00387>

1538 Kühnhammer, K., Dahlmann, A., Iraheta, A., Gerchow, M., Birkel, C., Marshall, J. D., & Beyer,
1539 M. (2022). Continuous in situ measurements of water stable isotopes in soils, tree trunk and
1540 root xylem: Field approval. *Rapid Communications in Mass Spectrometry*, 36(5).
1541 <https://doi.org/10.1002/rem.9232>

1542 Magh, R.K., Gralher, B., Herbstritt, B., Kübert, A., Lim, H., Lundmark, T. and Marshall, J.,
1543 2022. Conservative storage of water vapour-practical in situ sampling of stable isotopes in
1544 tree stems. Hydrology and Earth System Sciences, 26(13), pp.3573-3587.

1545 Mahindawansha, A., Orlowski, N., Kraft, P., Rothfuss, Y., Racela, H., & Breuer, L. (2018).
1546 Quantification of plant water uptake by water stable isotopes in rice paddy systems. *Plant*
1547 *and Soil*, 429(1–2), 281–302. <https://doi.org/10.1007/s11104-018-3693-7>

1548 Oerter, E. J., Perelet, A., Pardyjak, E., & Bowen, G. J. (2016). Membrane inlet laser
1549 spectroscopy to measure H and O stable isotope compositions of soil and sediment pore

1550 water with high sample throughput. *Rapid Communications in Mass Spectrometry*, 31(1),
1551 75–84. <https://doi.org/10.1002/rcm.7768>

1552 Oerter, E. J., & Bowen, G. J. (2017). In situ monitoring of H and O stable isotopes in soil water
1553 reveals ecohydrologic dynamics in managed soil systems. *Ecohydrology*, 10(4), 1–13.
1554 <https://doi.org/10.1002/eco.1841>

1555 Oerter, E. J., & Bowen, G. J. (2019). Spatio-temporal heterogeneity in soil water stable isotopic
1556 composition and its ecohydrologic implications in semiarid ecosystems. *Hydrological
1557 Processes, March*, 1–15. <https://doi.org/10.1002/hyp.13434>

1558 Peterson, B. J., & Fry, B. (1987). Stable Isotopes in Ecosystem Studies. *Annual Reviews of
1559 Ecology and Systematics*, 18, 293–320. <http://www.jstor.org/stable/2097134> **REFERENCE**

1560 Quade, M., Klosterhalfen, A., Graf, A., Brüggemann, N., Hermes, N., Vereecken, H., &
1561 Rothfuss, Y. (2019). In-situ monitoring of soil water isotopic composition for partitioning of
1562 evapotranspiration during one growing season of sugar beet (*Beta vulgaris*). *Agricultural
1563 and Forest Meteorology*, 266–267(December 2018), 53–64.
1564 <https://doi.org/10.1016/j.agrformet.2018.12.002>

1565 Quade, M., Brüggemann, N., Graf, A., Vanderborght, J., Vereecken, H., & Rothfuss, Y. (2018).
1566 Investigation of Kinetic Isotopic Fractionation of Water during Bare Soil Evaporation.
1567 *Water Resources Research*, 54(9), 6909–6928. <https://doi.org/10.1029/2018WR023159>

1568 Rothfuss, Y., Vereecken, H., & Brüggemann, N. (2013). Monitoring water stable isotopic
1569 composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy.
1570 *Water Resources Research*. <https://doi.org/10.1002/wrcr.20311>

1571 Rothfuss, Y., Merz, S., Vanderborght, J., Hermes, N., Weuthen, A., Pohlmeier, A., Vereecken,
1572 H., & Brüggemann, N. (2015). Long-term and high-frequency non-destructive monitoring
1573 of water stable isotope profiles in an evaporating soil column. *Hydrology and Earth System
1574 Sciences*, 19(10), 4067–4080. <https://doi.org/10.5194/hess-19-4067-2015>

1575 Rothfuss, Y., Quade, M., Brüggemann, N., Graf, A., Vereecken, H., & Dubbert, M. (2021).
1576 Reviews and syntheses: Gaining insights into evapotranspiration partitioning with novel
1577 isotopic monitoring methods. In *Biogeosciences* (Vol. 18, Issue 12, pp. 3701–3732).
1578 Copernicus GmbH. <https://doi.org/10.5194/bg-18-3701-2021>

