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Abstract. A powerful methodology, based on multivariate curve resolution alternating least squares (MCR-13 

ALS) with quadrilinearity constraints, is proposed to handle complex and incomplete four-way atmospheric 14 

data sets, providing concise and easy interpretable results. Changes in air quality by nitrogen dioxide (NO2), 15 

ozone (O3) and particular matter (PM10) in eight sampling stations located in Barcelona metropolitan area 16 

and other parts of Catalonia during the COVID-19 lockdown (2020) with respect to previous years (2018 17 

and 2019) are investigated using such methodology. MCR-ALS simultaneous analysis of the 3 18 

contaminants among the 8 stations and for the 3 years allows the evaluation of potential correlations among 19 

the pollutants even when having missing data blocks. NO2 and PM10 show correlated profiles due to similar 20 

pollution sources (traffic and industry), evidencing a decrease in 2019 and 2020 due to traffic restriction 21 

policies and COVID-19 lockdown, especially noticeable in the most transited urban areas (i.e., Vall 22 

d’Hebron, Granollers and Gràcia). Ozone evidences an opposed inter-annual trend, showing higher 23 

amounts in 2019 and 2020 respect to 2018 due to the decreased titration effect, more significant in rural 24 

areas (Begur) and in the control site (Obserbatori Fabra).  25 
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1. Introduction 29 

Monitoring studies of air quality have always been indispensable to assess the impact of air pollutants on 30 

human health and the environment. Most evaluated air pollutants include the ones linked to industrial and 31 

traffic emissions, such as tropospheric ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM), due 32 

to its potential effects on human health (Zú et al., n.d.; Khaniabadi et al., n.d.),  and are the chemicals 33 

evaluated in the present study.  34 

The chemistry of nitrogen oxides (NOx) and O3 is highly complex because NOx is the responsible for 35 

tropospheric O3 production but also for its elimination (Lerdau et al., 2000; Crutzen, 1979). On the one 36 

hand, the formation of tropospheric ozone is a consequence of the photochemical reaction of the sunlight 37 

with NOx and volatile organic compounds (VOC) released by car exhausts and industries, according to the 38 

following equation: NOx + VOC + hv -> O3. Thus, nitrogen oxides behave as catalysts in the photochemical 39 

production of ozone, especially at higher solar radiation and during hours of high traffic. However, at hours 40 

of low solar radiation and during nighttime, NOx are responsible for the ozone destruction in a process 41 

called titration: NOx + O3 -> NOx + O2. In inner rural areas with low anthropogenic activities, the latter 42 

titration effect produced by NOx emissions is generally not observed, resulting in higher average O3 43 

concentrations than in urban areas. Overall, the complex equilibrium among O3 and NOx species results in 44 

continuous concentration changes of ozone difficult to attribute to a unique source.  45 

Conversely, the chemistry of particulate matter is not directly correlated to NOx and O3 but it is also complex 46 

due to its multiple and diverse emission sources. Different PM sources exist including city background 47 

(background levels of emissions such as construction, demolition and domestic heating), traffic (motor 48 

emissions and tire, pavement and brakes abrasion products), industry (high levels of sulfate, nitrate and 49 

other burning products), and natural (i.e., marine aerosols and air masses, especially African dust) (Querol 50 

et al., 2004; Saud et al., 2011).  51 

Different approaches exist to assess air quality by evaluating concentration changes of these chemical 52 

pollutants. In classical air quality monitoring studies, the data treatment strategy generally involves data 53 

arrangement and analysis using traditional statistics. However, these methods require extensive computer 54 

calculations and their results are often limited and restricted. Instead, chemometric methods are powerful 55 

data analysis tools to investigate the sources of data variance in experimentally measured environmental 56 

monitoring big data sets such as air quality data sets that often contain some missing blocks. These methods 57 

can be used to extract and summarize the information often hidden on these environmental big data sets. 58 

Among these methods, Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) (Tauler, 59 

1995), originally used in the spectrochemical analysis of chemical mixtures, has been also proved to be a 60 

competitive method in air pollution studies (Malik and Tauler, 2013; Alier et al., 2011). MCR-ALS is a 61 

flexible soft-modelling factor analysis method that allows for the introduction of natural constraints, like 62 

non-negativity of the factor solutions. Although it only requires the fulfillment of a bilinear model for the 63 

factor decomposition, it can be easily adjusted to the analysis of more complex multiway data structures 64 

and multilinear models, such as three-way and four-way environmental data sets (Tauler, 2021), which can 65 

be analyzed using trilinear and quadrilinear MCR-ALS models, as shown in this study. The results of the 66 

application of the MCR-ALS method can be used for the discovery of the main driving factors (latent 67 
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variables) responsible of the observed data variance, in this case, of the observed changes in the measured 68 

chemical pollutants.  69 

The present study is focused on promoting and extending the use of multivariate curve resolution alternating 70 

least squares method, including trilinear and quadrilinear constraints, for the investigation of NO2, O3 and 71 

PM10 air pollution. In addition, this study aims at providing different strategies to deal and estimate missing 72 

data also using the MCR-ALS methodology (Multivariate Curve Resolution of incomplete data multisets | 73 

Elsevier Enhanced Reader, 2022). The selected chemometric strategy is ultimately used to evaluate the 74 

temporal patterns of the three pollutants during 2018, 2019 and 2020 in eight monitoring stations located 75 

in Catalonia (Spain), including three urban, one control site, one semi-urban and three rural. The different 76 

stations were specifically selected to evaluate the influence of the geographical location on air pollution. 77 

The period of time evaluated (i.e., January 1st to December 31st of 2018, 2019 and 2020) was chosen to 78 

cover the COVID-19 lockdown period in Catalonia and to enable a comparison respect to the same time 79 

period in the previous two years. Considering that the strictest COVID-19 lockdown in Catalonia occurred 80 

in the month of April 2020, a specific evaluation of air quality changes produced during this period of time 81 

respect to the previous two years is provided in this study. 82 

2. Materials and methods 83 

2.1 Air quality data 84 

The experimental data used in this work consisted on O3, NO2 and PM10 concentrations recorded from eight 85 

air quality monitoring stations operated by the Department of Environment of the Catalan Autonomous 86 

Government. The selected air quality monitoring stations consisted in three urban (Gràcia, Vall d’Hebron 87 

and Granollers), one semi-urban (Manlleu) and one control site (Observatori Fabra), all of them located in 88 

the province of Barcelona, and three rural: Juneda and Bellver de Cerdanya in the province of Lleida, and 89 

Begur (Costa Brava, NE Catalonia), in the province of Girona. More detailed information about the 90 

characteristics of the stations is provided in a previous air quality monitoring study by the authors 91 

(Gorrochategui et al., 2021). NO2 concentrations were measured by means of chemiluminescence according 92 

to the UNE method 77212:1993, using automatically operated MCV 30QL analyzers. Ozone concentrations 93 

were measured by means of UV photometry according to ISO FDIS 139464:1998, automatically operated 94 

with MCV 48 AUV analyzers. PM10 concentrations were measured by means of gravimetric determination, 95 

using manually operated high volume samplers MCV CAV-A/MS. The generated databases with all the 96 

concentrations measured were compiled by the Department of Air Monitoring and Control Service of the 97 

Generalitat de Catalunya (Xarxa de Vigilància i Previsió de la Contaminació Atmosfèrica (XVPCA). 98 

