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Abstract. Glacier forefields have long provided ecologists with a model to study patterns of plant succession following glacier retreat. While 21 

plant survey-based approaches applied along chronosequences provide invaluable information on plant communities, the “space-for-time” 22 

approach assumes environmental uniformity and equal ecological potential across sites and does not account for spatial variability in initial 23 

site conditions. Remote sensing provides a promising avenue for assessing plant colonisation dynamics using a so-called “real-time” 24 

approach. Here, we combined 36 years of Landsat imagery with extensive field sampling along chronosequences of deglaciation for eight 25 

glacier forefields in the south-western European Alps to investigate the heterogeneity of early plant succession dynamics. Based on the two 26 

complementary and independent approaches, we found strong variability in the time lag between deglaciation and colonisation by plants and 27 

in subsequent growth rates, and in the composition of early plant succession. All three parameters were highly dependent on the local 28 

environmental context, i.e., neighbouringlocal vegetation cover surrounding the forefields and energy availability linked to temperature and 29 

snowmelt gradients. Potential geomorphological disturbance did not emerge as a strong predictor of succession parameters, perhaps due to 30 

insufficient spatial resolution of predictor variables. Notably, the identity of pioneer plant species was highly variable, and initial plant 31 

community composition had a much stronger influence than elapsed time onsince deglaciation showed no consistent relationship to plant 32 

assemblages than elapsed time since deglaciation, i.e., we did not identify a consistent identity of pioneer species or order of successional 33 

species across forefields as a function of time. Overall, both approaches converged towards the conclusion that early plant succession is not 34 

stochastic as previous authors have suggested but rather determined by local ecological contextistic. We discuss the importance of scale in 35 

deciphering the unique complexity of plant succession in glacier forefields and provide recommendations for improving botanical field 36 

surveys and using Landsat time series in glacier forefields systems. Our work demonstrates complementarity between remote sensing and 37 

field-based approaches for both understanding and predicting future patterns of plant succession in glacier forefields.   38 
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1 Introduction 39 

Glaciers in the European Alps began to retreat around the mid-19th century in response to changes in climate conditions driven 40 

first by shifts in precipitation (Vincent et al., 2005) and then by human-induced changes in aerosol concentrations in the atmosphere 41 

combined with warming (Painter et al., 2013, Sigl et al., 2018). Pronounced glacier retreat marked the end of the Little Ice Age (LIA), a 42 

multi-century period during which glacier terminal moraines were up to a few kilometers down valley from their current location (Matthews 43 

and Briffa, 2005, Gardent et al., 2014). As glaciers retreat, the surface area of the glacier forefields (i.e., the area extending between the 44 

glacier snout and the moraine deposited during the LIA maximum extent) increases (Marta et al., 2021). Over the 20th century, the pace of 45 

glacier retreat in the Alps was variable and not constant, with and punctuated by a few briefshort glacier advances. However, this 46 

variabilityphase has given waywas recently followed by more to consistent and accelerating melting since the 1990s (Vincent et al., 2014), 47 

in response to warming air temperatures and associated reductions in snowpack depth and duration (Gobiet et al., 2014). In this context, 48 

recently deglaciated areas constitute particularly dynamic ecosystems that are reshaping high mountain landscapes (Haeberli et al., 2017) 49 

and associated biodiversity and ecosystem services (Cauvy-Fraunie and Dangles, 2019, Ficetola et al., 2021). These emerging ecosystems 50 

have been identified as hotspots of the widespread greening observed throughout the European Alps during recent decades (Bayle, 2020, 51 

Choler et al., 2021, Carlson et al., 2017; Dentant et al. 2022), calling for the need to better understand plant colonization dynamics in glacier 52 

forefields to predict future trajectories of alpine ecosystems (Huss et al., 2017). 53 

 Glacier forefields have long provided ecologists with a model to study patterns of plant succession along chronosequences of 54 

glacier retreat (Chapin et al., 1994), most often using a “space-for-time” approach (Pickett, 1989, Zimmer et al., 2018). This method uses 55 

the position of plant surveys to estimate time since deglaciation and relies on the assumption that within a glacier forefield, initial 56 

environmental conditions are consistent, and that pioneer species benefit from equal opportunity for establishment and growth over space 57 

and time (Johnson and Miyanishi, 2008). However, field observations accompanied by a growing body of literature indicate that this 58 

approach is overly simplistic given the environmental heterogeneity of glacier forefields as well as the complexity of biological processes 59 

involved. Indeed, we now know that plant succession rates and trajectories are controlled by both abiotic and biotic processes, which in turn 60 

depend on regional landscape and local environmental factors, such as micro-climate (Joly and Brossard, 2007), substrate and disturbance 61 

regimes (Anthelme et al., 2021, Eichel et al., 2016), water and nutrient availability (Górniak et al., 2017), micro-topography (Raffl et al., 62 

2006, Scherrer and Körner, 2011) and broad scale gradients such as elevation and continentality (Garibotti et al., 2011, Rydgren et al., 2014, 63 

Robbins and Matthews, 2010, Robbins and Matthews, 2014). All these factors can lead to strong heterogeneity in vegetation dynamics within 64 

and between glacier forefields. 65 

 Plant succession dynamics in glacier forefields, as elsewhere, can be broken down into three fundamental steps (Bradshaw, 1993): 66 

(i) diaspores reaching areas of bare ground, i.e., dispersal, (ii) successful and persistent establishment, and (iii) plant succession, as 67 

community composition matures and develops over time. Wojcik et al. (2021) recently proposed a novel conceptual model aimed at better 68 

understanding and predicting contrasting trajectories of plant succession dynamics in glacier forefields based on the complex interplay 69 

between autogenic factors, i.e., time dependent biological succession, and allogenic factors, i.e., external environmental factors such as 70 

climate or geomorphological disturbances. The authors suggest that the importance of autogenic and allogenic components varies over time, 71 

with an initial stochastic phase (i.e., dispersal) followed by a more deterministic phase defined by environmental factors, biological 72 

interactions, and bio-geomorphic feedbacks (Eichel et al., 2016). Contrasting succession trajectories within glacier forefields are presented 73 

as the result of variations in (i) time since glacier retreat; (ii) initial site conditions (heterogeneous micro-climate, substrate properties and 74 

resource availability); and (iii) geomorphological disturbances (hillslope, torrential, periglacial, aeolian disturbances). In addition to time, 75 
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autogenic biological properties also shape plant succession dynamics: regional species pool composition determines propagule pressure, 76 

while plant functional traits (wind dispersal and low seed mass) facilitate the arrival and establishment of pioneer species (Franzén et al., 77 

2019, Rosero et al., 2021, Schumann et al., 2016). At broader scales, variability in plant succession rates between glacier forefields has been 78 

linked to elevation and continentality, which in turn influence more direct environmental parameters such as temperature and snow cover 79 

duration (Robbins and Matthews, 2010).  80 

 In addition to assuming environmental uniformity and equal ecological potential over space, plant survey-based approaches applied 81 

along chronosequences yield only a snapshot of plant community properties and fail to provide insights into the temporal dynamics of 82 

succession. To address questions linking auto- and allogenic factors to time lags, i.e., time between a surface deglaciation and its initial plant 83 

establishment, it appears necessary to adopt a “real-time” approach based on annually resolved information on plant succession dynamics. 84 

While some studies have successfully implemented repeat surveys of permanent plots in the context of glacier forefields (Fickert and 85 