1579 Rozmiarek, K. S., Vaughn, B. H., Jones, T. R., Morris, V., Skorski, W. B., Hughes, A. G.,
1580 Elston, J., Wahl, S., Faber, A. K., & Steen-Larsen, H. C. (2021). An unmanned aerial
1581 vehicle sampling platform for atmospheric water vapor isotopes in polar environments.
1582 *Atmospheric Measurement Techniques*, 14(11), 7045–7067. <https://doi.org/10.5194/amt-14-7045-2021>

1584 Seeger, S., & Weiler, M. (2021). Temporal dynamics of tree xylem water isotopes: In situ
1585 monitoring and modeling. *Biogeosciences*, 18(15), 4603–4627. [https://doi.org/10.5194/bg-18-4603-2021](https://doi.org/10.5194/bg-
1586 18-4603-2021)

1587 Soderberg, K., Good, S. P., Wang, L., & Caylor, K. (2012). Stable Isotopes of Water Vapor in
1588 the Vadose Zone: A Review of Measurement and Modeling Techniques. *Vadose Zone
1589 Journal*, 11(3), 0. <https://doi.org/10.2136/vzj2011.0165>

1590 Soil Survey Staff, Natural Resources Conservation Service, United States Department of
1591 Agriculture. Soil Series Classification Database. Available online. Accessed 09/10/2022.

1592 Sprenger, M., Leistert, H., Gimbel, G., & Weiler, M. (2016). Illuminating hydrological processes
1593 at the soil-vegetation-atmosphere interface with water stable isotopes. *Reviews in*
1594 *Geophysics*, 54, 674–704. <https://doi.org/10.1002/2015RG000515>

1595 Sprenger, M., & Allen, S. T. (2020). What Ecohydrologic Separation Is and Where We Can Go
1596 With It. In *Water Resources Research* (Vol. 56, Issue 7). Blackwell Publishing Ltd.
1597 <https://doi.org/10.1029/2020WR027238>

1598 Stumpf, C., Stichler, W., Kandolf, M. and Šimůnek, J., (2012). Effects of land cover and
1599 fertilization method on water flow and solute transport in five lysimeters: A long-term study
1600 using stable water isotopes. Vadose Zone Journal, 11(1).

1601

1602 Theis, D. E., Saurer, M., Blum, H., Frossard, E., & Siegwolf, R. T. W. (2004). A portable
1603 automated system for trace gas sampling in the field and stable isotope analysis in the
1604 laboratory. *Rapid Communications in Mass Spectrometry*, 18(18), 2106–2112.
1605 <https://doi.org/10.1002/rcm.1596>

1606 Vereecken, H., Amelung, W., Bauke, S. L., Bogena, H., Brüggemann, N., Montzka, C.,
1607 Vanderborght, J., Bechtold, M., Blöschl, G., Carminati, A., Javaux, M., Konings, A. G.,
1608 Kusche, J., Neuweiler, I., Or, D., Steele-Dunne, S., Verhoef, A., Young, M., & Zhang, Y.
1609 (2022). Soil hydrology in the Earth system. *Nature Reviews Earth & Environment*.
1610 <https://doi.org/10.1038/s43017-022-00324-6>

1611 Volkmann, T. H. M., & Weiler, M. (2014). Continual in situ monitoring of pore water stable
1612 isotopes in the subsurface. *Hydrology and Earth System Sciences*, 18(5), 1819–1833.
1613 <https://doi.org/10.5194/hess-18-1819-2014>

1614 Volkmann, T. H. M., Haberer, K., Gessler, A., & Weiler, M. (2016). High-resolution isotope
1615 measurements resolve rapid ecohydrological dynamics at the soil-plant interface. New
1616 Phytologist, 210(3), 839–849. <https://doi.org/10.1111/nph.13868>

1617 Wassenaar, L. I., Hendry, M. J., Chostner, V. L., & Lis, G. P. (2008). High resolution pore water
1618 δ 2H and δ 18O measurements by H2O(liquid)-H2O (vapor) equilibration laser
1619 spectroscopy. Environmental Science and Technology, 42(24), 9262–9267.
1620 <https://doi.org/10.1021/es802065s>

1621 Zhao, P., Tang, X., Zhao, P., Wang, C. and Tang, J., 2013. Identifying the water source for
1622 subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension
1623 lysimeters and cores. Journal of Hydrology, 503, pp.1-10

1624 Zimmermann, U., Munnich, K. O., & Roether, W. (1966). Tracers Determine Movement of Soil
1625 Moisture and Evapotranspiration. *Science*, 152(3720), 346–347.
1626 <https://doi.org/10.1126/science.152.3720.346>

1627

1628

1629

1630

1631

1632

1633