Departament de Territori i Sostenibilitat, 2020). 99 

2.2. Experimental data multisets 100 

In this study, two experimental data multisets were analyzed (see Fig. 1). Both of them contained hourly 101 

concentrations of NO2, O3 and PM10 measured in the eight air quality monitoring stations but for distinct 102 

periods of time. The first data multiset contained air quality data recorded in the month of April 2018, April 103 

2019 and April 2020 (i.e., the latter being the time when the strictest lockdown occurred in Catalonia(Real 104 
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Decreto 463/2020de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación 105 

de crisis sanitaria ocasionada por el COVID-19., 2020)) in the different stations. The second data set 106 

contained air quality data recorded in the same 8 stations but during a longer period of time: from January 107 

1st to December 31st of 2018, 2019 and 2020. The latter multiset was built in order to evaluate annual trends 108 

of air pollution; especially interesting in 2020, an extraordinary year due to the coronavirus pandemic. 109 

As observed in Fig. 1, both data sets contained some missing data blocks, which were not included in the 110 

MCR-ALS analyses of individual contaminants, a part from some spot values, which were further estimated 111 

to undergo chemometric analysis.  112 

In the data set of the month of April, no missing data existed for NO2 and O3. However, for PM10, data of 113 

three months of April were missing (i.e., Begur 2018, Begur 2020 and Observatori Fabra 2018), as observed 114 

in Fig. 1a. In the data set of the entire three years (Fig. 1b), for NO2 and O3, the months of January and 115 

February 2018 in Observatori Fabra station were missing, respectively. For PM10, data from three air quality 116 

monitoring stations were missing: Gràcia (September and October, 2018), Begur (months from January to 117 

October, 2018, and months from January to July, 2020) and Observatori Fabra (months from January to 118 

September, 2018). 119 

 120 

2.3. Data sets arrangement 121 

In this study, the two data multisets were separately arranged to further undergo MCR-ALS individual 122 

analyses of the complete experimental data sets (Fig. 1).  123 

To conduct the analysis of the month of April, data matrices for NO2, O3 and PM10 were separately arranged 124 

in a first step. For each contaminant, a total of 24 data matrices, one per year (three years) and per 125 

monitoring station (eight stations), of size 30 x 24 (month days’ x hourly measurements), were obtained. 126 

As observed in Fig. 1a these 24 data matrices were labeled as Dstation-year; with the name of the corresponding 127 

air quality station (V: Vall d’Hebron, Gn: Ganollers, M: Manlleu, J: Juneda, Bl: Bellver, Ga: Gràcia, Bg: 128 

Begur and O: Observatori Fabra) and the two last digits of the year (2018, 2019 and 2020). These 24 data 129 

matrices were then arranged using a column-wise augmentation, obtaining three augmented data matrices: 130 

Dcaug-April-NO2, Dcaug- April-O3 and Dcaug-April-PM10. The two first augmented matrices (NO2 and O3) contained 131 

concentration measures of the month of April for each station and each year folded one on top of the other, 132 

first performing the augmentation for the 3 years (30 x 3) and then for the eight stations (30 x 3 x 8), as 133 

shown in Fig. 1a. The resulting dimensions of these two column-wise augmented data matrices for further 134 

MCR-ALS analysis were (720 x 24). However, as previously stated, for PM10, data of three months were 135 

missing and thus, the final column-wise augmented matrix was built only with the six stations containing 136 

no missing data (30 x 3 x 6), resulting in a (540 x 24) matrix (yellow-shaded area in Fig. 1a). 137 

To conduct the analysis of the entire three years, data matrices for NO2, O3 and PM10 were also separately 138 

arranged in a second step. For each contaminant, a total of 24 data matrices, one per year and per monitoring 139 

station, of size 365 x 24 (year days x hourly measurements), were obtained. 140 
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 141 

Figure 1. Data arrangement for individual analysis of completed data sets. NO2, O3 and PM10 concentrations in 142 
a) the month of April and b) the entire year, for one year and one station can be arranged in a data matrix with 143 
the days in the rows and the 24 hour measurements in the columns Dstation-April or Dstation-year. These individual 144 
data matrices are arranged in three (one per each pollutant) column-wise augmented data matrices. For the 145 
data set of April in 2018-2019-2020 (a), the augmented matrices are Dcaug-April-NO2, Dcaug- April-O3 (720,24) and Dcaug- 146 
April-PM10 (540,24). For the data set of the entire year in 2018-2019-2020 (b), the augmented matrices are Dcaug-147 
allyear-NO2, Dcaug-allyear -O3 (7.655,24) and Dcaug-allyear -PM10 (5.475,24). Stations containing missing data (white-gaps in 148 
the figure) are excluded for further MCR-ALS analysis (yellow-shaded area). VH: Vall d’Hebron, Grn: 149 
Granollers, Mn: Manlleu, Jun: Juneda, Bell:Bellver, Gra: Gràcia, Beg: Begur, OF: Observatori Fabra. 150 
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These 24 data matrices were then arranged using a column-wise arrangement, obtaining three augmented 151 

data matrices: Dcaug-allyear-NO2, Dcaug-allyear-O3 and Dcaug-allyear-PM10 (Fig. 1b). In this case, for the three 152 

contaminants, some data were missing (white gaps in the figure). For NO2 and O3, some data from 153 

Observatori Fabra station was missing. Thus, the resulting augmented matrices, Dcaug-allyear-NO2, Dcaug- allyear-154 

O3, contained information of the whole year, seven stations and the three years (365 x 3 x 7), resulting in 155 

(7655 x 24) matrices, as shown in the figure. For PM10, data of three stations were missing (white gaps in 156 

the figure) corresponding to Gràcia, Begur and Observatori Fabra. Thus, in order to perform the MCR-ALS 157 

analysis, the resulting PM10 column-wise augmented matrix only contained information of five stations 158 

with no missing data (365 x 3 x 5), resulting in a (5475 x 24) matrix (yellow-shaded area in Fig. 1b). 159 

Data arrangement for the simultaneous study of the three pollutants considering the whole incomplete 160 

multiblock experimental data sets is further described in Sect. 2.7. 161 

 162 

2.4. Estimation of missing data 163 

Estimation of missing data was used for the case when failures of stations and/or malfunction of them 164 

caused the absence of measurements for few hours or few days. In order to estimate such missing data, the 165 

nearest-neighbor method(Peterson, 2009) (i.e., knn imputation) was used. In this study, the function 166 

mdcheck (i.e., missing data checker and infiller) of PLS Toolbox version 8.9.1 (Eigenvector Inc., WA) was 167 

utilized to perform the imputation. This function checks for missing data and infills them using a PCA 168 

model imputation from distinct algorithms. In our case, three algorithms were tested consisting on ‘svd’ 169 

(Singular Value Decomposition), ‘NIPALS’ (Nonlinear Iterative Partial Least Squares) and ‘knn’, the latter 170 

providing the better estimation results in our case, and thus, the one that was finally used in this study. 171 

It is important to mention that estimation of missing data was not performed in cases where the entire month 172 

was missing. For those cases, the station was not included in the MCR-ALS analysis of the complete data 173 

set. For the analysis of incomplete multiblock data sets, an especial arrangement was performed using a 174 

particular data fusion strategy, as further explained in Sect. 2.7. 175 

 176 

2.5. MCR-ALS analysis of the experimental data  177 

Different chemometric methods have been proposed in the literature for the analysis of environmental 178 

monitoring data. MCR-ALS is a frequently used method in spectrochemical mixture data analysis, which 179 

can also be easily extended to the analysis of environmental source apportionment data sets (Alier et al., 180 