Grüninger, 2018) repeat field surveys of plant communities in often remote and hard-to-access mountain environments present major 86 

challenges in terms of cost and effort. 87 

 As a complementary approach to traditional plot-based surveys, which remain essential to understand eco-88 

geomorphologicalbiogeomorphic processes on the ground, remote sensing provides a promising avenue for assessing plant colonization 89 

dynamics within and between glacier forefields using a so-called “real-time” approach. Beginning in 1984 with the Landsat 5 TM, followed 90 

by Landsat 7 ETM+ and Landsat 8 OLI sensors, Landsat satellites currently provide a 36-year archive of 30 m resolution images acquired 91 

at 16-day intervals over the globe’s terrestrial areas. Availability of Landsat imagery since the mid-1980s allows for investigating plant 92 

succession dynamics since the most recent observed advance of alpine glaciers and in response to accelerating glacier retreat during recent 93 

decades. Vegetation indices such as the Normalized Difference Vegetation Index (NDVI) provide a proxy of plant biomass (Tucker and 94 

Sellers, 1986), photosynthetic activity and vegetation cover and have the potential to reliably quantify plant succession in rocky areas with 95 

low plant cover. As NDVI is a non-physical and uni-dimensional quantity based on remotely measured reflectance, variations in quantities 96 

over time can be disconnected from changes in plant cover on the ground, particularly in the context of heterogeneous topography (Bayle et 97 

al., 2021). In addition to systematic errors caused by sensor limitations, variation in NDVI over time can be due to atmospheric and cloud 98 

contamination (Masek et al., 2006), angular effects due to variation in sun-surface-sensor geometry or topography (Nagol et al., 2015, 99 

Martín-Ortega et al., 2020), sensor degradation and calibration changes (Markham and Helder, 2012) or between sensor spectral band pass 100 

(Steven et al., 2003). Overall, it has been shown that NDVI increases near-linearly with fractional vegetation cover (horizontal density) until 101 

values reach between 80% and 90% at which point it tends to saturate and increases slowly with increasing Leaf Area Index (vertical density). 102 

Remote sensing approaches have already been used efficiently in the context of glacier forefields (Klaar et al., 2015, Fischer et al., 2019, 103 

Bayle, 2020, Knoflach et al., 2021) and high sensitivity of Landsat-based NDVI to low plant cover has been demonstrated in glacier forefields 104 

(Bayle et al., 2021) and in Antarctica (Fretwell et al., 2011). 105 

 Here, we investigated early plant succession dynamics (0-35 years since glacier retreat) in the context of eight glaciers distributed 106 

across the southwestern European Alps. Specifically, we sought to answer the following ecological questions: (1) Is observed heterogeneity 107 

in early plant succession dynamics (tTime between deglaciation and plant colonisation, and plant growth rate following colonization) indeed 108 

purely stochastic or can this variability be linked to environmental factors? (2) Is early plant community composition consistent across sites 109 

and shaped by time availability or heterogeneous and driven by local environmental context ? To address these questions, we utilized two 110 

independent data sources: 36 years of Landsat imagery and 297 floristic field plots. First, we derived two indicators of vegetation dynamics 111 

from Landsat time series, which are (i) time lag between ice melting and detection of plant colonisationestablishment, and (ii) plant growth 112 

rate following colonizationestablishment. Then, we investigated the spatial heterogeneity of these indicators and their respective drivers 113 
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using proxies of the local environmental and geomorphological context (allogenic factors). Second, we assessed turnover in plant community 114 

composition between and within the eight glacier forefields using a “space-for-time” approach and with regard to local environmental and 115 

geomorphological context (allogenic factors) and time since deglaciation (autogenic factor). Finally, we questioned the capacity of field 116 

sampling to capture heterogeneity in vegetation dynamics with respect to spatially exhaustive remote sensing approach, and we provide 117 

some recommendations to improve field sampling methodology for future studies. In addition to testing theoretical expectations in glacier 118 

forefields across a broad spectrum of environmental and ecological contexts, our study provides for the first time a clear roadmap for applying 119 

widely available remote sensing data to quantify and improve our understanding of trajectories of plant colonization and succession in glacier 120 

forefields. 121 

 122 

2 Data and study site 123 

2.1 Study site 124 

Our study investigates eight glacier forefields distributed throughout the southwestern European Alps (Figure 1) in France (Glacier 125 

Blanc, Saint-Sorlin, Gébroulaz, Tour and Pélerins), Switzerland (Orny) and Italy (Lavassey and Lauson). Sites are distributed from 45° to 126 

46° N and from 6° to 7° E across a variety of slopes and aspects, and elevations. Substrates are highly variable both within and between 127 

forefields including exposed bedrock, chaotic blocks of various sizes, gravel, and sand. Stream networks are often intricate, with strong 128 

seasonal and daily variability. 129 

 130 

2.2 Age of deglaciation 131 

Chronosequences of glacier outlines for the eight glaciers were initially obtained from various sources depending on the country. 132 

For France (GB, GEB, STS, PEL, TR), glacier outlines were extracted from the GLIMS database (Gardent et al. 2014) which contain outlines 133 

dating from 1985/86 based on Landsat 5 TM (30m), 2003 based on Landsat 5 TM and 7 ETM+ (30m), 2006, 2008 or 2009 (depending on 134 

the glacier) based on sub-meter resolution images from BD ORTHO IGN and finally 2014, 2016, 2018 (depending on the glacier) Spot 6/7 135 

images (1.5 m). For Italy (LAU, LAV), glacier outlines for 1975 were obtained based on photo interpretation of Regional Technical Maps, 136 

1999, 2005, 2012 and 2019 based on orthophoto (50 cm) and Sentinel-2 (10 m). For Switzerland (OR), glacier outlines were extracted from 137 

the GLAMOS database (Linsbauer et al., 2021). Overall, we were able to obtain chronosequences for the eight glaciers that approximately 138 

corresponded to the Landsat time series historical depth. As our glacier contours database mixed automatic and manual methods with sources 139 

at medium to high resolution, important quality differences were observed within and between glacier chronosequence as older contours 140 

were mostly based on coarse resolution images through automatic approaches that tend to perform poorly for debris-covered glaciers. To 141 

improve the consistency of our database and the reliability of further analysis, we carried out manual photo interpretationphotointerpretation 142 

of sub-meter historical images for all glacier contours. For STS, TR, OR and LAV, small corrections were applied due only to the 143 

improvement of sources resolution, while for GEB, PEL and LAU, which are totally or partly covered by debris, we substantially improved 144 

the delimitation by accounting for emissary streams, crevasses and lateral screes reoriented by glacier movement. For GB, we also identified 145 

a large section of dead-ice that detached from the main glacier in 2014, and which remains in 2021 (Bayle, 2020). We removed this area 146 

from further analysis. Image sources are presented in Table S2 while detailed procedures to obtain our sub-meter glacier contours database 147 

are presented for each glacier in Figures S1 to S6. Glacier outlines were manually delineated using ArcGIS software (Esri, 10.4.1). A detailed 148 

description of the sources used to improve the glacier outlines dataset can be found in Table S1. 149 
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 We estimated continuous years of deglaciation (YOD) from glacier outlines using an interpolation method initially designed for 150 

the creation of hydrologically corrected digital elevation models (DEMs). We used the Topo-to-raster function in ArcGIS based on the 151 