2011). MCR-ALS is a flexible soft-modelling factor analysis tool which allows for the application of natural 181 

constraints (see below) and it can be easily adapted to the analysis of complex multiway (multimode) data 182 

structures, such as three- and four-way environmental data sets using trilinear and quadrilinear model 183 

constraints (De Juan et al., 1998; Smilde et al., 2004; Malik and Tauler, 2013).  184 

The simplest application of the MCR-ALS method is based on a bilinear model that performs the factor 185 

decomposition of a two-way data set (i.e. a data table or a data matrix). Eq. (1) summarizes this bilinear 186 

model in its element-wise way, while Eq. (2) presents the same model in a matrix linear algebra format: 187 

di,j = ∑ xi,nyj,n + ei,j
N
n=1  i=1,..I (days), j=1,…J(hours)  (1) 188 



7 
 

D = X YT + E         (2) 189 

In Eq. (1), the individual data values, di,j elements (in this case the O3, NO2 or PM10 concentration values 190 

measured one day (i) at a particular hour (j)) are decomposed as the sum of a reduced number of 191 

contributions (components), n=1,..N, each one of them defined by the product of two factors, xi,n (scores) 192 

and yj,n (loadings). In addition, the term ei,j is the residual part of di,j, which cannot be explained by these N 193 

components and accounts as experimental noise and uncertainties. In Eq. (2), the data matrix, D, of 194 

dimensions IxJ is decomposed into the scores factor matrix X (IxN) and the loadings factor matrix, YT 195 

(NxJ). The number of components, N, is selected to explain as much as possible the data variance, while 196 

the unexplained small contributions of data variance and experimental noise are in E. Multivariate Curve 197 

Resolution(Tauler, 1995) performs the bilinear model factor decomposition shown in Eq. (1) and (2) using 198 

an alternating least squares (MCR-ALS) algorithm under a set of constraints which reduce the extent of the 199 

bilinear model rotation ambiguities(Abdollahi and Tauler, 2011)  and allow the physical identification and 200 

interpretation of the factor matrices X and YT, as for example, the application of non-negativity constraints 201 

to the elements of the factor matrices X and YT(Bro and De Jong, 1997; De Juan and Tauler, 2003). Models 202 

with different number of components can be tested and a final decision is taken considering the data fit and 203 

the shapes and reliability of the resolved profiles. The ALS algorithm also needs initial estimates of either 204 

X or YT factor matrices. These initial estimates can be obtained from the more ‘dissimilar’ rows or columns 205 

of the original data matrix(Jackson et al., 2002). Eq. (2) for D is solved iteratively, which updates the 206 

solutions (vector profiles in X and YT matrices) until they fit the data optimally and fulfill the proposed 207 

constraints 208 

In this work the MCR-ALS method has been applied either to the individual data matrices Dstation,year 209 

described in previous section and in Fig. 1 for every pollutant (O3, NO2 or PM10), at one period of time 210 

(April or full year) and at one monitoring station or to the augmented matrices of the same three pollutants 211 

for the three years (k=1,…3) simultaneously and for the different stations (l=1,…,8) concatenated vertically 212 

in Dcaug-April  or Dcaug-allyear (see Fig. 1). In the case of the individual data matrices described above for the 213 

period of time (April or full year), Dstation,april or Dstation,year, the factor (scores) matrix X will have 214 

respectively the April or full year day profiles of the components and the factor (loadings) matrix YT will 215 

have the corresponding hour profiles of these components. In the case of the column-wise augmented data 216 

matrices Dcaug-April or Dcaug-allyear, bilinear model Eq. (2) was extended as: 217 

Dcaug = Xcaug YT + Ecaug       (3) 218 

Where Xcaug is now the augmented factor (scores) matrix with the augmented day profiles concatenated 219 

vertically for the different years and stations, and YT is the matrix of the hour profiles again, which are 220 

common for all the concatenated matrices in Xcaug. During the ALS optimization of the bilinear model in 221 

Eq. (3), constraints can be also applied and the same aspects in relation to number of components and 222 

convergence as for solving Eq. (2) are considered. 223 

2.6 MCR-ALS analysis of the complete experimental data sets using trilinear and quadrilinear 224 

constraints 225 

Solving Eq. (3) using bilinear MCR-ALS does not take into account the temporal and spatial structure of 226 
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the data in the vertical concatenated mode which includes the information of the day, year and station. This 227 

data structure can be considered in the trilinear and specially in the quadrilinear extensions of the bilinear 228 

models described in Eq. (1-3). 229 

The factor decomposition model given before can be extended to a three-way dataset, D, or to a four-way 230 

data set, D, expressed individually for every data value as given by Eq. (4) and (5). 231 

di,j,kl = ∑ xi,nyj,nzkl,n
N
n=1 + ei,j,kl  (trilinear model)  (4) 232 

di,j,k,l = ∑ xi,nyj,nzk,wl
N
n=1 + ei,j,k,l  (quadrilinear model) (5) 233 

where di,j,kl are the individual data values (concentrations of O3, NO2 or PM10) in the four experimental data 234 

modes: the day of April or of the full year i=1,…30 or i=1,...,365, the hour of the day j=1,...,24, and the 235 

year-station kl=1,….24 in the case of the trilinear model, and di,j,k,l .has the year-station third mode separated 236 

in year k=1,2,3, and station, l=1,…,8 in the quadrilinear model.  These data values are modeled as the sum 237 

of a number of components (contributions), n=1,..N, defined by the product of three factors xi,n, yj,n, and 238 

zkl,n, in the case of the trilinear model and in four factors in the case of the quadrilinear model, xi,n, yj,n, zk,n 239 

and wln. These factors are related with the three and four data modes respectively (day, hour and year-240 

station or day, hour, year and station). ei,j,kl  and ei,j,k.l are the part of di,j,kl and di,j,k.l not explained by the 241 

contribution of these N components. These trilinear and quadrilinear models can be written in a matrix form 242 

using the decomposition of every individual Dkl data slice (every individual matrix Dkl), as shown in Eq. 243 

(6) and (7). 244 

Dkl = X Zkl YT + Ekl   (trilinear model)   (6) 245 

Dkl = X Zk Wl YT + Ekl     (quadrilinear model)  (7) 246 

Under the trilinear model, all individual data matrices, Dkl,(I,J) are simultaneously decomposed with the 247 

same number of components N and the same daily, X (I,N) and hourly YT (N,J) profiles. Thus, they differ 248 

only in a diagonal matrix Zkl, (N,N) different for every one of the kl=1,…,24 year-stations (year-station 249 

profiles), which gives the relative amounts of the N components in every data matrix (year-station), Dkl. 250 

These N diagonal elements of the Zkl can also be grouped in the third factor matrix Z (KxL,N). Under the 251 

quadrilinear model, all individual data matrices, Dkl,(I,J) are simultaneously decomposed with the same 252 

number of components N and the same daily, X (I,N) and hourly YT (N,J) profiles. Thus, they differ in the 253 

diagonal matrices Zk, (N,N) and Wl (N.N), which are different for every year (k) and station (l), which give 254 

the relative amounts of the N components in every data matrix Dkl respectively. These N diagonal elements 255 

of the Zk and Wl matrices can also be grouped in the third and four factor matrices Z (K,N) and W(L,N). 256 

Therefore, the proposed trilinear and quadrilinear models take advantage of the natural structure of the 257 

analyzed data sets, especially in relation to their different temporal modes (i.e. hourly, daily, yearly) and to 258 

the different type of monitoring stations analyzed simultaneously. The implementation of trilinear and 259 

quadrilinear models as a constraint in the MCR-ALS method has been described in previous works(Tauler, 260 