ANUDEM program (Hutchinson et al., 2011), which is specifically designed to work with line features as input, to obtain a raster indicating 152 

the YOD. Linear interpolation assumes that glaciers retreated at a constant rate between two dated glacier extents. To evaluate this 153 

assumption, interpolated surfaces from Glacier Blanc were compared to a denser chronosequence of deglaciation from Bayle (2020) that 154 

were not used in this work. The linear model between the results from interpolation and ground-truth observation obtained a R² of 0.945 155 

with a mean error of +/- 2 years (Figure S7). 156 

 157 

2.3 Vegetation field surveys 158 

Glacier forefields of GB, GEB, STS, PEL, TR, LAV, LAU and OR were surveyed in the months of July and August in 2019 and 159 

2020. For each forefield and chronosequence band (for example the zone deglaciated between 1983 to 2003), we generated a set of 15 160 

random sampling points, while ensuring a minimum distance of five meters between sampling points. In the field we went as close as possible 161 

to these points using a GPS and excluded sites that were too dangerous to access walking or that were under water or snow. For each plot, 162 

within a 2x2m quadrat we surveyed the percent cover of vascular plants, mosses and lichens, biological soil crust (Khedim et al., 2021, 163 

Breen and Lévesque, 2008), and bare ground (which was further subdivided into percent bedrock, sand, gravel < 2 cm, rocks between 2 and 164 

20 cm and blocks larger than 20 cm in diameter). We also recorded all vascular plant species as well as their relative cover and average 165 

vegetative height within the quadrat. We had a total of 297 plots with 59, 37, 36, 38, 27, 20, 28 and 52 plots for GB, GEB, LAU, LAV, OR, 166 

PEL, STS and TR respectively. 167 

 168 

2.4 Remote sensing data 169 

Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI standard level 1 Terrain-corrected (L1T) orthorectified images from Collection 170 

1 (geolocation error < 12 m) between 1984 and 2019 for 4 path/row (tiles) were downloaded from the Landsat Earth Explorer data portal 171 

(http://earthexplorer.usgs.gov) at surface reflectance level of correction. Images with average cloud cover < 80% only were selected as high 172 

cloud cover can reduce the number of available ground control points and therefore the geolocation accuracy, and because cloud masking 173 

relies on clear-sky pixels to identify clouds. As a result, a total of 2846 scenes were selected, 60% of which were from Landsat 5. To improve 174 

the robustness of our remote sensing analysis, we applied state of the art methods to correct for inter-sensor spectral variation, Bidirectional 175 

Reflectance Distribution Function (BRDF) and illumination related errors, and to mask cloud and cloud shadow cover in mountainous 176 

context. 177 

 We applied the L7/L8 correction method described by Roy et al. (2016a) to our data to align L8 reflectance to L7. No correction 178 

was applied on L5 or L7 as it was shown that the surface reflectance products from Landsat Ecosystem Disturbance Adaptive Processing 179 

System (LEDAPS) are consistent through time, with no difference before and after the 2003 ETM+ Scan-Line Corrector (SLC) failure. The 180 

BRDF effects due to changes in solar and viewing zenith angle were corrected using the c-factor approach (Roy et al., 2016b) based on the 181 

RossThick-LiSparse BRDF model (Schaaf et al., 2002) and using an optimal normalised solar zenith angle defined by Zhang et al. (2016). 182 

We applied the Sun-Canopy-Sensor + C model (Soenen et al., 2005) on the recommendation of Sola et al. (2016) to correct for illumination 183 

conditions variation due to slope and aspect. Finally, clouds were masked for each scene using the MFmask 4.0 algorithm 184 

(https://github.com/gersl/fmask) using the default DEM and a cloud probability threshold of 40%. This version has improved clouds and 185 

cloud shadows detection by integrating auxiliary data, new cloud probabilities and novel spectral-contextual features, which was crucial in 186 
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mountainous area where integration of global DEM to normalise thermal and cirrus bands is necessary (Qiu et al., 2017, Qiu et al., 2019a, 187 

Qiu et al., 2019b, Zhu and Woodcock, 2014, Zhu and Woodcock, 2012). Masks were computed for cloud probability threshold of 10%, 40% 188 

and 70% for a Landsat 7 ETM+ scene (195-029, captured the 16/07/2019) and visually compared to Fmask 3.3 (Figure S8). The probability 189 

of 40% offered good compromise between omission and commission errors and was thus selected. A detailed correction workflow is 190 

available in supplementary materials. 191 

 To assess vegetation changes at pixel-scale over the eight glacier forefields, we computed the NDVI as follows: 192 

𝑁𝐷𝑉𝐼 =  
(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑)

(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑)
 193 

where 𝑅𝑁𝐼𝑅 and 𝑅𝑅𝑒𝑑 are the Normalised BRDF-adjusted and topographically corrected reflectance in the NIR and Red bands, respectively. 194 

Then, we computed the NDVI annual maximum (NDVImax) available from 01 June to 31 August (day of year ~ 152 to 243) from 1984 to 195 

2019 to obtain a time series of an indicator of vegetation state at 30-m scale. As shown by Berner et al (2020), it is challenging to reliably 196 

estimate annual NDVImax using Landsat since these estimates are sensitive to the number of cloud- and snow-free observations acquired 197 

each summer. Annual number of usable summer observations increased from 1984 to 2019, with typically few usable summer observations 198 

during the 1980s and 1990s (Zhang et al. 2022). This bias results in a systematic underestimation of NDVImax when few observations are 199 

available (Figure S9). To prevent related errors in NDVI trend estimation, a year is discarded from the pixel time series if the mean day of 200 

year is superior/inferior to ±2σ of the entire time series as described in Bayle et al (2022) (Fig. S10). 201 

 202 

3. Statistical analysis 203 

Our data analysis workflow is based on using very high resolution chronosequence of deglaciation, Landsat time series and 204 

vegetation surveys to derive three “early succession dynamics indicators”. The heterogeneity of these indicators will be explored based on 205 

“predictor variables” divided in two categories: the local environmental context and potential geomorphological disturbances. These analyses 206 

intend to better understand the deterministic vs. stochastic nature of early succession dynamics in the theoretical framework proposed by 207 

Wojcik et al. (2020). The cComplete workflow is presented in Figure 2. 208 

 209 

3.1. Remote sensing-based indicators of succession dynamics 210 

Based on the NDVImax time series, we characterized the proglacial vegetation dynamics at Landsat pixel-scale using two 211 

indicators. The (i) Time Lag (TLNT), i.e., the number of years between the Year of Deglaciation (YOD) and the year where the NDVI 212 

threshold (NT) is exceeded (YOENT), and the (ii) Growth Rate (GRNT), i.e., the NDVImax trends computed from the YOENT to the last year 213 

of the Landsat time series. Ideally, we would compute both indicators for a NT that could identify the year of colonization by vegetation, 214 

but as NDVI tends to show noise unrelated to vegetation and that plant establishment is a progressive phenomenon occurring at small scale 215 

compared to pixel scale, such a threshold does not exist. Thus, we selected a NT based on Bayle et al. (2021). By comparing Landsat NDVI 216 

values to intra-pixel vegetation cover derived from Unmanned Aerial Vehicle (UAV) image, they showed, for example, that a value of 0.071 217 

efficiently discriminates pixels around 5% of vegetation cover (F-score > 0.75) with best efficiency with a value of 0.1 to discriminate with 218 

more and less than 13% of vegetation cover (F-score > 0.85). Based on this work, we used an NT of 0.075 as it was a good compromise 219 

between specificity and sensitivity regarding plant cover.  220 

Thus, we used TL0.075 and GR0.075 to quantify heterogeneity of intra- and inter-glacier forefield succession dynamics. To consider 221 

a year as the one where the NT is exceeded, the NDVI of the two previous years must be lower, and the two next years to be higher. Theil-222 
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Sen trend estimator was applied for GR0.075 estimation as it is resistant to outliers in short or noisy series (Eastman et al., 2009). An example 223 

of an NDVI time series and all associated data is shown in Figure 3A. We evaluated our method by comparing plant cover (%) obtained 224 

from field sampling between plots identified as vegetated or unvegetated. Finally, as the Landsat time series is limited to the last 40 years, 225 

there is a bias in the TL0.075 value as it is directly constrained by the YOD. For example, a pixel deglaciated in 2010 could only be colonized 226 

in the 9 following years, thus limiting the absolute value of TL0.075 between 1 and 9 years. To bypass this bias, we computed the anomalies 227 

of TL0.075 and GR0.075 as a function of YOD, which is a more relevant measure of heterogeneity in succession dynamics across the eight 228 

glacier forefields (Fig. 3B and 2C). 229 

Finally, we implemented two random forest classification analyses to assess relationships between anomalies of TL0.075 and GR0.075 230 

and predictors (Breiman, 2001). We classified the two indicators into three categories: positive anomalies (anomalies of TL0.075 | GR0.075 > 231 