2021; Malik and Tauler, 2013; Alier et al., 2011) Here only a brief explanation of the case of the 261 

implementation of the quadrilinear model constraint for the case of study is shown. 262 
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  263 

Figure 2. MCR-ALS with the quadrilinearity constraint. Graphical description of the implementation of the 264 
quadrinilearity constraint during the Alternating Least Squares optimization. See Eq. (4-7) and their 265 
explanation in the manuscript. 266 

Figure 2 shows the practical implementation of the quadrilinear constraint in the MCR-ALS analysis of the 267 

four-way data set obtained in the two type of data, when the April data of the three parameters (O3, NO2 268 

and PM10) were studied over the three years (2018-2019 and 2020) and over the different monitoring 269 

stations described above, and also for the analogous four-way data set when instead of April data, the full 270 

year data were considered for the same years and stations. 271 

The individual data sets with the concentrations of the three parameters (one per year and station), were 272 

arranged in the column-wise augmented data matrix Dcaug of dimensions 30 (April) or 365 days x 3 years 273 

x 8 stations, giving a total number of 720 rows for April data or of 8760 rows for the full year data, and 24 274 

hourly measures in columns. These number of row elements is for the case of no-missing data, however 275 

they will be lowered for the cases of missing data, especially in the case of the full year data (see previous 276 

section in missing data).  The application of the quadrilinearity constraint implies that the augmented 277 

profiles of every component n, xn
aug, having the vertically concatenated information of days times years 278 

times stations is first refolded in the data matrix Xn
aug of dimensions 30 (April) or 365 (all year) times 3 279 

(years) rows by 8 (stations). This augmented factor matrix is decomposed by SVD considering only the 280 

first singular component into the product of two vector profiles, one long vector profile xn
caug (90 or 1095  281 

x 1) of the combined day-year profile by a vector profile wn (8x1) describing differences among the 282 

different stations for the component n. xn
caug long vector day-year profile can be further refolded in a matrix 283 

and decomposed by SVD into the product of two new vector profiles, one related with the year profile, zn,  284 

and another with the day profile xn, for the considered component n. In this way, for every component 285 
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(contribution), the concentration of any one of the three parameters (O3, NO2 and PM10) is decomposed in 286 

the product of four profiles, one related with the day (of April or of the whole year), xn, another related with 287 

the hour of the day, yn, another with the considered year, zn, and another with the monitoring station, wn. 288 

This factor decomposition allows a detangled interpretation of the temporal and spatial sources of variation 289 

of the observed concentrations of the three pollutants. Therefore, the application of this quadrilinearity 290 

constraint implies that for every component, the daily changes are described by the same single xn vector 291 

profile which changes over the years and station by station by the corresponding scalars values in zn and 292 

wn. Once the three profiles in the three augmented modes, xn, zn and wn, are obtained, they can be multiplied 293 

using the kronecker product(Soloveychik and Trushin, 2016) to reconstruct the long vector profile, xn
aug, 294 

(see Fig. 2) and rebuild the bilinear model in the next iteration of the general ALS optimization. Finally, 295 

the vector profiles for every component n in the different modes, can be grouped in the corresponding factor 296 

matrices X, Z and W, which together YT give the full quadrilinear decomposition of the four-way data set, 297 

D. See previous works for a more detailed description of the algorithm used for the practical implementation 298 

of the quadrilinearity constraint in MCR-ALS(De Juan and Tauler, n.d.; De Juan et al., 1998). 299 

2.7 MCR-ALS simultaneous analysis of incomplete multiblock experimental data 300 

The simultaneous analysis of the NO2, O3 and PM10 experimental data can be done one step forward using 301 

a data fusion multiblock strategy. This would imply building a single MCR model for the whole multiset 302 

data obtained for the 3 pollutants, NO2, O3 and PM10 in April or in the whole year, for the three years, 2018, 303 

2019 and 2020, and for the different monitoring stations. This is expressed in the following data matrix 304 

equation (see also Fig. 3): 305 

Dcraug = [DcaugNO2, DcaugO3, DcaugPM10] = Xcaug [YT
NO2, YT

O3, YT
PM] = XcaugYT

raug   (8) 306 

In this Equation the column-wise augmented data matrices, DcaugNO2, DcaugO3, and DcaugPM10 previously 307 

described (and analyzed separately by MCR-ALS with  different factor decomposition models, bilinear, 308 

trilinear and quadrilinear), are now concatenated horizontally giving the new single row and column-wise 309 

super-augmented data matrix Dcraug which is decomposed in the two new augmented factor matrices, Xcaug 310 

and YT
raug using the MCR bilinear model and constraints, like it was described in Sect. 2.4. In the 311 

augmented rows of the new YT
raug will be the resolved hour profiles for the three contaminants YT

NO2, YT
O3 312 

and YT
PM. In addition, if the trilinearity/quadrilinearity constraints are applied to the columns of the 313 

resolved factor matrix Xcaug as described above in Sect. 2.6 using matrix decompositions of Eq. (6) and (7), 314 

the common day, year and station profiles will be separately recovered and analyzed. 315 

However as previously described, April and the whole year individual data sets were not obtained for all 316 

stations, years and pollutants, and therefore they together could not be fitted in a rectangular super-317 

augmented data matrix containing all the data for all the years and stations as shown in Eq. (8) for Dcraug. 318 

Some of the individual data sets were missing (see Sect. 2.3 and 2.4). In particular, in the case of April, two 319 

different data blocks could be arranged. First, the NO2, O3 and PM10 concentrations data for 3 years and 6 320 

stations were arranged in the complete row- and column-wise augmented April data block, DA1craug, with 321 

540 rows (30 days x 3 years x 6 stations) and 72 columns (24 hours for NO2 + 24 hours for O3 + 24 hours 322 

for PM10). Secondly, the additional NO2 and O3 concentration data for 3 years and 2 stations were arranged 323 
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in complete row- and column-wise augmented April data block DA2craug with 180 rows (30 days x 3 years 324 

x 2 stations) and 48 columns (24 hours for NO2 + 24 hours for O3). These two April data blocks can be 325 

analyzed independently, but a new dataset can be built concatenating the two data blocks as shown in Fig. 326 

S1, which will be reformulated and analyzed as shown in next Equation. 327 

DA12craug = [DA1craug; [DA2craug, NaN(180,24)]] = XA12caug YA12T
raug =  328 

= XA12caug [YNO2, YO3, YPM10]   (9) 329 

  330 

Figure 3. MCR-ALS with the quadrilinearity constraint for the simultaneous analysis of the three contaminants in the 331 
incomplete multiblock data set of the month of April. See Eq. (9) and their explanation in the manuscript. 332 

This new incomplete data set DA12craug is built using the two data blocks previously defined, DA1craug and 333 

DA2craug, both concatenated vertically and filling the empty data block corresponding to the unknown 334 

concentrations of PM10 for two missing stations with the NaN notation. The application of MCR-ALS to 335 

this incomplete dataset is decomposed using a bilinear model (see in Fig. 3), giving the two factor matrices 336 

XA12caug and YA12T
raug. XA12caug factor matrix has the column-wise augmented day x year x station 337 

profiles in its columns and YA12T
raug factor matrix has the row-wise augmented hour profiles for NO2 338 

(YNO2), O3 (YO3) and PM10 (YPM10) in its rows. As previously, the trilinear/quadrilinear constraints can be 339 

applied during the ALS factor decomposition to the XA12caug factor matrix and allow the separate recovery 340 

of the day, year and station profiles, a part of the hour profiles for NO2, O3 and PM10 obtained in YA12T
raug.   341 