0), negative anomalies (anomalies of TL0.075 | GR0.075 < 0) and no vegetation detected. For TL, it resulted in 337, 374 and 1977 samples for 232 

positive, negative and no detection, respectively, and for GR, 441, 288 and 1959 samples for positive, negative and no detection, respectively. 233 

Only 337 and 288 samples were conserved for TL and GR, respectively, to equalize the sample size of each class. 234 

Predictors variables included (i) elevation, (ii) local vegetation and (iii) snow-free growing degree days (SF-GDD) to represent the 235 

environmental context (allogenic factors) of the glacier forefields. Elevation was obtained from the 25-m resolution European Digital 236 

Elevation Model (EU-DEM, version 1.1; https://land.copernicus.eu/imagery-in-situ/eu-dem/). Snow-free growing degree days (SF-GDD) 237 

maps were calculated through the combined use of the Snow-melt out date (SMOD) product at 20-m resolution derived from Sentinel-2 time 238 

series analysis (Gascoin et al., 2019, Barrou Dumont et al., 2021), and the SAFRAN-CROCUS climatological model from Météo-France 239 

(Vernay et al., 2022), which provides the average daily temperature for each French massif and for  300 m elevation bands (for Swiss and 240 

Italian sites, we applied data from the French Mont-Blanc and Vanoise massifs, respectively). To obtain the SF-GDD for each plot, we 241 

computed the cumulative sum of daily average air temperature above 0°C between snow melt-out date and August 1 for the year 2019. SF-242 

GDD is representative of the heat accumulated by vegetation during the growing season and is known to be a key variable for habitat 243 

distribution and alpine plant community properties (Choler, 2015, Choler, 2018, Carlson et al., 2015). We defined local vegetation 244 

surrounding the glacier forefield as the expected local vegetation productivity (NDVImax) for a given elevation outside of the glacier 245 

forefield, which we considered to be a proxy of the vegetation proximity and type. To compute this indicator for each plot, we averaged the 246 

NDVImax of the year of deglaciation for the 100-m elevational bands of the plot within a radius of 500-m  and by excluding pixels within 247 

the glacier forefield. 248 

We also calculated (i) Flow accumulation and (ii) LS-factor (slope length and steepness-Factor) to represent potential 249 

geomorphological disturbances (allogenic factors). The LS factor was derived from the EU-DEM and computed using the original equation 250 

proposed by Desmet and Govers (1996). It combined the S-factor, which accounts for slope angle, and the L-factor that defines slope length. 251 

The combined LS-factor describes the effect of topography on soil erosion and thus is a proxy of “potential” instability due to gravity-related 252 

processes. Flow accumulation was also derived from the EU-DEM and computed using a Multiple Flow Direction algorithm. Both the LS-253 

factor and Flow accumulation were computed in SAGA (Conrad et al., 2015).  254 

We screened highly correlated variables (r² > |0.7|) by computing pairwise correlations. We then removed elevation as it was highly 255 

correlated to SF-GDD (r²=-0.73) and Local vegetation (r²=-0.84). Next, we randomly partitioned the data set into sets for model training 256 

(two-thirds) and evaluation (one-third), and then fit random forest models to optimize out-of-bag classification accuracy. We reassessed the 257 

classification accuracy using the data withheld for model evaluation. We repeated this operation 100 times. Lastly, we computed predictor 258 

importance using the mean decrease in accuracy metric. Predictor importance was calculated using a permutation-based importance measure 259 

where one measures the effect of reshuffling each predictor on model accuracy. Finally, we generated partial dependence plots for the first 260 
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variable in terms of importance as defined above to assess how class-specific classification probabilities varied across the range of the 261 

predictor while holding all other predictors at their average value. The distribution of predictors was constrained to regions with enough data 262 

given that partial dependence plots tend to overinterpret regions with few observations. We used the random Forest, caret, and pdp R 263 

packages to implement random forest models and to evaluate their performance (Liaw and Wiener, 2002, Greenwell, 2017). 264 

 265 

3.2. Heterogeneity of succession dynamics and drivers 266 

To model succession dynamics from the floristic data, we used Non-metric Multidimensional Scaling (NMDS) to perform an 267 

unconstrained ordination of the plot by species table. NMDS is a rank-order based multivariate technique that is particularly robust to identify 268 

a few important axes of floristic variations in community composition data (Minchin, 1987). We first discarded species with less than five 269 

occurrences to limit the proportion of sites with no shared species, as this may complicate the ordination. The resulting table included a total 270 

of 297 plots and 119 species. Absolute cover of plant speciesspecies covers wasere transformed into relative species covers using the 271 

Wisconsin standardisation, where species covers are first standardised by maxima and then site covers by maxima. Finally, we calculated 272 

the square root of relative plant cover for each species and for each plotthe species covers were square rooted. These transformations are 273 

commonly found to improve the results of the NMDS (Legendre and Gallagher, 2001). We then computed a distance matrix using the Bray-274 

Curtis dissimilarity index on transformed species cover with 2 dimensions and 20 minimum random starts iterated two times. To avoid local 275 

minima, we performed several NMDS with random starts and selected the solution with the minimum stress, i.e., the extent to which the 276 

distance between sites in the specified number of dimensions differs from original distances. We used a vector fitting approach to test for 277 

linear relationships between NMDS site scores and two sets of variables corresponding to time since deglaciation (autogenic factor), toand 278 

to allogenic factors including environmental (neighbouringlocal vegetation cover, SFGDD, elevation) and geomorphological context (LS-279 

factor,  and fFlow accumulation and, coarse debris). To account for spatial autocorrelation, we implemented two gGeneralized lLeast sSquare 280 