Analogous equations can be described for the NO2, O3 and PM10 experimental data measured not only in 342 

April but during the whole year. In this case however the two data blocks, DY1craug and DY2craug, will have 343 

different sizes than for the only April month data because they are for all the days of the whole year. 344 

Different data sets were missing in this case. DY1craug has the data for 5 stations with 5475 rows (365 days 345 

x 3 years x 5 stations) and 72 columns (24 hours for NO2 + 24 hours for O3 + 24 hours for PM), and DY2craug 346 

has the additional data for 2 stations but only for NO2 and O3 concentrations, with 2190 rows (365 sys x 3 347 

years x 2 stations) and 48 columns (24 hours for NO2 + 24 hours for O3) (see Fig. S2). For the whole year 348 
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data, the bilinear factor decomposition can be described by the new Eq. (10). 349 

DY12craug = [DY1craug;[DY2craug,NaN(2190,24)]] = XY12caug YY12T
raug = 350 

= XY12caug [YNO2, YO3, YPM10]   (10) 351 

Where now DY12craug is the new incomplete data set built with the two data blocks DY1craug and DY2craug 352 

concatenated vertically and NaN (2190, 24) is for the missing PM10 concentrations during 3 years in the 353 

missing 2 stations (see Supplement Fig. S2). XY12caug and YY12T
raug are now the two factor matrices 354 

obtained in the bilinear decomposition of DY12craug. The first factor matrix XY12caug have the column-wise 355 

augmented day x year x station profiles in its columns and the second factor matrix YY12T
raug has the hour 356 

profiles for NO2, O3 and PM10 in its rows. And also as previously, the trilinear/quadrilinear constraints 357 

applied during the ALS factor decomposition to the XY12caug factor matrix will allow the separate recovery 358 

of the day, year and station profiles, apart from the hour profiles for NO2 (YNO2), O3 , (YO3), and PM10 359 

(YPM10) obtained in YY12T
raug The difference with the results of April data is that now the column-wise 360 

augmented profiles in XY12caug will have information about the 365 days of the whole year and not only 361 

for the 30 days of April. Supplement Fig. S3 is given to illustrate graphically the bilinear model applied to 362 

the incomplete two-blocks data set.  363 

In the proposed approach missing data blocks were not included in the least squares estimations of the 364 

factor solutions (XY12caug and [YNO2, YO3, YPM10] in Equation 10). On one hand this is an advantage of the 365 

proposed method since linear equations are only solved for the known data blocks. But on the other hand, 366 

some data regions of the factor solutions (those corresponding to the missing data blocks, NaN block in 367 

Eqution 10) will not give so much overdetermined linear equations from a least squares point of view as 368 

the other data blocks without missing values, and therefore this can be reflected in the reliability of some 369 

parts of the factor estimations. This is an important aspect that needs further investigation and some research 370 

is pursued in this direction. 371 

 372 

2.8 Evaluation of MCR-ALS results  373 

The final evaluation of the MCR-ALS fitting results is performed calculating the explained data variances 374 

(R2) using Eq. (11), 375 

R2 = 100 × (1 −
∑ ∑ ( dij−d̂𝑖𝑗 )

2n
j=1

m
i=1

∑ ∑ dij
2n

j=1
m
i=1

 )             (11) 376 

where dij are the experimental predicted O3  NO2 or PM10 concentrations, and d̂𝑖𝑗 are the corresponding 377 

calculated values by MCR-ALS using either the bilinear (Eq. (1-3)), trilinear (Eq. (4) and (6)) or 378 

quadrilinear (Eq. (5) and (7)) models. Apart from the global fitting with the full model (all components), 379 

the explained variances can be also calculated individually for every MCR-ALS component, where now 380 

the calculated values, d̂𝑖𝑗, take only into account one of the n components of the model. In this way, the 381 

relative importance of the different contributions can be evaluated, as well as their overlapping degree with 382 

the other contributions or components. 383 
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2.8 Software 384 

MATLAB 9.10.0 R2021a (The MathWorks, Inc., Natick, MA, USA) was used as the development platform 385 

for data analysis and visualization. The new graphical interface MCR-ALS GUI 2.0(Malik and Tauler, 386 

2013), freely available as a toolbox at the web address http://www.mcrals.info/., was used for bilinear and 387 

trilinear data sets. Statistics ToolboxTM for MATLAB and PLS Toolbox 8.9.1 (Eigenvector Research Inc., 388 

Wenatchee, WA, USA) were also used in this work. New specific MCR-ALS command line code for 389 

incomplete multiblock data sets is under final development and it can be requested to one of the authors 390 

(RT, email:roma.tauler@idaea.csic.es). 391 

3. Results and discussion 392 

Results of MCR-ALS will be shown separately for the analysis of the month of April and for the analysis 393 

of the entire years. In the study of the month of April, the individual analysis of the three contaminants per 394 

separate is firstly performed, using only data from stations with no missing blocks (i.e., data matrices Dcaug-395 

April-NO2, Dcaug-April-O3 and Dcaug-April-PM10, yellow-shaded area of Fig. 1a). Then, a simultaneous analysis of 396 

the three contaminants containing incomplete data is performed (i.e., data matrix DA12craug, Fig. S1). In the 397 

study of the entire years, again the individual analysis of the three contaminants per separate is initially 398 

performed, using only data from stations with no missing blocks (i.e., data matrices Dcaug-allyear-NO2, Dcaug-399 

allyear-O3 and Dcaug-allyear-PM10, yellow-shaded area of Fig. 1b). Then, a simultaneous analysis of the three 400 

contaminants containing incomplete data is performed (i.e., data matrix DY12craug, Fig. S3). In all cases the 401 

selection of the number of components and the initial estimates for MCR-ALS were performed as described 402 

in Sect. 2.5. A summary of the explained variances of the MCR-ALS analyses for the different data sets 403 

with non-negativity and either bilinear, tri-linear or quadrilinear modeling and with different number of 404 

components is given in Table 1.   405 

Table 1. MCR-ALS decomposition and explained variances for the different models. 406 

 Explained variances: April 2018-2019-2020.  

MCR-ALS biliineal MCR-ALS quadrilineal MCR-ALS trilineal 

Dcaug-April-NO2
d  

(4 comp) 

All 94.4% 

Sum 125.2% 

All 78.4% 

Sum 109.8% 

All 79.2% 

Sum 113.5% 

Dcaug- April-O3
d
  

(3 comp) 

All 98.4% 

Sum 143.5% 

All 92.9% 

Sum 118.3% 

All 93.5% 

Sum 126.4% 

Dcaug- April-PM10
d
  

(3 comp) 

All 91.8% 

Sum 126.5% 

All 78.4% 

Sum = 112.9 

All 79.0% 

Sum= 113.0% 

DA12craug
d 

(5 comp) 

All 96.2% 

Sum 135.5% 

All 90.7% 

Sum 111.3% 

All 91.2% 

Sum 114.4 

 Explained variances: All year 2018-2019-2020.  