(GLS) regression models for each variable: one including an autocorrelated error structure and one without. We used the spherical spatial 281 

correlation structure estimated by the function corSphere in the nlme package nlme (Pinheiro and Bates, 2022). The best fitting model 282 

was selected using the Akaike Information Criterion corrected for small sample size (AICc). For each competing model, we estimated a 283 

pseudo-R-squared based on the regression of the variable on the fitted values. NMDS was performed using the metaMDS function of the 284 

vegan R package vegan (Oksanen et al., 2020). GLS regression was fitted using with the gls function of the nlme R package nlme. Model 285 

evaluation was performed with the R package MuMIn (Barton, 2023)  . In addition to environmental context and potential disturbances 286 

regime variables (allogenic factors) presented in section 3.1, we also considered sediment granulometry as measured in the field with floristic 287 

data. Using visual estimates of substrate type and cover carried out for each floristic plot, wevisual field observationsIt was obtained by 288 

calculatedperforming a cumulative weighted mean for each plot of grain size (sand < 0.5 cm, gravel < 2 cm, cobbles between 2 and 20 cm 289 

and boulders between 20 cm and 1 m in diameter) visually estimated for floristic plots, by assigning the median value for each class and 290 

calculating a cumulative weighted mean. 291 

 292 

4. Results 293 

4.1. Vegetation dynamics heterogeneity assessed through remote sensing 294 

Using 36 years of NDVImax obtained from the Landsat time series, we found strong heterogeneity within and between glacier 295 

forefields. It took on average 10 years following deglaciation to reach an average NDVI value of 0.075 for GB in comparison with, for 296 
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example, 27 years for GEB, 17 for TR, 25 for STS, or even no vegetation detected for LAU over the entire period (Fig. 4). Within glacier 297 

forefields, plant colonisation rates varied depending on the glacier with GB depicting the highest heterogeneity in NDVI dynamics following 298 

deglaciation, and TR being the more homogenous with almost no pixel with an NDVI value under 0.075 after 30 years (Fig. 4). Also, we 299 

did not find vegetated pixels for LAU over the study period, which was corroborated by low plant cover recorded in the 2019 field survey 300 

(on average 4%). By simply considering pixels as colonised by plants or not, we found that after 30 years since deglaciation 80% of GB, 301 

TR, and STS forefields were colonised, and only 30% for PEL and LAV (Fig. 5). Overall, considering anomalies of TL0.075, we found 302 

similar results with GB being the most dynamic forefield with pixels that tended to become colonised by vegetation three years faster and 303 

with higher growth rates than average (Fig. 6A). 304 

The two random forest models achieved an overall accuracy of 75% and 72% for TL and GR respectively, which translated a good 305 

capacity of the four predictors to classify time lag and growth rate anomalies as positive, negative, or absent. Mean decrease in accuracy 306 

(MDA) was used to order the four predictors according to their importance of overall classification accuracy (Fig. 7). SF-GDD was overall 307 

the most important predictor for both models (MDA = 0.128 [0.127] for TL [GR]) compared to Local vegetation, LS-factor, and Flow 308 

accumulation (respectively, 0.062 [0.052], 0.051 [0.041] and 0.044 [0.04] for TL [GR]). Overall, allogenic factors describing environmental 309 

context were more important than potential geomorphological disturbances variables (Fig. 7A and 7B). Classification probabilities showed 310 

that faster colonisation occurred with SF-GDD > 900 (Prob > 0.5) while slower colonisation occurred mostly between 500 and 900 SF-311 

GDD. Slower growth rates occurred with SF-GDD > 500 while faster growth rate occurred sporadically above 900 SF-GDD (Fig. 7D). The 312 

class of undetected vegetation occurs mostly under 500 SF-GDD for both TL and GR (Fig. 7C and 7D). 313 

 314 

4.2. Agreement between field and Landsat observations of plant cover Floristic plots capturesare representative of heterogeneity in glacier 315 
forefields vegetation dynamics heterogeneity 316 

By comparing plant cover of the 297 floristic plots to the detection of vegetation as detected by Landsat NDVI, we found that the 317 

221 floristic plots identified as unvegetated had an average plant cover of 5% (Fig. 6C). These results matched the initial sensitivity targeted 318 

considering the scale difference between Landsat pixel and floristic plots. Similarly, we found anomalies of TL0.075 and GR0.075 to be 319 

representative of the overall vegetation dynamics of glacier forefields as values tended to be similar when we compared only pixels that 320 

overlapped floristic plots to the entire forefield (Fig. 6A and 6B). 321 

 322 

4.3. Environmental context drives plant species assemblages and succession dynamics 323 

The first axis of the NMDS showed a thermal floristic gradient representative of species turnover along an elevation gradient 324 

throughout the southwestern European Alps (Fig. 8A and 8B). Cold-adapted high alpine specialist species, hereafter referred to as cold 325 

successional species, includededs low-stature, pioneer hemicryptophytes of sparsely vegetated screes, talus, and rock debris such as Linaria 326 

alpina, Cerastium uniflorum and Saxifraga spp. More thermophilous Species typically found at lower elevations, hereafter referred to as 327 

warm successional species, included phanerophytes (Picea abies) and chamaephytes (Vaccinium uliginosum). Notably, we observed early 328 

successional species this set of warm successional species as pioneer species in the context of the Glacier Blanc, Pèlerins, and Tour glaciers, 329 

includeding trees and shrubs species  such as Larix decidua and Salix laggeri. 330 

The GLS model including a spatial correlation error structure had better fit (lower AICc) for the three allogenic variables and for 331 

flow accumulation. The importance of the spatial structure was particularly strong for elevation with a pseudo-R2 of 0.74 without spatial 332 

autocorrelation to be compared to 0.23 with spatial autocorrelation. This indicated that the relationship between elevation and the floristic 333 
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composition was mainly driven by the elevational differences between glacier forefields. For all other variables, we found no major changes 334 

in the relationships between NMDS axes and variables. NMDS1 was positively correlated to neighboring local vegetation cover (pseudo R-335 

squaredr²=0.6290) and, SF-GDD (pseudo R²r²=0.5573987) and negatively correlated to elevation (r²=0.6747) in the best fit models. 336 

NMDS1It was poorly correlated to other factors such as the LS factor (r²=0.25621), debris size (r²=0.0836), Flow accumulation (r²=0.03407) 337 

and time since deglaciation (r²=0.0046). By comparing NMDS1 scores to time since deglaciation, we found that elapsed time following 338 

deglaciation led to more late successional species for all glacier forefields (except PEL) but at a rate insufficient to surpass the effect of 339 

initial plant community composition (Fig. 9). We found that the initial starting point of the succession to be mostly driven by allogenic 340 

factors describing the environmental context (average r²=0.68), and not potential geomorphological disturbances (average r²=0.1288) or time 341 

available (r²=0.0046) (Table 1). Finally, we found that the heterogeneity of vegetation dynamics described through the anomalies of TL0.075 342 

and GR0.075 were linked to the NMDS1 scores with slower colonisation (positive TL0.075 anomalies) and growth (negative GR0.075 343 

anomalies) rate corresponding to lower NMDS1 site scores (Figure 10). 344 

 345 

5. Discussion 346 

Our comparative study of vegetation dynamics in glacier forefields based on two complementary and independent approaches 347 

provides insight into the heterogeneity of early plant succession dynamics after glacier retreat at the regional scale. First, using the Landsat 348 

time series, we found strong variability in the time lag between deglaciation and colonisation by plants and plant growth rate within and 349 

between glacier forefields (Fig. 4, 5 and 6). We showed that this heterogeneity was mostly explained by the local environmental context, 350 

i.e., local vegetation surrounding the forefields and energy availability linked to temperature and snowmelt gradients, rather than potential 351 

geomorphological context (Fig. 7). Similarly, bFurthermoreBy analysing turnover in plant species assemblages derived from field sampling, 352 

we found that the composition of early plant succession communities (0-35 years since deglaciation) established on glacier forefields, i.e., 353 

the initial starting point of plant succession, was highly variable from one glacier to another, and depended strongly on the topoclimatic 354 

context of the glacier forefield  wassuccession, was also strongly correlated to allogenic factors describing the environmental context rather 355 

than potential geomorphological disturbances (Fig. 8 and Tab. 1). Interestingly, In most cases, we found that elapsedthe increased time since 356 

deglaciation was iswas found to be insufficient to overstep the determinism of the initial starting point, highlighting the importance of the 357 

local environmental context to understand early plant succession in glacier forefields (Fig. 9). Overall, both approaches converged towards 358 

this conclusion (Fig. 10) suggesting that early plant succession is not stochastic as previous authors have suggested (Wojcik et al., 2021) but 359 

rather deterministic in relation to environmental conditions. 360 

 361 

5.1. Succession dynamics in glacier forefields are shaped by local environmental context 362 

In our analysis, early vegetation dynamics in glacier forefields can be divided into two phases: (i) the lag between deglaciation 363 

and plant colonisationestablishment (as detected by satellite); and (ii) the succession dynamics following initial plant 364 

colonisationestablishment (Fig. 32). We analyzed the heterogeneity of the first phase through two approaches based on remote sensing. First, 365 

as we distinguished vegetated from non-vegetated pixels, we were able to estimate the proportion of glacier forefields to become colonized 366 

by vegetation with respect toregarding time since deglaciation. We found strong heterogeneity between glacier forefields, with 80% of the 367 

forefield colonized by plants after 30 years for GB, TR, and STS, while the five other forefields did not reach 50% of vegetation cover over 368 

the same period, with no vegetation identified for LAU (Fig. 5). The second approach directly quantifies the time lag between deglaciation 369 

and plant colonisationestablishment. Nonetheless, as the range of absolute time lag is constrained by the length of the period between the 370 
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year of deglaciation and the end of the time series, time lag could only be compared as anomalies regarding the median time lag for each 371 

year of deglaciation (Fig. 7A).  372 

 Time lag between deglaciation and plant establishment has been shown to be dependent on the proximity and availability of seed 373 

sources (Erschbamer et al., 2001, Stöcklin and Bäumler, 1996, Tackenberg and Stöcklin, 2008; Garbarino et al. 2010) and species ability to 374 

disperse (Fickert and Grüninger, 2018), findings which are consistent with our results. Indeed, using partial dependency analysis, we showed 375 

that the time lag anomalies (including the absence of vegetation detected) are distributed along the SF-GDD gradient, which in turn is highly 376 

correlated to both elevation and neighboring vegetation cover in the vicinity local vegetation. [add that the relation remains while accounting 377 

for autocor spatial which strengthen the message] These results confirm that high elevation forefields surrounded by sparsely vegetated scree 378 

slopes in the immediate surroundings tend to be colonized more slowly than forefields at lower elevation with dense patches of vegetation 379 

nearby. This conclusion is supported if we consider the most and least dynamic forefields (in terms of vegetation colonization rate), 380 

respectively GB and LAU, which match these characteristics. In terms of spatial distribution, the GB forefield is also located at lower latitude 381 

and is the only south facing glacier forefield among the eight glaciers studied (Fig. 1), both of which contribute to earlier snowmelt-out and 382 

greater accumulation of growing degree days for an equivalent elevation located on a north-facing glacier situated at a higher latitude. Indeed, 383 

the left bank of the GB forefield has been described by Bayle (2020) as highly dynamic, which is confirmed here with colonization occurring 384 

within 1 to 5 years after deglaciation, as reported elsewhere in the European Alps (Burga et al., 2010, Cannone et al., 2007, Fickert and 385 

Grüninger, 2018). This specificity is known to be due to the proximity of a dense vegetation patch which was located at less than 100 m to 386 

the glacier tongue in 1984 and at low elevation (2400 m a.s.l.). Conversely, the LAU forefield deglaciated at the same period is located at 387 

3100 m a.s.l., further to the north in the Grand Paradiso National Park with only sparse vegetation nearby (Mainetti et al., 2021). 388 

While previous studies have reported consistent pioneer plant species and functional groups giving way to later successional 389 

species in the context of glacier forefields (e.g. Shumann et al. 2016), our study of multiple glacier forefields indicates that the identity of 390 

pioneer species varies highly from one site to another and depends strongly on local environmental context. Figure 9 shows that practically 391 

all of the plant communities encountered across the floristic gradient of the eight forefields have the potential to be pioneer species, given 392 

the wide range of initial starting points for initial community composition shown across NMDS scores. We emphasize that tree species such 393 

as Picea abies or Betula pubescens, or shrubs such as Salix laggeri, are just as capable of establishing quickly in the wake of glacier retreat 394 

as smaller stature forbs including Saxifraga or Poa spp. (Figure 8-9). Accordingly, we argue that the identity of pioneer species and the 395 

structure of community composition, as well as the subsequent rate of growth following establishment (Fig. 10), are strongly influenced 396 

during the first decades of succession by energy availability and nearby vegetation.  397 

 398 

5.2. The importance of scale for geomorphologicalunderstanding drivers of plant succession dynamics 399 

While we did not observe high explanatory power of geomorphic variables in explaining the heterogeneity of succession dynamics 400 

in glacier forefields, a large number of studies have shown otherwise (Gurnell et al., 2001, Moreau et al., 2008, Burga et al., 2010, Eichel et 401 

al., 2013, Temme and Lange, 2014, Klaar et al., 2015, Heckmann et al., 2016, Eichel et al., 2018, Eichel, 2019, Miller and Lane, 2018, 402 

Wojcik et al., 2020, Wojcik et al., 2021). Biogeomorphological studies emphasise that landscape dynamics within glacier forefields depend 403 

on the balance between stabilising and destructive forces (Eichel et al., 2018).  Indeed, proglacial plant succession in the wake of deglaciation 404 

alters site conditions and decreases the magnitude and/or the spatial extent of geomorphological disturbances (Gurnell et al., 2000, Moreau 405 

et al., 2008, Eichel, 2019, Miller and Lane, 2018). More specifically, the biogeomorphic phase, characterized by feedbacks between abiotic 406 

and biotic processes, is a key stage of landscape stabilisation in glacier forefields. However, exacerbated fluvioglacial and hillslopes 407 
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processes within the deglaciated area during the first stage of the so-called paraglacial period may also delay the succession rate through 408 

rejuvenation of proglacial deposits (Wojcik et al., 2020). 409 

Through the remote sensing and floristic approaches used here, GB displayed exceptionally fast colonisation in certain areas but 410 

also high heterogeneity within the forefield, with up to 30 years of difference in time lag for the same year of deglaciation (Fig. 6A). We 411 

attribute this heterogeneity to spatial variability in the intensity of potential geomorphological disturbance (Lardeux et al., 2015). 412 

Specifically, a gullying area on the right bank of the forefield remains active and thus prevents vegetation establishment, as described by 413 

Bayle (2020) and Lardeux et al. (2015). This geomorphic activity is known to be the result of an active eroding slope supported by a slowly 414 

melting ice-cored moraine, which is a phenomenon too fine and complex to be captured by our low-resolution variables of potential 415 

instability. This example shows that, although the sum of degree days during the growing season (SF-GDD) and local vegetation explained 416 

most of the observed heterogeneity in observed vegetation dynamics (lag and growth rate), finer variables estimating direct instability and 417 

geomorphic activities based on a high-resolution imagery or field measures would locally change the balance of importance and improve 418 

the predictive capacity of models (Fig. 7). The PEL glacier provides a further example, where we observed long lag times and slow growth 419 

rates despite relatively low elevation and accordingly high SF-GDD, which we attribute to the extremely chaotic and blocky substrate 420 

observed in the field. Although we did attempt to capture potential geomorphological disturbances through substrate heterogeneity by 421 

calculating the weighted mean estimate of block size for floristic plots, we found similar results in this case compared to coarser DEM-based 422 

variables. Thus, we lacked a spatially continuous and ecologically relevant estimate of substrate properties. Estimating block size and 423 

geomorphological properties using a remote sensing approach has been explored (Westoby et al., 2017, Vázquez-Tarrío et al., 2017, 424 