Dcaug-allyear-NO2
d  

(4 comp) 

All 95.1.0% 

Sum 131.0% 

All 80.3% 

Sum 116.2% 

All 80.5% 

Sum 115.7% 

Dcaug- allyear-O3
d
  

(3 comp) 

All 97.5% 

Sum 132.2% 

All 90.1% 

Sum 130.2% 

All 90.6% 

Sum 129.2% 

Dcaug- allyear-PM3
d
  

(3 comp) 

All 88.1% 

Sum 116.6% 

All 72.4% 

Sum 105.0% 

All 72.6% 

Sum 103.2% 

DY12craug
d 

(5 comp) 

All 94.7% 

Sum 126.8% 

All 86.4% 

Sum 125.8% 

All 86.8% 

Sum 126.6% 
a MCR-ALS for raw data with non-negativity constraint 407 
b MCR-ALS for raw data with non-negativity and quadrilinear constraint 408 
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c MCR-ALS for raw data with non-negativity and trilinear constraint 409 
d Augmented data matrices and number of components (see Fig. 1, Eq. (3), (9) and (10), and explanation in section Data sets arrangement) 410 
 411 

MCR-ALS bilinear analysis of April data in the Dcaug-April-NO2, Dcaug-April-O3 and Dcaug-April-PM10 data matrices 412 

with non-negativity constraints explained respectively 94.40%, 98.4% and 91.8% of the total variance when 413 

four, three and three components were considered (Table 1). These values indicate the higher complexity 414 

of the NO2 data compared to O3 data as will be shown also below. When the quadrilinear constraint was 415 

applied these values decreased to 78.4%, 92.9% and 78. 4% respectively, confirming again the less complex 416 

and more regular changes of ozone concentrations in the three years at the different monitoring stations. 417 

Variances explained by the individual components are given in the Figures shown below. The amount of 418 

variance overlap (also given in Table 1) in every case can be obtained subtracting the sum of the individual 419 

variances with the variance obtained with all the components simultaneously. This difference is again larger 420 

in the case of NO2.  In Table 1 also, the variances obtained when the trilinearity constraint was applied, 421 

instead of the quadrilinearity constrain, are also given, with similar results to those obtained by both 422 

multilinear models.  In the case of MCR-ALS of all-year data of the Dcaug-allyear-NO2, Dcaug-allyear-O3 and Dcaug-423 

allyear-PM10 data matrices, rather similar results to those from April were obtained in terms of explained 424 

variances for all three type of models (see Table 1), reflecting again the higher complexity of the NO2 data 425 

over the years and stations compared to O3 data, and the intermediate behavior of PM10 data, although the 426 

later more similar to the NO2 data. 427 

Possible correlations between NO2, O3 and PM10 data sets during the month of April of 2018, 2019 and 428 

2020 and in the eight stations were investigated using the incomplete data arrangement described in Sect. 429 

2.7 and Fig. S1. MCR-ALS analysis of DA12craug with five components and with only negativity constraints 430 

gave a total explained variance of 96.2% (Table 1). When the quadrilinearity constraint was applied, the 431 

total explained variance decreased down to 90.7% (91.2% for the MCR-ALS trilinear).  Such decrease 432 

between bilinear and quadrilinear MCR-ALS models of only 5 % indicated a good quadrilinear behavior 433 

of the whole system in April. The explained variances of each component individually are given below 434 

with the corresponding Figures of the resolved profiles. In the case of the simultaneous study of NO2, O3 435 

and PM10 profiles along all the three years (i.e., 2018, 2019 and 2020) in the seven stations using the 436 

incomplete data arrangement described in Sect. 2.7 and Fig. S3. Results using five components indicated 437 

also a rather good quadrilinear behavior of the system. A more detailed description of the profiles describing 438 

the concentration changes of the three pollutants and of the behavior of the whole systems formed by all of 439 

them in the different stations and during the three years, separately for April and for the all year, is given 440 

below. 441 

 442 

3.1. Study of the month of April  443 

3.1.1. NO2 study (Dcaug-April-NO2 data matrix) 444 

In Fig. 4, from left to right, the profiles of the different modes of the four components are shown: x-day 445 

(blue), z-year (black), w-station (green) and y-hours (red). Component profiles in the four modes obtained 446 

by MCR-ALS when using non-negativity and quadrilinearity constraints are shown in Fig. 4.  447 
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NO2 hour profile of first component (C1) showed a narrow maximum between 9:00-11:00 hours, coincident 448 

with the rush traffic hour and due to fuel combustion by vehicles. In second component (C2) this hour 449 

profile presented a much wider peak during daily hours (10:00-20:00h), again potentially attributed to the 450 

combined effects of traffic emissions and ozone formation (see below). Third component (C3) reached an 451 

hourly maximum in the late evening, approximately at 22:00 hours whereas forth component (C4) showed 452 

a maximum between 00:00 and 05:00 hours, describing the NO2 night behavior. As observed in the year 453 

profiles (z-mode), for all the components, NO2 contributions showed a significant decrease in 2019 and 454 

even higher in 2020 respect to 2018; the latter possibly attributed to the COVID-19 curfew and mobility 455 

restrictions. Moreover, as observed in the station profiles (w-mode), such depletion was consequently more 456 

notorious in the three urban stations Vall d’Hebron (1), Granollers (2) and Gràcia (6), which were the 457 

stations with higher NO2 concentration levels. Considering that the principal emission source of NO2 is 458 

traffic, it is reasonable that the four MCR-ALS resolved components evidenced a decline in the year-mode, 459 

corresponding to a diminution in April 2020 (under the strictest lockdown), compared to 2019 (under no 460 

pandemia) and to 2018 (under no pandemia and no other traffic restrictions in Barcelona, such as the low 461 

emission zones(LEZ - Àrea Metropolitana de Barcelona, 2020)). Moreover, as stated in a previous study of 462 

the authors(Gorrochategui et al., 2021), in April 2020 an historical record of rainfall was registered in the 463 

control site of Observatory Fabra. Therefore, the highly rainy conditions of April 2020 favored the 464 

cleansing of the atmosphere, including NO2 gases. Finally, the day profiles (x-mode) for the different 465 

components did not show any particular pattern for the different days of the month.  466 

 467 

 468 

Figure 4. MCR-ALS analysis of NO2 concentrations in the column-wise super-augmented data matrix Dcaug-469 
April-NO2 (Eq. (3)) using non-negativity and quadrilinearity constraints. Profiles of the four different data modes 470 
are given in different colors: (X) in blue days of April; (Z) in black year 1=2018, 2=2019 and 3= 2020; (W) in 471 
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green stations 1: Vall d’Hebron, 2: Granollers, 3: Manlleu, 4: Juneda, 5: Bellver, 6: Gràcia, 7: Begur, 8: 472 
Observatori Fabra; and (Y) in red, hours of the day. 473 

3.1.2. O3 study (Dcaug-April-O3 data matrix) 474 

Profiles obtained by MCR-ALS for the three components using non-negativity and quadrilinearity 475 

constraints are shown in Fig. 5. MCR-ALS hourly (y-mode) resolved profiles of the first component (C1) 476 

showed a maximum between 14:00 and 22:00h, due to the cumulative solar radiation. There was practically 477 

no difference on this component among stations, among years nor among the days of the month. The MCR 478 

hourly resolved profile of the second component (C2) showed a different O3 profile, corresponding to the 479 

concentration at night. As observed in the w-mode, O3 concentration at night was higher in the rural station 480 

of Begur and in the control site Observatori Fabra, the latter emplaced in Collserola mountain and receiving 481 

only some impact from Barcelona’s city. The higher O3 nightly concentration observed in these stations is 482 

due to the fact that in inner rural areas, as well as in the control site, with low anthropogenic activities, the 483 

titration effect (i.e., ozone destruction under no solar radiation) produced by NO2 emissions is generally not 484 

observed, resulting in higher average O3 concentrations than in urban areas. Finally, third component (C3) 485 

showed again a maximum between 16:00 and 21:00 h, similar to the behavior described by C1, but narrower 486 

and with a pattern among stations different to C1. 487 

 488 

Figure 5. MCR-ALS analysis of O3 oncentrations in the column-wise super-augmented data matrix Dcaug-April-489 