Langhammer et al., 2019, Eichel et al., 2020, Lang et al., 2021) and constitutes an important perspective for enhancing the analysis conducted 425 

in the present study, perhaps especially in regard to later plant succession dynamics known to be particularly linked to bio-geomorphic 426 

feedbacks (Eichel et al., 2016, Miller and Lane, 2018, Lane et al., 2016).  427 

We argue that the poor predictive capabilities of our geomorphological variables can be in part explained by the fact that those 428 

measures potential and not realised instability. Furthermore, the poor predictive capacity of our potential geomorphological disturbance 429 

variables could be explained by scale differences. Most studies highlighting the importance of geomorphic activities in explaining succession 430 

dynamics heterogeneity have been conducted at the glacier forefield scale at sub-meter spatial resolution. Our regional-scale approach 431 

showed that the local environmental context drives an initial starting point and that other local factors are insufficiently determinant to 432 

overrule it (Fig. 9A). We hypothesise that for our analysis, the importance of geomorphological variables and processes were overshadowed 433 

by broader-scale and more contextual drivers such as energy availability. Finally, because of the low sensitivity of our remote sensing 434 

approach (discriminating vegetation cover around 10% only), it is possible that we only detect vegetation that develops on stable surfaces 435 

unaffected by geomorphological activities. In other words, we might only detect vegetation after the battle between substrate instability and 436 

colonization by plants (Eichel et al. 2016), resulting in large underestimation of the importance of geomorphological activities. 437 

 438 

5.3. The Landsat time series effectively captures vegetation dynamics in a real-time approach 439 

The Landsat time series offers the possibility to study vegetation dynamics using a real-time approach, given its temporal resolution 440 

and depth (Wulder et al., 2019, Bayle et al., 2021). For the first time, we used the Landsat archive since the mid-1980s to quantify real-time 441 

plant colonization dynamics at the scale of glacier forefields, based on ecologically relevant indicators of time lag and growth rate following 442 

establishment. In the context of the observed generalized greening of the European Alps (Choler et al. 2021), these parameters provide 443 
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further insight into trajectories of plant colonization in the context of peri-glacial greening hotspots. Nonetheless, this approach inevitably 444 

comes with some uncertainty and bias that merit discussion.  445 

 Relationships between NDVI and certain biophysical properties of vegetation canopies, such as leaf area index (LAI), vegetation 446 

cover and biomass have been widely studied (Ormsby et al., 1987, Wittich and Hansing, 1995), including in the context of glacier forefields 447 

(Bayle et al., 2021, Knoflach et al., 2021) and in sparsely vegetated sites in the Antarctic (Fretwell et al., 2011). Further testing of relationships 448 

between NDVI and plant canopy properties in the context of glacier forefields remains necessary, however, to better understand the effects 449 

of specific conditions unrelated to vegetation that can alter reflectance, such as low organic content in soil (Todd et al., 1998), coarse 450 

granulometry and complex angular effects due to micro-topography (Bayle et al., 2021). Despite the difference in area between field plots 451 

(2x2m) and Landsat pixels (30x30m), we found similar sensitivity between ground truth vegetation cover and NDVI values to that of Bayle 452 

et al. (2021) and thus validate thate within this study region  an NDVI value of 0.075 efficiently identifies pixels with more of less than 5-453 

10% of vegetation cover (Figure S10). Nonetheless, because of coarse resolution and noises inherent to NDVI time series, our approach is 454 

unable to detect reverse trends with vegetated pixels changing to unvegetated pixels. For example, after several years of vegetation detection, 455 

a sudden drop in NDVI resulting in the pixel being identified as unvegetated could be interpreted as the result of disturbance or due to 456 

spectral-related noises, with no possibilities to decipher one from another. Improvement of our approach could be done by using proper 457 

ground control information regarding abrupt disturbances in glacier forefields. Also, systematic UAV flight on each glacier forefield could 458 

drastically improve the calibration of satellite remote sensing methods while providing relevant information on vegetation distribution and 459 

geomorphic activities at one time (Woellner & Wagner, 2019; Healy & Khan, 2022; Lang et al. 2021; Westoby et al. 2017). 460 

FinallyAdditionally, we found that to take full advantage of the time series, the presence of clouds was problematic as the actual 461 

cloud mask applied in the data distributed by the USGS (Fmask 3.3) is inefficient in high elevation areas as soil temperature is too low and 462 

is often confused with clouds (Qiu et al., 2017, Qiu et al., 2019b). Thus, we recommend using the modified MFmask 4.0 to improve the 463 

number of images available (Figure S8). Despite these challenges, our study thus confirms that the Landsat time series can be efficiently 464 

used to monitor vegetation cover changes over time in the context of glacier forefields. 465 

 466 

 467 

5.4. Field sampling recommendations 468 

Several studies have shown that the initial site conditions defined by substrate material, topography, micro-climate, landscape 469 

surroundings, as well as by varyingerratic frequencies and/or magnitudes of natural disturbances between sites, are of high importance in 470 

determining plant succession dynamics in glacier forefields (Joly and Brossard, 2007, Walker and Wardle, 2014, Wojcik et al., 2020, Eichel 471 

et al., 2016). Repeated visits of permanent plots represent an alternative to the regular space-for-time approach as they provide a more 472 

informative and reliable measure of succession. This approach is costly in terms of effort, however, and furthermore it can be difficult to 473 

mark permanent plots in unstable terrain often found in glacier forefields (but see Bakker et al., 1996). An intermediate and less-costly 474 

approach consists in measuring variations in initial site conditions and geomorphological disturbances along the chronosequence, as proposed 475 

by Wojcik et al. (2021). In our field campaign, the eight glacier forefields were surveyed based on a random sampling approach along the 476 

chronosequence of deglaciation, however vegetation plots captured overall heterogeneity within forefields with varying degrees of success 477 

(Fig. 6). In accessible glacier forefields of small size and limited geomorphic activities (TR, PEL, GEB, STS and OR), our approach worked 478 

as floristic plots were found to be representative of the vegetation dynamics as assessed from the spatially exhaustive remote sensing 479 

approach (Fig. 6). The representativity was less evident for LAV, which can be explained by the large size of the forefield and the presence 480 
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of cliffs and a lake that drastically constrained accessibility. Also, surfaces known to be affected by geomorphological activities might have 481 

been undersampled as for example the field sampling on GB forefield was mostly limited to the left bank as the right bank was too dangerous 482 

due to gullies and ice-cored moraines (Lardeux et al. 2015; Bayle 2020). Noticeably, our results show that the within forefield variability in 483 

vegetation dynamics can be equivalent to the variability observed at regional scale, thus leading to massive bias in our capacity to extrapolate 484 

results when studies rely solely on a space-for-time approach applied to a single glacier forefield. 485 

 Our study provides lessons that could contribute toward improving future studies carried out in glacier forefields. Although 486 

explaining the absence of vegetation was not our question here, to understand where plants will establish, we recommend sampling points 487 

characterised by an absence of vegetation in addition to vegetated areas. Indeed, the first step in the primary succession dynamics is whether 488 

vegetation can colonise a surface. Thus, the absence of vegetation on deglaciated surfaces should be considered as an extreme case of equal 489 

ecological relevance as vegetated plots, especially in the context of biogeomorphic feedbacks and regular disturbances minimising the 490 

probability of establishment and germination. Thus, in the perspective of an exhaustive and representative sampling of the glacier forefield, 491 

collecting information on the absence of vegetation appears to be crucial for future field campaigns. Overall, we recommend the following 492 

procedure for future field campaigns: 493 

(1) Randomly select a predefined number of points using GIS software within targeted glacier forefields. 494 