O3 (Eq. (3)) using non-negativity and quadrilinearity constraints. Profiles of the four different data modes are 490 
given in different colors: (X) in blue days of April; (Z) in black year 1=2018, 2=2019 and 3= 2020; (W) in green 491 
stations 1: Vall d’Hebron, 2: Granollers, 3: Manlleu, 4: Juneda, 5: Bellver, 6: Gràcia, 7: Begur, 8: Observatori 492 
Fabra; and (Y) in red, hours of the day. 493 

3.1.3. PM10 study (Dcaug-April-PM10 data matrix) 494 
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Profiles obtained by MCR-ALS for these three components using non-negativity and quadrilinearity 495 

constraints are shown in Fig. 6. MCR hourly resolved profiles in the y-mode for the three resolved 496 

components indicated a wide maximum between 00:00 and 15:00h (C1), between 15:00 and 22:00h (C2) 497 

and between 10:00 and 20:00h (C3). As observed in the year profile (z-mode), PM10 contribution decreased 498 

in 2019 but most significantly in 2020, probably due to the COVID-19 lockdown. This behavior was the 499 

same observed for NO2 (Fig. 4), and it is due to the fact that among the PM10 sources, traffic should be also 500 

included. Moreover, such depletion was more evident in the urban stations profile (w-mode) of Vall 501 

d’Hebron, Granollers and Gràcia. 502 

 503 

Figure 6. MCR-ALS analysis of PM10 concentrations in the column-wise super-augmented data matrix Dcaug-504 

April-PM10 (Eq. (3)) using non-negativity and quadrilinearity constraints. Profiles of the four different data modes 505 
are given in different colors: (X) in blue days of April; (Z) in black year 1=2018, 2=2019 and 3= 2020; (W) in 506 
green stations 1: Vall d’Hebron, 2: Granollers, 3: Manlleu, 4: Juneda, 5: Bellver, 6: Gràcia; and (Y) in red, 507 
hours of the day. 508 

3.1.4. NO2, O3 and PM10 simultaneous study (DA12craug data matrix) 509 

MCR-ALS resolved profiles of the DA12craug data matrix (see Method Sect. 2.7) are given in Fig. 7. Results 510 

obtained for the hour profiles (y-mode, in red) for the three pollutants, NO2, O3 and PM10, are overlaid in 511 

the same plot with the same hour time axis. In this way, possible correlations among the different pollutants 512 

can be better explored in these plots. Profiles of components 1 (C1) and 2 (C2) mostly described the O3 513 

pollution: C1 hour profile showed an ozone day-time profile with a wide maximum between 12:00 and 514 

22:00h and C2 described the ozone night-time profile, again with a large maximum between 00:00 and 515 

10:00h. Component 3 described both PM10 and NO2 correlated pollution sources, with particulate matter 516 

having the highest contribution. The correlation between NO2 and PM10 can be due to the common sources 517 

of these contaminants (i.e., traffic and industry). Component 4 described the night-time profile of NO2 and 518 
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last component 5 showed the daily NO2 profile with two maxima, one in the morning (10:00-15:00h) and 519 

another at the late evening (20:00- 22:00h), probably associated to the traffic. From the year profiles in z-520 

mode, the evolution of the pollution in the month of April along 2018, 2019 and 2020 could be elucidated. 521 

Interestingly, for components 1 and 2 (mostly describing O3 pollution), the variation remained rather 522 

constant for the month of April during these three years. Moreover, the variation among stations in the 523 

profiles (w-mode) for the two first components was very little. Only in component 2, the stations of Begur 524 

and Observatori Fabra showed a higher O3 contribution, probably due to the lower titration effect produced 525 

in rural areas and in the Observatori Fabra control site, as previously observed in the individual MCR-ALS 526 

analysis of O3 data. In contrast, the variation among stations and among years was more significant for the 527 

rest of components (C3-C5), mainly describing NO2 and PM10 contamination. As observed in z-modes, 528 

contamination by NO2 and PM10 was lower in 2019 and even lower in 2020. Considering that the most 529 

important source of NO2 is traffic, the decrease in 2019 can be explained by the implementation of the low 530 

emission zones (LEZs(LEZ - Àrea Metropolitana de Barcelona, 2020)) in Barcelona, as a traffic restriction 531 

policy, first implemented on 2017 and finally put into permanent effect on January 1, 2020. However, the 532 

decrease observed in 2020 might be mostly associated to the COVID-19 lockdown restrictions, being April 533 

2020, the time when the strictest confinement was declared in Catalonia (Real Decreto-ley 10/2020, de 29 534 

de marzo, por el que se regula un permiso retribuido recuperable para las personas trabajadoras por cuenta 535 

ajena que no presten servicios esenciales, con el fin de reducir la movilidad de la población en el contexto 536 

de la l, 2020; Real Decreto 463/2020de 14 de marzo, por el que se declara el estado de alarma para la 537 

gestión de la situación de crisis sanitaria ocasionada por el COVID-19., 2020). Regarding the variation 538 

among stations, components C3 to C5 showed a higher NO2 and PM10 contribution in three urban stations 539 

(Vall d’Hebron, Granollers and Gràcia), which is in accordance to the higher traffic density registered on 540 

these sites. The results observed for components C3 to C5 regarding NO2 and PM10 pollution were in 541 

concordance to those of their respective individual models evidencing the good performance of the MCR-542 

ALS simultaneous analysis of the incomplete multiblock data sets and the confirmation of the reliability of 543 

the proposed approach. 544 

 545 
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Figure 7. MCR-ALS analysis of NO2, O3 and PM10 concentrations in the column-wise super-augmented 546 

incomplete April data matrix DA12craug (see Eq. (9)) using non-negativity and quadrilinearity constraints. 547 
Profiles of the four different data modes are given in different colors: (X) in blue days of the year; (Z) in black 548 
year 1=2018, 2=2019 and 3= 2020; (W) in green stations 1: Vall d’Hebron, 2: Granollers, 3: Manlleu, 4: Juneda, 549 
5: Bellver, 6: Gràcia, 7: Begur, 8: Observatori Fabra; and (Y) in red, hours of the day. 550 

3.2. Study of the entire years 551 

3.2.1. NO2 study (Dcaug-allyear-NO2 data matrix) 552 

Profiles obtained by MCR-ALS using non-negativity and quadrilinearity constraints are shown in Fig. S4. 553 

The hour profiles of the 4 resolved components in the analysis of the entire year were similar to those 554 

obtained in the analysis of the month of April: C1 hour profile in April’s model was equivalent to C3 hour 555 

profile in all years’ model and C2 and C4 hour profiles were equivalent in both models. Also, the diminution 556 

observed in z-mode profile in 2019 and in a bigger extent in 2020 in the month of April was also produced 557 

when analyzing all the year, but in a lesser extent. This might be due to the fact that the traffic restriction 558 

policies were mostly implemented during the strictest confinement (from March 14th to May 4th in 559 

Catalonia) and were gradually removed in the de-escalation phases(Gorrochategui et al., 2021). Also, the 560 

extraordinary rainy conditions registered in April 2020 (Gorrochategui et al., 2021) were not registered for 561 

the rest of the months, making the NO2 depletion less noticeable in the analysis of the whole year. Regarding 562 

stations, the ones showing the higher contribution were the same three urban stations (i.e., Vall d’Hebron, 563 