(2) Collect information unrelated to vegetation on plots whether there is vegetation or not and keep track of unreachable random points 495 

due to dangerous access as it is a marker of high geomorphic activity, and select plot size and location to facilitate alignment with satellite 496 

imagery. 497 

(3) Measure plant community structure and composition, including functional traits, both within and outside of the glacier forefields 498 

to capture the local environmental context through field sampling. 499 

 500 

6. Conclusion 501 

We quantified heterogeneity in plant succession dynamics based on 36 years of optical satellite imagery and 297 floristic plots 502 

distributed among eight glacier forefields in the southwestern European Alps. The projection of autogenic and allogenic factors according 503 

to the definition presented in Wojcik et al. (2021) shows that the pioneer plant community composition is strongly correlated with 504 

environmental context rather than time since deglaciation. Time since deglaciation is typically identified as the main driver of succession 505 

dynamics, as it is fundamentally intrinsic to the idea of succession. Nonetheless, whether time since deglaciation is identified as the main 506 

driver of succession is a matter of scale. We showed that, indeed, if we consider each forefield independently, a clear successional gradient 507 

emerges as time since deglaciation increases. But when considering all eight glacier forefields together, energy availability and initial species 508 

composition emerged as the key parameters shaping successional dynamics. In the case of both remotely sensed vegetation indices and plant 509 

field surveys, we found that this initial starting point was strongly correlated to the local environmental context, rather than the 510 

geomorphological context, suggesting that the notion of a “pioneer” species is actually quite flexible (Table 1). Overall, our findings suggest 511 

that early stages of plant succession in glacier forefields in the European Alps are highly dependent on the local environmental context and 512 

less stochastic than previous studies have suggested.  513 

 In the conceptual framework of Wojcik et al. (2021), our findings suggest a reinterpretation of the importance of local 514 

environmental context in the initial stages of primary succession, which is considered to be highly stochastic (Chase and Myers, 2011, Dini-515 

Andreote et al., 2015, del Moral, 2009, Mong and Vetaas, 2006, Marteinsdóttir et al., 2010). In contrast, we found that this initial phase was 516 

driven by plant opportunism originating from neighboring vegetationthe local species pool, which is a function of environmental context 517 
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and other biogeographic factors. We highlighted that forduring the first 30 years of succession, initial plant community composition was far 518 

more important than time since deglaciation in shaping plant assemblages and rates of colonization, time since deglaciation became a 519 

meaningless predictor of plant community composition when multiple and highly contrasting glacier forefields were considered, thus 520 

pointing to the importance of quantifying more direct drivers of succession dynamics including both environmental and biological factors. 521 

Our work highlights the ongoing need for process-based studies combining remote sensing and field techniques to improve our understanding 522 

of local heterogeneity in plant colonisation trajectories, and furthermore provides a promising basis for predicting future trajectories of plant 523 

succession in the wake of ongoing glacier retreat during the coming decades using widely available remotely sensed predictors. 524 
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 813 

Figure 1. Distribution of the eight8 glacier margins in France, Switzerland, and Italy with corresponding abbreviations. Floristic plots are 814 

indicated in yellow points while glacier outlines are shown in thick coloured lines. Colours do not indicate similar outlines date but 815 

chronosequence of deglaciation. Corresponding years of deglaciation is to be found in Table S1. Projection and sources details are indicated 816 

in the bottom right panel. 817 
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 819 

Figure 2. Complete analysis workflow shown by methodological sections. Indicators of eEarly succession dynamics indicators are shown 820 

in green while predictors variables are shown in red and brown. 821 
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 826 

Figure 3. (A) Example of indicators derived from the Landsat-based NDVImax time series and deglaciation data for a single pixel located 827 

in the Glacier Blanc forefield (latitude: 44.932938 and longitude: 6.409681). (B) Time Lag (TL) and (C) Growth Rate (GR) for an NDVI 828 

threshold of 0.751 for the eight8 margins according to year of deglaciation. Thick black lines represent the median value for each year of 829 

deglaciation used to compute anomalies. GreenBlue shaded areas represent faster colonization and growth rate than average, while slower 830 

than average growth rates are indicated by in opposition to grey red shaded areas. 831 
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Figure 4. Distribution of NDVImax values according to the number of years since deglaciation for the eight8 glacier forefieldsmargins. 834 

Error bars indicate standard deviation and numbers indicate the numbers of pixels for a given number of years since deglaciation. Horizontal 835 

dashed lines show an NDVI of 0.075. Numbers of pixels for each year since deglaciation are indicated above each error bar. 836 

 837 

Figure 5. Proportion of pixels identified as vegetated according to time since deglaciation for all pixels within the eight8 glacier forefields. 838 

TrendThick lines are computed from loess function with span = 0.7. 839 
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 840 

Figure 6. Distribution of (A) Time Lag and (B) Growth Rate anomalies for the eight8 glacier margins for an NDVI threshold of 0.075. For 841 

each glacier, the left boxplot with full colours corresponds to all pixels while the right boxplot with shaded colours corresponds only to pixel 842 

overlapping floristic plots. (C) Distribution of plant cover (%) for floristic plots that haves been identified as vegetated/unvegetated based 843 

on the remote sensing approach. 844 
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 845 

Figure 7. Variable importance from the random forest model considering the three classes of (A) TL and (B) GR. Partial dependencye plots 846 

illustrating how SF-GDD affects class probability for the three classes of (C) TL and (D) GR. 847 
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 849 

Figure 8. (A) Non-metric Multidimensional Scaling (NMDS) of floristic plots by species with vector fitting of explanatorythe 6 variables 850 

implemented using Generalized Least Square (GLS) regression corrected for autocorrelated error structure. Ellipsoids correspond to an 851 

interval of 0.8 the standard deviation.  The analysis includes 297 plots from the eight8 glacier forefields. (B) Species distribution along the 852 

NMDS axis 1 with the 20 species depicting the highest and lowest scores.  853 
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 856 

Figure 9. First axis scores of the NMDS according to time since deglaciation for the eight8 glacier forefields. Intercept and slope paramters 857 

aretrend based on linear models are shown for each glacier forefield. 858 
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 860 

Figure 10. First axis scores of the NMDS according to the three classes of anomalies of (A) Time Lag and (B) Growth Rate for an NDVI 861 

threshold of 0.075. Letters a, b and c indicate significant differences based on the Wilcoxon test (P-values < 0.05). 862 

 863 

  
With autocorrelated  

errors structure 

Corrected for 

autocorrelated errors 

structure 

Variables set Variables AICc Pseudo-R² AICc Pseudo-R² 

Environmental 

context 
SF-GDD (°C) 464 0.738 58 0.228 

 Elevation (m. a.s.l.) 528 0.674 -1074 0.550 

 
Neighbouring Vegetation 

cover  (NDVI) 
567 0.629 138 0.620 

Potential 

instability 
LS Factor (°) 771 0.256  775 0.256 

 Coarse debris (cm) 830 0.083 834 0.083 
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 Flow accumulation 846 0.040 623 0.033 

Table 1. corrected Akaike Information Criterion and Pseudo-R² values for two Generalized Least Square (GLS) regression models including 864 

or not the autocorrelated error structure. 865 
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