Granollers and Gràcia) observed in the study of the month of April. Observe also that in the day-of-year x-564 

profiles some seasonal tendencies can be observed in C1 and C2, with their lower intensities in the middle 565 

of the profile corresponding to the warmer seasons with higher sunlight radiation and higher NO2 depletion 566 

due to the photochemical reaction to form O3. C3 and C4 year profiles did not show major differences over 567 

the year.  568 

3.2.2. O3 study (Dcaug-allyear-O3 data matrix) 569 

 Only few differences between the analysis of the entire years versus that of the month of April were 570 

observed in the inter-year z-mode (Fig. S5). Component 2 in all years’ model, corresponding to a late 571 

evening peak of O3, suffered a slightly significant increase in 2019 and 2020 respect to 2018, which was 572 

not observed in the analysis of the month of April. Such increment can be explained by the reduction of the 573 

titration effect, which was a little higher when considering all the year. The diminution of C3 in 2019 and 574 

in 2020 was also more evident when analyzing the entire years. In this case, this component was associated 575 

to the daily maximum of O3, coincident with the sunlight hours and summer and spring seasons, when the 576 

photochemical reactions with NOX take place to form ozone. The reason why the changes in O3 were more 577 

evident when considering all year instead of when analyzing just the month of April, opposed to what 578 

happened with NO2, might be due to the fact that despite the traffic restrictions were gradually removed in 579 

the de-escalation phases, the curfew policies remained, causing a potential cumulative suppression of the 580 

titration effect.  581 

3.2.3. PM10 study (Dcaug-allyear-PM10 data matrix) 582 
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As occurred with NO2 and O3, the profiles of the components in PM10 MCR-ALS analysis of all year were 583 

similar to those obtained in the analysis of the month of April (Fig. S6). C1 and C3 hours profile in April’s 584 

model were equivalent to C3 and C1 in all years’ model, respectively, and C2 described the same PM10 585 

profile in both models. Also, the diminution observed in 2019 and in a bigger extent in 2020 in the month 586 

of April was also produced when analyzing all the year, but in a lesser extent, as stated for NO2. Moreover, 587 

the meteorological stations with higher contribution in the model were the same than in the model of April, 588 

except for Manlleu, which showed a significant contribution in C2 of this model for the first time when the 589 

entire year PM10 data were investigated. 590 

3.2.4. NO2, O3 and PM10 simultaneous study (DY12craug data matrix) 591 

MCR-ALS resolved profiles of DY12craug are given in Fig. 8. As observed in the y-mode profiles, 592 

components 1 and 2 mostly described O3 pollution: C1 showed an ozone profile with little daily variation 593 

whereas C2 described a wide O3 maximum between 14:00 and 20:00h. Moreover, the seasonal trend of C2 594 

(x-mode) showed a wide maximum coincident with the solar radiation registered in summer and spring 595 

months. C2 was higher in the urban stations and lower in the rural station of Begur, which could indicate 596 

that such O3 resulted from the photochemical reaction among NOx in the presence of sunlight in highly 597 

transited areas. Component 3 clearly showed the nighttime profile of O3, with a wide maxim between 17:00 598 

and 00:00h. Interestingly, this component was the only one showing clearly an increase in 2019 and 2020 599 

respect to 2018. As explained in the individual model, such increase is due to the diminution of the titration 600 

effect. Component 4 described the NO2 profile, with a first maximum between 09:00 and 12:00h and a 601 

second but lower maximum at late evening (20:00-00:00h). Component 5 described the simultaneous 602 

contribution of NO2 and PM10, with higher contribution of PM10, having again the same two-maxima profile 603 

observed in component 5 for NO2. Interestingly, both components 5 and 6 presented maximums in the 604 

urban stations (Vall d’Hebron, Granollers and Gràcia) and a decrease in 2020, due to the traffic diminution 605 

registered during the COVID-19 lockdown.  606 

 607 

Figure 8. MCR-ALS results of the simultaneous analysis of NO2, O3 and PM10 for the entire years (incomplete 608 
super-augmented data matrix DY12craug) using non-negativity and quadrilinearity constraints. Profiles of the 609 
four different data modes are given in different colors: days of the month April (X) in blue, year (Z) in black, 610 
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stations (W) in green and hours (Y) in red. In the y-mode, the hourly profiles of the three contaminants are 611 
overlapped. Capital letters in the figure indicate the different stations: 1: Vall d’Hebron, 2: Granollers, 3: 612 
Manlleu, 4: Juneda, 5: Bellver, 6: Gràcia, 7: Begur. 613 

4. Conclusions 614 

MCR-ALS with quadrilinearity constraints has demonstrated to be a powerful tool to resolve the principal 615 

contamination profiles of four-way environmental datasets, even when containing missing data blocks. The 616 

main advantage provided by the use of quadrilinearity constraints is the better and easier interpretability of 617 

the profiles, which appear more condensed and concise. 618 

In this study, resolved MCR profiles using quadrilinearity constraints have been shown to describe 619 

adequately the different patterns and evolution of NO2, O3 and PM10 contamination during the different 620 

hours of the day, during the different days (hourly and daily variations) for the two periods of time 621 

evaluated: month of April versus the entire year for 2018, 2019 and 2020. For each period of time studied, 622 

the individual models of the contaminants together with their simultaneous analysis have been performed.  623 

The simultaneous analysis of the incomplete multiblock data sets allowed the exploration of the potential 624 

correlations among the three contaminants, which was easily interpretable with the representation of 625 

overlapped NO2, O3 and PM10 hourly profiles. Interestingly, both in the study of the month of April and the 626 

study of the entire years, the simultaneous analysis of the three contaminants evidenced a correlation 627 

between NO2 and PM10, due to their common pollution sources (i.e., traffic and industry). Moreover, the 628 

profiles of these two contaminants showed an inter-year decrease, due to the introduction of LEZs (LEZ - 629 

Àrea Metropolitana de Barcelona, 2020) in 2019 and due to the COVID-19 lockdown restrictions and to 630 

the high amount of rainfall registered in April 2020(Real Decreto 463/2020de 14 de marzo, por el que se 631 

declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID-19., 632 

2020). Such decrease was consistently higher in the three most transited urban stations studied: Vall 633 

d’Hebron, Granollers and Gràcia. 634 

On the other hand, MCR-ALS ozone profiles both in individual and simultaneous models presented an 635 

opposite inter-year trend, especially when analyzing the entire years. Globally, O3 profiles showed an 636 

increase in 2019 and in 2020 respect to 2018, which can be attributed to the diminution of the titration effect 637 

linked to the lockdown and curfew restrictions. Such effect was more evident in inner rural areas and in the 638 

control site (i.e., Begur and Observatori Fabra), where the amount of NOx necessary to react with ozone 639 

and to produce its suppression is lower compared to urban areas due to the smaller traffic density and 640 

industrial activity. 641 

Overall, this work contributes to the better knowledge of the evolution of NO2, O3 and PM10 contamination 642 

in eight rural and urban areas of Catalonia during the two years before the COVID-19 (i.e., 2018 and 2019) 643 

and the year itself of the pandemic (i.e., 2020). The work also highlights: (a) the capacity of MCR-ALS 644 

with quadrilinearity constraints to perform simultaneous analysis of different contamination sources to 645 

study potential correlations among them and (b) the good performance of this approach in the analysis of 646 

complex four-way environmental data sets containing missing data blocks, providing concise and easy 647 

interpretable results.  648 
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